
C
U

B
E

Table of Contents
CUBE’S THREE MAIN SECURITY BLOCKS 3

I. BLOCKCHAIN SECURITY
2. CUBEBOX ENDPOINT SECURITY TECHNOLOGY
3. CLOUD CHECK BOX TECHNOLOGY

TECHNOLOGY APPLICATION 5

1. DATA BUSINESS
2. OTA BUSINESS
3. AUTOMOTIVE SECURITY BUSINESS

INTER-COMMUNICATION NETWORK SECURITY 8

IOT SECURITY 9

INTRA-COMMUNICATION NETWORK SECURITY 9

1. BLOCKCHAIN LAYER 10

1.1 THE PROBLEM OF CONVENTIONAL SECURITY
AND NEED FOR BLOCKCHAIN

CENTRALIZATION ISSUE
PRIVACY ISSUE
SAFETY ISSUE

1.2 DECENTRALIZED SECURITY PLATFORM FOR 12
AUTONOMOUS VEHICLES

2. AI DEEP LEARNING LAYER 16

CUBE’S SELF-TAUGHT LEARNING
UNDERFITTING
LOW SPEED
OVERFITTING

EXPANSION OF PROJECT SCOPE 21

 AUTONOMOUS

VALET

PARKING

 TRANSPARENCY

POLICY

27

CONTRIBUTORS

COMMUNICATION

27

 TOKEN

VALUATION OPERATION

POLICY

 27

APPENDIX 28

CUBE Intelligence Page 3

Remark
We cannot disclose the fine details of our technology because of the need to protect the intellectual property
rights of CUBE security technology.

CONNECTED & AUTONOMOUS VEHICLE (CAV) SECURITY

AND BLOCKCHAIN-BASED DATA PLATFORM

CUBE is a network security company utilizing the Blockchain

The USD 1.7 trillion automobile market has reached an important turning point.

The rapid expansion of car connectivity has brought attention to the

significance of network security. Newly manufactured cars from 2020 will be

produced with built-in connectivity. This opens the connected cars to cyber-

attacks, similar to the malicious attacks on network connected PCs. CUBE is

preparing to embrace a pivotal role in the rapidly changing vehicle market.

CUBE’S THREE MAIN SECURITY BLOCKS

Connected and autonomous vehicles (CAV) require a myriad of communication

hubs: vehicle to vehicle (V2V), vehicle to network (V2N), vehicle to

Infrastructure (V2I), vehicle to device (V2D), in fact vehicle to anything (V2X).

The increased connectivity increases user convenience, yet also increases the

attack surface for possible malicious malware attacks. Thus, network security is

pivotal in stabilizing the connectivity in vehicles. CUBE utilizes Blockchain, Deep

Learning (in-depth learning), Quantum hash encryption, Endpoint protection

and Cloud-based Intelligence to ensure a secure automotive network.

Blockchain

CUBE Multi-layer Protection

Endpoint
Cloud Attacks

010101010101

010101010101

010101010101

CUBE Intelligence Page 4

I. BLOCKCHAIN SECURITY
The conventional blockchain technology grants security whilst maintaining

simplicity, but has a limitation on transmitting large files. CUBE Blockchain

security resolves the drawbacks of a conventional blockchain by utilizing

peer-to-peer hypermedia protocol and asymmetric encryption. CUBE

Blockchain technology will provide next generation security for the automobile

industry, taking advantage of the impossible-to-hack nature of blockchain,

whilst providing rapid data transfer.

2. CUBEBOX ENDPOINT SECURITY TECHNOLOGY
Connected cars engage in multilateral communication from various external

sources: V2N, V2V, V2I, V2Dn and V2X. CUBE Endpoint Security Technology

generates endpoints at all external connection points for protection. CUBE’s

unique technology uses hashes to scan and distinguish over 300 million ‘known’

attacks with only 10MBs of disk space. In fact, even with our light-weight

software, it holds the fastest endpoint processing speed amongst the existing

endpoint security products.

Cube Box

Firewall
Server

Cube Auto Blockchain

Check Box

Sandbox

CUBE Intelligence Page 5

3. CLOUD CHECK BOX TECHNOLOGY
CUBE Cloud Technology can distinguish ‘unknown’ attacks through

transmitting suspicious files to the cloud malware database, the Check Box. Our

Cloud Check box is partnered with more than 50,000 corporations that upload

and share newly encountered malware on a transnational database. ‘Unknown’

attacks that are left unidentified are sent to a sandbox, where the files are

allowed to run in a restricted virtual environment. Based on the verdict from the

Sandbox analysis, the results are uploaded to the database and shared with

other vehicles.

TECHNOLOGY APPLICATION

AUTOMOTIVE MARKET TREND

CUBE incorporates blockchain, endpoint and Cloud-based CheckBox technology

to implement the following business models.

