
Smart Layer: A Decentralised Integration Protocol
for the Next-Generation Web

1st September, 2023

Abstract
In the ever-evolving decentralised Web, a robust integration layer

bridging siloed services through tokenisation is crucial. Smart Layer is a
decentralised network designed to facilitate the next generation of web
use-cases. As a network, it seeks to address the inherent limitations of the
current Web. This whitepaper delves into the architecture, design, and
potential of Smart Layer, and its token.

Introduction
The Web has grown increasingly integrated with the advent of Web 2.0. In-
tegration such as, “Login with Google,” “Checkout with Apple,” and “Share
with Twitter” are hallmarks of the Web2 user experience. The success of tech
giants like Google has underscored the demand for integrated services. However,
despite these advancements, the broader web landscape has remained fragmented.
Centralised entities have emerged as dominant forces, creating isolated ecosys-
tems that limit true integration. Though blockchain technology introduced a
new paradigm which emphasised decentralisation and trustless transactions, its
primary focus has been on asset tokenisation.

Smart Layer is a decentralised protocol that aims to reshape the Web’s ar-
chitecture. It acts as an integration hub which enables smooth interactions
between various services, much like how many websites use platforms such as
Google. Smart Layer goes beyond acting as a “bridge,” and paved the way for
the concept of Smart Tokens. Smart Tokens are tokenised digital rights and
products/services that can be seamlessly integrated across various web use-cases.
In that sense, Smart Tokens can surpass the limitations of centralised systems,
and leverage the strengths of blockchain. This protocol is designed to function
as a distributed network, serving as the backbone for the next generation Web.

TokenScript—an evolving OASIS standard—is critical for Smart Tokens within
the Smart Layer. While Smart Layer offers the foundation, TokenScript defines
the packaging, distribution, and operation of these tokens. TokenScript also

1



establishes the messaging format between the tokens and their integrations. This
ensures that they work within the defined parameters of trust, interoperability,
privacy and security.

Scope of this document
This whitepaper serves as an introduction to the novel concept, models and
mechanism of Smart Layer. It discusses its potential applications in the next-
generation Web. It is not intended as a guide for the implementors of Smart
Layer Nodes (which is addressed in a future separate specification, akin to
Ethereum’s Yellow Paper).

Problem statement
Dr. Gavin Wood has attributed the centralization of the web to a combination
of factors. These factors include network effects, economies of scale, big data
ownership, and intellectual property laws1. The centralization Dr. Wood identi-
fied has led to a situation where most websites today are integrated with Google
or Facebook login, or Apple Pay, white the most popular websites use all those
integrations listed.

The harm caused by web centralization notwithstanding, it has enhanced usability
tremendously. But it has also stalled the development of new integrations. This
is especially evident in areas where world-renowned internet companies have no
major influence, such as with airlines and purchasing tickets for flights. Central
points in those areas (see Amadeus in flight booking as an example), can reach
only the back offices of various websites. As a result, a flight ticket booked on
one website can also be used to book a car rental on the same website, but that
website only. Similar to the airline industry, in social media or e-commerce, a
user reputation would work on one website exclusively.

This lack of user-level integration can be attributed to two (2) main factors.

First, despite the aforesaid explanations, internet centres have become trust
anchors. Should an uncommon third party provide integrations (consider the
prospect of using or being provided a calendar other than Google Calendar),
Whether a user’s trust will be “betrayed” is brought into question. Before
blockchain emerged in the form of a trust machine2 that could facilitate trustless
interactions between parties, this trust problem was not resolvable without
massive, centralised Internet companies as the trust anchors.

Second, the complexity of the system grows quadratically with the growth of
the number of integrations used.

Having regard to these two (2) reasons, the modern Web faces a “Limit of 3”
1Wood, “The Future of the Decentralized Web.”
2Winter, “Trust Machine.”

2



challenge. Most websites are restricted to three (3) main integrations: login,
social media posting, and checkout.

