Quantum Resistant Ledger (QRL)

info@theqrl.org
October 2016 (revised)

Abstract

Private digital monies must be secure against computing advances to achieve longevity. The design and
issuance of a cryptocurrency ledger utilising hash-based digital signatures which are resistant to classical
and quantum computing attack is presented.

1 Introduction

The concept of a peer-to-peer internet ledger of value, recorded as a blockchain and secured by proof of work
was first reported in 2008[11]. Bitcoin remains the most widely used cryptocurrency to date. Hundreds of
similar cryptocurrency ledgers have been subsequently created but with few exceptions they rely on the same
elliptic curve public-key cryptography (ECDSA) to generate digital signatures which allow transactions to
be verified securely. The most commonly used signature schemes today such as ECDSA, DSA and RSA
are theoretically vulnerable to quantum computing attack. It would be valuable to explore the design and
construction of a quantum resistant blockchain ledger to counter the potential advent of a sudden non-linear
quantum computing advance.

2 Bitcoin Transaction Security

It is currently only possible to spend (unspent transaction outputs) from a bitcoin address by creating a
transaction containing a valid elliptic curve (secp256k1) signature from the private key (z € N|z < 22°¢) for
that specific bitcoin address. If the truly randomly generated private key is kept secret or lost then no funds
can reasonably be expected to move from that address ever.

The chance of a specific bitcoin private key collision is 1 in 22°6. The probability of any bitcoin address
key collision can be estimated using the Birthday Problem. The number of bitcoin addresses which must be
generated to result in a 0.1% chance of a collision is 5.4x10%3[14].

However, when a transaction is signed then the ECDSA public key of the sending address is revealed and
stored in the blockchain. Best practice is for addresses not to be re-used, but as of November 2016 49.58%
of the entire bitcoin ledger balance is held in addresses with exposed public keys[1].

3 Quantum Computing Attack Vectors

RSA, DSA and ECDSA remain secure based upon the computational difficulty of factorisation of large in-
tegers, the discrete logarithm problem and the elliptic-curve discrete logarithm problem. Shor’s quantum
algorithm (1994) solves factorisation of large integers and discrete logarithms in polynomial time. Therefore,
a quantum computer could theoretically reconstitute the private key given an ECDSA public key. It is
thought ECDSA is more vulnerable to quantum attack than RSA due to the use of smaller keysizes, with a
1300 and 1600 qubit (2!') quantum computer able to solve 228 bit ECDSA.

Public quantum computer development has not passed beyond 2° qubits or the factorisation of small num-
bers (15 or 21). However, in August 2015 the NSA deprecated elliptic curve cryptography ostensibly based

upon quantum computing concerns. It is unclear how advanced quantum computing may be presently or
that any breakthroughs in this field will be publicised to allow cryptographic protocols in common usage in
the internet to be made post-quantum secure. With somewhat anti-establishment origins, bitcoin could find
itself the earliest target of an adversary with a quantum computer.

If a significant quantum computing advance were to occur publicly, node developers could implement
quantum-resistant cryptographic signature schemes into bitcoin and encourage all users to move their bal-
ances from ECDSA-based addresses to new quantum-safe addresses. To mitigate the proportion of effected
addresses it would be reasonable to disable public key recycling at the protocol level. Such a planned up-
grade would also result in the possible movement of the 1 million coins belonging to Satoshi Nakamoto -
with associated price volatility.

A less favourable scenario would be a silent non-linear quantum computing advance followed by a nu-
anced quantum computing attack on bitcoin addresses with exposed public keys. Such thefts could have a
devastating effect upon the bitcoin exchange price due to new heavy sell pressure and a complete loss of
confidence in the system as the scale of thefts become known. The role of bitcoin as a store of value ('digital
gold’) would be very badly damaged with extreme consequences for the world. In this context the authors
believe it is reasonable to experiment with quantum-resistant cryptographic signatures in a cryptocurrency
ledger and potentially create a backup value store in the event of a black swan.

4 Quantum-resistant signatures

There are several important cryptographic systems which are believed to be quantum-resistant: hash-based
cryptography, code-based cryptography, lattice-based cryptography, multivariate-quadratic-equations cryp-
tography and secret-key cryptography. All these schemes are thought to resist both classical and quantum
computing attack given sufficiently long key sizes.