 1. DATA BUSINESS
According to a recent Mckinsey Report, the value of data collected from the car

exceeds that of the car itself. CUBEBOX enables anyone to become data

producer through simply plugging our device in a car. CUBE will establish an

ecosystem of automobile data sales and aim to become the world’s largest Big

Data company.

CUBE Intelligence Page 6

PRODUCERS

SERVICES

DATA CONSUMERS

*Above companies’ logos are not related to actual contracts.

It is a representation of potential partners.

COLLABORATE BUSINESS FOR CUBE TOKEN VALUE

TWO HALVES OF THE WHOLE:

DATA PROVIDERS AND DATA CONSUMERS

Automakers Traffic Information Providers

Gas Companies Insurance Companies

OTA OTA OTA

OTA OTA

OTA

OTA OTA

OTA

DATA

Car Sharing Companies Automotive Mechanics

Data Providers
The CUBE token links driving-related information from the car to data

consumers who need this information. Drivers generate this information

as they drive and receive CUBE tokens in return. CUBE then links it into a

blockchain. Data providers can use this to tap into services such as

“Over the Air” (OTA) autonomous car security, and mileage insurance

services from data consumers.

Data Consumers
Data consumers who need this information will provide their services in

exchange of CUBE tokens. Automobile generated information, is sent,

utilized, and received by all nodes. Data consumers can also provide OTA

services and autonomous car driving support information to data providers.

This circulation is a key principle of the CUBE token. CUBE’s tech can be

applied to different blockchains and improve data security and sharing

in various real-world situations.

CUBE Intelligence Page 7

DATA EXCHANGE

Cube Token Usage Plan

1- CUBE

2- SERVICE

i.e. Gas Discount,
Car Purchase Discount,

Mileage Insurance

3- CUBE

4- INFORMATION

i.e. Big Data,
Driving Records,
Fuel Efficiency,
Vehicle Condition

2. OTA BUSINESS
OTA technology enables automotive software to be upgraded remotely,

which levels up the functionality of in-vehicle software. CUBE’s blockchain

based OTA technology will provide remote software diagnostics and the

installation of bug patches.

3. AUTOMOTIVE SECURITY BUSINESS
According to ‘Cybersecurity Ventures’, the cybersecurity market grew from 3.5

billion USD in 2004 to 120 billion dollars in 2017, more than 35-fold within a

short time span. The switch to connected cars will further burgeon the

demand for network security. CUBE will provide robust security, that is vehicle-

optimized and based on blockchain, endpoint and cloud checkbox technology

1. CUBE token owners can receive services at a CUBE affiliates.

2. These affiliates can be gas stations, car dealers, repair shops,

insurance companies, etc., and can provide services such as gasoline

discount, vehicle maintenance, vehicle purchase discount, insurance

discount, and cash back service.

3. Data consumers such as automobile companies, insurance

companies, traffic information providers can purchase mobility data

by compensating the producers with CUBE tokens

4. CUBE token owners can become information producers by installing

CUBE OTA. Mobility Data includes driving records, driving

behavior, vehicle condition, fuel consumption etc.

Affiliate

(i.e. Gas Station, Car Repair Shop,

Insurance Companies)

Data Producer
(Date Producer, CUBE Owners)

Data Consumer

(i.e. Automotive Companies,

Traffic Information Providers,

Insurance Companies, Government, Lab)

OTA

OTA

CUBE Intelligence Page 8

CUBE’S BLOCKCHAIN AND SECURITY

Fig.1. Attack surfaces of CAVs.

INTER-COMMUNICATION NETWORK SECURITY

An autonomous vehicle must acquire as much information as possible about its

surroundings to operate the vehicle alone. Such information may be path

information for navigation, traffic information, or data for updating an old

firmware of an autonomous vehicle. Receiving such a variety of data can be very

helpful in operating autonomous vehicles, but at the same time increases the

risk of malicious intrusions.

Vehicle to Vehicle (V2V) communication is a necessary component to make

CAVs safer. In a connected car, the vehicle receives various vehicle data points

from other nearby vehicles.

V2V helps to operate autonomous vehicles in various aspects. There are two

types of V2V information, short range and long range. An example of short

range data is the distance between the vehicles and the behavior data of the

driver. Long range data includes road conditions, accident information and

traffic updates.

CUBE Intelligence Page 9

IOT SECURITY

Many IoT devices are used to operate autonomous vehicles. The most

representative is the “Guide Assist IoT,” which will be applied to smart roads.

This IoT device informs the autonomous car of its current position, receives

speed and driving information from the autonomous vehicle, and sends this

information to the clients who need it.

While a variety of technologies are available to ensure safety when an

autonomous vehicle is operated, the technology within the vehicle alone is not

enough. The most obvious method is to install the device on the road where

the autonomous vehicle is running. The autonomous vehicle is constantly in

communication with the device on the smart road. In this case, it is necessary

to certify that the device of the smart road is properly authorized.