Google/
Facebook

WebsiteInteract

Post / Share

Checkout

Login

Now

Figure 1: Present Web relies on central integration points. They are the trust
anchor of the Web

The Web’s fragmented nature has, in turn, led to fragmented user experiences.
Reconsider the example of an airline flight ticket. In the current web paradigm,
this ticket represents a token of value within its issuing platform, but it remains
isolated. The potential for the ticket to integrate with other systems—updating
travel statuses on social media, guiding users via mapping services, or communi-
cating flight changes to hotel booking systems—remains largely untapped. Such
straightforward integrations, though long overdue, are hindered by the Web’s
compartmentalized structure, where centralized entities offer piecemeal solutions.

Web fragmentation highlights the need for a paradigm shift towards a more
dynamic and interconnected web ecosystem. This shift would consciously break
the “Limit of 3,” thereby allowing websites to connect to a bigger ecosystem
outside the control of the current Internet centres, while facilitating an integrated
user experience. Naturally, such a new paradigm must include a freely grown
integration network, low integration costs, and designs for secure, privacy-
preserving mechanisms to expedite expansive integration.

Proposed solution: the Smart Layer approach
To reignite web innovation and overcome centralisation issues, we must look
beyond merely creating isolated systems that sidestep the primary web integra-
tions of the present. In their stead, we propose to build an integrated web where
tokens are the main integration points. By transforming these tokens into web
services, we pave the way for the next-generation Web.

Before the advent of the blockchain, creating such an integration system was
impossible. Any entity operating it would inevitably become a new central trust
anchor. However, the emergence of public blockchains like Ethereum has changed
things. Blockchains introduced smart contracts that can be executed securely,
offering a trust foundation that does not rely on the goodwill of centralised
parties.

3



But just executing smart contracts securely is insufficient for the integration
demands of the next-generation Web. Though smart contracts can define and
enforce rules, they do not actively perform tasks. They will not notify a user’s
mobile phone about a delayed flight, or interface with a healthcare system to
offer a diagnosis, even if the flight tickets and user’s health profiles are tokenised.
These functionalities are expected from a highly integrated web that offers a
seamless user experience. To bridge this gap, we need a network providing
services built atop smart contracts, playing the role of integration providers
not unlike Google’s login and Apple’s payment integration. The Smart Layer
network would fulfil that purpose.

Smart Tokens: The Heart of Integration
Smart Tokens are tokenised representations of digital rights and services at the
heart of Smart Layer’s design. These tokens are based on blockchain smart
contracts and enable limitless integration across diverse web scenarios, challenging
the constraints of traditional centralised systems.

Next Generation Web

WebsiteInteract

Membership
Token

Flight Ticket
Token

Health 
Token

Payment
Token

Preference
Token

Smart Layer Network

Figure 2: In the next web, users choose smart tokens to use on websites, with
unlimited potentials

While directly replacing established systems like Google Login or Apple Pay with
their smart token counterparts might seem impractical given the ubiquity of these
services, the true value of Smart Tokens lies in their potential for innovation.
The diagram showcases the myriad of smart tokens that can be crafted using
the synergy of TokenScript and the Smart Layer network. Instead of a blanket
data reveal, users can selectively deploy these tokens, maintaining control over

4



their digital interactions. Notably, unlike dApps, these tokens are not designed
to replace Web2 but to coexist and enhance the web2 ecosystem. Traditional
services like Google Login or Apple Pay remain accessible, but innovations like
the smart flight ticket carve out new avenues for web evolution.

With Smart Layer, users navigate with an arsenal of smart tokens, each tailored
for specific applications, thereby unlocking a realm of untapped potential. The
end goal is a web that’s dynamic, interconnected, and pivots around user agency.

Protocol Requirements
Smart Layer’s design and functionality hinge on protocol requirements crafted
for the distinct capabilities of smart tokens. These requirements are not merely
a reflection of standard practices for distributed networks but are intricately
linked to the challenges and goals of the Smart Layer ecosystem. The key areas
of focus include:

• Authenticity: The integrations should be able to verify the authenticity
of the result of the Service TokenScript code executed on the smart layer
network, and the network shouldn’t rely on the integrations verifying this
alone for operational integrity.

