
LTO.network
Blockchain for Decentralized Workflows

www.lto.network

F

Abstract

Digitalization and automation of business processes offer great benefits in terms of
productivity and cost reduction. Organizations struggle to tap into these benefits for inter-
organizational processes, partly due to a lack of trust. Bitcoin has proven how blockchain
can use distribution and cryptography to provide a system that does not rely on trust.

LTO builds upon this foundation with a decentralized workflow engine employed for
ad-hoc collaboration. Information is shared between parties using per-process private
event chains and hashed on a public blockchain. This hybrid approach allows organi-
zations to meet any data protection regulations and prevents scalability issues that are
typically associated with blockchain projects.

INTRODUCTION

The digital revolution has resulted in many changes that make our lives more
efficient[1]. This wave of progress has taken place primarily in consumer-facing
and internal business processes. When it comes to inter-organizational processes
we have to acknowledge that the changes are less drastic. Faxing has largely
been replaced by e-mail, and the typewriter is replaced by a word processor,
but beyond these superficial changes, execution of the underlying processes have
hardly changed.

The first reason that automation has been absent is the reluctance of corpora-
tions to rely on external systems operated by a counterparty[2], as the distribution
of information plays an important role in the outcome of a relationship[3]. Where
there is a natural power imbalance, one party may take control, forcing all others to
use its centrally managed system. We see this when dealing with the government
and to some extent with corporations. In a situation where no single party can
claim control, automation simply doesn’t happen[4].

To achieve automation for inter-organizational processes, for over two decades
people have experimented with decentralized workflows[5]. In these studies and
experiments, a high level of trust and fair play is assumed, focusing primarily on
solving technological challenges. In reality, this is a false assumption as a lack of
trust prevents successful pilots from making it to production.

A second reason for the absence of automation is the correlation between
efficiency and corruption[6]. Traditionally large corporations and government
bodies require a large number of people to execute a process. A fair amount of
bureaucracy is required to coordinate such processes. This increases the costs of
bribery, reducing the incentive to automate. Increasing efficiency negates this effect.

This paper shows how both problems may be solved using blockchain, provid-
ing a solution where all parties can be on equal footing.



1

CONTENTS

Part I. Live Contracts 3

1 Live vs Smart Contracts 3
1.1 Ricardian Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Enforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Finite state machine 3
2.1 Deterministic Finite State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Extended Finite State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Communicating finite state machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Contract as automaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Alternative modeling methodologies 4
3.1 Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 BPMN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 DEMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Scenario 5
4.1 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.4 Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Data-objects 5
5.1 Immutability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.2 Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.3 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.4 Custom types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6 Identities 6
6.1 Inviting identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6.2 Updating an identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

7 Process 6
7.1 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
7.2 Manual actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.3 System actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.4 Sub-processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.5 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.6 Data operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7.7 Passive testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

8 Adaptive workflows 7
8.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
8.2 Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
8.3 Scenario update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

9 Event chain 8
9.1 Cryptographic signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
9.2 Hash chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

10 Distribution 8
10.1 Private chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
10.2 Genesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

11 Consensus mechanism 8
11.1 Chance of a conflict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
11.2 Branch validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
11.3 Cascading rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
11.4 Unanchored events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
11.5 Merging branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
11.6 Forks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10



2

12 Privacy 10
12.1 Linked data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
12.2 GDPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
12.3 Zero-knowledge proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

13 Common patterns 10
13.1 Chain interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
13.2 Explicit synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Part II. Global blockchain 12

14 Centralized vs decentralized anchoring 12

15 Consensus algorithm 12
15.1 Leasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
15.2 Raffle factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
15.3 Forge probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
15.4 Fair PoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
15.5 Generator signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
15.6 NG protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

16 Transaction types 13
16.1 Anchoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
16.2 Authentication and authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
16.3 Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
16.4 Chain of trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
16.5 Smart accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

17 Summary blocks 14
17.1 Key block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
17.2 Growth without aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
17.3 Segregated witness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
17.4 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
17.5 Difference to pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
17.6 Summary block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
17.7 Total size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
17.8 History nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

18 Network vulnerability 16
18.1 Importance inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
18.2 Nothing at stake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
18.3 LPoS centralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
18.4 Denial of service attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
18.5 SHA-2 vulnerability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Part III. Platform 18

19 Architecture 18
19.1 Micro architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
19.2 Application layers and services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

20 UI Layer 18

21 Application Layer 18
21.1 Web server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
21.2 Workflow engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

22 Private chain layer 18
22.1 EventChain service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
22.2 Event enqueue service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
22.3 Event dispatch service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

23 Public chain layer 19
23.1 Anchor service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

24 Container orchestration 19



3

Part I. Live Contracts
Business process modeling is a common strategy for any

medium or large organization[7]. Creating a visual representa-
tion of a workflow process allows it to be analyzed, improved,
and automated (figure 1). Unlike procedures that are written in
a natural language or written in a programming language, these
models can be understood by both humans and computers.

Draft document

Review document

×

Declined

+

Accepted

Party A signs Party B signs

+

Fig. 1: A BPMN diagram can be used to visualize workflows.

For inter-organizational cooperation, modeling is not done
merely to improve communication. The parties involved must
specify the process to serve as binding agreement[8]; on the
LTO platform this is called a Live Contract.

The LTO platform creates an ad hoc private blockchain for
each Live Contract. Such a blockchain is not intended as an
immutable ledger but ensures all parties have an up-to-date
countersigned history of events and shared states.

1 LIVE VS SMART CONTRACTS

Live Contracts have a similar goal as smart contracts as imple-
mented on Ethereum[9]. Both define and solidify logic that can
be applied in a trustless and verifiable way.

The philosophy behind these two types of digital contracts
is very different however. Ethereum describes smart contracts,
as cryptographic ”boxes” that contain value. These boxes only
unlock it if certain conditions are met[10].

Live Contracts do not directly hold value but describe how
two or more parties should interact. The intent is much closer
to that of a traditional (paper) contract.

1.1 Ricardian Contracts
A Live Contract fits within the definition of a Ricardian con-
tract1[11]. Most notably, it’s easily readable by both people and

1. A Ricardian Contract can be defined as a single document that is a)
a contract offered by an issuer to holders, b) for a valuable right held by
holders, and managed by the issuer, c) easily readable by people (like a
contract on paper), d) readable by programs (parsable like a database),
e) digitally signed, f) carries the keys and server information, and g)
allied with a unique and secure identifier.

programs. This is an inherent property of the Live Contract that
is obtained by the way it is defined. There is no separate natural
language version for legal purposes and a coded version for
programme execution.

1.2 Enforcement
On-chain enforcement is poorly suited for many real-world
cases. Smart contracts rely on proactive enforcement, meaning
either breaching the agreement must be impossible or dropping
out must be possible for each side[12].

Take a non-disclosure agreement as an example. The
blockchain can’t prevent a party from disclosing information,
nor can it force a party to actively participate in resolving a
breach. For such a contract to work, a self-enforcing agree-
ment[13] must hold the full penalty as a deposit, so each party
is better off participating in a resolution.

Having to tie up large amounts of funds as deposits for
penalty fees on arbitrary contracts is impractical for most orga-
nizations[14]. Additionally, the effectiveness of penalty interest
and similar measures are limited to the value held by the smart
contract.

Most inter-organizational business processes call for off-
chain dispute resolution via an authoritative party. A Live
Contract can facilitate in resolving a dispute. This may include
conflict negotiation, mediation and even arbitration (by arbiter
or judge).

Running a process on the LTO platform forms a verifiable
history of events, reducing the amount of asymmetrical infor-
mation. The distribution of information influences negotiations
in case of a dispute[3] and influences the assessment by the
authoritative third party.

1.3 User interface
Ethereum provides an internal Turing-complete scripting lan-
guage, which a programmer can use to construct any smart con-
tract or transaction type that can be mathematically defined[10].
This makes it very abstract as the state contained within the
contract has no intrinsic meaning.

To interact with such contracts a user interface must be
created for each specific smart contract, or more precisely, the
interface of such a contract[15]. Standards like ERC-20[16] and
ERC-721[16] manage to decouple the UI from the contract logic
in some cases but restrict the possibilities when designing a
contract.

With Live Contracts, information does have an intrinsic
meaning. While this restricts use cases, it does enable gener-
ating an interface purely based on the data provided by the
contract and its process. As a result, any workflow can be
digitalized and executed on the LTO platform without the need
of creating a specific UI for each one.

2 FINITE STATE MACHINE

A Live Contract defines a workflow as a Finite State Machine
(FSM)[17]. This makes it possible to visualize the workflow as
a flowchart (figure 2), which makes it understandable for both
humans and computers.



4

2.1 Deterministic Finite State Machine
Any blockchain logic needs to be deterministic[18]. Where
computer programs may require extra effort to comply with
this requirement, a DFSM is deterministic by definition.

q0start

q1

q2

q3q4

q5

Request reviewDocument declined

Document accepted

Party 1 signedParty 2 signed

Party 2 signedParty 1 signed

Fig. 2: Example of a Finite State Machine visualized as a flowchart

2.2 Extended Finite State Machine
Also visualized in figure 2 is how a problem arises when
multiple actions are required to get to a state, but the order
in which they occur is arbitrary. This can be modeled as a
transition path for every possible order, as is done in figure 2.
However, with this approach, the number of states and state
transitions will grow exponentially with the number of actions.
This makes the visualization of the workflow less clear, but also
makes it harder and more error-prone to define the workflow.

This is why instead of using a regular FSM, a Live Contract
uses an Extended Finite State Machine[19] (EFSM), allowing
for conditional state transitions.

Figure 3 defines the same workflow as in figure 2 using an
EFSM.

q0start

q1

q2

q3

Request reviewDocument declined

Document accepted

Party i signed
[party i 6= signed]

Finalize document
[∀ i ∈ parties : i = signed]

Fig. 3: Example of an Extended Finite State Machine: conditions in
brackets have to be true for the transition to be valid

2.3 Communicating finite state machines
Finite state machines are limited to sequential behavior, they do
not support concurrent processes. In order to represent work-
flows with concurrency, each sequence of parallel instructions
may be represented as individual FSM.

The event chain (see section 9) is able to function as a com-
munication channel between two FSMs. When two processes
are isolated by using different event chains, this communication
channel is non-deterministic, which inherently makes the whole
system non-deterministic[20]. This can be overcome by making
acknowledgments part of the FSM as shown in section 13.1.

2.4 Contract as automaton
A Finite State Machine can be applied as an agreement between
the participants by formalizing obligations, permissions and
prohibitions that parties impose on the other[21]. Contracts like
financial agreements[22] and service contracts[23] can be fully
digitized as FSM.