The biggest problem here is the speed of authentication. An IoT device should

be manufactured at low cost because it must be distributed in large quantities.

Therefore, we cannot expect a high level of processing power. In particular, it is

impossible for an IoT device to operate a full scale public chain.

Therefore, a method of authenticating a chain closer to real-time than real-

time authentication is needed. CUBE sees this IoT’s real-time authentication

method as one of the important future development factors.

INTRA-COMMUNICATION NETWORK SECURITY

Automakers need to communicate with autonomous cars continually. Most

important is navigation routing information, which includes traffic information.

For completely autonomous self-driving cars, the car should receive the routing

information from the automaker’s traffic management centre. Even though the

car has the navigation map data, it should receive the best route information,

which comes with live traffic information. The potential danger is a malicious

attacker with fake traffic information, such as fake traffic or a fake roadblocks.

CUBE Intelligence Page 10

An autonomous car has a much more complicated Electronic Control Unit

(ECU), which includes the Break Control Unit, Transmission Control Unit, Wheel

Control Unit, and many other units to control self-driving functions. An ECU

being penetrated by a malicious attacker could be seriously dangerous. A great

problem arises in terms of security because of the network between

automakers and the gateway of autonomous cars. An automotive company

should check each autonomous car's connectivity surfaces to make sure that

every autonomous car's ECU works without problem. At the same time, an

automotive company should upgrade their automotive car's firmware remotely

through the network. These checks and upgrades must be done regularly as all

of these network connections will make the automotive cars vulnerable to

malicious attacks.

1. BLOCKCHAIN LAYER
The key to blockchain is that the technology ensures trust. CUBE uses

blockchain technology to ensure the security of autonomous mobile networks.

But there are various difficulties in applying traditional blockchain to

autonomous vehicle safety. The problem of blockchain is the slow speed and

the low scalability.

At the heart of blockchain is securing trust with technology. So far, no

technology has been able to prevent hacking 100% in the network. But the

blockchain has shown a remarkable ability to prevent hacking completely

without any failure in the past decade.

By solving the slow speed problem and the scalability issues that the blockchain

has, we are able to provide the highest level of autonomous car security

CUBE Intelligence Page 11

1.1 THE PROBLEM OF CONVENTIONAL SECURITY

AND NEED FOR BLOCKCHAIN

There are three major problems in traditional automotive technology.

The amount of data that the car must process is tens of times larger than the

data amount of other virtual currencies.

CENTRALIZATION ISSUE

The amount of data received from the outside while driving is estimated to be

more than 4 Terabytes per day. Such a large amount of data causes a serious

problem. Centralisation reduces the operation speed of the CPU and eventually

stops the system if the number of cars increases.

PRIVACY ISSUE

The centralised approach eventually threatens the privacy of the driver. If

someone can access the central server, you can access the personal

identification of all drivers as well as the driving record.

SAFETY ISSUE

A malicious attack on a car's network cannot be blocked 100% by current

security methods. Alternatives must be created in order to reach maximum

security.

Considering the weakness of conventional security methods, CUBE adopted

blockchain as a key security platform for autonomous car. Blockchain is a

distributed database that maintains a growing list of blocks that are chained to

each other. Blockchain is managed by a distributed peer to peer network.

There are various difficulties in applying traditional blockchain to autonomous

vehicle safety. Blockchain instantiations suffers from high overhead and low

scalability. All transactions and blocks are broadcast to the entire network

which results in extremely large packets.

CUBE Intelligence Page 12

1.2 DECENTRALIZED SECURITY PLATFORM FOR

AUTONOMOUS VEHICLE

The key difference in autonomous vehicles compared to conventional vehicle is

that the autonomous vehicles are connected to a network. This is similar to a

computer: just as a computer is at risk of being hacked the second it connects

to the Internet, autonomous vehicles are at risk of being hacked when

connected to a network.

Autonomous vehicles, especially, are almost always dependent on

communication. These vehicles are design to move only when they receive (or

download) the route and destination via communication. In addition, V2X

(connecting to roadside IoT, traffic lights) and V2V (connecting to other

autonomous vehicles) communications are essential. The consequences can be

devastating if hacking occurs in these autonomous vehicles that rely and

depend on a multiplicity of connections. Hacking into the vehicles, unlike

hacking into bank accounts, is directly linked to an individual’s life. Therefore,

autonomous vehicles must have an impregnable protection from malicious

attacks.

The major problem with existing security, is the fact that it is not fully

protective against attacks such as DDoS. Cube will contribute to strengthening

the autonomous vehicle security by the use of Merkle Tree, a key technology of

blockchain.

The first version of Cube’s blockchain layer can be summarized to an efficient

transmission based on Merkle Tree (Hash Tree) and by Key refreshment via

Secret Sharing.

Cube’s first project is to thwart malicious attacks from Byzantine attackers by

decentralizing the server, thus eliminating the attacks during a vehicular

update from server to end-point, and during the upload of the driving data to

the server.

