


ProximaX Sirius Platform Whitepaper

Version History

Version: Date:

1.0 September 2019

2.0 November 2021

2



ProximaX Sirius Platform Whitepaper

Contents Page

1. Sirius Platform 5

2. Tokenomics 8
2.1. Tokens 8
2.2. Sirius DEX 10

3. Sirius Chain 12
3.1. Design 12
3.2. Features 13
3.3. Consensus 15
3.4. Simulations 17
3.5. Attacks 19
3.6. Priority Transactions 19
3.7. Temporary & Permanent Bans 19

4. Sirius Storage 21
4.1. Design 21
4.2. Drive Creation 23
4.3. Drive Modification 23
4.4. Download Channel 25
4.5. Drive Closure 26
4.6. Replicator Verifications 27
4.7. Collective Decision Making 28
4.8. Replicator Priority Assignment 28
4.9. Mass Content Distribution 29
4.10. Privacy 29
4.11. Sponsorship 30
4.12. Replicator Onboarding & Offboarding 31
4.13. Replicator Locations Allowlist & Blocklists 31
4.14. Storage Tokenomics 32

5. Sirius Stream 33
5.1. Design 33
5.2. Live Stream Creation 34
5.3. Live Stream Transmission 35
5.4. End Live Stream 36
5.6. Mass Live Streaming 37
5.7. Streaming Tokenomics 39

6. Supercontract 40
6.1. Design 40
6.2. Contract Creation 42
6.3. Contract Deployment 42

3



ProximaX Sirius Platform Whitepaper

6.4. Contract Execution 43
6.5. Configurable Batch Executions 45
6.6. Late Execution 46
6.7. Proof of Execution 47
6.8. Aggregate Contract Executions 47
6.9. Data Download from other Drives 48
6.10. Contract Closure 49
6.11. Executor Onboarding & Offboarding 50
6.12. Supercontract Tokenomics 50

7. Content Review 52
7.1. Design 52
7.2. Content Classification 52
7.3. Moderators & Network Bans 52
7.4. Content Review Tokenomics 53

Glossary 55

4



ProximaX Sirius Platform Whitepaper

1. Sirius Platform

Blockchain development and infrastructure platforms are redrawing the structure and
back-end of many industries as we know them today. However, these platforms usually
consist of just a blockchain used principally for value transactions. ProximaX is changing this
by significantly broadening the utility of blockchain to also cater to data transactions.

ProximaX Sirius is a platform that extends beyond traditional blockchain protocols by
integrating blockchain with distributed and decentralized storage, streaming, contract, and
database1 service layers available in private, public, hybrid, and consortia network
configurations.

Figure 1: ProximaX Sirius platform technology stack.

The platform has multiple servers distributed in a network that follows a "hub-and-spoke"
design where the essential component is the blockchain, representing the "hub," and all
other service layers represent the "spokes" held together by the blockchain. This design
enables scalability as it facilitates the addition of more core services in the future without
compromising the platform's performance.

Each layer has its ecosystem of node actors, providing unique services wrapped in an
accessible application programming interface (API) and software development kits (SDKs)
available in multiple common coding languages.2

2 Available SDKs: Go; C++; Java; JavaScript; TypeScript; C#; Swift; Python; Dart; JavaScript CLI;
PHP; Rust.

1 Available for private networks only.

5



ProximaX Sirius Platform Whitepaper

The superior utility and flexibility of ProximaX Sirius enable developers to build any solution
vertically on top, including applications for banking and payments, digital identity and KYC,
video streaming and chat, and gaming.

Figure 2: Use-cases.

Core service layers:

i. Sirius Chain
The blockchain layer, the Sirius Chain, is a fork of a new open-source blockchain
called Catapult. ProximaX selected Catapult because of its unique enterprise-grade
features (see section 3.2.) not available in other blockchains. ProximaX augmented
Catapult's capabilities by integrating new protocols so that Sirius Chain can perform
the "heavy-lifting" required of a "hub."

ii. Sirius Storage
The storage layer, the Sirius Storage, enables public contributors to monetize their
unused storage space. Features include decentralized Drive creation, data upload,
data modification, and data download. Protocols enable collective decision-making
for payments, verification, synchronization, and anonymous downloading.

iii. Sirius Stream
The streaming layer, the Sirius Stream, enables public contributors to monetize their
unused internet bandwidth for live streaming. Features include decentralized live
stream creation and transmission. Protocols enable sponsorship and mass content
distribution.

6



ProximaX Sirius Platform Whitepaper

iv. Supercontract
The contract layer, named Supercontract, is an improved version of traditional smart
contracts, where self-executing logic is located off-chain in Sirius Storage to prevent
the blockchain network from becoming "bloated" and affecting its performance.
Dedicated nodes execute a Supercontract rather than all network nodes, reducing
computational work. Unlike traditional smart contracts, authorized parties can stop,
amend, and restart a Supercontract quickly and easily upon reaching a consensus.

v. Content Review
Content Review is an additional layer that enables network content to be categorized,
searchable, censored, and banned.

7



ProximaX Sirius Platform Whitepaper

2. Tokenomics

2.1. Tokens
As with all decentralized public networks, tokenomics design and implementation are crucial
for their sustainability and governance. The purpose of tokenomics is to create common
economic incentive frameworks for “work done” by network contributors, tied together with a
reputation system.

The basic principles adopted in ProximaX’s tokenomics design include:

● Self-organization and synergy between multiple system elements.
● Adaptability to adverse tactics and internal attacks.
● The creation of Service Units used to quantify the provision of the platform’s core

services.
● Extendible infrastructure to facilitate plug-ins for new core services and tokenomics.
● Creation of ecosystem solutions and applications that will leverage the blockchain to

create more transactions, with XPX as the core economy driver.

ProximaX Sirius’s token ecosystem consists of the following:

Internal:

● Native token (XPX): Powers the blockchain layer and is used to pay for platform
services.

● Service Units: Quantifiable units of measure for the provision of platform services.
● Sirius Digital Assets3 (SDAs): Any user can create new types of SDAs, whether to

power the internal economy of a decentralized application (DApp), represent digital
security (security token), or an object which is fungible or non-fungible, such as a
non-fungible token (NFT).

External:

● Fiat and other cryptocurrencies: Programmers can integrate any payment
gateway, e.g., swapping XPX or SDAs into other networks and back.

3 An SDA was previously known as a Mosaic.

8



ProximaX Sirius Platform Whitepaper

Figure 3: Multidimensional inner economy.

Native Coin (XPX)
The blockchain protocol dictates the native currency that will be in circulation. For Sirius
Chain, it is XPX. With the platform's multiple services tied to the blockchain protocol, users
that want to use the platform's services must pay in XPX.

Service Units
XPX is used to subscribe to the ProximaX Sirius public network in exchange for Service
Units through an automated inner exchange. Service Units are comparable to what some
chains call a Gas token that is used to execute smart contracts. In ProximaX Sirius, several
integrated services benefit from using several types of "Gas."

9



ProximaX Sirius Platform Whitepaper

Types of Service Units:

● Storage Unit (SO) for data storage: A unit represents the ability to store data. 1 SO
corresponds to 1 GB of space stored for a period of four weeks.

● Streaming Unit (SM) for data streaming: A unit represents the amount of data
transferred between nodes or nodes and consumers. 1 SM corresponds to 1
streamed GB.

● Supercontract Unit (SC) for executing Supercontracts: 1 SC corresponds to 1
billion Supercontract operation codes (opcodes).

● Review Unit (RW) for feedback and content review: 1 RW corresponds to 1
review of content.

Service Units users:

1. Consumers: They consume services and make payments for such services.
2. Network contributors: They provide services to consumers in exchange for

payments for providing these services.
3. Internal consensus: Used to represent the capacity and veracity of a node for

providing a service.

This approach enables ProximaX Sirius to have a multidimensional inner economy where
Service Units power the services rendered by different node actors. It also facilitates the
future expansion of platform services.

2.2. Sirius DEX
Sirius DEX is a decentralized exchange (DEX) built to facilitate the automated exchange
between the native token (XPX) and Service Units. Sirius DEX will be extended to include
the exchange between SDAs at a later stage.

10



ProximaX Sirius Platform Whitepaper

Figure 4: Sirius DEX.

As well as creating services via applications vertically on top of the platform, developers can
also create new core services and corresponding token economies using the Sirius
expandable plugin infrastructure. A new core service can use the Sirius DEX to exchange
new types of Service Units. An example would be the creation of a new Service Unit for a
search engine core service.