Forward secure hash-based digital signature schemes exist with minimal security requirements that rely
only upon the collision-resistance of a cryptographic hash function. Changing the chosen hash function
produces a new hash-based digital signature scheme. Hash-based digital signatures are well studied and
represent the primary candidate for post-quantum signatures in the future. As such they are the chosen
class of post-quantum signature for the QRL.

5 Hash-based digital signatures

Quantum resistant hash-based signatures rely upon the security of a one-way cryptographic hash function
which takes a message, m and outputs a hash digest, h of fixed length, n. i.e SHA-256, SHA-512. Using
a cryptographic hash function it should be computationally infeasible to brute force m from h (pre-image
resistance), or brute force h from hs, where ha = hash(h) (second pre-image resistance), whilst it should be
very hard to find two messages (ml # m2) that produce the same h (collision resistance).

Grover’s quantum algorithm may be used to attempt to find a hash collision or perform a pre-image at-
tack to find m, requiring 0(2"/ 2) operations. Thus to maintain 128 bit security, a hash digest length, n of
at least 256 bit must be selected - assuming a perfect cryptographic hash function.

Hash-based digital signatures require a public key, pk, for verification and a private key, sk for signing
a message. Various hash-based one-time signatures (OTS) will be discussed regarding their suitability for
inclusion as part of a blockchain ledger.

5.1 Lamport-Diffie OTS

In 1979 Lamport described a hash-based one-time signature for a message of length, m bits (usually the
output of a collision resistant hash function). Keypair generation creates m pairs of random secret keys,

sk € {0,1}" where j € {0,1}. ie. the private key is: sk = ((sk, ski), .., .., (sk§", ski")). Let f be a
one-way hash function {0,1}" — {0,1}", with m pairs of public keys generated pk!* = f(sk7"), i.e. the
public key is: pk = ((pk{, pki), .., .., (DkI, pki")). Signing involves bitwise inspection of the message hash to
select sk; (i.e. if bit = 0, sk; = sko, bit = 1, sk; = ski), creating the signature: s = (sk]l7 7sk;") which
reveals half the private key. To verify a signature, bitwise (j € {0,1}) inspection of the message hash checks
that (pk; = f(sk;))™.

Assuming that after Grover’s algorithm 128 bit security is desired, where message length is a fixed hash
output from SHA256, m = 256 and n = 256, resulting in a pk = sk = 16kb, and a signature of 8kb for each
OTS used. A Lamport signature should be used only once, may be generated very quickly, but suffers from
large key, signature and by extension transaction sizes, making it impractical for a public blockchain ledger.

5.2 Winternitz OTS

For a message digest, M, of length, m bits, with secret and public keys of length, n bits, a one-way func-
tion, f : {0,1}™ — {0,1}™ and a Winternitz parameter, w € N|w > 1, the general idea of the Winternitz
one-time signature is to apply an iterating hash function on a list of random secret keys, sk € {0,1}",
sk = (sk1, .., 8kp /), creating chains of hashes of length, w — 1, ending with public keys, (pk € N[{0,1}"),
pks = fQU)_l(Skz)a pk = (pkh "apkm/w)~

Unlike the bitwise inspection of the message digest in in the Lamport signature, instead the message is parsed
w bits at a time to extract a number, i € N,i < 2% — 1, from which the signature is generated, s, = f%(sk),
5 = (81,..8m/w). With a growing w providing a tradeoff between smaller keys and signatures for increased
computational effort.[10].

Verification involves simply generating pk, = f2° ~i(s,) from M, s and confirming the public keys match.

Using SHA-2 (SHA-256) as a one-way cryptographic hash function, f: m = 256 and n = 256, with w = 8
results in a pk = sk = s size of (m/Tw)" bytes = 1kb.

To generate pk requires f* hash iterations, where i = 22%“~1 = 8160 per OTS keypair generation. At
w = 16 the keys and signatures halve in size, but ¢ = 1048560 becoming impractical.