CUBE Intelligence Page 13

ARCHITECTURE OF SYNAPSE’S PLATFORM

Figure 1) Converts Firmware to Merkle Tree structure.

• Professors Ravi Kiran Raman and Lav R. Varshney of the University of Illinois at
Urbana-Champaign suggested that blockchain is cryptographically secure as
it stores data in the form of Merkle Tree.

• Seeder sends Uncle Layer’s hash list, root hash and corresponding leaf hash–
the other participating servers are responsible for sending the other leaf hash.

• Sends file fragments encrypted with OTA – File construction is performed
once each autonomous vehicle receives the file fragments (Upon receiving the
file fragments, the integrity of the file is verified through hash list and root
hash).

• Forms private blockchain network between parallel servers.

• Implements PAXOS Consensus, Dynamic Leader Election and Active/Active
Failover for high availability.

CUBE Intelligence Page 14

DESIGN PURPOSE(S) AND PRECONDITIONS

Peer-assisted firmware updates using the autonomous vehicle as a ‘peer’ are

extremely complicated and its efficacy cannot be guaranteed until the

preconditions (stability, efficiency, and performance of vehicle-to-vehicle

communication) are fully met. Therefore, the most ideal method of firmware

update is to use Merkle Tree, as it has its own direct trusted cloud-base server

groups for autonomous vehicle networks, operators and vendors.

The security platform is activated not only when vehicle receives update data

from the server via OTA, but also when driving data from vehicle, collected via

OBD through CubeBox, is transmitted to the server.

ARCHITECTURE OF CUBE’S PLATFORM

(1) Overview: Following the platform architecture for conventional Big
Data processing and analysis, but with a new design for solving
stability/reliability aspects of data collection and management.

(2) Reference Architecture for Big Data Platform

Figure 2) Architecture for Cube Big Data Platform

CUBE Intelligence Page 15

SYNAPSE BIG DATA PLATFORM

- Typical Cloud-based structure illustrated in Figure 2.
- Transmits partitioned personal data in Merkle Tree format after the

formation of multi-channel between autonomous vehicle and parallel
servers.

- Merkle Tree’s root hash and uncle layer hash list, which can be seeded,
are further partitioned and transmitted via secret sharing technique to
ensure safety

Cube’s algorithm is based on a core technology of blockchain, Merkle Tree. The

founder of Ethereum, Vitalik Buterin, and many others in the field suggested, the

Merkle Tree is the basic structure of blockchain and the essential key of making

it feasible.

CUBE Intelligence Page 16

2. AI DEEP LEARNING LAYER

To enhance the security level, artificial intelligence (AI) is applied at this stage.

Recently, attacks on hackers’ networks with malicious intent have rapidly been

evolving. Until now, however, cybersecurity technology has been a passive

method of collecting vaccines to defend against the attacks that have already

been perpetrated. Cube has developed deep learning network security where a

method is chosen based on predictions of malicious attacks that will occur,

rather than a passive approach that uses defensive (instead of active) methods.

CUBE will continue to learn how malicious attackers have attacked the network

to prevent future attacks.

 CUBE’S SELF-TAUGHT LEARNING

An invasion detection system thinks of a common kind of attach situation,

where affected data packets are inserted into the in-vehicle Controller Area

Network (CAN).

CUBE Intelligence Page 17

Artificial neural networks have not worked well in the past to protect against

these attacks, which is why new methods are needed. Three catalysts cause

and maintain the explosions of malicious data—new mathematical

computations are the spark, big data represent the fuel, and massive

computation can be viewed as the horsepower. Cube uses previous cases of

malicious attacks to recognise them. Cube allows the AI to train the Cube

platform on cases of previous malicious attacks and predict hundreds of

millions of new possible malicious attacks through this reinforcement learning.

It then creates a defense system for each case.

Cube employs TensorFlow, an open-source library built by Google. There are

many other ways of implementing deep running, but at present, TensorFlow

has the best position in the market. In addition, there are a lot of data going on

while watching the source code, which makes TensorFlow the most

advantageous library. TensorFlow is an open-source software library for

numerical computation using dataflow graphs; one reason for its popularity is

that it can be developed with Python.

A graph is a connection between one node and another, while a dataflow

graph is an operation. This edge is data to be easily said; this is called a data

array. TensorFlow enables calculations through this process, and the

TensorFlow runtime is a cross-platform library. Google designed TensorFlow

for large-scale distributed training and inference, but it is also flexible enough

to support experimentation with new machine learning models and system-

level optimisation.