The Sirius DEX uses a tunable exchange rate algorithm to keep the price of platform
services stable and competitive. For example, as data storage and internet bandwidth
become universally cheaper over time, Service Unit prices should decrease.

11



ProximaX Sirius Platform Whitepaper

3. Sirius Chain

3.1. Design

Actors

Node: Role:

Validator All platform nodes serve as a Validator. Validators validate and process all service
transactions in a blockchain block (e.g., make payments; assign and remove nodes
from services).

Harvester A Harvester is a Validator that participates in block production thereby earning
rewards.

Consumer A platform user that initiates transactions.

Process Flow

Figure 5: Sirius Chain transaction process flow.

12



ProximaX Sirius Platform Whitepaper

3.2. Features

i. Account
An account is a mutable state stored on the Sirius Chain governed by a key pair:
private and public keys. In other words, you have a “deposit box” in the blockchain,
which only you can modify with your private key. As the name suggests, the account
owner must keep the private key secret. Anyone with access to it will be able to
control the account.

ii. Namespace
Namespace enables you to create on-chain unique and easy to remember names for
your accounts and SDAs. A Namespace starts with choosing a name that is not
already reserved, similar to an internet domain name. By announcing an alias
transaction, you can associate a Namespace with an account or an SDA identifier
(ID). Namespace works under a rental contract executed on-chain, paid in XPX, and
with a duration period calculated according to block height.

iii. Sirius Digital Assets (SDAs)
You can create any digital asset on the platform. SDAs are built-in contracts defined
on the blockchain protocol to enable consumers to make digital representations.

For example, an SDA can represent:

● a currency;
● a consumption measurement;
● a tangible asset;
● a non-fungible asset;
● a rewards point;
● a financial instrument, e.g. a derivative or a bond;
● a vote; or
● a status flag.

You can define SDAs by associating them with a Namespace that you own and
customize their properties, which includes:

● divisibility - number of decimal places;
● duration - expiry time or never expiring;
● initial supply;
● supply mutability (i.e., changeable quantity); and
● transferability - freely transferable or transferable only between issuer and

recipient.

13



ProximaX Sirius Platform Whitepaper

Figure 6: Token creation and namespace linking.

iv. Multi-level Multi-signature Transaction
Multi-signature is a cosignatory agreement (a one-time disposable contract) between
account signatories (e.g., how many need to sign to execute a transaction or
add/remove a signatory). Multi-level Multi-signature enables you to have multiple
levels of agreements between other cosignatories, making it useful for
comprehensive approval processes. Multi-signature agreements have an expiry time
to execute, after which it will lapse.

Figure 7: Multi-level multi-signing of a transaction.

v. Aggregate Transaction
An aggregate transaction merges multiple transactions into one, allowing trust-less
swaps, escrows, and other advanced logic. Once all signatories sign the transaction,
the exchange automatically and irrevocably executes. In our context, all these
multiple transactions are called “inner transactions.” These inner transactions can be
of any type of SDAs, i.e., it could involve XPX and a few other SDAs in one
aggregate transaction. These aggregate transactions therefore, give us a very
powerful exchange mechanism. One example is the exchange of NFT for XPX and
commission fee for the introducer in a tri-party arrangement where the buyer pays
XPX and the seller sells the NFT and the agent introducer gets the commission fee.
When all parties sign, the three inner transactions get disbursed accordingly, with the
NFT going to the buyer, some XPX going to the seller and the remaining XPX going
to the agent introducer.

14



ProximaX Sirius Platform Whitepaper

vi. Metadata
You can predefine objects on Sirius Chain by adding custom Metadata to
transactions, accounts, Namespaces, and SDAs. Liken this as a note being tagged to
the object of transaction.

vii. Cross-chain Transaction
A cross-chain transaction is the exchange of tokens between two blockchains. Also
called "atomic swap," it involves locking up funds in the chain of the sending party
and then issuing the token in the receiving chain.

For example, transactions can occur between:

● the public and a private chain; or
● two private chains; or
● two Catapult public chains, which opens ProximaX Sirius's services to

external ecosystems such as the Symbol4 blockchain.

3.3. Consensus
A consumer needs to pay XPX to use the public platform. A Harvester will receive XPX as a
fee for forging or creating new blockchain blocks. Each block consists of transactions that
have fees attached. The protocol adds the fees to create a block reward for Harvesters.

Like any public blockchain implementation, a fair and autonomous network ecosystem will
need a consensus mechanism that determines the different rewards participating actors
receive for providing a service. Sirius Chain uses Proof of Stake (PoS), Proof of Greed
(PoG), and Fast Finality.

i. Proof of Stake
In contrast to Bitcoin's high-energy consuming Proof of Work (PoW) consensus,
Sirius Chain uses the more efficient PoS to select and reward the next block
producer. Sirius Chain's PoS is unique in that it gives block formation preference to
Harvesters with a high XPX stake and considers node reliability and work activity to
promote a healthy and performant network.

ii. Proof of Greed
Sirius Chain uses the Proof of Greed (PoG) consensus protocol, an extended
reputation algorithm that keeps transaction fees closer to their actual cost and
prevents Harvesters from becoming greedy.

How it works:

1. Consumers offer the maximum transaction fee they are willing to pay, which a
wallet's software can auto-generate.

4 Symbol public blockchain: www.symbolplatform.com

15

http://www.symbolplatform.com


ProximaX Sirius Platform Whitepaper

2. Consumers send the unconfirmed transactions to the network's Transaction
Pool.

3. Harvesters take unconfirmed transactions from the pool, form blocks, and
propose a fee amount that does not exceed the maximum specified by the
Consumers.

4. The PoG algorithm assigns a Greed Value, the ratio between the fee
proposed by the Harvester and the maximum amount offered by the
Consumers.

5. The lower a Harvester's fee, the less "greedy" it is and the higher its chances
of producing the next block and earning fees.

iii. Fast Finality
The Sirius Chain PoS protocol uses a Fast Finality weighted voting mechanism to
quickly and efficiently reach a consensus before appending a new block onto the
chain. This method ensures blocks are "final'' and irrevocable once committed to the
blockchain, making it unlikely that Validators will store different blockchain versions.

The protocol randomly elects Harvesters to form a Committee that performs the
voting, giving preferences to Harvesters with higher stakes and reputation based on
the number of blocks they have signed. Non-performing Harvesters that have not
produced a block for more than a year lose their ability to become elected.

ProximaX formulated a mathematical framework for weighted voting to quantify
Harvester voting profiles to ensure a performant Committee. The scheme, which
applies once a Committee has formed, assigns to Harvesters scores based on the
size of their stakes and contribution to protocol execution. The higher a Harvester’s
score is, the more weight its vote carries. A Committee Member that fails to sign
blocks, due to being faulty or offline, is assigned a lower reputation and is more likely
to be removed from the Committee.

Weighted voting - four stages:

a. Propose block
The protocol elects a Committee Member (Harvester) with the lowest Greed
Value as the next Block Proposer. The Greed Value derives from the
accepted fees from the Harvester's last produced block. If the Harvester has
not yet produced a block, a low Greed Value is assigned to facilitate
participation by newcomers.

b. Pre-voting
The Block Proposer must then propose a block to the Committee for their
preliminary acceptance, requiring at least ⅔ of the Committee by weight to
cast a pre-vote. If the Block Proposer does not deliver the block or delivers an
invalidly formed block, the Committee Members cast a nil vote and move on
to the next elected Block Proposer.

16



ProximaX Sirius Platform Whitepaper

c. Pre-commit
Each Committee Member checks that at least ⅔ by weight have favorably
cast their pre-votes to pre-commit the block.

d. Commit
If at least ⅔ by weight have successfully pre-committed, the block is
committed to the blockchain and a new block height is formed.

Figure 8: Weighted voting cycle.

3.4. Simulations
The below simulations show that Harvesters with low Greed Values have a better chance of
being selected as a block producer and earn fees.

17



ProximaX Sirius Platform Whitepaper

Figure 9: Non-greedy Harvesters with a small stake.

Figure 10: Non-greedy Harvesters with a medium stake.

18



ProximaX Sirius Platform Whitepaper

Figure 11: Non-greedy Harvesters with a large stake.

3.5. Attacks
Sirius Chain’s consensus protocols protect the network from potential attacks.

i. Large-stake Attack
As PoS gives preference to the wealthiest Harvesters, the potential vulnerability is
that a malicious Harvester with a 51% stake can launch a Large-stake Attack, forge
the most blocks, and take control of the network.