• Serviceability: This encompasses continuous uptime, redundancy, and
load balancing. While mature industrial technology can meet these re-
quirements, their application within Smart Layer is influenced by other
interconnected requirements.

• Privacy and Security: Smart tokens distribute their logic between
user agents (like decryption of sensitive data) and server-side logic (such
as triggers set within the tokens). This paper primarily addresses the
server-side logic executed by the Smart Layer network.

• Token Lifecycle Management: This pertains to the management of
smart tokens throughout their existence. Considerations include the dura-
tion a flight ticket smart token resides on a node and the mechanisms to
reinstate tokens that are in dormant states, such as a car-insurance token
awaiting activation.

• Inter-node Collaboration: Nodes within the Smart Layer network
are expected to work together to facilitate specific token functions. For
example, a smart car token’s status could be influenced by its registration,
insurance, and maintenance tokens, potentially managed on different nodes.
Integrations expect smooth interactions between nodes, allowing them
to concentrate on the capabilities provided by smart tokens rather than
managing their intricacies.

• Incentive Structure: The cost of operating a token is typically borne
by the integration. For instance, if a health token is used by a website
to optimise a user’s shopping list, the e-commerce platform incurs the
cost. However, token issuers play a pivotal role in ensuring the availability
and operability of their tokens on the network. They must incentivise the

5



network to maintain the token’s availability, even as the actual operation
costs are met by integration points.

It is essential to differentiate these requirements from those of TokenScript.
While TokenScript outlines how smart tokens should be packaged, distributed,
and executed, Smart Layer emphasises the real-time execution of the server-side
components of these scripts. This ensures they function optimally within the
defined parameters of privacy, secure storage, and cost accounting. The features
specific to TokenScript, currently under standardisation in collaboration with
OASIS, are not covered in this document.

Smart Layer Architecture
Smart Layer’s architecture is rooted in mature protocols and algorithms that
have been proven effective in distributed systems, including blockchain itself,
distributed hash table, load balancing and service level objective monitoring,
and the use of Merkle tree in data integrity verification. These foundational
technologies provide the basis for building Smart Layer as a robust, decentralised
network tailored for token operations. The innovation primarily stems from
the creation of an integration service platform and a conducive environment for
smart tokens, encouraging existing web infrastructure to transition towards a
token-centric architecture.

The primary serviceability requirement determined that the network cannot
be built like a blockchain, where consensus serves to determine truth; instead,
services must be monitored and load-balanced in real time. This leads to the
need for anchoring nodes.

Anchoring Nodes and Distributed Smart Token Instances
Smart Layer’s emphasis on serviceability sets it apart from traditional blockchains
that lean heavily on consensus mechanisms. This focus demands real-time
monitoring and load balancing, which is where anchoring nodes come into
play. These nodes serve as the network’s guardians, ensuring consistent service
availability and stepping in for pivotal operations. The Distributed Hash Table
(DHT), shared among these anchoring nodes, is instrumental in determining
which node is responsible for a specific smart token instance. This decentralised
approach not only mitigates potential attacks that might arise from matching
node IDs with token IDs but also guarantees prompt responses to integration
queries.

An integration, which is to say, a website and its browser session combined,
access anchoring nodes to get access to the service nodes of the token the user
decided to use in that integration.

The anchoring nodes, working with their peers, maintain a distributed hash
table to find service nodes for any given smart token.

6



Anchoring 
node

Look up

Return
Service Node

Get user
Autorisation

①

③

②

Service 
Node

Access Token
Services

Figure 3: Process of getting to the service node

0x3D1F 0xFEA1
0x8964 0x8103
0xB7C8 0x1E81

DHT

Anchoring 
node A

Anchoring 
node C

0x8964

Service Nodes

3rd party 
API

Anchoring 
node B

Figure 4: Mapping Token ID to its service node

7



Token Status Propagation and Execution
Smart tokens, as envisioned in the Smart Layer network, have a dynamic
status that can be influenced by various factors. These factors can range from
attestations to smart contract updates and node messages. While some of these
updates are deterministic, others can be non-deterministic, leading to potential
complexities in the network’s operation.