CUBE Intelligence Page 18

Cube builds the first graph in TensorFlow. First, it can create a “placeholder”

node, and each node becomes a placeholder. When a placeholder is created, it

passes the value to the “feed data” as the graph runs through the session. This

graph is then executed and updated as needed, or it returns an output

indicating whether a malicious attack has occurred. A large quantity of data

must be input regarding previous malicious attacks in order to make the output

more accurate. CUBE’s neural network is initially trained by being fed large

amounts of data. Training consists of providing input and asking the network

what the output should be. For example, to build a network for identifying

malicious attacks, the initial training may include a series of past malicious

attacks. Each input is accompanied by the matching identification. Providing

the answers allows the model to adjust its internal weightings to learn how to

do its job better. For example, if nodes A1, B1, and C1 tell node D1 that the

current input data represent a malicious attack, while node E1 says they are

normal data, and the training program confirms a malicious attack, CUBE will

decrease the weight it assigns to E1's input and increase the weight given to

A1, B1, and C1.

CUBE Intelligence Page 19

Cube uses a neural network to determine the malicious attacks expected in the

future. In fact, neural networks do not always provide good results. There are

three problems with such networks, namely underfitting, low speed, and

overfitting. Underfitting refers to a problem whereby the learning is

insufficient. Low speed is an issue where it takes too long to learn. Finally,

overfitting means that the network is inflexible, even when it has learned.

These three problems make a neural network’s results unreliable.

UNDERFITTING

The first problem, underfitting, means that learning is not effective enough. A

neural network learns via backpropagation. It updates itself by repeating the

processes of differentiation, multiplication, and adding, and all in vice versa.

The problem, however, is that a sigmoid function is used for activation. We

have found a repeated issue with the vanishing gradient phenomenon: As the

layer becomes deeper, the updates disappear. Therefore, underfitting occurs,

which results in poor fitting.

Instead of a vanishing sigmoid, Cube uses an activation function that does not

disappear. Specifically, rectified linear units (ReLUs) are used as the activation

function. This solves the problems related to the vanishing gradient.

LOW SPEED

The second problem to be solved for neural networks is the low speed

problem. Existing neural networks have used gradient descent (GD) to optimise

the weighting parameters. The gradient is obtained from the current weight of

the loss (or cost) function, and it is updated to reduce the loss. To put it briefly,

this is wrong (Slide 35). There are hundreds of millions of training data on

hacking, and if we consider those hundreds of millions of hits each time we hit

a mark, the network will slow down significantly. This raises the following

question: Could there not be a faster optimiser than GD? Here, we find the

stochastic gradient descent (SGD) method. The concept of SGD is that it is a

method that can be completed quickly, even if the results are not perfectly

accurate. As Mark Zuckerberg has said, “Done is better than perfect.” Gradient

descent is a method that takes one step after a full batch; in contrast, SGD uses

mini-batches and moves forward step by step.

CUBE Intelligence Page 20

Cube employs Adam as an improved version of SGD. Combining the advantages

of RMSProp + Momentum, this solution is suitable in terms of both the step

size and direction. In the future, we can consider attaching NAG to Adam

instead of Momentum.

OVERFITTING

The final problem with neural networks is their inflexibility. To solve this

problem, we can deliberately omit information or turn off the intermediate

nodes when training a neural network. Dropout lets us learn what the

important factors are without obsessing over specific parts. Thus, the problem

of overfitting relates to obtaining flexibility without dropout.

Cube solves the three problems related to neural networks, namely

underfitting, low speed, and overfitting. The problem that Cube is trying to

solve is not snapshot data like images, but sequential data that discriminate

whether the signals are malicious attacks. Hence, Cube uses a recurrent neural

network (RNN) or long short-term memory (LSTM).

CUBE Intelligence Page 21

AUTONOMOUS VALET PARKING

THE PROBLEM

A recent analysis has found that a driver spends on average 20 minutes every

day on parking. This is a waste of time and a cause of stress, and it is also

completely unnecessary. Cube AI’s Autonomous valet parking (AVP) is the

solution to this problem which will save significant amounts of time and effort

for drivers.

THE COMPETITION

Most of the big IT players and automakers have started significant investment

in autonomous driving. They are all set to launch autonomous vehicles in the

coming years. However, the reality of autonomous driving has a lot of

challenges and risks that need to be handled prior to operating such vehicles

on the road.

The Cube AI project of Cube Intelligence is working on a niche field within

autonomous driving: that of autonomous valet parking. Because of the limited

environment of a car park, particularly with very low speeds and few

pedestrians, an autonomous parking solution can be adopted much more

rapidly than other more inclusive forms of autonomous driving.

THE OVERALL PROFIT MODEL:

The rising number of vehicles and cars and how to park them is a key issue

facing the transportation market of the future. Cube AI has developed an

innovative parking system that will spur the growth of the unmanned parking

sector. By leveraging AI technology and computer vision to identify objects and

read data, Cube AI can generate highly detailed and context-rich data for

unmanned car parks. This is a system that particularly beats out the

competition in adverse weather conditions and can therefore be deployed

anywhere in the world.