5.3 Winternitz OTS+ (W-0OTS+)

Buchmann introduced a variant of the original Winternitz OTS by changing the iterating one-way function
to instead be applied to a random number, x, repeatedly but this time parameterised by a key, k, which
is generated from the previous iteration of fj(z). This is strongly unforgeable under adaptive chosen mes-
sage attacks when using a pseudo random function (PRF) and a security proof can be computed for given
parameters[3]. It eliminates the need for a collision resistant hash function family by performing a random
walk through the function instead of simple iteration. Huelsing introduced a further variant W-OTS+, en-
abling creation of smaller signatures for equivalent bit security through the addition of a bitmask XOR in
the iterative chaining function.[6] Another difference between W-OTS(2011 variant)/ W-OTS+ and W-OTS
is that the message is parsed logs(w) bits at a time rather than w, decreasing hash function iterations but
increasing keys and signature sizes.

W-OTS+ will now be briefly described. With security parameter, n € N, corresponding to the length
of message (m), keys and signature in bits, being determined by the cryptographic hash function chosen and
the Winternitz parameter, w € N| w > 1 (usually {4, 16}), [is computed. [is the number of n bit string
elements in a WOTS+ key or signature, where [= 1 + l:

m loga(l1(w —1))

I = [WL lp = L logg(w) J +1

A keyed hash function is used, fi : {0,1}" — {0,1}" | k € {0,1}"™. In pseudocode:

Fo(M) = Hash(Pad(K)||Pad(M))

Where Pad(x) = (x|[10°~1*1=1) for |z| < b.

The chaining function, ¢} (z,7): on input of z € {0,1}", iteration counter i, key, k¥ € K, and randomi-
sation elements, r = (rq,..,7;) € {0,1}"*, with j > 4, is defined as follows:

Figure 1: W-OTS+ chaining function

7.

LX) l ci
C—{23-0

Where:

c(x,r) = . o
Tr(cy 1(30,7”)@7"1-) if ¢ > 0;

Figure 2: Example hash-chain generation

clx) =x
O—0—O0—0—O0—0—0—0O—0—O—0—0—O

clx)= F (x®r) o1 (x)

That is a bitwise xor of the previous iteration of ¢; and the randomisation element followed by fi on the
result, which is then fed into the next iteration of cg.

5.3.1 Signature key

To create the secret key, sk, [+w — 1 n bit strings are chosen uniformly at random (with PRF), of which the
first make up the secret key, sk = (sky, ..sk;) and the remaining w— 1 n bit strings become r = (r1, .., 7y—1).
A function key, k is chosen uniformly at random.

5.3.2 Verification key
The public key is:

pk = (pk()vpkla ~7ka) = ((T7 k)? 0?71(8k17 T)» cz)il(Sk27 T)v (XX} C;fu*l(Sklv T))
Note that pky contains r and k.

5.3.3 Signing

To perform a signature: message, M, of length m, is parsed such that M = (My,..M,), M; € {0,w — 1}
(creating a base-w representation of M).

Next the checksum, C, of length, ls, is calculated and appended:

5
C=> (w—1-DM)
=1

Such that: M + C =b= (by,..b;)
The signature is:
5= (51, 8) = (X (sk1,7), .., 2 (sky, 7))

5.3.4 Verification

To verify a signature b = (b1, ..,b;) is reconstructed from M.
If pk = (711 (s1), .., ¢ 7P (1)) then the signature is valid.

W-OTS+ provides a security level of at least n —w — 1 — 2log(lw) bits[3]. A typical signature where w = 16
using SHA-256 (n = m = 256) is In bits or 2.1kb.

6 Merkle tree signature schemes

Whilst one-time signatures provide satisfactory cryptographic security for signing and verifying transactions
they have a major drawback that they may only be used once safely. If a ledger address is based upon some
transformation of the public key of a single OTS keypair then this would lead to an extremely restrictive
blockchain ledger where all funds from a sending address would need to move with every single transaction
performed - or those funds would be at risk of theft.

A solution is to extend the signature scheme to incorporate more than one valid OTS signature for each
ledger address allowing as many signatures as OTS keypairs are pre-generated. A binary hash tree known
as a merkle tree is a logical way to achieve this.

6.1 Binary hash tree

The general idea behind a merkle tree is an inverted tree composed of parent nodes computed by hashing
the concatenation of child sibling nodes upwards in layers to the root. The existence of any node or leaf can
be cryptographically proven by computing the root.

A merkle tree is formed from n base leaves and has height to merkle root, h (n = 2") - starting from
the leaf hashes (layer 0) and counting upwards with each layer of nodes. Each leaf node is created in our
hypothetical ledger use-case by hashing a randomly pre-generated OTS public key. From the tree below it
can be seen that the node above each pair of leaf hashes is itself formed by hashing a concatenation of the
child hashes.