However, these representations are not sufficient to be used
as workflow, as they do not define the orchestration, com-
munication, and choreography within a process. These factors
can be incorporated, however, this causes the FSM to grow
exponentially in complexity[24].

For practicality, an FSM will at best represent an incomplete
contract. This doesn’t have to be a problem as these gaps
may be filled by default rules[25]. The system does allow
renegotiation of a Live Contract, either to resolve a particular
situation or in general, as shown in section 8.

Another thing to note is that not every action in a process
constitutes a binding factor. In figure 1, the acceptance of the
text of a document does not constitute a binding agreement, as
this only occurs when the document is signed. To facilitate this
distinction, actions can be categorized as either informative or
performative actions[26].

3 ALTERNATIVE MODELING METHODOLOGIES

Communicating extended finite state machines are commonly
used in describing telecommunication systems and other real-
time systems[27], but not business processes.

More common notations for workflows provide additional
challenges when modeling decentralized inter-organizational
processes.

3.1 Petri Nets
Petri nets[28] are a graphical way of representing a system in
which there are multiple independent activities running at the
same time. The ability to model multiple activities differentiates
Petri nets from finite state machines. In a finite state machine,
there is always a single “current” state that determines which
action can occur next. In Petri nets, there may be several states
any one of which may evolve by changing the state of the Petri
net. Alternatively, some, or even all, of these states may evolve
in parallel causing several independent changes to the Petri net
to occur at once[29].

Workflow nets (WF-nets) are a subset of Petri nets that
may be used to describe business processes[30]. WF-nets can
describe the whole process rather than only one sequence.

Extended finite state machines use a global state to hold
information. This information must be isolated per sequence.
Failure of making the data immutable can be exploited as
shown in section5.1. With Petri nets, using global information
isn’t possible. Instead, information needs to flow through the
workflow.

With the approach of CEFSMs, sequences are defined as
individual processes. This makes it trivial to apply access
control. When representing the workflow as a whole, this can’t
be addressed in the same way.



5

Petri nets have an interesting notation, which has proven
to be able to correctly represent a business workflow. Given
it’s possible to address the mentioned challenges, the WF-nets
notation might be preferable over using individual FSMs.

Due to the similarity between Petri nets and FSMs, switch-
ing to WF-nets does not fundamentally change the solution as
described in this paper.

3.2 BPMN
BPMN is the industry standard in business model processing
and would be a likely candidate for a modeling notation
for LTO. However, there are a number of limitation that are
particularly problematic for inter-organizational systems[31].

The Business Process Execution Language (BPEL) typically
associated with BPMN, is a non-deterministic Turing complete
language towards web services[32]. This makes it ill-suited for
automation on a blockchain.

A proposed alternative is to translate a BPMN model into a
Petri net, which is translated in a smart contract[33].

While the translation into a (Turing complete) smart contract
is unnecessary, the translation from BPMN into a Petri net (or
CEFSM) might be interesting in order to support the current
industry standard.

3.3 DEMO
“DEMO” is an acronym for “Design & Engineering Method-
ology for Organizations”. This methodology for describing
organizations and their business processes is based around
the ”communicative action”. It uses four models to create a
holistic view; the Construction Model (CM), Process Model
(PM), Action Model (AM), and Fact Model (FM)[34].

Rather than considering each step of a process individually,
it establishes a generalized workflow for every single performa-
tive transaction. In such a transaction, there are two roles: the
initiator and the executor. The standard sequence that follows
is as follows. The initiator does a request, the executor makes
a promise, the executor performs the actions and makes a
statement about the result, the initiator either accepts this as
transaction completed or rejects it[26].

Other alternative flows are also modeled, like the execu-
tor declining the request, the initiator wanting to revoke the
request, the executor being unable to fulfill the promise, etc.
These alternative flows are often not, or only partially, modeled
when using other modeling methodologies, while in practice
these are always present.

In the Process Model (PM) it combines these transactions
to model a complete business process. The difference between
this model and a workflow is that in this model everybody
works in parallel as much as possible, specifying dependencies
between transactions where needed. The models don’t give a
clear overview of where we are in a process. Also, mutual
exclusion of information (don’t edit a document that’s ready
to be signed) is not immersive but needs to be specified.

DEMO might be a good way to make a high-level model,
which yields a workflow that can then be fine-tuned. This
reduces the reliance on deviations (see section 8.2).

4 SCENARIO

A workflow is defined as a data-object; the scenario. It consists
of:

• qx as a state with q0 as the initial state,
• Q as the set of all possible states Q = {q0, ..., qn−1},

• σx as an action,
• Σ as the set of all possible actions Σ = {σ1, ..., σn},
• δ as the transition function δ : Q × Σ→ Q,
• F as the set of final states with F ⊂ Q | F = ∅,
• Ī as all actor definitions,
• Ā as all asset definitions,
• D as the set of embedded data-objects.

4.1 States
States in set Q typically consists of:

• a title: a short title for the state,
• a set of actions with transaction as {(−→qx, δ), ...},
• a description: a long description for the state,
• a map or instructions for specific actors.

The state describes the actions that may be performed in this
state and includes the state transition. This allows actions to be
used in different states.

4.2 Actions
The scenario defines Σ, the set of all possible actions that can
be performed in the workflow. Examples of such actions are
filling out a form, reviewing a document, and sending an HTTP
request or response. The action type and object properties are
defined using JSON schema.

An action defines which of the actors from set I may execute
it, as well as, optionally, additional constraints as described for
the EFSM.

When an action is executed, a state transition is triggered.
Actions can be categorized in manual actions that require
human interference to be executed and system actions that can
be executed automatically by the system.

Optionally actions can define instructions on updating ac-
tors and assets using data from the response.

4.3 Actors
Set Ī defines all actors that can have a role in a process.
Each actor is defined as an object using JSON Schema. Actor
properties that are relevant to the process must be defined.

An actor in a scenario is only a static definition that may be
instantiated in a process.

4.4 Assets
Ā defines all assets that are available in a process. An asset is a
variable data-object. Properties that are relevant to the process
must be defined.

Note that the scenario only defines the structure of assets.
Assets can only be instantiated within the process.

5 DATA-OBJECTS

Besides scenarios, other types of data-objects may be defined.
All data-objects, including scenarios, use JSON schema as a
type definition. Common examples are forms, documents, and
templates.

Data-objects can be embedded in a process or linked and
stored independently.

Linked objects are identified by the SHA256 hash of its JSON
representation. To ensure JSON encoding the data always yields
the same result, a deterministic method of JSON encoding is
applied.



6

5.1 Immutability
Data-objects are immutable to the extent that applying a mod-
ification to a data-object, yields a new data-object. If this data
object is embedded in the process as an asset, the old object is
replaced with the modified one.

Importantly, if the same data-object is available in multiple
processes, changing the object in one process will never propa-
gate to other processes.

Failing to do so could lead to exploitable situations. Figure
1 shows the process of negotiating and signing a document. It’s
clear that the document must not be allowed to be modified
during the signing sequence.

5.2 Forms
A form definition uses a JSON Schema to define the data
structure that should result from filling out the form. Optionally
a UI Schema can be used to specify how a corresponding field
may be rendered and displayed.

There are several similar implementations[35–38] for this.
The aim is to work together with these projects to form a unified
standard.

5.3 Documents
Digital workflows can largely eliminate the need for paper doc-
uments. However legal compliance, backward compatibility,
and simply convention may still require the use of documents.
By defining templates as part of the Live Contract, natural
language documents can be generated using data gathered by
the process.

We recommend using the Open Document Format[39],
which supports fields and conditional sections for creating
templates.

5.4 Custom types
Any JSON schema that defines an object can be used as a data-
object type. Usage of custom types causes the risk of a workflow
not working properly as other parties may participate via a
node that doesn’t support that type. Data with unknown types
will be stored ”as is” and is unavailable outside of the context
of the process.

6 IDENTITIES

An identity defines a person, team or organization within a Live
Contract. An identity always has the following information:

• identifier,
• node URI,
• custom information,
• sign keys,
• an encrypt key.

Identities are not the same as actors. An actor is an abstract
role like ’student’, an identity might be ’Bruce Willis’ or ’Acme
corp’.

Sign-keys is a map with one or more public keys associated
with the identity. The ’user’ key belongs to the identity and
can only be used by him/her to sign an action. The ’system’
key is owned by the node that the identity uses and is used to
sign automated actions. Other key types may have a meaning
defined within a process.

The public encryption key can be used to encrypt data, that
can only be decrypted by this identity.

6.1 Inviting identities
To add parties to a process, the scenario needs to define actions
to add other identities. If the public keys are known within the
process, the identity can be added directly.

When the public key is not known, the identity needs to be
invited (figure 4). This can be done through any means deemed
secure enough, including e-mail. The inviting system generates
a one-time key and sends it to the invited identity. The invited
party must replace this with its own secure ’user’ and ’system’
keys.

Before a new identity can fully participate in a process,
additional authentication may be required. This can range from
SMS verification to federated identity verification and even
notary approval.

q0
Initiate process

q1

q2

q3

Generate temporary key pair

Send key pair to identity

Invitee replaces tempo-
rary keys with own key
pair

Fig. 4: Inviting an identity to join the process.

6.2 Updating an identity
An identity is free to modify its own information, except for the
identifier. This also allows a party to switch to another node. In
cases where a user should not be allowed to switch nodes, it’s
up to the node of the identity to reject that change. Removing
an identity can be done by clearing the sign keys, encrypt key
and node URI.

Updating other identities is only possible if such an action
is defined in the scenario and allowed in the current state.

7 PROCESS

Where a scenario is the stateless definition of a workflow, the
process is a stateful instantiation, consisting of:

• θx as response, where f : qx 7→ θx
• Θ as an ordered list of all responses Θ = {θ0, ...θn}
• qt as the current state
• I as set of all available actors
• A as set of created assets

7.1 Actions
Executing an action always yields a response. The response
must be signed by the actor and submitted as a new event.
Nodes independently determine the new state based on the
current state and the executed action.

The scenario is defined as a deterministic FSM. However
this only concerns the state transitions and the projection. On
systems like Ethereum and Hyperledger, all logic must be
deterministic, as it’s executed by all nodes and needs to yield
identical results on all systems[40].



7

With LTO only a single node or a single actor executes an
action, meaning actions do not need to be deterministic. As
such, concepts like oracles are not needed.

7.2 Manual actions
Applications built on the LTO platform must inform human
actors which actions they may perform in the current state. A
human actor will sign his own response event before submit-
ting it to his node, which will distribute it to all parties.

7.3 System actions
System actions do not require human interference but are
executed by the node automatically. As such, the node signs
the response, rather than the human user.