CUBE Intelligence Page 22

CUBE TOKEN UTILITY SCHEME

Cube tokens can used by customers to pay for parking in lots that feature Cube

AI technology . Right now , the first Cube parking lot has been introduced in

Korea and it will be installed in several other places in coming time. We will not

only offer premium services to Cube token holders , but we will also provide

them cube parking lots to make parking procedure extremely smooth.

CONCLUSION

Right now, the Cube Intelligence system is used in two different platforms. The

first one is autonomous car blockchain security system and the other is Cube

Token via Cube box. Though the first platform called SYNAPSE has already been

developed , it will take a significant time for full commercialization of this

method . On the other hand , the Cube Box was launched in 2018 and many

people are already reaping the benefits of this technology . In the near future,

unmanned parking, autonomous valet parking, Cube Token plan and premium

car services of will create dramatic changes in the mobility sector . Cube

Intelligence will launch these services by creating partnerships with reputable

companies to offer extraordinary services to customers.

CUBE Intelligence Page 23

TRANSPARENCY POLICY
CUBE considers transparency to be of the utmost importance. CUBE has

established policy for transparent operations and will execute the following:

1. CUBE shall publish monthly operational reports and financial reports to

contributors to share the operational status of the company after token

distribution.

2. When hiring new staff members, such as new developers, CUBE shall build up

a validation process as well as thoroughly examining portfolios from past and

set the reward policies in accordance with their abilities.

3. The company's budget shall be tightly managed so that it would always be

possible to operate and manage the company without additional funding for

more than three years.

CONTRIBUTORS COMMUNICATION
1. CUBE shall send a monthly report every month to share important company’s

update, after the token distribution.

2. In case of an important occasion, CUBE must share the important matters by

email immediately.

3. Follow CUBE’s social media accounts for live company updates and to

communicate directly with the team.

TOKEN VALUATION OPERATION POLICY
To provide its contributors with better usage and utility, Cube will be operated as

follows.

1. The executive managers of CUBE are under the effect of Lock-Up System,

which means they are not entitled to token sale for one year. The lock-up

policy is intended to make sure the company focuses on the development of

CUBE platform and company’s growth.

2. Cube shall strictly control the use of its budget for transparent operation. At

least 2/3 of the beginning budget must remain after one year of funding. In

case of any event which requires using more than 1/3 of the beginning budget,

the approval of the board and the contributors participating in the ballot must

be at least one-half.

CUBE Intelligence Page 24

APPENDIX

PROTECTION FROM THE BYZANTINE BROKER AND

MALICIOUS ATTACKS

Synapse’s security transmission method ensures reliable and confidential

delivery even with Byzantine brokers. Our key solution is to enable secret

sharing to securely transmit the decryption key.

The Byzantine brokers are malicious relay node(s) that attempt to mutually

intercept, steal and forge the message. Cube’s Security technology will ensure

seamless and efficient transfer of data from automobile companies, or IoT, to the

vehicles itself despite these presence of malicious Byzantine brokers. This

technique can also be applied when transferring data from vehicle to another

IoT.

In particular, Cube’s Security ensures that following requirements are fully met

even in the presence of Byzantine brokers. First, ensuring that the data

transmitted to vehicle is not corrupted (Reliability requirement). Second,

preventing subscribers or Byzantine brokers from accessing confidential

messages without permission (Confidentiality requirements).

CUBE Intelligence Page 25

The automobiles’ network security has been vulnerable, and usually only utilizes

the replication and encryption technology only at the end-point level. Even the

use of currently listed network encryption technologies will only provide

replication and encryption technology. However, these tasks may be

compromised and abused by the Byzantine brokers. Byzantine brokers are able

to delete a key to prevent subscriber from decrypting a message. And a

Byzantine broker with corrupted key can decrypt private messages and able to

disclose it to unauthorized subscribers. In addition, Byzantine brokers can

delete encrypted messages and decryption keys. Cube is solving these risks by

employing the Secret sharing technique.

Cube is developing a technique to apply secret sharing to the groups of

replicated brokers that are chained to the pub/sub secret overlay. To provide an

overview of the Cube’s solution, the broker replicas are first placed end-to-end;

between the publisher and the subscriber. The publisher will utilize a secret

sharing scheme to partition the decryption key. This then will be transmitted

with an encrypted publishing message, which we call ‘secret sharing’. Secret

sharing is created and passed to the replicated broker in such method that the

original decryption key cannot be reconstructed by the Byzantine broker. With

this technique, it provides an extra protective layer even when confidential

messages are leaked. The replicas are used to prevent hackers from deleting

data, keys or releasing data to unauthorized third parties. Cube’s approach can

increase the overhead performance by adding more brokers to the pub/sub

overlay. We are now faced with a challenge of making the most efficient use of a

given broker replica. To address the issue, we are creating a framework for the

pub/sub overlay mangers to dynamically and strategically allocate broker

replicas based on stability and performance that can flexibly be defined.