Figure 3: Merkle tree signature scheme example

[root
merkle hash(H5IIHE)
root
\ /\
-
1.0 1.1
node hash(H1IIH2) hash(H3IIH4)
hashes H5 He
. /\
4
0.1 0.2 03 0.4
leaf
hashes H1 H2 H3 H4
\
- I I I
OTS public key 0 OTS public key 1 OTS public key 2 OTS public key 3
oTS
keypairs I I I I
OTS private key 0 QTS private key 1 OTS private key 2~ OTS private key 3

This continues upwards through layers of the tree until confluence into the root hash of the tree, known as
the merkle root.

From the example tree in the diagram, taking the merkle root as the public key, four pre-computed OTS
keypairs can be used to generate four cryptographically secure valid one-time signatures. The merkle root
of the binary hash tree can be transformed into a ledger address (possibly by iterative hashing with an
appended checksum). A full signature, S, of a message, M, for a given OTS keypair includes: the signature,
s, the ots key number, n, and the merkle authentication path. i.e. for OTS keypair 0 (thus n = 0):

S =s, n, OTS public key 0, H1, H2, H5, H6, root

Given the OTS public key and leaf hash can be deduced from s, and parent nodes can be computed from
their children in fact this may be shortened to:

S=s,n, H2, H6, root

Where S is valid by verifying the OTS public key from s and M, then checking the hashes from the merkle
authentication path recreate a matching merkle root (public key).

6.2 State

Using the above merkle signature scheme (MSS) securely relies upon not re-using the OTS keys. Therefore,
it is dependent upon the state of signatures or signed transactions being recorded. Ordinarily in real world
usage this would potentially be a problem, but an immutable public blockchain ledger is the ideal storage
medium for a stateful cryptographic signature scheme. A newer hash-based cryptographic signature scheme
called SPHINCS which offers practical stateless signatures with 2'2® bit security was reported in 2015[2].

6.3 Hypertrees

A problem with the basic MSS is that the number of signatures possible is limited and all the OTS keypairs
must be pre-generated prior to calculation of the merkle tree. Key generation and signature time grow ex-
ponentially with the height of the tree, h, meaning trees larger than 256 OTS keypairs becomes temporally
and computationally expensive to generate.

A strategy to defer computation during key and tree generation and also extend the number of OTS keypairs
available is to use a tree which is itself composed of merkle trees called a hypertree. The general idea is to
sign the merkle root of a child tree with an OTS key from the leaf hash of a parent merkle tree known as a

certification tree.

Figure 4: linking merkle trees

root
hash

certification
tree

H1 H2

\ |

OTS public key 0

I N
. root certification

QTS private key 0 = hash % signature
child
signature
tree, 0

H1 H2
’

OTS public key 0
oTsS
keypairs

OTS private key 0

In the most simple form (height, h = 2) a certification tree is precomputed with 2! OTS keypairs and when
the first signature is required a new signature merkle tree (signature tree 0) is computed and signed by one
of the certification tree OTS keypairs. The signature tree is composed of n leaf hashes with corresponding
OTS keypairs and these serve to sign messages as required. When each OTS keypair in the signature tree
has been used then the next signature tree (signature tree 1) is signed by the second OTS keypair from the
certification tree and the next batch of signatures is possible.

A signature, S, of such a hypertree construction becomes slightly more complicated and would include:
1. from the signature tree: s, n, merkle path, root
2. from each certification tree: s (of child tree merkle root), n, merkle path, root

It is theoretically possible to nest layers of trees down from the certification tree to extend the original
MSS infinitely. Signature size grows linearly for each additional tree that is signed, whilst the hypertree
signature capacity increases exponentially.

6.3.1 Hypertree examples

To demonstrate how easily the MSS may be extended with a hypertree construction consider an initial
certification tree of height, hy = 5, with 2° leaf hashes and associated OTS keypairs. The merkle root of
this tree is transformed to generate a ledger address. Another merkle tree, a signature tree of identical size
(ho = 5, 2° leaves and OTS keypairs) is instantiated. 32 signatures are possible before the next signature
tree must be created. The total number of signatures possible is 271772 which in this case is 210 = 1024.