Deterministic vs. Non-Deterministic Status

A deterministic status update is one that, given the same input, will always
produce the same outcome. For instance, with a flight ticket as a smart token,
a flight delay leading to an automatic lounge access reward for a passenger
is deterministic. However, not all updates are so straightforward. Consider
the scenario of the same smart token rebooking a hotel through a web API.
The outcome might be a successful booking attestation, a timeout, or even a
server-side error. Such non-deterministic outcomes present challenges, especially
when integrating with existing Web2 systems. While there are pure blockchain-
based solutions that completely do away with the status branching, such as
rebooking through hotel smart contracts backed by a hotel’s precommitment, the
integration of web2 systems with smart contract-enabled platforms will remain
a challenge for the foreseeable decade.

Execution Verification
In the Smart Layer network, the primary objective of execution verification is
to ensure the integrity of the services provided to integrations. It’s crucial to
understand that this verification process is not a duplicate of validating the
execution of the core logic of the smart token contracts. Instead, it focuses on
the accuracy and trustworthiness of providing integration services to integrated
systems.

To illustrate with a real-world smart token use-case, imagine a smart car that
breaks down on the road, and a smart insurance token is at work. Execution
verification ensures that the driving data is accurately passed to the roadside
assistance company. It doesn’t concern itself with whether the insurance payout
due to the breakdown is calculated correctly - such core token logic can be part
of the insurance Smart Contract, and its trust is derived from the underlying
blockchain. Consequently, a potential exploit in the execution verification of any
Service TokenScript would more likely target integrated systems rather than
attempt to manipulate smart contract payouts.

With this context in mind, anchoring nodes in the Smart Layer network are
tasked with verifying the execution of Service SmartTokens. This introduces
several protocol requirements:

1. Inputs to the Service TokenScripts should be structured as valid attesta-
tions and safeguarded against replay attacks and misuse in inappropriate

8



contexts.
2. Failures of service nodes in obtaining such attestations must be verified

by anchoring nodes to prevent false claims of failures of the integrated
systems.

3. The output resulting from token execution should be attested, offering
proof of the operation’s authenticity.

Let’s delve into these requirements:

Inputs must be attestations

To bolster the integrity and authenticity of data inputs, they should be framed as
attestations. These cryptographic proofs validate the legitimacy of specific data
or actions. Mandating inputs as attestations ensures that only authenticated
and verified data drives token operations, enhancing the security and reliability
of the Smart Layer network.

Handling Failures

When a node falters in its execution responsibilities, anchoring nodes intervene.
They can either mediate disputes or reassign the smart token to a more depend-
able node. Only anchoring nodes can issue attested failures. Their primary
role is to provide attestation for the failure to secure necessary attestations,
propelling the token to its subsequent state.

0x3D1F 0xFEA1
0x8964 0x8103
0xB7C8 0x1E81

DHT

Anchoring 
node A

Anchoring 
node C

0x8964

Service Nodes

3rd party 
API

Anchoring 
node B

Figure 5: After a failure, a service node requests an anchoring node to route its
traffic in order to get a failure attestation

9



Attested Execution

Trusted Execution Environments (TEEs), such as Intel’s SGX, offer a secure
milieu for code execution, safeguarding data confidentiality and integrity. Lever-
aging TEEs facilitates attested executions, where computation results are paired
with proof of correct execution.

Service Nodes must execute all Service TokenScript within TEEs verifiable by
anchoring nodes and integrations. This stands as our primary mode of execution
verification.