CUBE Intelligence Page 26

In a Pub / sub architecture, a central source called a broker receives and

distributes all the data. Pub / sub clients can subscribe to publish data to a

broker or to retrieve data from a broker. Clients that publish data send data only

when the data changes (Report by Exception or RBE). Clients that subscribe to

data receive messages automatically from the broker, but only receive messages

when they change. The broker does not store data. It simply moves data from

the publisher to the subscriber. When data comes in from the publisher, the

broker immediately sends the data to all clients that subscribe to that data.

In the Request-response architecture, each client opens a direct connection to

each server because the client requests data directly from the server. Clients

request data at regular intervals because they do not know when the data will

change. Request-response is a proven and reliable communication method as

long as the server can respond to client requests and the network can handle the

traffic volume. However, if you have a large number of clients and servers, the

amount of traffic in the Request-response architecture can quickly become a

problem.

Figure 3) Request-Response & Pub-Sub Architecture

By contrast, the pub / sub architecture simplifies communication. Direct

connections to data and repeated requests are not required. The network is

replaced with a single link from each device to the broker. The connection

between the client and the broker is open and very lightweight. There are only

two moves through this connection. This is a signal that allows the broker to

know that the client is still there and the data that has changed.

CUBE Intelligence Page 27

Therefore, it is recommended to use the pub / sub model for mobility data

transactions that require sharing data and services between multiple servers

and clients. Because the broker is the central processing unit for data, individual

servers do not have to process multiple clients and clients do not need to

connect to multiple servers. In addition, data is posted and transmitted on an

RBE basis only when data changes, not at regular intervals, thereby reducing

overall network traffic.

For this reason, Pub / sub is widely deployed in many application areas such as

social networking, distributed business processes and real-time mission-critical

systems. Many Pub / sub applications are sensitive to message loss and privacy

infringement. To overcome this problem, Cube has developed a new way to use

secret sharing and replication technology. This is to provide reliable and

confidential decryption keys with encrypted publications even when there are

multiple Byzantine brokers in the Pub / sub overlay network. We have also

developed a framework for dynamically and strategically allocating broker

replicas based on criteria that can be flexibly defined for stability and

performance.

CUBE has commercialized the following our team member’s theoretical study,

presented at 2018, and 2016.

SYNAPSE’S PUBLISH/SUBSCRIBE OVERLAY

NETWORKS

Publish/subscribe is a communication paradigm where loosely-coupled clients

communicate in an asynchronous fashion. Publish/subscribe supports the

flexible development of large-scale, event-driven and ubiquitous systems.

Publish/subscribe is prevalent in a number of application domains such as social

networking, distributed business processes and real-time mission-critical

systems. Many publish/subscribe applications are sensitive to message loss

and violation of privacy. To overcome such issues, we propose a novel

method of using secret sharing and replication techniques.

CUBE Intelligence Page 28

This is to reliably and confidentially deliver decryption keys along with

encrypted publications even under the presence of several Byzantine brokers

across publish/subscribe overlay networks. We also propose a framework for

dynamically and strategically allocating broker replicas based on flexibly

definable criteria for reliability and performance.

ROUTING STATE UPDATES ON PUB/SUB OVERLAY

Publish/Subscribe (in short pub/sub) is a communication paradigm where

loosely-coupled clients communicate in an asynchronous fashion. Subscribers

issue subscriptions to express their interest in certain topics and/or content.

Publishers disseminate their publications to the subscribers through a pub/sub

routing system without directly being aware of their identities and/or locations

[1]. Because of such asynchronous nature, pub/sub paradigm supports the

flexible development of large-scale, event-driven and ubiquitous systems.

Pub/sub is prevalent in many application domains such as distributed business

activity monitoring [2], stock price monitoring for algorithmic trading systems

[3], complex-event processing [4] and mission-critical systems such as air traffic

control system [5]. A multi-national research group has adopted pub/sub

routing paradigm to improve the architecture of Internet that recently exhibits

more content-oriented communication patterns [6, 7]. Many social networking

services are built around the pub/sub abstraction [8, 9]. Recently, notable

international consortiums such as Allseen and OIC acknowledge pub/sub as the

critical communication substrate for Internet of Everything (IoE) platforms, and

naturally protocol standards such as MQTT and CoAP are receiving great

attention from the IoE application developers who need to implement pub/sub

communication [10, 11]. We can also envision potential applications of pub/sub

systems in the study of complex networks that analyzes the patterns of

connections between elements of real systems [12–16]. For instance,

multivariate signals are measured from the distributed conductance sensors in

order to analyze oil-water flow patterns, which are subsequently visualized in

terms of community structure [17]. These sensors can be deployed on a

pub/sub system so that interested patterns can be filtered and delivered in a

more scalable and efficient way.

CUBE Intelligence Page 29

Pub/sub systems are typically formed into an overlay of distributed event

matching and forwarding brokers [8–11, 18, 19] in order to process a large

volume of events in a scalable manner. In reference implementations of pub/sub

broker overlay [20, 21], a publisher first disseminates an advertisement to all the

brokers before publishing events. We call a published event as a publication.