On a Macbook pro 2.7Ghz i5, 8gb ram creating OTS keypairs and a merkle certification tree for various
sizes yielded the following results (unoptimised python code, Winternitz OTS): 24 = 0.5s, 2° = 1.2s, 26 =
3.5s, 28 = 15.55. A hypertree consisting of initial generation of two 24 trees takes around 1s compared with
15.5s for standard 28 MSS tree for the same signature capacity.

Increasing the depth (or height) of a hypertree continues this trend. A hypertree composed of four chained
24 certification trees and a signature tree of size 2% is capable of 220 = 1,048, 576 signatures with an added
cost to the signature size but a creation time of only 2.5s.

Figure 5: Hypertree construction

address

public key

certification tree 0

certification tree 1
2°4

certification tree 2
2h4

signature tree
2n4

OTS keypair 1 OTS keypair 24

There is no requirement for a hypertree to be symmetrical and so if composed initially of two trees it could
later be extended later by signing further layers of trees. Signatures from a ledger address would therefore
start small and eventually rise as the hypertree depth increased. Using a merkle hypertree to create and
sign transactions from a ledger address is never likely to require > 2'2? transactions. Thus, the ability to sign
with computational ease 22° times securely at a hypertree depth of h = 5 is more than sufficient.

6.4 XMSS

The extended merkle signature scheme (XMSS) was first reported by Buchmann et al. in 2011 and was
published as an IETF draft last year[4][7]. It is provably forward secure and existentially unforgeable under
chosen message attacks with minimal security requirements: a PRF and a second pre-image resistant hash
function. The scheme allows extension of one-time signatures via a merkle tree with a major difference being
the use of bitmask XOR of the child nodes prior to concatenation of the hashes into the parent node. The
use of the bitmask XOR allows the collision resistant hash function family to be replaced.

Figure 6: The XMSS tree construction

The leaves of the tree are also not OTS keypair hashes but the root of child L-trees which hold the OTS
public keys with, [pieces forming the base leaves. Winternitz OTS+ is used for the one-time signatures
(though 2011 variant was first described).

Figure 7: XMSS construction [8]

public key

XMSS tree

leaves of XMSS

)

, ‘o v+ A I w

nvate keys
sk' sk1 sk2 sk3

The bit length of the XMSS public key is (2(H + [logl]) + 1)n, an XMSS signature has length (I + H)n, and
the length of the XMSS secret signature key is < 2n.

Buchmann reports performance with an Intel(R) ¢5 2.5 Ghz for an XMSS tree of height, h = 20, where
w = 16 and the cryptographic hash function used is SHA-256 (m = 256) of up to around a million signa-
tures. With the same parameters and hardware, signing took 7ms, verification 0.52ms and key generation
466 seconds. The security level achieved with such parameters was 196 bits for a public key size of 1.7kb,
private key of 280 bits and signature 2.8kb. XMSS is an attractive scheme with the main drawback being
the extremely long key generation time.

6.5 XMSS tree performance

Using an unoptimised python library constructed for a QRL testnode formation of a 4096 leaf XMSS tree
(h=12) with all keys and bitmasks generated from a hash-based PRF took 32s on the same hardware de-
scribed above (a Macbook pro 2.7Ghz i5, 8gb ram). This included generation via PRF of more than 8000
bitmasks and over 300,000 sk fragments. A more efficient merkle tree traversal algorithm and the need to
only perform w — 1 hashes per secret key chain function in WOTS+ rather than 2*~! with WOTS contribute
to the dramatic performance improvement over a conventional MSS.

A complete signature size of around 5.75kb was achieved in this construction (11.75kb hexadecimal string
encoding) including the: OTS keypair n, signature, XMSS auth route, OTS public key and the XMSS tree
public key (including PRF public key seed and the XMSS tree root).

For trees of various signature capacities generated using PRF and a random seed, the following performance
was obtained: (h=9) 512 4.2s, (h=10) 1024 8.2s, (h=11) 2048 16.02s.

7 Proposed signature scheme

7.1 Security requirements

In the design of the QRL it is important that the cryptographic security of the signature scheme is secure
against classical and quantum computing attack both in present day and also future decades. XMSS using
SHA-256, where w = 16, offers 196 bit security with predicted safety against brute force computational
attack until the year 2164[9].