These actions are always performed by a single system and
do not have to be deterministic. Other parties validate the
response and can reject it if needed. Because there is no human
interference involved in system actions, the actions are signed
by the system itself instead of the actor.

It’s also possible to schedule a system action to be executed
at a later time. This is specified in the scenario. It allows
for a timeout on a state or polling an external source at a
predetermined frequency.

System actions are automatically executed and may yield
an error when used incorrectly or when they fail otherwise. For
these actions, not one but two state transitions must be defined.
One for a successful execution and one in case of an error.

7.4 Sub-processes
A process based on an FSM can only be in one state at a time.
Sub-processes allow a Live Contract to hold multiple states and
make it possible for different procedures to be done in parallel.
While these processes share an event chain, the data for each
process is still isolated.

To facilitate sub-processes, a Live Contract may contain sub-
scenarios that can be instantiated from the main scenario.

7.5 Projection
Besides the FSM state, the process also contains other stateful
data in assets and actors. The payload of every response can be
used to update this data. The rules on how the payload updates
the data are defined in the scenario. Updating the projection is
deterministic and therefore applying a given set of responses
against the scenario will always yield the same projection.

The projection can be used to set the parameters of an action.
It’s also the data for the conditions that make it an Extended
Finite State Machine.

7.6 Data operators
Data operators may be used in the scenario for specifying how
the projection affects the process. These operators are deter-
ministic functions without side effects. They can be used for
arithmetic or logical operations. The result of these operations
may be stored in the projection and can be used, for example,
to base state transitions on.

7.7 Passive testing
A scenario that contains a loop consisting exclusively of system
actions could result in an infinite loop causing a massive
amount of transactions. When validating, we want to reject
scenarios that have such a construct.

Determining if a program can run forever is known as the
halting problem[41]. The problem has been proven unsolvable
for Turing-complete machines. However, it can be solved for
FSMs[42]. Since an FSM has a finite amount of transition paths,
they can all be checked for loops.

Passive tests for EFSM models are complicated by the
presence of infeasible paths. This problem has been well-
documented but remains unsolved[19, 43]. For simplicity rea-
sons, we can assume any path to be feasible by ignoring the
conditions. We accept that this may cause false positives.

8 ADAPTIVE WORKFLOWS

A scenario will model the most typical cases of a process. It’s
impossible to foresee all situations in advance and tedious to
model every possible edge case. Taking a code-is-law approach
would make the system rigid. Instead, Live Contracts supports
three methods of resolving such issues.

8.1 Comments
Comments are used to communicate with other identities.
They can, for example, be used to resolve conflicts or conduct
discussions outside of the process. Using comments instead of
off-chain communication methods makes sure that the conver-
sations are logged on the blockchain. It also allows backtracking
to check when in the procedure certain conversations took
place.

Comments are not restricted to text messages. It is also
possible to use images or documents to assist in the commu-
nication. Comments are not part of the process, meaning that
adding a comment does not trigger a state transition. This way
it is always possible to conduct a discussion about subjects that
were not predefined in the procedure.

8.2 Deviation
Any party may propose a deviation from the main flow by
defining a partial scenario. This sub-flow must start from one
of the states of an existing scenario and end in a state of that
scenario. Deviation flows are only executed once as they are no
longer available when the process returns to an existing state.

All parties need to agree upon the deviation. Note that
deviations might lead to forks that can only be resolved through
manual conflict resolution.

A deviation can be used to resolve disputes. Any party may
propose it to dispute the correctness of a previous event and
present a solution on how to correct that.

Another typical case of using deviations is a payment ar-
rangement. Organizations obviously don’t want to make that
option known at forehand. Predefined sub-flows allow such
arrangements while keeping them under wraps.

8.3 Scenario update
It may be required to change the scenario for a running process,
for instance, when an agreement is updated or a new law is
passed.

A party may provide a new scenario for a given process
through a deviation flow. This flow moves the state out of
the outdated scenario and ends in a transition into the new
scenario.



8

9 EVENT CHAIN

In order to determine the state of the FSM and the projection,
we need to process the set of responses in the given order.
Inserting or removing an event, changing the order of the
events or modifying the payload might result in a radically
different state.

In a centralized solution, the controlling party is responsible
for data integrity. All parties rely on trust on this party to do
so, as it represents a single source of truth. In a decentralized
system, this power and responsibility is shared among all
parties.

To facilitate this, the event chain works like an ad hoc pri-
vate blockchain. Each response is wrapped in an event, which
can be viewed as a block with a single action. The sequence
of these events form a hash chain that is shared between the
parties. The consensus algorithm ensures the parties agree upon
the sequence of events.

9.1 Cryptographic signatures
To ensure nobody can falsify or forge events of others, each
event is signed before submitted using asymmetric cryptogra-
phy. The signed event also serves as a receipt, allowing other
parties to prove that the action has been executed by the signing
identity.

The platform uses ED25519[44] signatures. These elliptic-
curve signatures are widely used, well supported and con-
sidered secure by institutions like NIST[45] and ENISA[46].
Elliptic curve cryptography allows for faster single-signature
verification and signing without losing security. It also reduces
the needed size of both the keys and the signatures. Note that
this method on itself doesn’t grant complete security, as any
party is still able to falsify or forge their own events. In other
words, cryptographic signatures can’t prove an event did not
occur.

9.2 Hash chain
Each event can be uniquely identified using its SHA-2 256bit
hash. This industry standard algorithm is fast and resistant
to pre-image and second-preimage attacks as well as colli-
sions[47]. It’s the recommended cryptographic hashing algo-
rithm by NIST[48].

Embedding the hash of the previous event in the hash of the
next event creates a hash chain, which records the chronology
of the events. When used in combination with cryptographic
signatures, a hash chain provides an adequate measure of
proving that a specific sequence of events resulted in the current
state[49].

10 DISTRIBUTION

Rather than requiring parties to pull information from a central
server or from each other, each party is responsible for pushing
events to the system of all other parties.

Systems need to be always available in order for events
not to get lost. Decoupling and the use of a message queue
reduce issues with temporary unavailability. In a typical case,
all parties will connect to a node they trust which receives
and processes events for them. This node is part of the larger
system (see section 19.1).

With the focus on organizations and governments, it’s up
to these organizations to run a node. Users connect to the
node of their organization, or a publicly available node of their
choosing, to participate in a process.

10.1 Private chain
The event chain is a private chain that is only shared between
the nodes chosen by the identities. Nodes are not aware of
private chains that they are not part of.

A node stores and facilitates many event chains at the
same time. Unlike side chains, event chains are completely
isolated. Chains do not affect each other directly. This allows
for horizontal scaling, given that the activity per event chain is
reasonably low.

10.2 Genesis
Anybody may create a new event chain at will. The genesis
block of this chain contains the identity of the user that’s
creating the process, the subsequent block contains the scenario.
As part of the scenario, other identities will be invited to this
private blockchain.

11 CONSENSUS MECHANISM

LTO is a distributed system, where all parties are able to
participate via their own node. Nodes distribute all events to
their peers, who process them. This means there is a brief
moment where the state of the process between the nodes
differs. Eventual consistency[50] guarantees that, given that
there is no new event submitted, eventually the state of the
process on all nodes will be the same.

However, sometimes new events are submitted before con-
sistency has been achieved. At this moment, it is possible that
two or more nodes append an event upon the event chain. Dur-
ing a Byzantine failure[51], all nodes believe their information
is valid. However, the overall system is in an inconsistent state.
In this state, nodes would no longer accept new events from
one another and need to be able to come to a consensus, rather
than halt.

Distributed applications use a different kind of consensus
algorithm for this. In general, this is a case of Byzantine fault
tolerance (BFT). Early Byzantine fault tolerance methods do
not scale well [52]. The invention of better scaling consensus
algorithms like proof-of-work [53], proof-of-stake [54] and proof-
of-authorization [55] made it possible to create distributed net-
works with a large number of participants, also called dis-
tributed ledger technology.

While these consensus methods scale much better than
traditional BFT methods, they have a need for a relatively high
amount of participants in order to be secure. The event chain is
a private blockchain with relatively few participants, meaning
those algorithms won’t work. Rather than trusting on a majority
vote, nodes consider their state correct unless proven otherwise.

11.1 Chance of a conflict
Event chains rely on optimistic concurrency control. Many
conflicts would put a strain on the consensus algorithm which
can be relatively slow as it may have to wait on a block to be
generated.

We define a distributed event chain as follows:

• Let N be the set of entities {n1, n2, n3, . . . } contributing
to the event chain.

• Let Cn be the event chain, a sequence consisting of
events (e1, e2, e3, . . . ), belonging to entity n and let C
be the set of all copies of the event chain {Cn|n ∈ N}.

• Let’s define a conflict or branch as ∃ i, j ∈ N : i 6=
j, Ci0 = Cj0 , Ci 6⊂ Cj , Cj 6⊂ Ci.



9

For a conflict to occur by accident, two parties must add a block
to their chain before they received the others chain update.

Let’s call the chance of somebody propagating an update to
the chain P (x). This chance depends on the amount of blocks
being added to the chain during a given time frame, the time it
takes to propagate this block to the rest of the network and the
amount of entities contributing to the chain in this time frame.
Assuming everybody contributes equally to the network this
can be derived to formula (1)

P (x) =
f · t
n

(1)

with:
f = Total amount of transactions / time frame
n = Total amount of active participants
t = Time it takes to propagate a block to the rest of the network

This chance can be used to calculate the probability that
a conflict will occur. This probability is derived by subtracting
the chance of not having a conflict from 1. When there is no
conflict it means either nobody has contributed to the chain
that moment, the chance of which is calculated in formula (2),

(1− P (x))n (2)

or only one node contributed to the chain, the chance of which
is calculated in formula (3).

P (x) · (1− P (x))n−1 · n. (3)

Therefore the chance of a conflict is calculated by (4).

P (c) = 1− (1− P (x))n − P (x) · (1− P (x))n−1 · n. (4)

With a network delay of 1200ms we see about chance on a
conflict of < 2%:

5 10 15 20 25
0

1

2

·10−2

Number of active participants

C
ha

nc
e

of
co

nfl
ic

t f = 10

f = 0.5 · n

Fig. 5: This plot shows how the chance of a conflict occurring
increases when the number of participants increases. However,
it stabilizes if the total number of transactions stays the same.

Figure 5 shows that the chance of a conflict occurring is
more or less constant when the number of participants increases
but the total number of transactions stay the same. However,
when the number of participants increases usually the number
of transactions increase as well. For example, more participants
may lead to more comments. When this is the case, the chance
of a conflict increases exponentially with the number of partic-
ipants.