Sirius Chain’s PoS algorithm prevents this by creating a fair spread when selecting
and rewarding Harvesters, meaning that even a Harvester with a small stake has a
chance of having its block recorded on Sirius Chain.

ii. Zero-fee Attack
As PoG penalizes greedy Harvesters, the potential vulnerability is that malicious
Harvesters could cheat and manipulate the consensus through a Zero-fee Attack.
Here, Harvesters charge zero fees, forge the most blocks, and take control of the
network.

Sirius Chain’s PoG algorithm eliminates the possibility of a Zero-fee Attack by giving
preference to Harvesters that take an average fee rather than a minimum fee.

19



ProximaX Sirius Platform Whitepaper

3.6. Priority Transactions
Sirius Chain's transaction pool protocol places unconfirmed transactions into a priority queue
to better manage high transaction volumes.

High priority Multi-signature approval transactions executed for prepaid Consumer services
(e.g., DataModificationApprovalTransaction and
DownloadApprovalTransaction introduced in this paper).

Medium priority Single transactions for prepaid Consumer services (e.g.,
PrepareDriveTransaction and DataModificationSingleApprovalTransaction
introduced in this paper).

Low priority All other transactions.

Table 1: Priority queue for transaction pool management.

3.7. Temporary & Permanent Bans
Sirius Chain uses a reputation protocol that removes non-performant, faulty, and malicious
Validators from the network.

A Validator will periodically drop existing node connections to make room for new
interactions to avoid isolated groups from forming, thus promoting decentralization. At each
selection round, a Validator inspects the age of all its connections and drops the oldest.

A communication between Validators is considered an interaction, and the protocol scores
each interaction as either "successful," "neutral," or "failed." For example, when a Validator
provides new valid data, the interaction is marked as "successful." If it gives no data, the
interaction is "neutral." If it cannot interact due to low connectivity or has invalid or old data,
the interaction is marked as "failed." A Validator can be banned temporarily or permanently
from the network if the failures are regular and severe.

Failure Severity Connection
closed

Node can
reconnect

Node can be
selected

Node can
send data

Consecutive
interaction
failures

Light No Yes Yes (after
reconnecting)

Yes

Old data Light Yes Yes Yes (after
reconnecting)

Yes (after
reconnecting)

Invalid data Severe Yes No No No

Table 2: Temporary and permanent bans for failed interactions.

20



ProximaX Sirius Platform Whitepaper

4. Sirius Storage

4.1. Design

Actors

Node: Role:

Drive
Owner

A subscriber who rents disk drive space from the storage layer and therefore is the
owner of the drive space. A Drive Owner instructs Replicators. This should not be
confused with Harddisk Drive owners who participate to provide disk space in the
storage layer.

Replicators Store and modify the Drive and perform downloads and uploads based on incoming
transactions.

Consumer Downloads data from a Drive.

Transactions

Transaction: Initiated by: Purpose:

PrepareDriveTransaction Drive Owner Drive creation.

DataModificationTransaction Drive Owner Drive modification.

StoragePaymentTransaction Drive Owner Pay for storage.

DriveClosureTransaction Drive Owner Close Drive.

DataCancelModificationTransaction Drive Owner Cancel modification.

ReplicatorOffboardingByDriveOwnerTransaction Drive Owner Remove Replicator from Drive.

ReplicatorOnboardingTransaction Replicator Onboarding.

DataModificationApprovalTransaction Replicators Drive modification approval.

DownloadApprovalTransaction Replicators Download approval.

DataModificationSingleApprovalTransaction Replicator Single modification approval.

DriveVerificationTransaction Replicators Drive state verification.

DownloadTransaction Consumer Start downloading data from Drive.

FinishDownloadTransaction Consumer Stop downloading data from Drive.

21



ProximaX Sirius Platform Whitepaper

Events

Events: Initiated by: Purpose:

JoinToDriveEvent Validators Join Replicators to a Drive.

LeaveDriveEvent Replicator, or Validators, or Drive
Owner.

Replicator off-boarding.

EndOfBillingPeriodEvent It occurs automatically every four weeks
for Drive Owners and every 24 hours
for Consumers unless prematurely
ended.

Payment for work done.

Process Flow

Figure 12: Sirius Storage process flow.

22



ProximaX Sirius Platform Whitepaper

4.2. Drive Creation
To create a Drive, the Drive Owner uses software to broadcast a PrepareDriveTransaction
and states within the transaction's Metadata the desired drive size and the number of
replications. Each Replicator assigned to a Drive equates to one replication. Therefore, if the
Drive Owner requires 100 replications for critical data or mass distribution, 100 Replicators
are assigned to the Drive.

The Drive Owner needs to ensure sufficient Storage Units are available in the Drive account
to execute the request. If there are insufficient Storage Units, the Drive Owner can post a
StoragePaymentTransaction to top-up the account. The Drive size needs to be sufficiently
large enough to enable data rollbacks. For example, if the Drive Owner wants to store a 1
GB file, he should allocate 2 GB storage space.

Validators, listening to the blockchain for trigger transactions, pick up the Drive creation
request from the Drive Owner and assign Replicators with sufficient storage space to the
Drive. After the JoinToDriveEvent, the Replicators start listening to all triggers for the
corresponding Drive.

By default, all Drive data is publicly available to Sirius platform users. To prevent this, Drive
Owners can elect to restrict the opening of Download Channels and encrypt all files at the
client side.

4.3. Drive Modification
Modification steps:

i. Modification Initiation
To initiate a Drive modification, the Drive Owner must first choose the command
options Replicators are required to perform from an Action List:

1. File modification.
2. Remove file.
3. Rename file.
4. Create a folder.
5. Remove folder.
6. Rename folder.

Once the Action List items are selected, the Drive Owner needs to post a
DataModificationTransaction that contains the Content Download Information (CDI)
on the Action List and files to be modified The Drive Owner pays for uploading the
modified files to the Replicators. The payment amount equals the size of the
uploaded data times the number of replications. This amount is locked by the
Validators when the Drive Owner requests the modification.

23



ProximaX Sirius Platform Whitepaper

At this point, the Drive Owner's software should prevent the Drive Owner from
deleting the files to be downloaded by the Replicators until the blockchain confirms
the subsequent DataModificationApprovalTransaction posted by the Replicators.

If the Drive Owner wishes to cancel the modification before the
DataModificationApprovalTransaction is confirmed, the Drive Owner must post a
DataModificationCancelTransaction. If canceled, the Replicators would then reject
the DataModificationTransaction and remove it from the Drive’s Modification
Queue. The Drive Owner would still be required to pay any Replicators that already
executed the modifications and needed to roll back the changes.

ii. Modification Queue
After the blockchain confirms the DataModificationTransaction, the Replicators add
the transaction to the Drive’s Modification Queue. Once the transaction reaches its
turn in the queue, the Replicators download the necessary data modifications
requested by the Drive Owner stated in the Action List and CDI and execute the
modification request.

iii. Modification Sandbox
The Replicators first download all the necessary files and execute the requested
actions in their respective local Sandboxes (a transitory or staging storage area that
will be purposely configured) to test the modifications.

If the Sandbox modifications are successful, the Replicators post a
DataModificationApprovalTransaction and apply all changes in a live state
(non-Sandbox) as soon as the network confirms the transaction and records an
imprint of the new Drive State on the blockchain.

If the Sandbox modification fails, the Replicators send the previous Drive State
imprint to the blockchain. The Replicators still receive payment for work done.

Sandbox modification fails if:

● The downloaded data size exceeds the size declared in the
DataModificationTransaction.

● The downloaded data does not contain the Action List.
● The Action List is corrupted or includes invalid actions.
● An error occurs upon interacting with the File System.
● The size of the Drive after applying the Action List exceeds the ordered Drive

size.

The Replicators clear their Sandbox of any files if:

i. The Replicators apply the modifications to the Drive State.
ii. The Drive Owner cancels the data modification via a

DataModificationCancelTransaction.
iii. The Replicators record a failed data modification on the blockchain.

24



ProximaX Sirius Platform Whitepaper

iv. Modification Approval
If at least ⅔ plus 1 Replicators reach a consensus on the new file structure and its
corresponding file hash, which acts as a unique fingerprint for identification, the
Replictors sign a Multi-signature DataModificationApprovalTransaction and apply
the modification to the new Drive State.