7.2 QRL signatures

An extensible stateful asymmetrical hypertree signature scheme composed of chained XMSS trees is pro-
posed. This has the dual benefit of utilising a validated signature scheme and allowing generation of ledger
addresses with the ability to sign transactions avoiding a lengthy pre-computation delay seen with giant
XMSS constructions. W-OTS+ is the chosen hash-based one-time signature in the scheme for both security
and performance reasons.

7.3 Hypertree construction
7.3.1 Key and signature sizes

As the number of trees within a hypertree grows, key and signature sizes grow linearly - but signature
capacity rises exponentially. Sizes for various XMSS tree derived public keys and signatures (based upon
2011 description), where w = 16, m = 256, h is tree height and SHA-256 is chosen as the cryptographic hash
algorithm, are:

e h =2, 22 signatures: public key 0.59kb, signature 2.12kb (0.4s)

e h =5, 25 signatures: public key 0.78kb, signature 2.21kb (0.6s)

e h =12, 2'2 signatures: public key 1.23kb, signature 2.43kb (32s)

e h =20, 2% signatures: public key 1.7kb, signature 2.69kb (466s[3])

The trade-off for creating an XMSS hypertree (4 trees, j = 3, h = 5) with eventual signature capacity of 22°
in less than 3s compared with 466s, for a signature of 8.84kb instead of 2.69kb may be acceptable.

7.3.2 Asymmetry

Creating an asymmetrical tree allows early signatures to take place with with a single XMSS tree construc-
tion, which is extended as required for later signatures at a cost to overall signature capacity. The rationale
is that this is likely to be of no consequence for a blockchain ledger application and the wallet can give a user
an option of signature capacity versus signature/key sizes. A maximum tree depth of j = 2 should suffice
for all circumstances.

10

Figure 8: Asymmetrical hypertree

address

public key

_

j =0 for early signatures

hyper tree depth increased as required (j>0)

7.4 QRL hypertree specification

The following default parameters are to be adopted for a standard hypertree construction:

e j=0(€e{0<x<2}),h=12 (h € {1 < x < 14}), upper bound of signatures possible: 236,
minimum signature size: 2.21kb, maximum signature size: 7.65kb.

i.e. A single XMSS tree, h = 12 with 4096 signatures available, which may be extended with further trees
of up to h = 14 as required. For most users additional trees are unlikely to be required at all.

7.4.1 Example QRL signature

Assuming the most complicated hypertree construction where j = 2 and h = 14, a signature for transaction
message, m, where n is the OTS keypair position for each XMSS tree, would require:

e Signature tree, j = 2: OTS signature of m, n, merkle authentication proof, merkle root of signature
tree

e Certification tree, j = 1: OTS signature of merkle root from signature tree (j = 2), n, merkle authen-
tication proof, merkle root

e Original XMSS tree, j = 0: OTS signature of merkle root (j = 1), n, merkle authentication proof,
merkle root

Verification involves generating the OTS public key from m and the signature, then confirming the supplied
merkle authentication proof generates the signature tree merkle root. This becomes the message for the next
OTS signature and from this the next OTS public key is generated, the supplied merkle authentication proof
used to recreate the certification tree merkle root, which becomes the message for the next certification tree
OTS signature, and so on. A signature is only valid if the merkle root of the highest tree, the original XMSS
tree, (j = 0) is correctly generated.

Notice the OTS public keys are not required for verification of the XMSS tree signature. In fact the merkle
root for each tree can also be deduced and therefore omitted with hypertree signature verification if the
sending ledger address is known (as this is a computed derivative of the merkle root for the highest XMSS
certification tree (j = 0) within the QRL signature - see Accounts later).

As the signature scheme is stateful the wallet implementation must retain and update n for each XMSS
tree generated in the hypertree for a given address.

11

7.5 PRF
PRF from seed. HMAC_DRBG.

7.6 Deterministic wallet

Using a single SEED it is possible to generate a very large XMSS tree which should suffice for most users
for a prolonged period. A secure source of entropy is used to generate this SEED which is passed through
a secure PRF function to generate a set of pseudorandom keys which generate the tree. One drawback of
using the same XMSS tree is that the user is confined to a single address (although public key exposure is
not a concern with a MSS).