LTO works with very few active participants on a single
event chain. This reduces the chance of a conflict. With 5
or more participants, the number of active participants is no
longer relevant. With more than 10 participants the chance of a

conflict becomes more or less linear based on the network delay
and transaction frequency.

By using individual shared nothing events chains with
decoupled message queues, the transaction frequency will be
very low. This marginalizes the chance on a conflict.

11.2 Branch validation
A node can only prove the other party was aware of the chain
up to the point of its last event. Any party is allowed to branch
the chain after their last commit. If a party tries to branch
the chain from a point before his last event, that branch is
automatically discarded by all (other) parties and the event is
logged.

Before accepting the new events from the conflicting branch,
they are validated similar to any received set of events; The
event must be signed correctly by one of the identities and
the event must be anchored where the timestamp of the event
matches that of the anchor within given boundaries.

11.3 Cascading rules
In case of a conflict, the following rules are applied in this order

• the priority of the event,
• the priority of the actor,
• the order of anchoring.

An action in the scenario may be given priority, this trans-
lates to the event priority. Additionally, some other event types
like comments have a lower priority as the exact sequence is
not of any importance. In case of a conflict occurs, the block that
contains the action with the highest priority will be accepted.

In case the priority is the same, rules are applied based on
identity, creating different levels of authority within the process.
Every actor in the scenario may be given a priority level. By
default, this priority is the same for all actors. To resolve the
conflict, the events added by the actor with the highest priority
must be accepted.

If both the events priorities and the identities authorities are
the same, the third method of consensus is applied. Nodes must
anchor events on the global blockchain. The order of transaction
on this global blockchain is fixed in mined blocks. Therefore the
order in which the events have been anchored on the global
blockchain can be used to achieve consensus. When this is
the case, the block that was anchored first must be accepted.
As such, a consensus of the private event chain is reached
via consensus on the public blockchain. On the public chain,
consensus is reached by anonymous collaboration between a
large number of participants.

Using priorities allows a front-running attack, where an
actor may respond upon an event by creating a new branch
that subsequently invalidates that action. Priorities should only
be used where this is not a problem.

11.4 Unanchored events
When a block is received that has not been anchored yet, one
may decide to accept the block anyway. This is, of course, if no
conflict arises by accepting it. If the anchoring of the block has
merely been delayed, accepting it would prevent unnecessary
delays in the process itself. On the other hand, if the block is
never anchored, no real problems arise. If everybody accepts
the block, the process may continue as normal and the block
may be anchored later.



10

11.5 Merging branches
In case of a fork, most blockchain applications will pick
one chain and ignore everything that happened on the other
branches. With a blockchain like Bitcoin, all transactions will be
included in the mined blocks of each branch eventually.

On the event chain, the events themselves build up the hash
chain. Picking one of the forks would lose information about
an executed action. Instead, when a node becomes aware of
another branch that has precedence over its own branch, it must
base the events it has locally on top of the other chain. This is
similar to a rebase action when using git[56].

11.6 Forks
Even though there is a guaranteed way to achieve consensus, a
participating party might decide to ignore the other chains and
keep the fork in place. For most blockchain applications, like
Ethereum[57], there is no reason to interfere with this, as value
comes from participating on the main chain only.

Live Contracts are a tool to digitize and partly automate
existing processes. Even though the blockchain allows for forks,
those processes usually do not. In the case of a fork, parties
can start a secondary procedure to try to resolve the conflict
manually.

12 PRIVACY

LTO is built for running processes between parties. Beyond
these parties, no-one needs to be aware of the process or even
the collaboration.

Public blockchains allow anonymous accounts, however
these function as pseudonyms. Any transaction may reveal the
identity of an account, exposing the full transaction history.
Smart contracts require the data to be public as it needs to be
available for every node. On consortium blockchains, partici-
pants are aware of each other.

Ad hoc private blockchains uniquely allow a random
assortment of participants to collaborate without the need
for approval and without making information public. These
blockchains can be completely erased when the process has
been completed.

12.1 Linked data
Each party connects via its own node or a node it trusts. Each
node has a private storage service, where users can store data.
Users have complete control over data stored here, similar to
data stored on a service like DropBox. They can remove their
personal data at any time. The data is not shared or processed
without a valid data processing agreement and explicit ap-
proval of the user.

When an action results in linked data, that data is not
directly shared with other parties, only a hash is added to
the blockchain. LTO prevents the hash from being used for
anything else than verifying received data, by putting it in an
envelope together with a timestamp and some random data.
The hash created to form the envelope will never occur on the
blockchain more than once.

When an organization indicates it wants to perform an
action that requires linked data, the node of that organization
will automatically do a request. The data owners node checks if
the specified action is valid and thus may indeed be performed
by this actor in the current state.

12.2 GDPR
With the arrival of the new GDPR[58] (General Data Protection
Regulation) in Europe, an argument has risen about the fact that
a lot of blockchain applications are not GDPR compliant [59].
The two main reasons for this are:

• the fact that the blockchains immutable nature is in
conflict with the right to both amend and erase your
data,

• the fact that there is no dedicated data controller since it
is a distributed environment.

Linked data means that the node chosen by the party to
participate will act as the data controller for that user. All
other parties are always data processors. Data requests are
automatically formatted to be proper data agreements, which
include the purpose and time required for processing the data.

Ad hoc blockchains allow the complete chain to be erased if
required.

In short, LTO privacy features make the solution GDPR
compliant without much additional effort.

12.3 Zero-knowledge proofs
A scenario may require one party to prove to another party that
it knows a specific value. A zero-knowledge proof is a method
of doing so without conveying any information apart from the
fact that it knows that value.

The platform supports zero-knowledge proofs through an
interactive proof system. Two parties; the prover and the veri-
fier exchange messages with the goal for the prover to convince
the verifier of its honesty (completeness) and for the verifier to
expose a dishonest prover (soundness)[60].

A zk-proof for a Live Contract is always an action between
two parties. There is no need for experimental non-interactive
zero-knowledge proofs like zkSNARKS.

13 COMMON PATTERNS

13.1 Chain interaction
Some processes may have to interact with other processes
to be able to continue. Examples are when a process needs
permission from another process to continue or to retrieve the
result of a conflict resolution process. Requesting data from
another process is done by following the pattern shown in
figure 6.

q0

q1

q2

q0

q1

q2

Receive request

Sent response

Sent request

Receive Response

Request

Response

Fig. 6: Pattern followed when two processes interact.

13.2 Explicit synchronization
In some cases, it can be especially troublesome if an event is
propagated too late. If this is the case, explicit synchronization
can be built into the scenario. This requires all parties to
acknowledge the current state before continuing the process.



11

This is a pattern within the FSM intended to prevent parties
from forking the chain of events prior to this event. In case of
a dispute or conflict, such an acknowledgment can be used to
decide which branch should be used to continue the process.

This kind of explicit synchronization only works if all par-
ties acknowledge the current state. If some parties lack the
incentive to continue or even have the incentive to fork the
process, another solution is required. In this case, the party
that wants to continue the process announces this to all other
parties. If any party that receives this announcement notices
that the announced action is not valid on their chain then
they can propagate this. This means that a fork has happened
and regular conflict resolution has to be applied. To remove
the impact of network delays during this announcement, a set
amount of time is waited before assuming that nobody rejected
the announced event.



12

Part II. Global blockchain
The LTO Global blockchain is a permissionless public

blockchain, purposely build for verifying information. It exists
to support Live Contracts and the private event chains. The
global blockchain features anchoring and digital identities that
are interoperable across event chains, blockchains, and applica-
tions.

Notary transactions can be done on nearly any blockchain.
However, on blockchains optimized for financial transactions
or general logic, notary type of transactions are expensive
and inefficient[61]. Furthermore, optimizations as pruning and
sharding can have a negative effect as relevant information is
omitted[62, 63].

The global blockchain is of the Nxt family[64]. A unique
characteristic of this blockchain is that transactions are based
on a series of core transaction types that do not require any
script processing or transaction input/output processing on
the part of network nodes. This reduces the blockchain size,
increases efficiency and allows ways of aggregation particularly
beneficial for notary transactions.

Rather than starting from Nxt directly, we use a fork of the
WAVES platform[65] as a basis. This platform has implemented
a number of improvements, like the NG protocol (section 15.6),
that our network will benefit from. The existing transaction
types focusing on digital assets, including colored coins, are
removed or disabled and replaced by notary transaction types.

14 CENTRALIZED VS DECENTRALIZED ANCHORING

Other solutions for blockchain anchoring use a centralized
approach, where all hashes are collected for a period of time.
From these transactions, a Merkle tree is created which is put
in a single transaction on a third party blockchain like Bitcoin.
Because of this, there is no direct feedback from the system
and it can take several hours before the final receipt can be
collected[66] from the central service.

The LTO global blockchain is a decentralized solution,
where every node sees all transactions. When an anchoring
transaction is broadcasted it’s instantly visible, and after ap-
proximately 3 seconds it’s pre-approved using NG (section
15.6). The transaction is in a block within a minute.

Nodes can keep track of all anchored hashes or only of
their own. If needed they can create a receipt independently
(section 16.1). There is no need for a centralized service.

15 CONSENSUS ALGORITHM

The global blockchain functions as a typical public blockchain.
A node is selected as a generator to validate the transactions
and forge a block. To determine a generator we use the Leased
Proof of Importance (LPoI) consensus algorithm. The generator
is to be rewarded with the fees of the transactions in the forged
block.

Proof of Importance is a variation on Proof of Stake (PoS),
where the chance of being selected to forge a block is deter-
mined based on the number of tokens you hold and stake. With
Proof of Importance, the chance increases based on usage of the
network by the node[67, 68].

The token economy that emerges from this consensus al-
gorithm is described in detail in the ”LTO Token Economy”
paper[69].

15.1 Leasing
NXT, Waves and other blockchains in this family use Leased
Proof of Stake[64, 70]. By leasing tokens, the token holder
passes the right to forge a block to the selected node. These
nodes can work similar to a mining pool, sharing the rewards
proportionally among the lessors.

NXT style networks are susceptible to attack when an at-
tacker controls at least 1/3 of all active balances[71]. This is an
issue, as projects that have implemented the LPoS algorithm
tend to lead to a high level of centralization. The top 2 Nxt
nodes control over 50% of the network[72]. With Waves, the
top 2 nodes control over 1/3 the network and the top 5 over
50%[73].

In section 18 we discuss the importance of a high amount
of decentralization for this network. To prevent nodes with
massive leased stakes, there is a limitation on leveraging on
leased tokens. Any node needs to own at least 10% of the
tokens it stakes. Proof of Importance also counters this effect
as it disadvantages nodes that are passive stakers.

15.2 Raffle factor
To calculate the usage of the network by the node, which
influences the chance to forge a block, the balance of staking
versus transactions, the S/T-ratio will be used.