Replicators that were too late to sign the latest group Multi-signature
DataModificationApprovalTransaction must catch up by posting a
DataModificationSingleApprovalTransaction and synchronize their storage. For
efficiency, Replicators can synchronize by downloading modified data from both other
Replicators and the Drive Owner. Single approval Replicators are paid the same as
other Replicators for work done, except they must cover the transaction cost.

Figure 13: Data modification approval process.

4.4. Download Channel
Download steps:

i. Open Download Channel
A Consumer locates a file in the network using the file's CDI. The Consumer prepays
Streaming Units via a DownloadTransaction to open a Download Channel with the
file's Drive. The amount of Streaming Units deposited equates to the data download
size made available to the Consumer. The Consumer also prepays XPX to pay for

25



ProximaX Sirius Platform Whitepaper

transactions made by the Replicators. The Consumer can top-up prepayment by
posting further DownloadTransactions.

ii. Make payments
Validators lock the Consumer's prepaid Streaming Units in an escrow account. After
each successful download of 1 MB data size, the Consumer signs a Receipt off-chain
for work done and sends a copy to each of the Drive's Replicators. Each Replicator
also sends all other Replicators the Receipts off-chain to ensure synchronization.

The Replicators verify that the Receipts:

● cumulatively reflect the amount downloaded, give or take a few MB
(Consumer can download up to 1 MB for free);

● are not duplicates;
● are for consumed downloads and not future services; and
● do not exceed the Consumer's prepaid deposit.

Replicators ignore invalid Receipts. If a Receipt exceeds the prepaid deposit, the
Replicators stop uploading data and only recommence once the Consumer tops up
his account.

The Replicators then use the valid Receipts to form a collective opinion. If at least ⅔
plus 1 Replicators agree on work done, give or take a few MB, they post a
Multi-signature DownloadApprovalTransaction. The Validators pay the Replicators
the median value of the Opinions at the end of every 24 hours download billing
period.

For each Download Channel, Replicators only store the last Receipt so that the
storage space consumed by Receipts is kept minimal. The Replicators can remove
all Receipts after the Download Channel is closed.

iii. Close Download Channel
A Consumer can close a Download Channel by posting a
FinishDownloadTransaction. The Replicators reach a consensus on any payments
owed and post the result via a Multi-signature DownloadApprovalTransaction. The
Validators issue payment to the Replicators and return any unused prepaid funds to
the Consumer.

4.5. Drive Closure
The Drive Owner posts a DriveClosureTransaction to close a Drive. Suppose the
transaction brings a premature end to the current Drive billing period (less than four weeks).
In this case, the Replicators post outstanding DownloadApprovalTransactions to prompt
payment by the Validators for the services rendered until that point. The Validators return the
Drive Owner any unused Storage Units from the Drive account and assign the Replicators to
new Drives.

26



ProximaX Sirius Platform Whitepaper

If the Storage Units in the Drive account run out, the Validators close the Drive. There is no
grace period as Drive Owners cannot expect the decentralized network participants to work
for free. The Drive Owner's software can provide adequate warnings when prepaid funds are
running low and require a top-up.

4.6. Replicator Verifications
A Replicator needs to store the latest modifications to possess the latest Drive State by
signing a Multi-signature DataModificationApprovalTransaction, or if it missed it, a
DataModificationSingleApprovalTransaction followed by synchronization.

The storage verification protocol locates, penalizes, and removes out-of-sync Replicators.
Verification occurs randomly, multiple times a day, where Replicators send each other proof
of having the latest Drive State. The Replicators then post their opinions on the verification
results via a multi-signature DriveVerificationTransaction that requires at least ⅔ plus 1
Replicators to sign.

Figure 14: Replicator cross-verification.

27



ProximaX Sirius Platform Whitepaper

Validators identify from the DriveVerificationTransactions any Replicators that have not
participated in the verification process for more than two days, remove them from the list,
and confiscate their deposit as punishment to deter non-performance.

4.7. Collective Decision Making
Drive Replicators give their collective opinions in the Metadata of Multi-signature
transactions, where at least ⅔ plus 1 Replicators are required to reach a consensus and sign
the transaction. Validators listening to the blockchain processes the transactions. It
computes the median of all opinions to form a final decision (e.g., payments to be made or
removing a Replicator from the Drive).

Multi-signature opinion transactions include:

● DownloadApprovalTransaction.
● DataModificationApprovalTransaction.
● DriveVerificationTransaction.

4.8. Replicator Priority Assignment
ProximaX developed an algorithm to prioritize the assignment of Replicators to Drives by
Validators. As soon as a Harvester adds all transactions to a block and appends it to the
blockchain, Validators form a list of the Drives with missing Replicators. As there can be
periods where Validators cannot fill all Replicator vacancies on Drives due to low Replicator
numbers in the network, the algorithm creates a priority queue that prioritizes Drives with
less than four Replicators where data is most vulnerable. Validators will position Drives with
the same level of priority in the queue in a deterministic way.

Figure 15: Replicator assignment prioritization.

28



ProximaX Sirius Platform Whitepaper

4.9. Mass Content Distribution
A Drive with many Replicators (e.g., 100) for critical data or mass content distribution would
function inefficiently, as too many Replicators would need to communicate with one another
and sign Multi-signature transactions.

The storage protocol resolves this inefficiency by splitting Replicators into sub-groups of no
more than 20 Replicators each. Here, Replicators download data, perform verifications, and
express opinions within their sub-group.

Data upload to Consumers becomes more efficient as only one randomly selected
sub-group Download Channel is created.

Figure 16: Replicator sub-groups with not more than 20 per sub-group.

4.10. Privacy
Public keys are publicly visible, which means anyone can track network activity. It is possible
to take a VPN-like approach to provide the option of anonymous access to Sirius Storage
and Sirius Stream services.

29



ProximaX Sirius Platform Whitepaper

The below conceptual design illustration shows how Replicators can form an off-chain Virtual
Drive with zero allocated memory and connect to Download Channels on behalf of
Consumers, removing Consumers' direct interaction with Drives that causes the exposure of
their public keys. As a Virtual Drive acts only as a conduit for data download, no storage
space is required. Virtual Drives are off-chain so that there is no blockchain transaction
record between Consumers and the Virtual Drive Replicators.

Figure 17: Virtual Drive for anonymous downloading.

Virtual Drives interact with other Drives on behalf of Consumers as a Consumer would by
opening a Download Channel, making a deposit for the consumption of services, and
sending Receipts to the Drive's Replicators or Distributors (see next chapter on Sirius
Stream).

Consumers must pay extra for the service, as there is the need to pay the Virtual Drive
Replicators for work done and cover the payments they make to obtain services.

4.11. Sponsorship
A Sponsor, such as an advertiser, can sponsor storage and streaming services to make
them free of charge for Consumers and Receivers (see next chapter on Sirius Stream).

The Sponsor creates a Download Channel by posting a DownloadTransaction and can
make it available to selected Consumers or Receivers by including their public keys in the
transaction or set the value to zero (0) to allow anyone to view the stream.

The Sponsor can close the channel by posting a FinishDownloadTransaction, after which
Validators return any unused prepaid funds.

30



ProximaX Sirius Platform Whitepaper

4.12. Replicator Onboarding & Offboarding

i. Onboarding
To contribute storage space to the network, a Replicator needs to post a
ReplicatorOnboardingTransaction to trigger a JoinToDriveEvent and prove its
available storage space by depositing collateral Service Units converted from XPX by
Validators using the Sirius DEX.

The Validators assign the Replicator to a Drive(s). After that, the Replicator listens to
all incoming transactions (triggers) belonging to its respective Drive. The Validators
then register the Replicator's assigned storage space for the Drive as "in use."

ii. Offboarding
To offboard from a Drive, a Replicator needs to post a
ReplicatorOffboardingTransaction and state the Drive’s Public Key, triggering a
LeaveDriveEvent. When offboarding, the Validators return to the Replicator all of its
deposited Storage Units. However, the Replicator will forfeit Streaming Units to pay
for the data upload work of a new Replicator that joins the Drive.

A Harvester will not add a ReplicatorOffboardingTransaction to a block and allow
a Replicator to leave if it means the Drive will end up with less than four Replicators.
Suppose a Replicator nonetheless decides to stop performing its role as a Replicator.
In that case, the Replicator verification process will identify this, and the Validators
will offboard the Replicator and confiscate its deposit (see 4.6. above).