A bitcoin or ethereum address is derived from the associated public key and as such a single private or public
key may only create a single address. However, an XMSS address is derived from the public key, PK, which
contains the merkle root and public SEED. If the SEED remains constant but the number of OTS keypairs
to compute the tree varies then the merkle root will change for each variation. Thus for every single addition
or subtraction of a single OTS keypair the derived address will change.

This feature may be used by wallet /node software to generate numerous variations of the XMSS tree (extend-
ing/contracting it as required using the same initial SEED) allowing as many unique addresses as required to
be generated. To record this information in a safe, stateful and compact manner is computationally trivial.

8 Cryptocurrency design parameters

The remainder of the white paper will set out the proposed design parameters for the QRL ledger. The focus
of the ledger is to be a public blockchain which is highly secure against classical and quantum computing
attack vectors. This is a first draft and thus every aspect is subject to potential change.

8.1 Fees

The larger transaction sizes compared with other ledgers necessitates a transaction fee must be paid with
each transaction. The author is of the opinion that artificial fee markets (see bitcoin) are unnecessary and
run counter to the ideal of an open public blockchain ledger. Each transaction if it pays a minimum fee
should be as valid as any other. The minimum fee miners are willing to accept should float and be set by
the market. i.e. nodes/miners competitively set the lower bound of fees between themselves. An absolute
minimum value will be enforced at protocol level. Thus, miners will order transactions from the mempool
for inclusion in a block at their discretion.

8.2 Blocks
8.2.1 Block-times

Bitcoin has a time between blocks of roughly 10 minutes, but with natural variance this can on occasion
lead to fairly long periods before the next block is mined. Newer ledger designs such as ethereum have
improved upon this and benefit from a much shorter block-times (15 seconds) without the loss of security or
miner centralisation from high rates of orphan/stale blocks. Ethereum uses a modified version of the Greedy
Heaviest Observed Subtree protocol which allows stale/orphan blocks to be included in the blockchain and
rewarded[13, 5].

The QRL plans to safely use a block-time of 60 seconds.

8.2.2 Block-rewards

Each new block created will include a first ’coinbase’ transaction containing a mining address into which a
reward equal to the sum of the coinbase reward and the combined sum of transaction fees within the block.
The block-reward is re-calculated by the mining node every block and follows the coin emission schedule.

12

8.2.3 Blocksize

To avoid controversy an out-of-the-box adaptive solution modelled upon the Bitpay proposal to increase the
blocksize based upon a multiple, x, of the median size, y of the last z blocks would be employed[12]. The
use of the median prevents gaming by miners to include either empty or overstuffed blocks to alter the mean
blocksize. x and z would then be hard consensus rules for the network to obey.

Thus, a maximum blocksize, b could be simply calculated as:

b=y

8.3 Currency unit and denominations

The QRL will use a monetary token, the quantum (plural quanta), as the base currency unit. Each quantum
is divisible to a smallest element as follows:

e 1: Quantum (plural: Quanta)
e 107? : Shor

Thus, each transaction involving a fraction of a quantum is actually a very large integer of Shor units.
Transaction fees are paid and calculated in Shor units.

8.4 Accounts

A QRL address is designed to be extensible and supports a wide range of formats.

The first three bytes of any address (descriptor) encode information to describe the hash function, signature
scheme, address format, and additional parameters.

A typical account address is represented as follows:

01070050d31c7 123995 f097bc98209€9231d663dc26e06085df 55dc2 f6a fe3c2cd62e8271a6bd

8.4.1 Structure

QRL Addresses are structured in the following way:

Name Bytes Count Description

DESC 0..2 3 Address Descriptor
DATA 3..N 77 N will depend on the address format

At the moment, only one address format is supported: sha256_2X

When using sha256_2X, a QRL address is composed of 39 bytes. This is the internal format used by any
API or module in the project. For representational purposes (i.e. user interface, debugging, logs), it is
possible that the address is represented as a hexstring prefixed with Q (79 hexadecimal characters). This is
appropriate for user related purposes but will be rejected by the API.