ST ratio =
Staked tokens as % of total

Contributed transactions as % of total
The S/T-ratio is related to a ‘raffle factor’. The raffle factor is

a mathematical formula that influences the chance that a node
will be chosen to generate a new block. The more balanced
the ST-ratio ( closer to 1.0), the higher the Raffle factor. If
the ST-ratio is unbalanced (a node does not contribute any
transactions), the raffle factor will be 1.0.

raffle factor r = 1 + (0.5 · e−0.5·(ST ratio−1)2)

This formula results in a large standard deviation of the
bell curve.

0 1 2 3 4 5
0.8

1

1.2

1.4

1.6

ST ratio

ra
ffl

e
fa

ct
or

The maximum raffle factor is 1.5, which is halfway between
the minimum and the absolute maximum of 2.0. The absolute
maximum is determined by the possibility for importance
inflation through spam transactions. This is shown in detail in
section 18.1.

To fully understand the concept of the raffle factor and its effect on
the token economy, please read the ”LTO Token Economy” paper[69].



13

15.3 Forge probability
The chance of being selected to forge is P (forge) = S · r.
The contributed transactions T are calculated over time. When
calculating P (forge), S must be constant over the same period
of time to prevent the possibility of abuse.

Start staking

a

b

Stop staking

c

1 2 3 4 5 6

a = Moment when P(forge) is calculated

b = Moment when you forge a block

c = Moment when tokens are still locked

Fig. 7: Timeline for staking tokens and forging blocks. Time is
measured in number of summary blocks.

15.4 Fair PoS
The formula that decides which node is eligible to forge a new
block, is based on the Fair Proof of Stake algorithm[74] created
by Waves. This is an improvement on the original Nxt PoS
algorithm, which overvalues higher stakes.

For a further understanding about the underlying algorithm,
please read the ”Fair Proof of Stake” paper[74].

To convert this algorithm from PoS to PoI, the formula
applies the raffle factor to the staked balance to result in the
effective balance as bi · r.

• Ti as block generation time for i-th account,
• Xn is the generation signature,
• r raffle factor,
• bi percentage of staked vs total staked,
• Λn is the base target
• Tmin = 5 is a constant for delay between blocks,
• C1 = 70, a constant defining shape of delay distribution,
• C2 = 5E17 is a constant to adjust base target.

Ti = Tmin + C1 · log(1− C2 ·
log(Xn/Xmax)

r · bi · Λn
)

If you receive a new block before the time delay is reached,
this block must be added to the chain and a new time delay
must be calculated. The previous Ti is no longer relevant. Each
node calculates Ti itself, this information is not supplied by a
generator. This means that there is no point in using an incorrect
stake in the calculations.

15.5 Generator signature
The block hash is never considered in determining the time
delay Ti. That hash is based on the contents of the block, which
is determined by the node forging the block. If this hash played
any part in determining who could forge the next, it would be
trivial to manipulate Ti. A node could create several different
blocks and only broadcast the one that has the lowest time for
itself.

To prevent this, only the generation signature is used. This
signature is a secondary hash chain, using only the previous
generation signature, plus the public key of the generator. With
Nxt this is completely deterministic, making it susceptible to be
taken advantage of[71].

To combat this, as well as reduce the chance of forks, Fair
PoS uses the generation signature of 100 blocks ago. Any
change in balance on the node or in leases changes Ti for a
given Xn. Nonetheless, any group controlling at least 1/3 of
the tokens can still get a 30% advantage.

PoI requires the staked balance and raffle factor to be
constant over a fixed period of blocks. This would make it even
more vulnerable for such an attack.

As a solution, the generation is not a hash that can be
publicly calculated. Instead, a node must hash the previous
generations signature and sign that hash with its private key.
This serves as a generation signature. Contrary to Nxt and
Waves, a node can only calculate Ti for itself, making it im-
possible to determine the generators in advance.

15.6 NG protocol
The NG protocol was proposed to reduce the scalability issues
on Bitcoin. While it was never implemented on Bitcoin, Waves
NG is active on their main net since December 2017.

With NG, two type of blocks are generated; the micro
block and the key block. The node that was previously elected
may continue validating transactions, creating micro blocks on
average every 3 seconds. When a new node is elected it creates
a key block from the outstanding micro blocks. Transactions in
a micro block can be considered secure to some extent, and are
suitable for low-risk transactions like anchoring.

The reward of the transaction fees is split between the node
that forged the micro block and the node that forged the key
block in a 40% - 60% split. This split must always be in favor of
the key block forger. Otherwise, there would be an incentive to
disregard the already forged micro blocks and create new micro
blocks yourself.

In a public stress test Waves’ NG has been proven to be able
to process up to 6000 Tx/min, with a peak of 17,000 Tx/min[75].
Potentially the NG protocol could handle up to 1000 Tx/sec or
60,000 Tx/min.

NG reduces practical latency and is a key component for
other optimizations.

16 TRANSACTION TYPES

The LTO global blockchain uses predefined transaction types.
This allows for more compact blocks and removes the need for
scripting. The list of transaction types may be extended in the
future if needed. The types of transactions that are currently
possible are:

• Anchor: used to verify transaction from the private
blockchains,

• Issue a certificate: used to declare relationships between
identities,

• Extend/revoke a certificate: used to extend or remove
such a relationship,

• Transfer token: used to send tokens to another identity,
• Stake tokens: used to let a participant stake or lease

tokens,
• Cancel staking: used to stop staking or leasing tokens,
• Set script transaction: used to configure smart accounts.

16.1 Anchoring
Anchoring is the method of taking a hash of a document or
other data and storing it within a transaction on the blockchain.
The goal is to make it impossible for anyone, including the
creator, to back-date or forward-date his document[76].



14

Every event of the private event chain is anchored onto
the global blockchain. Third party applications may use the
global chain to anchor documents for proof of existence. We
estimate that 99% of all transactions on the global chain will
be anchoring transactions. Considering that most transactions
are for anchoring, aggregating these reduces the disk space
required by the blockchain.

When forging a block, a node creates a Merkle tree[77]
from the transactions in the order presented in the list. Only
the Merkle root is added to the blockchain. As part of the
validation, each node recreates this Merkle tree.

Nodes are able to index every anchor hash. However, to
reduce disk size, most nodes should opt to extract the Merkle
path of its own anchor transactions. This path forms the receipt
that can be stored with the original data (like the event).

16.2 Authentication and authorization
Challenge/response authentication methods, like username
and password verification, requires a centralized system. In
a fully decentralized system, we rely on cryptographic signa-
tures to provide authentication. While information isn’t shared
between the event chains, parties can still be identified across
chains given the key pair used for signing.

In a broader sense, parties can sign any type of information
this way. This is a similar use case as currently presented by
PKI certificates. The reliance on Central Authorities to issue
and revoke certificates has hindered the adoption of it as a
replacement for challenge/response authentication.

With public blockchains, public/private key pairs can be
created and used without the need for a central authority. A
key pair forms a unique identity, which can be referenced via
an address which is determined from the hash of the public key.

16.3 Certificates
A certificate transaction allows any identity to convey informa-
tion about another identity by referencing its address. Unlike
tokens, granting and revoking an account is fully under control
of the issuer.

The certificate can be given a specific type chosen by the
party that issued the certificate. While not required, it’s rec-
ommended that a certificate is acknowledged by the recipient
account before displayed to others.

16.4 Chain of trust
While a public address with a private key pair is a method of
authentication, it doesn’t provide a solution for authorization.
Certificates can be used to specify relationships between iden-
tities.

This is a similar approach to the Web of Trust (WoT). The
WoT has a number of drawbacks over PKI, which we do not
have on our platform.

Establishing and revoking a relationship or marking an
identity as compromised is simple, instant and irrevocable
on the blockchain. Blockchain transactions are timestamped,
which allows for verifying the existence of relationships on a
certain point in time.

Rather than simply setting an identity, we set a specific
relationship. The transaction doesn’t confirm or deny any other
information about the identity except the existence of the re-
lationship, removing the need of physically meeting the other
party.

In a given context, we only care about finding a chain of
trust between two identities based on this relationship. This

mimics the chain of trust as done with PKI validation but
without the central authority. Rather than an absolute root
certificate, the blockchain address of our organization or an
organization we do business with functions as trust root.

16.5 Smart accounts
By default, any transaction for an account must be signed using
the private key associated with the account. Waves introduced
the concept of smart accounts, allowing anyone to customize
this logic[78].

To do so, this logic can be scripted using a Non-Turing
complete language. This script is only used to verify or deny
a transaction for a specific account. It cannot trigger other
transactions. As such, this type of smart contract does not
prevent aggregation. A further limitation is placed on LTO
smart accounts to ensure this.

LTO does not have data transactions, other transactions
are not accessible from the script. You may validate whether
a transaction has been signed by one or more other parties,
enabling multi-signature. Rather than specifying these accounts
directly, the requirement may reference a certificate instead.

There are other limitations one might place on an account
as well. An account can be locked, only allow the transfer of
tokens after a number of blocks, require a minimum number
of tokens to remain on the account or only allow transferring
tokens to specific accounts.

Anchoring transactions are an exception. They always need
to be signed with the private key of the account. This logic is in
place to apply future optimizations and can’t be modified.

Using multi-signature is recommended when running a
node. The account associated with the node typically holds a
large number of tokens in order to stake and anchor. The private
key to this account is known to the node. With multi-signature,
obtaining that key won’t give direct access to those tokens.

17 SUMMARY BLOCKS

Anchoring is a low-impact, non-disrupting method to bring
an extra layer of security to the blockchain. We anticipate that
other applications that do not use Live Contracts, will also use
the anchoring feature.

One aspect of the blockchain that counteracts scalability is
the fact that the blockchain will keep growing[79]. The size
puts certain requirements on the hardware to keep a copy. It
also puts a burden on new nodes that have to play back the
whole chain. To reduce the growing speed of the chain, it uses
summary blocks.

17.1 Key block size
Table 3 shows the structure of a key block on the blockchain.
The global chain should be scalable up to 50 million transac-
tions per day. This is about five times the expected usage. The
size of such a key block is determined by the block data and
the transaction data (5).

Keyblock size = d+ t (5)

with:
d = block data,
t = transaction data.

Before calculating the expected blocksize, the following
assumptions are made:

• 99.98% of the transactions are anchoring transactions
(table 5). This is the main use of the global blockchain,



15

• The other 0.02% are issue certificate transactions (ta-
ble 7),

• All other transactions are infrequent and can be ne-
glected,

• All transactions are uniformly distributed over the
blocks,

• On average one key block per minute is generated,
• Every day 1440 key blocks are created.