Security While TEEs, including SGX, have encountered vulnerabilities, they
remain unparalleled in ensuring trusted execution without overburdening the
design with consensus protocols. Large commercial entities, like Microsoft’s
Azure, have embraced TEEs, reinforcing confidence in the technology. However,
the system should be equipped with alternative execution verification fallbacks
in case of vulnerabilities. These fallbacks, activated by a DAO emergency
vote, range from partial (load-balancing nodes across different platforms) to full
(routing all service node traffic to anchoring nodes for selective computation
verification).

Performance TEEs, such as SGX, have limitations on computational power
utilisation. In practice, node operators might offset this by running parallel
tasks like mining. Future TEE iterations aim to optimise resource allocation
and advancements like parallel execution, and Enhanced Memory Management
promises near-full system resource utilisation for Service TokenScript execution.

Periodic Execution Monitoring

Anchoring nodes are mandated to periodically oversee the execution of Service
SmartTokens. This continuous monitoring regulates the staking mechanism,
allowing for stake slashing upon detecting execution discrepancies. Service nodes
are periodically prompted to provide execution samples for validation. This
mechanism is akin to immune cells inspecting protein synthesis within biological
cells, ensuring operational integrity.

In fallback mode, execution monitoring is performed by selectively redoing
the execution, relying on all service nodes to route traffic to anchoring nodes,
effectively transforming them into gateways.

Real-World Application: The Flight Ticket Smart Token
To better understand the intricacies of the Smart Layer network, let’s delve into
a real-world example: the flight ticket smart token.

10



Resources available 
for Service TokenScripts

Protocol 
overhead

Service 
Node

Resources available 
for TEE with SGX

Service 
Node

Protocol 
overhead

Ideal

Current Limitation with TEE

Figure 6: TEE negatively affect the performance of nodes, however, the force of
economy may lead nodes to allocate resources to other services

Read-Only Access

Imagine the user booked a car rental at the rental website, using the smart token
on this website. This creates an authorisation for the car rental to access the
flight ticket smart token interfaces. When the car rental service wants to verify
if your flight is on time, any node that has this smart token instance can provide
a read-only API to share the flight’s current status, and the selection of the node
is largely a matter of load balancing. This process is facilitated by any of the
nodes where the smart token is instantiated and selected at random.

Single Execution by Elected Node

Now, consider a significant flight delay. This delay might trigger the smart
token to rebook your hotel reservation. Since this action interacts with the
external world and can have financial implications, it is crucial that only one
node executes it. Once the rebooking is successful, the hotel system might
generate a new booking attestation, confirming the change.

However, what if there’s a failure? What if the node trying to rebook the hotel
faces multiple timeouts when accessing the hotel’s API? After a set number
of failures, from the network point of view, an event occurred that the token
failed to move to the next state. The traffic to the hotel system API would be
rerouted through the anchoring node that elected the original executor. This
anchoring node can then verify server timeouts or other errors and provide a

11



failure attestation to move the smart token to the next state. Frequent routing
of this nature triggers service level agreement to scrutinise the node that was
responsible for execution.

While the flight ticket smart token serves as a tangible example, it is essential to
understand that the Smart Layer network is not limited to this application. The
principles discussed here apply to a myriad of potential smart tokens, each with
its unique challenges and solutions.

Attestation Gossiping and Queuing in Smart Layer
In the Smart Layer architecture, the dynamic status of smart tokens is pre-
dominantly updated through attestations. These attestations, essentially cryp-
tographic proofs, vouch for the validity of a particular state or action. Given
the decentralised nature of the system and the real-time requirements for token
status updates, there arises a need for an efficient mechanism to disseminate
these attestations across the network.

The Need for a Hybrid Mechanism

Traditional gossip protocols, inspired by the way information (or gossip) spreads
in social networks, have been a staple in distributed systems. They ensure that
data is disseminated quickly and efficiently across a network. However, the
unique requirements of Smart Layer, especially the need for ordered delivery
of attestations and the ability to request missing attestations, demand a more
sophisticated approach.