The Drive Owner can post a ReplicatorOffboardingByDriveOwnerTransaction to
remove a low-performing Replicator (e.g., uploads data slowly) if at least four
Replicators remain assigned to the Drive to ensure sufficient data availability. The
Replicator is paid a prorated amount for the billing period and has its deposit
returned. The Drive Owner must compensate the network for work done to replace
the Replicator.

4.13. Replicator Locations Allowlist & Blocklists
During Drive creation, a Drive Owner can include in the PrepareDriveTransaction:

1. Replicator Allowlist: Countries where its assigned Replicators can be located.
2. Replicator Blocklist: Countries where its assigned Replicators cannot be located.

When Validators assign Replicators to a Drive, they assign Replicators according to the
Drive Owner location requests.

Replicators state their location during the ReplicatorOnboardingTransaction.

31



ProximaX Sirius Platform Whitepaper

4.14. Storage Tokenomics

Figure 18: Storage Units flow.

The Validators manage token flows based on incoming transactions and make payments.
The Drive Owner pays only in XPX, and the Replicators only get paid in XPX. According to
Sirius DEX's latest exchange rates, the Validators make all necessary Service Unit
conversions on behalf of the Drive Owners, Replicators, and Consumers.

Once per billing period (every four weeks for Drive Owners and every 24 hours for
Consumers), the Validators make XPX payments to the Replicators for work done by
converting Storage Units and Streaming Units locked in the Drive account and the
Consumers' escrow accounts.

A Replicator only receives payment for the periods it has stored the latest Drive State.
Validators will pay a Replicator a prorated amount if there are periods where the protocol
confirmed that a Replicator has been non-performing (not storing the latest Drive State).
Validators identify non-performing Replicators through the DriveVerificationTransactions
and excessive DataModificationSingleApprovalTransactions posted on the blockchain. If
a Replicator does not prove that it possesses the latest Drive State for more than two days, it
forfeits its deposit (see section 4.6.).

32



ProximaX Sirius Platform Whitepaper

5. Sirius Stream

5.1. Design

Actors

Node: Role:

Stream Sender Creator of the data stream and instructs Distributors.

Stream Distributors Replicator that distributes a data stream based on incoming transactions.

Redistributors Stream Receivers that participate in downstream redistribution.

Stream Receiver Viewer of the stream.

Transactions

Transaction: Initiated by: Purpose

StreamStartTransaction Sender Start stream.

StreamFinishTransaction Sender End stream.

DataModificationCancelTransaction Sender Cancel stream.

StreamPaymentTransaction Sender Make prepayment.

DownloadTransaction Receiver Open Download Channel and make
prepayment.

FinishDownloadTransaction Receiver Close Download Channel.

DataModificationApprovalTransaction Distributors Modify Drive and make payments.

DataModificationSingleApprovalTransaction Distributor Single modification approval.

IncludeToPaymentTransaction Redistributor Receive reward for redistribution.

33



ProximaX Sirius Platform Whitepaper

Process Flow
Sirius Storage doubles up as Sirius Stream for live streaming. Much of the processes and
features described in the previous chapter apply to Sirius Stream.

A Stream Sender (Sender) is a Drive Owner, and the Drive's Replicators perform the role of
Stream Distributors (Distributors). The network treats streaming as a form of Drive data
modification.

Figure 19: Sirius Stream process flow.

5.2. Live Stream Creation
The Sender must perform the following actions to create a stream:

1. If not yet done, order a Storage Drive of the required size.
2. Make a prepayment for the stream (Streaming Units) by posting a

StreamPaymentTransaction. The Sender can post the same transaction during a
live stream to increase the prepaid amount.

3. Post a StreamStartTransaction to commence the stream. The start transaction
states the expected stream size, which needs to match the prepaid amount.

34



ProximaX Sirius Platform Whitepaper

The StreamStartTransaction triggers the following:

a. The Validators lock up the prepayment in the Drive's account to pay for the
Distributors' work once the stream has ended.

b. The Replicators add the request to the Drive's Modification Queue, as the Replicators
process the stream as a type of data modification.

c. The Replicators commence the role of Distributors and transmit the stream when the
data modification reaches its turn in the queue.

By default, all live streams are publicly available to Sirius platform users. To prevent this,
Drive Owners can elect to restrict the opening of Download Channels and encrypt streams
so that only permitted users can consume these streams.

5.3. Live Stream Transmission
When the StreamStartTransaction is next in line in the Modification Queue, the following
occurs:

i. Playlist Creation by Sender
The stream segments are put chronologically into playlists by the Sender's software
so that the Stream Receivers (Receivers) can view the segments as a complete
stream. The playlists contain information on each stream segment's identification
number, sequential order, and data size. The Sender signs each playlist with his
private key so that the Distributors and Receivers can verify their origin.

ii. Download by Distributors
The Distributors begin downloading media segments once they have verified that (a)
the Sender has signed each playlist and (b) the expected download size mentioned
in the StreamStartTransaction does not exceed the Sender's prepaid amount. The
Distributors download streaming segments in the correct chronological arrangement,
matching each segment's sequential number with the corresponding playlist.

iii. Loop Recording for Lag-free Streaming
The Distributors store each segment as streaming loops in their respective sandbox
to enable continuous streaming. If the incoming segments exceed the available
sandbox space that equals the total Drive size, the Distributors delete the oldest
segments and save the most recent one to the streaming loop.

iv. Download by Receivers
Receivers locate the stream on the network using its Content Distribution Information
(CDI) and post a DownloadTransaction to make a prepayment deposit to open a
Download Channel to view the stream. Receivers can top-up the deposit by posting
another DownloadTransaction at any point during the stream if prepaid funds are
running low.

35



ProximaX Sirius Platform Whitepaper

The Receivers start downloading the stream segments in the correct chronological
arrangement, including recorded segments, to create a buffer zone for lag-free live
streaming. The network's buffer zone default is 60 segments, which amounts to
approximately 60 seconds. The Receivers' software can adjust the buffer zone
default.

v. Communication between Nodes
The Distributors notify Receivers about new segments to be uploaded. Distributors
notify the Sender of each successfully downloaded segment.

The Receivers send Receipts to Distributors for every 1 MB streamed. Using the
same Sirius Storage Receipt communication protocol, the Distributors verify that the
Receipts:

a. cumulatively reflect the amount downloaded, give or take a few MB
(Receiver can download up to 1 MB for free);

b. are not duplicates;
c. are for consumed downloads and not future services; and
d. do not exceed the Receiver's prepaid deposit.

If the Receipts do not pass the verification process, the Download Channel is closed.
If Receipts pass verification, at the end of the 24 hour billing period, the Distributors
form a collective opinion (at least ⅔ plus 1 Distributors) on work done using the
Receipts and include the result in a DownloadApprovalTransaction. Validators then
pay the Distributors the median value of opinions using the Receiver's deposit and
return any unused funds to the Receiver.

As usual, Distributors that have not signed the Multi-signature approval catch up by
posting a DataModificationSingleApprovalTransaction for the latest modification,
just like in Sirius Storage. They then synchronize Drive data with the other
Distributors or the Drive Owner.

vi. Close Download Channel
A Receiver can prematurely close a Download Channel before a stream ends by
posting a FinishDownloadTransaction. The Distributors reach a consensus on any
payments owed (at least ⅔ plus 1 Distributors) and post the result via a
Multi-signature DownloadApprovalTransaction.The Validators issue payment to the
Distributors and return any unused prepaid funds to the Receiver.

5.4. End Live Stream
The Sender posts a StreamFinishTransaction to end a live stream. The transaction’s
Metadata contains information on the playlists and segments streamed and instructions on
whether the Replicators are required to save them to the Drive for storage streaming
(streaming on-demand).

The transaction triggers the following:

36



ProximaX Sirius Platform Whitepaper

i. Verification
Distributors verify whether the stream structure (playlists and media segments)
declared by the Sender is consistent with local copies stored by each Distributor
during the live stream. The verification ensures that the Sender cannot cheat the
system and pay less by declaring a smaller streamed size.

ii. Approval
Distributors collectively verify and arrive at a consensus (at least ⅔ plus 1
Distributors) that:

a. the Sender has correctly declared the total stream size (give or take a default
parameter); and

b. on the payment to be received for work done.