The block data is 277 bytes big (table 3). Under the assump-
tions made previously, the size of the transaction data can be
calculated by equation (6).

Transaction data size = n · (0.9998 · a+ 0.0002 · c) (6)

with:
a = Size of an anchor transaction (table 5),
c = Size of an issue certificate transaction (table 7),
n = Amount of transaction per block.

This makes the total size of a key block about 3.8MB.

17.2 Growth without aggregation
With 3.8MB per block and 1440 blocks per day, the blockchain
would grow 5.47GB per day / 2TB per year, if the blockchain
would continuously run a full capacity.

The expected usage is on average 10 million transactions,
growing the blockchain 1.1GB per day. This results in about
3.65 billion transaction or about 400GB per year.

For Bitcoin, with 340 million transactions total[80], it takes
about 7 days to synchronize from genesis, depending on net-
work and hardware speed.

With billions of transactions, doing this naively could mean
waiting weeks or even months for the global blockchain to
synchronize.

One of the goals of aggregating transactions is to require
only 20 minutes of synchronization per year, again depending
on network and hardware speed. With 365 summery blocks in a
year, a node should be able to process a summery block within
3 seconds.

17.3 Segregated witness
Segregated witness is a strategy employed in Bitcoin to reduce
the data in a block[81] by separating a transaction into data that
needs to be processed and data to verify the transaction in the
block. This second part is called the witness data, containing
signatures amongst other things.

Finality is the guarantee that blocks that are sufficiently
deep will never be removed from the blockchain. Regardless
of probabilistic finality or protocol finality, witness data is no
longer useful if the block is guaranteed to not be reverted.
Nodes are free to remove witness data for blocks that reached
finality, saving disk space.

We’ve built on the logic of segregated witness for the
concept of summary blocks.

17.4 Aggregation
Aggregation blocks are special blocks that are created every
1440 blocks (about once a day). They contain aggregated values
of all the blocks since the previous summary block. When
replaying the chain, only the summary blocks need to be
applied to get close to the current state. After this, only the
blocks created after the last summary block still have to be
replayed. This decreases the replay time significantly.

The second to last summary block and all blocks before
that are final. Nodes will not consider forks before that point,
regardless of the longest chain. This means that only the trans-
actions of the previous 500 to 1000 key blocks have to be stored.
By removing transaction data from the key blocks after it has
been stored in a summary block, key block size is reduced from
11.3MB to 277 bytes, making them negligible compared to the
summary blocks.

17.5 Difference to pruning
At first glance, this approach has similarities to blockchain
pruning, as you only maintain a limited set of transactions. The
danger with pruning is in the introduction of a falsified state,
threatening the immutability nature.

The danger comes from distributing the state of the
blockchain. With segregated witness, transactions are applied
without signature validation, relying on the concept of finality.
Still, every node needs to apply all transactions from genesis to
calculate the current state.

The actual transaction data is not used to calculate the
block’s signature but is rather stored as an attachment next to
the block (table 2). As events without transactions, key blocks
are part of the blockchain and can’t be ignored. If transactions
are applied without validation, aggregating them holds little
risk.

17.6 Summary block size
Summary blocks contain all information about non-anchor
transactions and an aggregated version of all the transaction
fees and other token transfers. They are rather larger blocks,
especially compared to the key blocks. To reduce the amount of
memory used, the transaction fees and token transfer transac-
tions get reduced to a balance change per participant (table (4)).
Besides this aggregation, the summary will also contain the
other transactions. To calculate the expected size of a summary
block, the following assumptions are made:

• There is a total of 200000 participants,
• Every day 1 summary block is created,
• Based on the assumptions in the previous section we

can assume that the balance change summary is the only
significant part of a summary block.

Using these assumptions, the size of a summary block can
be calculated. Using equation 7, this results in about 10.3MB.

Summary block size = Transaction summary = p · e (7)

with:
p = Amount of participants in the last 1500 blocks,
e = Size of a balance change summary entry (table 4.

17.7 Total size
The total size of the blockchain consists of two parts. A static
part and a growing part. The static part consists of the last 1000
key blocks . Those will still contain the attachment data (5).

Static part = n · k (8)

with:
n = Amount of keyblocks stored with transaction data,
k = Size of a keyblock (5).



16

Using equation 8 results in the total size of the static part
being about 11.3GB. Because only the last 1000 blocks are
stored completely, which means including transactions, this
size may differ slightly, but won’t grow noticeably.

The growing part consists of the summary blocks (7) and
what is left of the key blocks after the transaction data is
removed. We’ll define the size as growth per year using equa-
tion (9).

Growing part = n · k +m · s (9)

with:
n = Number of keyblocks per year,
m = Number of summaryblocks per year,
k = Size of a keyblock without transaction data,
s = Size of a summaryblock (7).

Still following the previously made assumptions this result in
the blockchain growing about 3.7GB per year.

17.8 History nodes
Nodes are not required to delete old transactions. By main-
taining all transactions, history nodes are able to prove the
correctness of the blockchain in case it’s needed. History nodes
are unable to pass a falsified history, as the blocks of the history
node need to match those of other nodes. The network could
rely on a relatively small amount of history nodes.

There is no on-chain benefit of running a history node. It
doesn’t increase the chance of forging new blocks. Running
such a node must be done out of community interest or sec-
ondary income.

18 NETWORK VULNERABILITY

18.1 Importance inflation
A particular worry with PoI is the inflation of importance
through dummy transactions. We can calculate the profit/loss
from spam transactions as a formula of the maximum raffle
factor;

• Raffle factor; r,
• Percentage of staked tokens; bi,
• Cost of a transaction; c,
• Total transactions on network; n,
• Spam transactions; τ ,
• Rewards; p,
• Profit/loss from spam; ∆p = prmax − pr=1.

p = (r · bi · n · c)− (τ · c) (10)

r = 1, τ = 0→ p = bi · n · c (11)

r = rmax, τ = bi · n→ (rmax − 1) · bi · n · c (12)

This gives

∆p = ((rmax − 2) · bi · n · c) (13)

Given

bi > 0, n > 0, c > 0,∆p < 0→ (rmax − 2) < 0 (14)

rmax < 2 (15)

Equation 15 proves that it’s impossible to gain directly from
spam transactions, with a maximum raffle factor of less than
two.

A raffle factor close to two would make spam transactions
nearly free. Increasing the importance of the network for little

to no costs is undesirable, as it could aid an attacker trying to
undermine the network with a 51% attack. The maximum raffle
factor of 1.5 ensures a high cost of inflating importance.

18.2 Nothing at stake
The nothing at stake principle is the assumption that nodes
will continue to build on any forks, rather than picking the
longest chain, as there is no downside in doing so[82]. If all
nodes would display such ill behavior, an attacker would only
need a small percentage of tokens to force the network to switch
to the other chain; a 1% attack.

Such a situation is a Tragedy Of The Commons[83]. All
parties seek individual gain by abusing the system. But if
everybody is doing it, nobody benefits. Instead, it only leads
to undermining the network, causing a decrease in the value of
the underlying token.

Waves Fair PoS has made it a lot more difficult for an unpub-
lished orphaned branch to catch up with the main branch[74].
The possibility of profiting from such behavior with bad actors
that only hold a small percentage of tokens is neglectable.

A bad actor would need to create and maintain an altered
version of the node. The costs combined with the knowledge
that there is little chance of benefiting from it, should be enough
to disincentivize this behavior[84].

18.3 LPoS centralization
Projects that have implemented LPoS algorithm tend to lead to
a high level of centralization.

This effect can be explained by the reward per token. A
professional setup with a near 100% uptime will not miss a
forging opportunity, yielding more reward with a set amount
of tokens being staked. This draws token holders to lease to
these nodes and has a reinforcing effect as reduced overhead
allows for higher payouts to lessors.

Limiting the number of tokens per node is a flawed method
enabling the opportunity for a Sybil attack[85]. In a permission-
less reputation system, a single node can advert itself as multi-
ple pseudonymous identities, circumventing this limitation.

The nature of our solution means a majority of transactions
will be signed by a key pair associated with a node. The
network will also consist of a relatively large number of nodes.
This has no effect on PoS, while on PoI this gives the platform
users an advantage over non-user token holders.

An additional measure is a limitation on leveraging on
leased tokens; any node needs to own at least 10% of the tokens
it stakes.

18.4 Denial of service attack
Due to the limited scalability, it’s fairly easy to overload any
public blockchain with too many transactions. Transaction fees
are the primary defense against these sorts of attacks, but
transactions still need to be verified to conclude there are
insufficient funds. Even more, with a decent amount of funds,
it’s possible to overload the network with spam transactions as
seen with Ethereum in July 2018.

Nodes have the option to automatically increase the trans-
actions fees in case of such an attachment. Ideally, nodes gain
as much from staking as is spend on transactions. As the spam
tokens increase the rewards of transaction fees, this is used to
automatically counter the attack.



17

18.5 SHA-2 vulnerability
In 2017 SHA-1 was proven to be vulnerable when the Google
research lab managed to find a collision where two different
documents resulted in the same hash[86]. If SHA-2 256bit
would have a similar vulnerability this could be devastating
for anchoring based on a Merkle tree.

If a collision is found, one can claim that the colliding
document has been notarized. Even worse, given a Merkle
root and a random hash, one might be able to generate a
valid Merkle path. That would allow a hacker to verify any
document. This would still not be a trivial task as for every
branch in the tree, two hashes need to be combined that are
exactly 32 bytes long.

While bruteforcing a specific SHA-1 would still require
too many computations to achieve in a lifetime, the birthday
paradox results in much fewer computations being required
to find a collision. The birthday paradox also applies to the
LTO public chain, as there are many Merkle roots, each with a
maximum number of Merkle paths.

To overcome this, verification might fall back to history
nodes in case the verification is disputed. However, this reduces
the overall uses of anchoring nodes.

Instead a secondary Merkle tree might be added where the
SHA-2 hash is hashed with another algorithm like SHA-3 or
Blake2. Simply double hashing isn’t useful when it’s possible to
falsify a Merkle, as only a vulnerability in the outer algorithm is
required for an exploit. However, if there are two Merkle trees,
both algorithms would need to be broken. Even then, a collision
needs to be found for both trees of a single block, removing the
birthday paradox advantage.



18

Part III. Platform
19 ARCHITECTURE

19.1 Micro architecture
The LTO node is developed using the microservices architecture
pattern. This means that all functionality within the node is split
into microservices, with each service being responsible for only
a small part of the entire node. There are several advantages to
this pattern:

• Failure isolation, if a service fails it won’t necessarily
interfere with other services.

• Scalability, all the services within the node are decou-
pled and can therefore run on different machines. This
makes it really suitable for horizontal scaling. The scal-
ing is automated, which can be found in the description
in section 24

• Flexibility, certain functionality flourishes better in cer-
tain programming languages. Each service can be devel-
oped in a different programming language.