The unique requirements include selective gossiping where an attestation covers
a type of smart tokens or a subset of smart tokens in that type, the timely
update needed for integration to function, order and integrity, plus compatibility
with a subscription model. This calls for a hybrid mechanism, which marries
the strengths of gossip protocols with the features of systems like Apache Kafka.
While gossip protocols ensure rapid dissemination, systems akin to Apache Kafka
ensure that these attestations are delivered in order and allow nodes to request
specific attestations they might have missed.

How It Might Work

Imagine a scenario where an airline releases a series of attestations updating
flight arrival times. Nodes in the Smart Layer network that have smart token
instances depending on that flight would subscribe to these attestations. As these
attestations are gossiped through the network, the Kafka-like system ensures
they are received in the correct order. If a node misses an attestation, it can
request that specific piece of information, ensuring data integrity and consistency
across the network.

This hybrid approach addresses the challenges of both rapid dissemination and
data consistency. The decentralised nature of Smart Layer presents unique

12



challenges, and we are committed to innovating and iterating on these solutions
to ensure a robust and efficient system. As we progress, we will continue to refine
and adapt our approach to best serve the needs of the Smart Layer ecosystem.

Secure Execution Environment
Given the dynamic nature of smart tokens, it is imperative to have a secure
environment for executing token code. Sandboxing techniques are employed
within Smart Layer nodes, allowing token scripts to run in isolated environments.
This ensures that the broader network remains unaffected by potentially malicious
or faulty token scripts.

Smart Layer Token Types
The tokenomics of Smart Layer is intricately designed to ensure the sustainability,
efficiency, and robustness of the network. Central to this design is the dual-token
system, which serves distinct yet interconnected purposes:

Service Token
The Service Token is the primary medium of exchange within the Smart Layer
network. It facilitates all micro-transactions associated with token operations,
from querying token data to more resource-intensive modifications. Integrations
typically bear the costs associated with token activation, which are transacted
using the Service Token. This token ensures that the network remains agile,
with real-time settlements and efficient resource allocation.

Stake Token
The Stake Token represents a stake in the Smart Layer network. Holders of this
token have a vested interest in the network’s growth and governance. Depending
on the network’s design, Stake Token holders might influence governance deci-
sions, propose changes, or even earn rewards based on network activity. This
token ensures that the network remains decentralised, with stakeholders actively
participating in its evolution.

The tokenomics of Smart Layer is designed to ensure the sustainability, efficiency,
and robustness of the network. It strikes a balance between incentivising token
issuers, integrations, and the nodes that power the network. Here’s a deep dive
into the tokenomics structure:

13



Service Token’s Tokenomics
Token Issuer Rent
Every token issuer pays a nominal fee termed as “rent.” This rent ensures that
the TokenScript associated with the token remains available on the network.
Additionally, it guarantees that any smart contracts linked to the token are
actively monitored. While the rent is minimal, it serves a crucial purpose: it
ensures that the network remains primed for any token activations, ensuring the
readiness and responsiveness of the Smart Layer.

However, this rent does not necessarily translate to a financial burden for token
issuers. On the contrary, they can potentially profit from the broader ecosystem,
particularly from the “business” operations, which will be elaborated upon
subsequently.

Token Activation and Operation Costs
While the token issuer pays the rent, the costs associated with token activation
are typically borne by the integrations. An integration, in this context, refers to
any stakeholder or entity that leverages the smart token for a specific use-case.

For instance, consider a health token. An e-commerce platform might utilise
this token to optimise a user’s shopping cart. In such a scenario, the e-commerce
platform would cover the costs associated with accessing the token’s interface.
Conversely, a visa office might adopt a different approach. If an applicant
provides data, such as a flight ticket in smart token format, the visa office might
require the applicant to attach a small payment to cover the token operation
costs.

The cost of querying token data is relatively low, facilitated through a state
channel. However, modifying token data, given its reliance on gossiping and
node synchronisation, is more resource-intensive and costlier.

State Channels and Settlement
State channels play a pivotal role in the Smart Layer tokenomics. Whenever an
integration interacts with a smart token, a state-channel is opened. This channel
keeps track of all the micro-transactions associated with the token operations.
Integrations have the flexibility to close these channels and settle the accumulated
costs at regular intervals, such as monthly.