The Distributors sign a Multi-signature DataModificationApprovalTransaction and
store to the Drive any requested data for streaming on-demand. The Validators then
pays the Distributors for work done and returns any locked unused streaming funds
to the Sender.

iii. Rejection
If the Distributors identify inconsistencies with the Sender's declaration, they do not
sign the modification approval transaction, and the Drive is made unavailable to the
Sender. The Drive can become available again after the Sender's software posts a
DataModificationCancelTransaction.

5.6. Mass Live Streaming
As described in section 4.9., the formation of sub-groups is crucial to avoid bottlenecks in
service caused by a large group of Distributors having to communicate amongst each other.

With Distributor sub-groups, decentralized live streaming becomes more efficient. Receivers
only download a stream from one randomly selected Distributor sub-group. Distributors only
exchange playlists, streaming segments, and Receipts within their sub-group.

However, even the formation of sub-groups may not cope with the significant bandwidth
demands of thousands of Receivers. The network solves this by allowing Receivers to
contribute their bandwidth and become downstream Redistributors, where Receivers collect
and submit Receipts for work done and gain payment from Validators.

37



ProximaX Sirius Platform Whitepaper

Figure 20: Redistributors.

How it works:

i. Redistributor Collects Receipts & Pays Fee
A Receiver sends Receipts to a Redistributor for every 1 MB downloaded from the
Redistributors, just like how it would do with a Distributor. Likewise, the Redistributor
checks that the Receipts:

● cumulatively reflect the amount downloaded, give or take a few MB (Receiver
can download up to 1 MB for free);

● are not duplicates; and
● are for consumed downloads and not future services.

Before the end of the 24 hour billing period, the Redistributor posts an
IncludeToPaymentTransaction to append its reward claim to a
DownloadApprovalTransaction posted by Distributors. The
IncludeToPaymentTransaction requires the addition of a small fee paid by the
Redistributor to make network spamming or claiming small rewards (less than the
cost of service) by the Redistributor unprofitable.

ii. Distributors Process Receipts & Form Consensus
If the Receipts pass the Redistributor's verifications, the Redistributor sends the
Receipts to the Distributors. The Distributors also perform the same verifications as
the Redistributor and ensure the Receipts do not exceed the Receiver’s prepaid
deposit.

The IncludeToPaymentTransaction triggers the Distributors to form an opinion on
the Redistributor's reward and include it in the DownloadApprovalTransaction.

38



ProximaX Sirius Platform Whitepaper

iii. Validators Verify Fee & Issue Reward
The rewards issued by the Validators are the median of all Distributors' Opinions.
Before issuing payment to a Redistributor, The Validators checks that the
Redistributor posted an IncludeToPaymentTransaction and attached the required
fee.

5.7. Streaming Tokenomics

Figure 21: SM Units flow.

Similar to Sirius Storage tokenomics process flow (see section 4.13.), the Validators manage
the token flows based on incoming transactions and payments. Streaming Units (SM Units)
is the primary Service Unit used during live streaming.

39



ProximaX Sirius Platform Whitepaper

6. Supercontract

6.1. Design

Actors

Node: Description:

Creator The creator of a Supercontract.

Caller A user that calls a Supercontract.

Executors Replicators that execute Supercontracts based on incoming transactions.

Transactions

Transaction: Initiate by: Purpose:

DeployTransaction Creator Deploy Supercontract to Drive.

EndDeployTransaction Replicators Multisig deployment verification results.

EndBatchExecuteTransaction Replicators Multisig batch execution result.

EndBatchExecuteSingleTransaction Replicator Late batch run drive synchronization.

ReleaseTransactionsTransaction Replicators Multsig triggered by Supercontract #1.

StartExecuteTransaction Caller Run a specific Supercontract function.

40



ProximaX Sirius Platform Whitepaper

Process Flow

Color key:
Green - before executing a Supercontract.
Yellow - preparation for Supercontract work.
Blue - confirmed storage.
Orange - late/out of synchronization.

Figure 22: Supercontract process flow.

41



ProximaX Sirius Platform Whitepaper

6.2. Contract Creation
A Supercontract is essentially a "function box" that you can create and program to trigger the
execution of specific actions upon the occurrence of some agreed event(s).

Figure 23: A Supercontract.

A Creator can use SDKs available in multiple common coding languages (e.g., Javascript,
Golang, C++, Rust) to create a Supercontract.

Depending on their design, Supercontracts run when called by a Caller or automatically
upon being triggered by the occurrence of an event. These events could be a date (e.g.,
when interest is due) or the occurrence of an agreed action (e.g., upon delivery or a result),
or an oracle feed signaling a trigger action (e.g., price value), or simply upon a transaction
being sent into a specific account.

6.3. Contract Deployment
Deployment steps:

i. Deployment Request
To deploy a Supercontract, the Creator creates a storage Drive of an adequate size
to host its code. At this point in the process, the Creator is a Drive Owner.

The Creator then posts a DeployTransaction, which triggers the Drive's Replicators
to add the deployment to the storage Modification Queue. When the transaction is
next in line, the following occurs:

● Generation of an identifier for the Supercontract named a Supercontract
Public Key (equals the hash of the Drive’s Public Key) so that the Validators
can associate the Drive with the Supercontract and temporarily ignore any
Drive modification and closure transactions.

● Replicators run the Supercontract Installer, a WebAssembly (Wasm) function,
to verify that the Supercontract code can run.

● If present, the Replicators check the validity of any auto-run file that
automatically runs a Supercontract upon the occurrence of an event.

ii. Successful Deployment
If the Replicators find no issues with the Supercontract, the Replicators notify the
network of the result via an EndDeployTransaction that triggers the following:

42



ProximaX Sirius Platform Whitepaper

● Replicators upload the Supercontract code to the Drive.
● Replicators become the Supercontract's Executors and start listening to all

corresponding transaction triggers.
● The Replicators store any auto-launch file in their memory and listen for the

auto-launch transaction triggers.
● Validators permanently associate transactions for the Drive with the

Supercontract and ignore any DataModificationTransactions and
DriveClosureTransactions.

● The Supercontract will only stop working if it runs out of Storage Units, which
any network user can top up. This feature allows for the Supercontract to run
perpetually if the deploying party is no more in existence or no more
interested in maintaining the Supercontract.

iii. Unsuccessful Deployment
If the EndDeployTransaction notifies the network of any deployment failures, then
the following occurs:

● The Replicators stop the deployment and run the Drive in a standard mode
for storage only.

● The Validators no longer associate the Supercontract with the Drive.
● The Validators return any unused funds to the Drive Owner.
● The Drive Owner can fix any failures or close the Drive.

6.4. Contract Execution
Execution steps:

i. Initiate Execution
Any user can become a Supercontract Caller. A Caller can:

1. Execute Supercontract functions.
2. Explore execution results from the Drive via a Download Channel.
3. Explore what calls the Executors have run and their status (success or fail).
4. Explore how many Supercontract Service Units (SC Units) Callers have

spent.
5. Support the Supercontract Drive as a sponsor by topping up its account with

Storage Units (SO units).

The Caller pays SC Units to execute a Supercontract and Streaming Units (SM
Units) if the execution requires Executors to download data to the virtual machine
from the Internet.

The Caller runs a specific Supercontract function by posting a
StartExecuteTransaction containing the following information:

● Supercontract identifier.
● The name of the called function.

43



ProximaX Sirius Platform Whitepaper

● Input parameters for this function.
● The type and number of units provided to make the call.

ii. Execution Queue
Executors create an Execution Queue for each Supercontract, where they place all
received calls, whether manual or automated, according to the order they appear on
the blockchain.

To ensure the Execution Queue does not slow down execution, especially for popular
Supercontracts, execution occurs in sequential batches. Executors add all
StartExecuteTransactions in a new blockchain block as a batch in the queue.

If an EndExecuteTransaction is received, the Executors remove the corresponding
call request from its batch in the queue.

iii. Running the Code
When a batch is next in line in the Execution Queue, the Executors run each call
within the batch in their respective sandboxes to establish a batch execution result.

Each Executor runs the Supercontract's code dynamically using a virtual machine
capable of Wasm. A Supercontract call execution is processing a specific function of
the Wasm code in a virtual machine. The Wasm code cannot directly interact with an
external environment, such as the Internet, without using the virtual machine that
enables contract call functions.

A Supercontract code execution should always follow a set sequence, meaning each
Executor should deliver the same result. If there has been an incorrect execution, a
rollback occurs using stored sandbox data to correct the error.