• Code quality, by splitting the node into small and well-
defined modules it becomes easier for developers to read
and review. This leads to better code quality.

The microservices are grouped in a docker container. All
these containers are run using the Kubernetes container or-
chestration platform. This will be described in section 24. Each
microservice is designed to run independently. This means it
has no shared dependencies, so each container has it’s own
database or event queue. Microservices are also designed to
operate statelessly, so they are easily scalable.

19.2 Application layers and services
As described in section 19.1 the node is split up into several
services. The services are grouped into 4 different layers. The
node consists of the following layers:

• UI Layer: this consists of UI applications that interact
with the application layer,

• Application layer: contains all the services that handle
actions triggered by events from the event chain,

• Private chain layer: takes care of the decoupling of the
node,

• Public chain layer: manages the public chain service.
Our global public blockchain is optimized for storing
hashes. Each node indexes all hashes, so they can be
easily verified.

20 UI LAYER

The UI layer contains two frontend applications which enable
users to easily develop and debug their Live Contracts. First
is the Chain Viewer. The chain viewer allows users to connect
to a specific node and list all the chains. The user can only list
and view chains of which he is a part. The second application
is the playground application. The playground application lets
users develop Live Contract scenarios. It visualizes the scenario
in a state diagram and it contains other visualization and
verification tools.

21 APPLICATION LAYER

21.1 Web server
The web server application serves as a proxy between the front-
end and the applications within the node. The web server
performs two functions:

• Authentication of all requests to the services
• Proxies all requests to the correct service

21.2 Workflow engine
The actual creation and execution of the Live Contracts are done
by the Workflow Service. If an event received by the Event
Chain Service contains an action in the Live Contract it will
be sent to the Workflow Service. The Workflow Service will
execute the action which will lead to a state transition in the
workflow and a new projection of the workflow. This projection
is stored in a MongoDB database.

22 PRIVATE CHAIN LAYER

The private chain layer decouples the node. Decoupling ensures
a stable system even in case of bad connectivity or high load.
The message queue is the communication layer for the private
chain. The technology providing the message queue will be
RabbitMQ. RabbitMQ is a lightweight message broker which is
perfectly suited to deliver messages within the node but also
to other nodes. RabbitMQ has a function called the Shovel.
A Shovel will dynamically setup a connection with another
RabbitMQ broker and exchanges messages. This mechanism is
used to send events from one node to another.

Three services manage all inbound and outbound events.

22.1 EventChain service
The service which manages the private chains is the Event
Chain service. This service processes all incoming events. Dur-
ing this processing of events the services take the following
steps:

• Validate the incoming event(s), by checking if it’s cor-
rectly signed and if the chain isn’t broken.

• Validate if the chain matches the locally stored chain. If
not, it performs conflict resolution where possible.

• If the event(s) are sent by the identity that belongs to this
node it will execute the received event(s). Otherwise, it
will only store them in the database.

• If a new identity is added from a different node, the
whole chain is forwarded to this node.

• All the new events are forwarded to the related nodes.

For storage, the Event Chain service uses a MongoDB
database.

22.2 Event enqueue service
The Event Enqueue service has the small task of putting events
in the event queue. It does this both from services within the
node (e.g. the Workflow Service and the Event Service) as well
as from external users.

22.3 Event dispatch service
All messages in the event queue are handled by the Event
Dispatch Service. It picks up all the messages and distributes
them to the Event Service. If the Event Service processes the
message it will be marked as handled. Otherwise it will be
moved to the dead-letter queue.



19

23 PUBLIC CHAIN LAYER

23.1 Anchor service
The Anchor service is at the heart of the public chain. The
Anchor service will be a fork of the NXT platform extended
with NG protocol. The Anchor service will be extended so
it will not only be able to handle ’normal’ transactions but
also data transactions. These data transactions will be used to
store hashes from events on the private chains as is described
in section 16.1. All these hashes will be collected daily and
merged deterministically into a Merkle Tree. This way the data
transactions can be removed from storage to reduce the storage
footprint but people are still able to verify whether the hash
existed.

To be able to verify whether a certain hash is stored, all
the hashes will be indexed. This way verification is much
faster because you won’t have to search through all the data
transactions.

24 CONTAINER ORCHESTRATION

Since the node is build up out of multiple microservices, a
container orchestration platform is required to manage the
running of the containers. Container orchestration platforms
take care of a few tasks such as provisioning hosts, instantiating
containers, restarting failed containers, scaling the cluster by
adding or removing containers. Different container orchestra-
tion tools can be used for this purpose like Docker Swarm,
Mesos, Nomad or Kubernetes. Initially, a configuration file will
be included for Kubernetes. Each service will be configured
to run in its own Pod with its own load balancer. This is
done so individual services can scale independently of each
other. Scaling of services is managed using the Horizontal Pod
Autoscaler [87].



REFERENCES 20

REFERENCES

[1] Hannah Ritchie Max Roser. Technological Progress. https:
/ / www. ft . com / content / cb56d86c - 88d6 - 11e7 - afd2 -
74b8ecd34d3b. Accessed: 03-06-2018. 2017.

[2] Christine Legner and Kristin Wende. “The challenges of
inter-organizational business process design – a research
agenda”. In: (2007).

[3] Benjamin E. Hermalin and Michael L. Katz. “Moral Haz-
ard and Verifiability: The Effects of Renegotiation in
Agency”. In: (1990).

[4] Audun Jøsang. “The right type of trust for distributed
systems”. In: Proceedings of the 1996 workshop on New
security paradigms. ACM. 1996, pp. 119–131.

[5] Israel Z Ben-Shaul and Gail E Kaiser. “A paradigm for
decentralized process modeling and its realization in the
oz environment”. In: Proceedings of the 16th international
conference on Software engineering. IEEE Computer Society
Press. 1994, pp. 179–188.

[6] Ray Fisman and Roberta Gatti. “Bargaining for bribes:
The role of institutions”. In: International handbook on the
economics of corruption (2006), pp. 127–139.

[7] Jörg Becker, Michael Rosemann, and Christoph Von Uth-
mann. “Guidelines of business process modeling”. In:
Business Process Management. Springer, 2000, pp. 30–49.

[8] Manfred Reichert, Thomas Bauer, and Peter Dadam.
“Enterprise-wide and cross-enterprise workflow manage-
ment: Challenges and research issues for adaptive work-
flows”. In: (1999).

[9] Vitalik Buterin. “Ethereum White Paper: A Next-
Generation Smart Contract and Decentralized Applica-
tion Platform”. In: (2013).

[10] Vitalik Buterin and Karthik Gollapudi. A Next-Generation
Smart Contract and Decentralized Application Platform.
https : / / github . com / ethereum / wiki / wiki / White -
Paper / f18902f4e7fb21dc92b37e8a0963eec4b3f4793a. Ac-
cessed: 22-05-2018.

[11] Ian Grigg. “The Ricardian Contract”. In: (2004).
[12] Nick Sabo. “Formalizing and Securing Relationships on

Public Networks”. In: (1997).
[13] Telser. “A Theory of Self-Enforcing Agreements”. In:

(1980).
[14] David Joulfaian Douglas Holtz-Eakin and Harvey S.

Rosen. “Sticking it out: entrepreneurial survival and liq-
uidity constraints”. In: (1993).

[15] Toshi wallet now supports ERC20 tokens and ERC721 col-
lectibles. https : / / blog . toshi . org / toshi - wallet -
now - supports - erc20 - tokens - and - erc721 - collectibles -
e718775895aa. Accessed: 30-08-2018.

[16] ERC-20 Token Standard. https://eips.ethereum.org/EIPS/
eip-20. Accessed: 30-08-2018.

[17] Daniel IA Cohen and Daniel IA Cohen. Introduction to
computer theory. Vol. 2. Wiley New York, 1991.

[18] Marko Vukolić. “Rethinking permissioned blockchains”.
In: Proceedings of the ACM Workshop on Blockchain, Cryp-
tocurrencies and Contracts. ACM. 2017, pp. 3–7.

[19] AbdulSalam Kalaji, Rob Mark Hierons, and Stephen
Swift. “A search-based approach for automatic test gen-
eration from extended finite state machine (EFSM)”. In:
Testing: Academic and Industrial Conference-Practice and
Research Techniques, 2009. TAIC PART’09. IEEE. 2009,
pp. 131–132.

[20] M.G. Gouda, E.G. Manning, and Y.T. Yu. “On the Progress
of Communication between Two Finite State Machines”.
In: (1984).

[21] G Pace and J Schapachnik. “Contracts for Interacting
Two-Party Systems”. In: (2012).

[22] Mark D. Flood and Oliver R Goodenough. “Contract as
Automaton: The Computational Representation of Finan-
cial Agreements”. In: (2015).

[23] Davide Basile, Pierpaolo Degano, and Gian-Luigi Ferrari.
“Automata for Service Contracts”. In: (2014).

[24] Pierpaolo Degano Davide Basile and Gian-Luigi Ferrari.
“From Orchestration to Choreography through Contract
Automata”. In: (2014).

[25] Ian Ayres and Robert Gertner. “Filling Gaps in Incom-
plete Contracts: An Economic Theory of Default Rules”.
In: (1989).

[26] Jan L.G. Dietz. “Understanding and Modeling Business
Processes with DEMO”. In: (1999).

[27] YoungJoon Byun, Beverly A. Sanders, and Chang-Sup
Keum. “Design Patterns of Communicating Extended
Finite State Machines in SDL”. In: (2001).

[28] Petri. “Kommunikation mit Automaten”. In: (1962).
[29] Dennis Kafura. Notes on Petri Nets. http : / / people . cs .

vt .edu/kafura/ComputationalThinking/Class- Notes/
Petri-Net-Notes-Expanded.pdf. Accessed: 01-09-2018.

[30] Wil M.P. van der Aalst. “The Application of Petri Nets to
Workflow Management”. In: (1998).

[31] Jan Recker et al. “How good is bpmn really? Insights from
theory and practice”. In: (2006).

[32] Wil M.P. van der Aalst et al. “Life After BPEL?” In: (2005).
[33] Luciano Garcı́a-Bañuelos et al. “Optimized Execution of

Business Processes on Blockchain”. In: (2017).
[34] Jan L.G. Dietz. “DEMO: Towards a discipline of organi-

sation engineering”. In: (1999).
[35] JSONForms - React. https://jsonforms.io/. Accessed: 30-

08-2018.
[36] JSONForm - Bootstrap 3. https://github.com/jsonform/

jsonform. Accessed: 30-08-2018.
[37] Mozilla react-jsonschema-form. https : / / github . com /

mozilla- services/react- jsonschema- form. Accessed: 30-
08-2018.