Anchoring nodes, which play a central role in the network’s operation, maintain
these state channels. They ensure that payments are routed correctly to the
nodes that provide the services. At the end of a settlement period, the anchoring
node consolidates all the transactions within the state channel and processes the
payment to the respective service-providing nodes.

14



Dynamic Tokenomics: Tailoring Incentives in a Decen-
tralised Ecosystem
The tokenomics is structured in a way that allows token issuers, while paying a
nominal rent, to write their token contract in a way that profits from the broader
ecosystem.

Token contracts can dictate revenue derived from various “business” operations
facilitated by the smart tokens. For instance, a token issuer might collaborate
with multiple integrations, each offering a unique service or benefit associated
with the token. Every interaction with the token, whether it is a query or an
update, translates to a micro-transaction. This is because unlike industrial smart
tokens, some community smart tokens may need the cumulative value of these
micro-transactions.

Furthermore, integrations, by leveraging smart tokens, can offer enhanced services
to their users. This improves user experience and may open up new revenue
streams for the integrations. For instance, an e-commerce platform can offer
personalised shopping recommendations based on a user’s health token, leading
to increased sales and customer satisfaction.

Relationship with Other Projects
IPFS
Smart Layer’s architecture is inherently designed to be modular and interoperable,
a philosophy that aligns with the InterPlanetary File System (IPFS). While
IPFS serves as a decentralized storage layer, it focuses primarily on content
availability without service-level guarantees such as I/O and response time.

This positions IPFS more as a retrieval service than a web service, lacking a
Virtual Machine (VM) for code execution.

Smart Layer offers the option to use IPFS for storage, particularly when the
higher costs associated with Smart Layer’s features like load balancing and Service
Level Agreements (SLAs) become a concern. This strategic alignment allows
Smart Layer to maintain its lightweight nature while ensuring data integrity
and availability, key attributes that are indispensable for any decentralized
application (dApp).

Chainlink
Smart Layer’s collaboration with Chainlink significantly enhances its capabilities,
particularly in the area of decentralized oracles. Chainlink is renowned for its
decentralized oracle services, which provide secure and reliable data feeds to
smart contracts. However, Chainlink’s primary focus is on linking external data
to blockchain environments, rather than enabling smart tokens as integration

15



points. It does not concern itself with providing token interfaces for specific
use-cases like smart flight tickets.

On the other hand, Smart Layer adopts a token-oriented approach, where smart
contracts act as trust anchors. This architecture allows for a separation between
rule enforcement and execution logic, offering greater flexibility in application
development. By integrating Chainlink’s robust oracle services, Smart Layer can
access real-world data, thereby enabling more complex smart contracts that can
interact with external APIs, IoT devices, and other data sources. This synergistic
relationship broadens the scope of applications that can be built on Smart Layer,
ranging from decentralized finance (DeFi) to supply chain management and
beyond, while also providing the necessary infrastructure for specialized token
interfaces.

This distinction in scope allows each platform to excel in its area of expertise,
while their integration offers a more comprehensive and versatile solution for
decentralized applications.

TokenScript
TokenScript is a direct dependency of the Smart Layer technology stack. The
same team that has been instrumental in the development of TokenScript has
also been responsible for Smart Layer. This team’s work on TokenScript has
been recognized by the OASIS Standardization body as part of its collaboration
with the Ethereum Foundation. While Smart Layer aims to provide a robust
integration infrastructure for the next generation web, TokenScript focuses
on standardizing token interfaces, behavior code, and attestation mechanisms.
These elements are essential dependencies for the Smart Layer network.

The integration of TokenScript into Smart Layer is a fundamental requirement
for the latter’s operation. TokenScript’s XML-based token markup language
enables a modular approach to dependency-based token interoperabilities. For
example, it allows the insurance industry to establish standardized interfaces
for smart insurance tokens. Utilizing TokenScript’s editors and deployment
tools, developers can define token behavior without writing XML directly, using
familiar languages like JavaScript to control a token’s runtime, whether in a
wallet or within the Smart Layer network.