There are several reasons why a Supercontract execution may fail:

1. The Wasm file is corrupted or absent.
2. There are not enough SC Units for contract execution.
3. There is not enough space in the Supercontract Drive to store files due to

insufficient SO Units in the Drive account.
4. There are not enough SM Units for downloading data from the Internet if

required.

iv. Collective Decision-making
Once at least ⅔ plus 1 Executors arrive at a consensus via a group decision-making
protocol on the batch execution result, they sign a Multi-signature
EndBatchExecuteTransaction consisting of the corresponding collective opinions
on whether the batch execution was successful or not.

44



ProximaX Sirius Platform Whitepaper

Executors that miss out on signing the Multi-signature transaction need to catch up
by signing an EndBatchExecuteSingleTransaction or synchronize with the other
Executors (see section 6.6.).

If the protocol does not achieve at least a ⅔ plus 1 consensus for reasons such as
Executors being offline, the batch times out, and the Executors sign an
EndBatchExecuteTransaction to record the failure. The Supercontract Owner sets
the decision-making time limit during the creation of the Supercontract.

v. Execution Results
The EndBatchExecuteTransaction contains:

● A reference to the transactions that initiated the calls within the batch.
● Executors' opinions on whether the batch execution was a success or failure.
● The Drive's new state hash.
● Data needed for network rewards for work done.

Supercontract executions create changes to the Supercontract's Drive State
(additions, deletions, modifications).

6.5. Configurable Batch Executions
For network efficiency, Supercontract Executors post an EndBatchExecuteTransaction to
record the execution results of a batch of calls rather than that of each individual call. A
batch consists of all calls contained in a blockchain block. The drawback is that if one call in
the batch fails, the Executors mark the whole batch as failed - "one bad apple can spoil the
bunch."

A Supercontract Owner can solve this potential issue by predefining upon Supercontract
creation how many execution calls in a blockchain block form a batch:

1. All calls in a block:
This is the network default, suitable for stable and basic Supercontracts in regular
use that rarely produce execution failures.

2. Some calls in a block:
A specified maximum number of calls from a batch to reduce the likelihood of a batch
execution failure.

3. One call at a time:
Here, Executors will need to post an EndBatchExecuteTransaction for each call
within a blockchain block, useful for Supercontracts prone to execution failures such
as those dependent on Internet download data or Supercontracts that Callers rarely
use.

45



ProximaX Sirius Platform Whitepaper

A Caller can pay more to elect for a call result to be recorded on the blockchain individually
and not as a batch, reducing the chances of an execution failure result.

Executors can also change the batch size dynamically, reducing the number of calls if the
previous batch was marked as failed.

6.6. Late Execution
An Executor that has not signed an EndBatchExecuteTransaction(s) on time (e.g., due to
going offline) has two options to catch up:

1. If the Executor obtains the same execution results:
After executing each missed batch one by one off-chain and achieving the same
results shown in the EndBatchExecuteTransactions, the Executor can post an
EndBatchExecutationSingleTransaction. The Executor will receive rewards for all
the missed batches except those that are more than an hour old as the protocol will
consider the Executor too far behind. The Executor will need to cover the transaction
fee for the single transaction.

2. If the Executor does not obtain the same execution results:
Suppose the Executor does not receive the same results shown in an
EndBatchExecuteTransactions after executing each missed batch (e.g., due to
different conditions at the time of execution). In that case, the Executor will need to
synchronize its Drive State with that of other Executors. The Executor will receive no
rewards.

Figure 24: Late execution and synchronization.

46



ProximaX Sirius Platform Whitepaper

If an Executor consecutively misses the collective group decision-making and signing of the
Multi-signature transaction, Validators remove the non-performing Executor from the
Supercontract Drive and confiscate its deposit.

6.7. Proof of Execution
Executors need to prove to Validators that they have executed a Supercontract Batch
through ProximaX's Proof of Execution (PoEx) protocol that protects the network from
non-performing Executors attempting to claim rewards for work not done.

The protocol makes an Executor prove Supercontract execution through key-pair
cryptography using an elliptic curve created using a Supercontract’s execution data.

Executors must prove execution of the latest batch to Validators via the protocol within an
hour of an EndBatchExecuteTransactiontion to receive rewards, encouraging Executors
to execute on time and remain up-to-date.

6.8. Aggregate Contract Executions
Supercontracts can run nested or cascading Supercontracts if they contain the necessary
call parameters and funds to execute, creating Aggregate Executions.

For example, a Caller runs Supercontract #1 with a StartExecuteTransaction. The
Executors process this call, releasing a ReleasedTransactionsTransaction that contains a
new StartExecuteTransaction to run Supercontract #2.

The execution of a Supercontract can also release inbuilt automated transactions, more
specifically, aggregate ReleasedTransactionsTransaction.

Supercontract #1 will make payment for running Supercontract #2 using additional funds
from the initial Caller.

Figure 25: Aggregate Supercontract executions.

47



ProximaX Sirius Platform Whitepaper

6.9. Data Download from other Drives
Executors can download the data needed for running a Supercontract from the Internet and
other Drives on the network.

Figure 26: Supercontract data download from another Drive.

Executors can synchronize with Replicators and Executors that have already downloaded
the data. Executors receive extra payments to cover the cost of downloading data from other
Drives. Executors share opinions to arrive at a consensus on expenses, work done, and
compensation to be received.

6.10. Contract Closure
The Supercontract stops functioning once the Supercontract Drive account runs out of
Storage Units (SO Units). Anyone can top up the Supercontract Drive account with SO Units
to keep the Supercontract running.

A Creator cannot close a Supercontract Drive with a DriveClosureTransaction as the
Validators will ignore the transaction. Neither can a Creator close the Supercontract by
transferring SO Units out from the Supercontract account because the Creator does not hold
the private keys to the Supercontract Drive account, therefore, cannot transfer funds out.

But the Creator can include during Supercontract creation advanced logic in the
Supercontract code to block the execution of certain or all functions. The design can include
executing a Multi-signature transaction by approved parties or a public vote to stop the
functions.

When a Supercontract is closed, Executors cancel all pending executions in the Execution
Queue except the first one, as Executors would have already started work on it.

48



ProximaX Sirius Platform Whitepaper

ProximaX has designed Supercontract in this way so that Callers can rely on Supercontracts
without worrying that they will be arbitrarily closed by a Creator. For that reason, the Creator
is a "Creator" and not the "Owner" of a Supercontract.

6.11. Executor Onboarding & Offboarding
When a new Replicator is assigned by a Validator to a Supercontract Drive to become an
Executor, the Replicator must follow the same Sirius Storage Replicator onboarding steps
outlined above. The new Replicator first signs a
DataModficationSingleApprovalTransaction to perform data synchronization. If the
Replicator misses an EndBatchExecuteTransaction, it must sign an
EndBatchExecuteSingleTransaction to catch up with the other Executors. The new
Replicator then becomes an Executor for the Supercontract Drive. Off-boarding follows the
same process as Sirius Storage.

6.12. Supercontract Tokenomics

Figure 27: SC Units flow.

A Supercontract Drive requires Storage Units (SO Units) to function.

A Caller pays Supercontract Units (SC Units) to execute a Supercontract and Streaming
Units (SM Units) if the execution requires data downloading to the virtual machine via the
Internet or another Drive on the network.

1 SC Service Unit corresponds to 1 billion Supercontract operation codes (opcodes),
corresponding to one tick in the virtual machine WebAssembly.

49



ProximaX Sirius Platform Whitepaper

According to the latest exchange rate, Validators swap SC and SM Units on behalf of Callers
using the Sirius DEX.

When a Caller posts a StartExecuteTransaction, the Validators lock the required amounts
of SC and SM Units in the Caller's deposit account. After every EndExecutionTransaction,
Validators issue payments for work done and return unused funds to the Caller.

Validators make payments to Executors regardless of whether their execution results are
successful or not. The rewards issued are the median of all Executors' Opinions.

50



ProximaX Sirius Platform Whitepaper

7. Content Review

7.1. Design

Actors

Node: Description:

Drive Owners Owns a Drive and instructs Replicators.

Consumers Downloads data from a Drive.

Global Moderator Bans content across the network and initiates content removal from all Drives.

Local Moderator Creates a network warning for content that should be locally banned.

Transactions

Transaction: Initiate by: Purpose:

ReviewTransaction Drive Owners & Content
Consumers

Assign Description Tags.

GlobalBanTransaction Global Moderator Ban and remove content.

LocalBanTransaction Local Moderator Issue warning for content.