[38] Angular Schema Form. http://schemaform.io/. Accessed:
30-08-2018.

[39] Open Document Format. http : / / www .
opendocumentformat.org/. Accessed: 30-08-2018.

[40] Sindhu Sajana and Sethumadhavan. “On Blockchain
Applications: Hyperledger Fabric And Ethereum”. In:
(2018).

[41] Stephen A Cook. “The complexity of theorem-proving
procedures”. In: Proceedings of the third annual ACM sym-
posium on Theory of computing. ACM. 1971, pp. 151–158.

[42] Daniel Brand and Pitro Zafiropulo. “On communicating
finite-state machines”. In: Journal of the ACM (JACM) 30.2
(1983), pp. 323–342.

[43] Robert M Hierons AbdulSalam Kalaji and Stephen Swift.
“New approaches for passive testing using an Extended
Finite State Machine specification”. In: (2003).

[44] O Sury and R Edmonds. Edwards-Curve Digital Security
Algorithm (EdDSA) for DNSSEC. Tech. rep. 2017.

[45] NIST. Transition Plans for Key Establishment Schemes using
Public Key Cryptography. https://csrc.nist .gov/News/
2017/Transition-Plans-for-Key-Establishment-Schemes.
Accessed: 13-07-2018. 2017.

[46] Daniel J. Bernstein et al. “High-speed high-security signa-
tures”. In: Journal of Cryptographic Engineering 2.2 (2012),
pp. 77–89. ISSN: 2190-8516. DOI: 10 . 1007 / s13389 - 012 -
0027-1. URL: https://doi.org/10.1007/s13389-012-0027-
1.



21

[47] Henri Gilbert and Helena Handschuh. “Security analysis
of SHA-256 and sisters”. In: International workshop on
selected areas in cryptography. Springer. 2003, pp. 175–193.

[48] NIST. NIST Policy on Hash Functions. https://csrc.nist .
gov/Projects/Hash- Functions/NIST- Policy- on- Hash-
Functions. Accessed: 13-07-2018. 2015.

[49] Bruce Schneier and John Kelsey. “Cryptographic Support
for Secure Logs on Untrusted Machines.” In: USENIX
Security Symposium. Vol. 98. 1998, pp. 53–62.

[50] Peter Bailis and Ali Ghodsi. “Eventual consistency to-
day: Limitations, extensions, and beyond”. In: Queue 11.3
(2013), p. 20.

[51] Andrew S Tanenbaum and Maarten Van Steen. Distributed
systems: principles and paradigms. Prentice-Hall, 2007.

[52] Miguel Castro and Barbara Liskov. Byzantine fault toler-
ance. US Patent 6,671,821. 2003.

[53] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash
System. https://bitcoin.org/bitcoin.pdf. Accessed: 17-05-
2018.

[54] Aggelos Kiayias et al. “Ouroboros: A provably secure
proof-of-stake blockchain protocol”. In: Annual Interna-
tional Cryptology Conference. Springer. 2017, pp. 357–388.

[55] POA Network. Proof of Authority: consensus model with
Identity at Stake. https://medium.com/poa- network/
proof- of- authority- consensus- model- with- identity- at-
stake-d5bd15463256. Accessed: 17-05-2018.

[56] Git Documentation. Git Branching - Rebasing. https : / /
git - scm . com / book / en / v2 / Git - Branching - Rebasing.
Accessed: 09-08-2018.

[57] Aaron van Wirdum. “Rejecting Today’s Hard Fork, the
Ethereum Classic Project Continues on the Original
Chain: Here’s Why”. In: Bitcoin Magazine 20 (2016).

[58] European Parliament. REGULATION (EU) 2016/679 OF
THE EUROPEAN PARLIAMENT AND OF THE COUN-
CIL: on the protection of natural persons with regard to the
processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data
Protection Regulation). https://eur- lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32016R0679&
from=EN. Accessed: 12-07-2018. 2016.

[59] Olly Jackson. “Is it possible to comply with GDPR using
blockchain?” In: International Financial Law Review (2018).

[60] S Goldwasser, S Micali, and C Rackoff. “The knowledge
complexity of interactive proof systems”. In: (1989).

[61] Blockchain costs per transaction. https://www.blockchain.
com/charts/cost-per-transaction. Accessed: 05-09-2018.

[62] Emanuel Palm. Implications and Impact of Blockchain Trans-
action Pruning. 2017.

[63] Wenting Li et al. “Towards scalable and private indus-
trial blockchains”. In: Proceedings of the ACM Workshop
on Blockchain, Cryptocurrencies and Contracts. ACM. 2017,
pp. 9–14.

[64] Serguei Popov. “A probabilistic analysis of the nxt forg-
ing algorithm”. In: Ledger 1 (2016), pp. 69–83.

[65] Waves platform. WAVES whitepaper. https : / / blog .
wavesplatform.com/waves- whitepaper- 164dd6ca6a23.
Accessed: 16-07-2018. 2016.

[66] Chainpoint Node API: How to Create a Chainpoint Proof.
https://github.com/chainpoint/chainpoint-node/wiki/
Chainpoint- Node- API:- How- to- Create- a- Chainpoint-
Proof. Accessed: 05-09-2018.

[67] Gleb Kostarev. Review of blockchain consensus mechanisms.
https://blog.wavesplatform.com/review-of-blockchain-
consensus - mechanisms - f575afae38f2. Accessed: 13-07-
2018. 2017.

[68] NEM. NEM technical reference. https : / / nem . io / wp -
content / themes / nem / files / NEM techRef . pdf. Ac-
cessed: 13-07-2018. 2018.

[69] LTO. “LTO Token Economy”. In: (2018).
[70] Waves Platform. Blockchain Leasing For Proof Of Stake.

https://blog.wavesplatform.com/blockchain- leasing-
for- proof- of- stake- bac5335de049. Accessed: 13-07-2018.
2018.

[71] mthcl. “The math of Nxt forging”. In: (2014).
[72] Waves generators. http://dev.pywaves.org/generators/.

Accessed: 28-08-2018.
[73] Nxt Blockchain Explorer. https://nxtportal.org/monitor/.

Accessed: 28-08-2018.
[74] Kofman Begicheva. “Fair Proof of Stake”. In: (2018).
[75] Waves-NG stress test: results in! https : / / blog .

wavesplatform.com/waves - ng- stress - test - results - in -
44090f59bb15. Accessed: 05-09-2018.

[76] S. Haber and W.S. J Stornetta. “How to time-stamp a
digital document”. In: (1991).

[77] Ralph C. Merkle. “Method of providing digital signa-
tures”. U.S. pat. 4309569. Jan. 5, 1982.

[78] A. Begicheva and I. Smagin. “RIDE: a Smart Contract
Language for Waves”. Pat. 2018.

[79] Saifedean Ammous. “Blockchain Technology: What is it
good for?” In: (2016).

[80] Blockchain number of transaction. https://www.blockchain.
com/en/charts/n- transactions- total. Accessed: 05-09-
2018.

[81] BIP 141: Segregated Witness (Consensus layer). https : / /
github . com / bitcoin / bips / blob / master / bip - 0141 .
mediawiki. Accessed: 05-09-2018.

[82] Problems Ethereum. https://github.com/ethereum/wiki/
wiki/Problems. Accessed: 30-08-2018.

[83] G Hardin. “The Tragedy of the Common”. In: (1969).
[84] Nothing considered a look at nothing at stake vulnerabil-

ity for cryptocurrencies. https : / / pivx . org / nothing -
considered- a - look- at - nothing- at - stake- vulnerability -
for-cryptocurrencies/. Accessed: 30-08-2018.

[85] John R Douceur. “The sybil attack”. In: International work-
shop on peer-to-peer systems. Springer. 2002, pp. 251–260.

[86] Marc Stevens et al. “The first collision for full SHA-1”. In:
(2017).

[87] Kubernetes. Kubernetes, Horizontal Pod Autoscaling. https:
//github.com/kubernetes/community/blob/master/
contributors/design-proposals/autoscaling/horizontal-
pod-autoscaler.md. Accessed: 03-08-2018.



22

# Field Name Length
1 Version 1
2 Timestamp 8
3 Parent block signature 64
4 Consensus block length 4
5 Base target 8
6 Generation Signature 32
7 Transaction list Hash 32
8 Anchor Merkle root 32
9 Generator public key 32
10 Block’s signature 64

TABLE 1: Key block structure

# Field Name Length
1 Amount of transactions (x) 4
2 Transaction #1 bytes 113
· · · · · · · · ·
2 + (K - 1) Transaction #K bytes 113

TABLE 2: Key block attachment

# Field Name Length
1 Version 1
2 Timestamp 8
3 Parent block signature 64
4 Consensus block length 4
5 Base target 8
6 Generation Signature 32
7 Transaction list Hash 32
8 Transaction #1 bytes TODO
· · · · · · · · ·
8 + (K − 1) Transaction #K bytes TODO
9 + (K − 1) Balance change summary entry #1 40 (Table 4)
· · · · · · · · ·
9 + (K − 1) + (N − 1) Balance change summary entry #N 40 (Table 4)
10 + (K − 1) + (N − 1) Generator public key 32
11 + (K − 1) + (N − 1) Block’s signature 64

TABLE 3: Summary Block structure

# Field Name Length
2 Wallet address 32
3 Balance change 8

TABLE 4: Balance summary entry

# Field Name Length
1 Transaction type 1
2 Anchor hash 32
3 Fee 8
4 Timestamp 8
5 Signature 64

TABLE 5: Anchor transactions structure

# Field Name Length
1 Transaction type 1
2 Sending address 32
3 Receiving address 32
4 Amount 8
5 Fee 8
6 Timestamp 8
7 Signature 64

TABLE 6: Transfer transaction structure



23

# Field Name Length
1 Transaction type 1
2 Id 32
3 Sending address 32
4 Receiving address 32
5 Expiration Date 8
6 Certificate Type 32
7 Fee 8
8 Timestamp 8
9 Signature 64

TABLE 7: Issue certificate transaction structure

# Field Name Length
1 Transaction type 1
2 Id 32
3 New expiration Date 8
4 Fee 8
5 Timestamp 8
6 Signature 64

TABLE 8: Update certificate transaction structure

# Field Name Length
1 Transaction type 1
2 Sending address 32
3 Receiving address 32
4 Amount 8
5 Fee 8
6 Timestamp 8
7 Signature 64

TABLE 9: Lease transaction structure

# Field Name Length
1 Transaction type 1
2 Sending address 32
3 Receiving address 32
4 Amount 8
5 Fee 8
6 Timestamp 8
7 Signature 64

TABLE 10: Cancel Lease transaction structure