Conclusion
In conclusion, Smart Layer integrates IPFS as an optional storage solution,
benefiting from its mature implementations of distributed hash tables, but does
not rely on it for runtime operations. Chainlink serves as a source of attestations
and is an optional component, the utilization of which is contingent upon specific
smart token authorizations. Unlike IPFS and Chainlink, TokenScript is not an
infrastructure but a standard for defining smart tokens. It serves as a direct
dependency, essential for the functionality and interoperability within the Smart

16



Layer ecosystem.

Design Considerations and Summary
Designing for today’s unthinkable, tomorrow’s norm
As we delve into the intricacies of protocol design, it’s crucial to remember that
today’s innovations often become tomorrow’s standards. The Smart Token and
its supporting Smart Layer are designed with this forward-thinking approach. For
example, consider the potential for future retailers to interface with vehicle smart
tokens for predictive maintenance or flight smart tokens for timely deliveries.

The protocol is also designed to accommodate emerging scenarios, such as
smart locks granting access based on tokenized rights or smart cars initiating
autonomous roadside assistance. Furthermore, as AI becomes increasingly
integrated into decision-making, the protocol is engineered to support AI-driven
decisions through token interfaces. This design choice enhances security and
composability, essential attributes for future web integrations.

The Decentralised Nature of Future Integrations
Contrary to the notion that the protocol’s success depends solely on adoption by
Internet giants, the true power lies in its ability to connect various stakeholders.
The next-generation Web will likely be a mosaic of localized innovations tailored
to specific industries and users. In this context, Smart Layer aims to serve as a
flexible and adaptable foundation.

The protocol emphasizes a layered design approach, focusing on provisioning
smart tokens as a robust mechanism. This allows for the development of more
complex features and applications atop this foundational layer, without getting
entangled in the specifics of individual tokens.

Summary and Implications
In this paper, we have presented Smart Layer as a protocol designed for decentral-
ized integration in the next-generation Web. The protocol leverages smart tokens
to facilitate interactions between various web services, sidestepping the need for
centralized entities. Unlike tokenized assets, which are primarily designed for
trading, smart tokens in this protocol are engineered for specific applications.
This focus aligns with the evolving technological landscape and its emerging
use-cases.

As the paper concludes, it’s worth noting that the protocol is not a static
entity but a continually evolving framework. It aims to contribute to a more
interconnected web ecosystem, and as such, invites ongoing engagement from
developers and stakeholders for its further refinement and expansion.

Winter, Alex. “Trust Machine: The Story of Blockchain,” 2018.

17



Wood, Gavin. “The Future of the Decentralized Web,” 2017.

18


	Introduction
	Scope of this document

	Problem statement
	Proposed solution: the Smart Layer approach
	Smart Tokens: The Heart of Integration

	Protocol Requirements
	Smart Layer Architecture
	Anchoring Nodes and Distributed Smart Token Instances
	Token Status Propagation and Execution
	Deterministic vs. Non-Deterministic Status

	Execution Verification
	Inputs must be attestations
	Handling Failures
	Attested Execution
	Periodic Execution Monitoring

	Real-World Application: The Flight Ticket Smart Token
	Read-Only Access
	Single Execution by Elected Node

	Attestation Gossiping and Queuing in Smart Layer
	The Need for a Hybrid Mechanism
	How It Might Work

	Secure Execution Environment

	Smart Layer Token Types
	Service Token
	Stake Token

	Service Token’s Tokenomics
	Token Issuer Rent
	Token Activation and Operation Costs
	State Channels and Settlement
	Dynamic Tokenomics: Tailoring Incentives in a Decentralised Ecosystem

	Relationship with Other Projects
	IPFS
	Chainlink
	TokenScript
	Conclusion

	Design Considerations and Summary
	Designing for today’s unthinkable, tomorrow’s norm
	The Decentralised Nature of Future Integrations
	Summary and Implications