7.2. Content Classification
Drive Owners and Content Consumers can select Description Tags from a fixed list to
classify Sirius Storage content (e.g., age restriction, genre) and make content searchable.

Application software (e.g., a Google search-type app or a YouTube-type app) can then use
the Description Tags to organize and display content accordingly.

7.3. Moderators & Network Bans
Sirius Storage content can also be banned and removed from the network to prevent the
distribution of illegal content.

A third party named a Moderator (e.g., a private or government organization) can moderate
stored content. There are two types of Moderators:

1. Global Moderator: Censors content across the entire network.
2. Local Moderator: Censors content for a local jurisdiction.

51



ProximaX Sirius Platform Whitepaper

i. Global Ban
A Global Moderator can identify content based on Content Download Information
(CDI) that contains a file's unique hash (like a fingerprint) and Description Tags. Once
a Global Moderator bans a file by posting a GlobalBanTransaction, the network
removes the file from all Drives, and Content Consumers can no longer download it.

The GlobalBanTransaction serves as a special modification for all the Drives
containing the file as it triggers a free of charge
DataModificationApprovalTransactions by Replicators of a Drive that stores the
banned file.

If a Drive Owner attempts to upload a globally banned file, the Replicators ignore the
request and do not save it to the Drive.

ii. Local Ban
A local ban can be executed via a LocalBanTransaction by a Global Moderator or a
Local Moderator. A local ban creates a warning for the content users and does not
trigger the automatic removal of the content from Drives.

Upon being notified of the local ban:

1. Drive Owner: Can remove the file.
2. Replicator: Can offboard from the Drive.
3. Content Consumer: Can cancel downland.

Developers can pre-programmed all these actions in application software.

iii. Supercontract Moderator
A Supercontract can be used to automate the role of a Moderator.

How it can work:

1. The Supercontract detects Description Tags or complaints submitted via the
Internet of banned content.

2. The Supercontract checks whether the hash of the file matches banned
content.

3. If the content is banned, the Supercontract releases the corresponding ban
transaction.

7.4. Content Review Tokenomics
Review Unit (RW Unit) is the Service Unit used for the Content Review layer. Validators send
to Drive Owners and Content Consumers 1 RW Unit for every SM Unit spent. Platform users
can only use RW Units to classify content.

52



ProximaX Sirius Platform Whitepaper

Process flow:

1. A Drive Owner or Content Consumer posts a ReviewTransaction.
2. The transaction has attached single or multiple Description Tags that the network can

apply to one or multiple files.
3. The transaction also specifies how many RW Units the network is to assign for each

Description Tag. The more RW Units assigned to a Description Tag, the more weight
the tag carries for classification.

Figure 28: RW Units flow.

53



ProximaX Sirius Platform Whitepaper

Glossary

Aggregate Bonded
Transaction

An aggregate transaction merges multiple transactions into one,
allowing trust-less swaps, escrows, and other advanced logic.

Aggregate Executions An aggregate transaction that merges multiple Supercontract
execution transactions into one.

Automated Market Making The automated trading of XPX with Service Units using Liquidity Pools.

Batch Execution Execution of all execution calls contained in a blockchain block.

Billing Period Every 24 hours for content Consumers and Receivers, and every four
weeks for Drive Owners.

Block Proposer A Harvester that proposes a new block for the Committee’s vote.

Caller A node that calls a Supercontract function.

Committee Harvesters that form a group and cast votes on whether a Block
Proposer's block is appended to the blockchain.

Committee Member A Harvester that is a member of the Committee.

Content Download
Information or CDI

Information that is tagged to a file, that includes its hash for file
discovery and download.

Content Review The Sirius platform’s decentralized service layer for content review.

Consumer A node that downloads data from a storage Drive.

Creator A node that creates a Supercontract.

DApp or Decentralized
Application

An application (App) that runs on a decentralized network.

Description Tag A label used to classify content in the Content Review layer.

DEX or Decentralized
Exchange

A peer-to-peer exchange that does not require an operator or
intermediaries.

Distributor A Replicator that distributes a data stream.

Download Channel A channel that a Consumer or Receiver opens with a Drive to
download data.

Drive A decentralized data store.

Drive Account The account assigned to a Drive where the Drive Owner deposits
funds used to pay for core services.

54



ProximaX Sirius Platform Whitepaper

Drive Owner Creator and owner of a Drive.

Drive Public Key A Drive’s public identifier created using asymmetric cryptography.

Drive State A hash (i.e., fingerprint) of all the Drive’s data.

Executor A node that executes a Supercontract’s functions.

Fast Finality A weighted voting mechanism to reach a consensus on appending
new blocks to the chain.

File System Controls how data is stored and retrieved from a Drive.

Global Moderator Bans content across the network and initiates content removal from all
Drives.

Greed Value The value assigned to a Harvester by the Proof of Greed algorithm
based on the accepted fees from the Harvester's last produced block.

Harvester A Harvester is a Validator that participates in block production.

Liquidity Pool A pool of assets in the Sirius DEX used to create a market for the
exchange of XPX for Service Units.

Liquidity Provider A platform user that deposits XPX into the Sirius DEX Liquidity Pool to
earn exchange fees.

Local Moderator Creates a network warning for content that should be locally banned.

Metadata On-chain data attached to transactions, Accounts, Namespaces, and
tokens.

Modification Queue A queue where data modification requests are added for processing.

Multi-level Multi-signature Multiple levels of agreements between cosignatories, making it useful
for comprehensive approval processes.

Multi-signature or Multisig A cosignatory agreement between account signatories (e.g., how many
need to sign to execute a transaction or remove a signatory).

Moderator A third party (e.g., a private or government organization) that
moderates content in the network.

Namespace A unique on-chain name, like an internet domain name, that you can
link to an Account or a digital asset.

Opinions Opinions by Replicators, Distributors, Redistributors, and Executors on
Receipts collected, work done, verification results, and rewards to be
received.

Proof of Execution or PoEx A Supercontract verification protocol that protects the network from
non-performing Executors attempting to claim rewards for work not
done.

55



ProximaX Sirius Platform Whitepaper

Proof of Greed or PoG A Sirius Chain reputation consensus algorithm that keeps transaction
fees closer to their actual cost and prevents Harvesters from becoming
greedy.

Proof of Stake or PoS A Sirius Chain consensus algorithm used to select the next block
producer, giving preference to Harvesters with a high stake as well as
considering reliability and work activity.

Receipts Off-chain pieces of data produced by storage Consumers and stream
Receivers stating what services were consumed.

Receiver A node that receives a live stream (viewer).

Redistributors Stream Receivers that contribute their bandwidth and facilitate
downstream redistribution to earn rewards.

Replicator A node that stores and modifies the Drive and performs downloads
and uploads based on incoming transactions.

RW Unit or Content Review
Unit

A Service Unit where 1 RW corresponds to 1 XPX worth of paid
content.

Sandbox Additional Drive space used by Replicators, Distributors, and
Executors to test the provision of services in an isolated environment
and for loop recording during live streaming.

SC Unit or Supercontract
Unit

A Service Unit where 1 SC token corresponds to 1 billion
Supercontract operation codes (opcodes).

SDA or Sirius Digital Asset Digital assets that any user can create on the platform.

Service Unit Internal tokens used as units of measure for the provision of services.

Sirius Chain The ProximaX Sirius platform’s blockchain.

Sirius DEX The Sirius platform’s decentralized exchange used for the automated
exchange of XPX for Service Units.

Sirius Storage The Sirius platform’s decentralized storage service layer.

Sirius Stream The Sirius platform’s decentralized streaming service layer.

SM Unit or Streaming Unit A Service Unit where 1 SM token corresponds to 1 streamed GB.

SO Unit or Storage Unit A Service Unit where 1 SO token corresponds to 1 GB of space stored
for a period of four weeks.

Sponsor A platform user that Sponsors the provision of storage and streaming
services.

Stake An amount of XPX owned by a Harvester to increase its chances of
being selected for block production by the Proof of Stake algorithm.

Stream Distributor Replicator that distributes a data stream based on incoming
transactions.

56



ProximaX Sirius Platform Whitepaper

Stream Sender Creator of the data stream that instructs Distributors.

Supercontract The Sirius platform’s decentralized contract service layer.

Validator All platform nodes serve as a Validator. Validators validate and process
all service transactions in a blockchain block (e.g., make payments;
assign and remove nodes from services).

Virtual Drive Off-chain Drive used for anonymous access to services.

XPX The Sirius platform’s native coin used to pay for platform services.

57