Name Bits Count Description

DESC 0..2 3 Hash Function

HASH 3..35 32 SHA2 256(DESC+PK)

VERH 36..40 4 SHA2 256(DESC+HASH) (only last 4 bytes)

In pythonic pseudocode this is represented as follows:

Q + DESC[: 3] + HASH[: 32] + VERH][: 4]

13

8.4.2 Descriptor

Name Bits Count Description

HF 0..3 4 Hash Function

SIG 4.7 4 Signature Scheme

P1 8§..11 4 Parameters 1 (ie. height, etc.)
P2 12..15 4 Address Format

P3 16 .. 23 8 Parameters 2

In the case of using XM SS, the parameters are used as follows:

Name Bits Count Description

HF 0.3 4 SHA2-256, SHAKE128, SHAKE256
SIG 4.7 4 XMSS

P1 8..11 4 XMSS Height / 2

AF /P2 12. 15 4 Address Format

P3 16 .. 23 8 Not used

SIG - Signature Type

Value Description

0 XMSS
1.. 15 Reserved - Future expansion

HF - Hash Function

Value Description

0 SHA2_256

1 SHAKE_128

2 SHAKE_256

3 .. 15 Reserved - Future expansion

AF - Address Format

Value Description

0 SHA256_2X
1.. 15 Reserved - Future expansion

8.5 Coin issuance

8.5.1 Issuance

The QRL initial issuance will be the following:
e Initial supply: 52 - 10° quanta
e Allocated for foundation: 13- 10° quanta
e Initial total supply: 65 - 10° quanta

e Eventual total supply: 105 - 10° (40 - 10% quanta distributed via exponential decay emission schedule
over approximately 200 years)

14

8.6 Coin emission schedule

A defining feature of bitcoin is the scarcity and fixed upper limit to issuance of the underlying monetary
token. QRL will follow bitcoin in this regard with a fixed upper limit to the coin supply of 105 - 10° quanta.
A smoothly exponential decay in the block-reward is favoured up to the hard ceiling of coin supply. This
will eliminate the volatility associated with the bitcoin ’halving’ phenomenon.

The total coin supply, = 105 - 10°, minus coins created at the genesis block, y, will exponentially reduce
from Zy downwards forever. The decay curve assumes the distribution of rewards for approximately 200
years (until 2218AD, 105189120 blocks generated at an approximate rate of 1 block every 60 seconds).

The remaining coin supply at block ¢, Z;, may be calculated with:
Zy = Zoe M

The coefficient, A, is calculated from: A\ = . Where t, is the total number of blocks in the emission
schedule until the final quanta. The block reward, b is calculated for each block with:

lTLZO
t

b=2y1—7Z;

References

[1] http://oxt.me/charts.
[2] D. Bernstein. Sphincs: practical stateless hash-based signatures. 2015.
[3] J Buchmann. On the security of the winternitz one-time signature scheme.

[4] J. Buchmann. Xmss — a practical forward secure signature scheme based on minimal security assump-
tions. 2011.

[5] V Buterin. Ethereum whitepaper. 2013.
[6] A. Hulsing. W-ots+ - shorter signatures for hash-based signature schemes. 2013.
[7] A. Hulsing. Xmss: Extended hash-based signatures. 2015.

[8] A Karina. An efficient software implementation of the hash-based signature scheme mss and its variants.
2015.

[9] A. Lenstra. Selecting cryptographic key sizes. 2001.
[10] R. Merkle. A certified digital signature. CRYPTO, 435, 1989.
[11] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
[12] S Pair. A simple, adaptive blocksize limit. 2016.

[13] Yonatan Sompolinsky. Accelerating bitcoin’s transaction processing fast money grows on trees, not
chains. 2014.

[14] A. Toshi. The birthday paradox. 2013.

15

	Introduction
	Bitcoin Transaction Security
	Quantum Computing Attack Vectors
	Quantum-resistant signatures
	Hash-based digital signatures
	Lamport-Diffie OTS
	Winternitz OTS
	Winternitz OTS+ (W-OTS+)
	Signature key
	Verification key
	Signing
	Verification

	Merkle tree signature schemes
	Binary hash tree
	State
	Hypertrees
	Hypertree examples

	XMSS
	XMSS tree performance

	Proposed signature scheme
	Security requirements
	QRL signatures
	Hypertree construction
	Key and signature sizes
	Asymmetry

	QRL hypertree specification
	Example QRL signature

	PRF
	Deterministic wallet

	Cryptocurrency design parameters
	Fees
	Blocks
	Block-times
	Block-rewards
	Blocksize

	Currency unit and denominations
	Accounts
	Structure
	Descriptor

	Coin issuance
	Issuance

	Coin emission schedule