Publication can be labeled with a specific topic and can contain messages or

content. If a subscription matches an advertisement in the SRT (Subscription

Routing Table), which is essentially a list of [advertisement, last hop] tuples, the

subscription is forwarded to the last hop broker where the advertisement came

from. In this way, subscriptions are routed towards the publisher. Subscriptions

are used to construct the PRT (Publication Routing Table). The PRT is a list of

[subscription, last hop] tuples, which is used to route publications. If a

publication matches a subscription in the PRT, it is forwarded to the last hop

broker where the subscription came from. This process continues until the

publication finally reaches the subscriber. Fig 3 shows an example of content-

based routing. In Step 1, an advertisement (M1) arrives at B1. In Step 2, a

matching subscription (M2) arrives at B3. Since M2 matches M1 at broker B3,

M2 is relayed to B1 which is the last hop of M1. After the completion of these

steps, PRTs are updated accordingly along the path (p) from B1 to B3. Based on

the routing information on the PRTs on p, a publication (e.g., M3) that matches

the subscription M2 can be delivered to the subscriber S1 through p .

Subscribers can specify an interest on a particular topic such as (class, = ,bar) in

M2. Subscribers can also express the interest in a more fine-grained way by

being specific on the content. For example, S1 expressed the interest over

particular value range for the attribute price, as shown in Fig 3.

CUBE Intelligence Page 30

Figure 4) An example of routing state updates on pub/sub overlay

Our major concern is that the pub/sub brokers can fail or be compromised and

thus behave arbitrarily to hamper reliable and secure event delivery. We refer to

an arbitrarily-behaving pub/sub broker as a Byzantine broker. Byzantine brokers

can be present across and along many end-to-end delivery paths between

publishers and subscribers. Any arbitrary behavior of the Byzantine brokers can

subvert applications running on pub/sub overlays and lead to very harmful

result to end-users. Therefore, we need to devise a novel solution that can

effectively deal with this issue. Specifically, we aim to ensure the satisfaction of

the following requirements, even under the presence of Byzantine brokers [22].

First, we must make sure that publication messages are delivered to the

interested subscribers without any loss (a reliability requirement). Second, we

should not let a subscriber or a Byzantine broker access the sensitive content in

a publication message without access privilege (a confidentiality requirement).

As discussed further in the related work section, existing works for countering

the violation of the aforementioned requirements typically employ replication

and encryption techniques. Replicated brokers can decrease the possibility of

message loss. Encryption can protect the private portion of publication

messages. However, to the best of our knowledge, these works overlook the

possibility of the decryption keys getting compromised and abused by

Byzantine brokers. Byzantine brokers can drop the keys to prevent the

interested subscribers from decrypting publication messages. Using the

compromised keys Byzantine brokers may decrypt private publication

messages and disclose them to unauthorized subscribers. Byzantine brokers

can simply drop both the encrypted messages and the decryption keys. We

need a solution that addresses such threats to the reliable and secure operation

of pub/sub middleware.

CUBE Intelligence Page 31

In this paper, we present a novel method that applies the secret sharing

technique [23] to a group of replicated brokers chained on a pub/sub overlay

[24]. To give a high-level overview of our solution, broker replicas are first placed

along the end-to-end paths between publishers and subscribers. Publishers

split the decryption key by using the secret sharing scheme. Spit keys that we

call secret shares are propagated along with the encrypted publication

messages. The secret shares are generated and forwarded to the replicated

brokers in such a way that the original decryption keys cannot be reconstructed

by Byzantine brokers. With this method, confidential publication message is

safe from being leaked. The replicas are used to prevent the Byzantine brokers

from dropping publications and keys or sending publications to unauthorized

subscribers.

Our method may introduce increased performance overhead due to the

addition of more brokers to the pub/sub overlay. Therefore, we also face the

challenge of utilizing the given broker replicas in the most efficient manner. To

address these challenges, we propose a framework for dynamically and

strategically allocating broker replicas based on reliability and performance

criteria that can be defined flexibly by pub/sub overlay administrators.

The rest of the paper is organized as follows. First, we present the details of our

secret forwarding method and discuss various adaptations. Second, we describe

the framework for allocating replicas according to dynamically changing

demand on reliability and performance. Third, we analyze the performance

evaluation result. Finally, we discuss related works and conclude.

CUBE Intelligence Page 32

THE SECRET FORWARDING METHOD

In this section, we introduce a method that guarantees a reliable and

confidential delivery even under the presence of Byzantine brokers. The main

point of our solution is to enforce a secret-sharing scheme [23] for securely

delivering decryption keys.

SECRET SHARING IN A PUB/SUB OVERLAY

One of our major concerns is that Byzantine brokers may arbitrarily process the

encrypted publication messages using a compromised decryption key.

Therefore, it is imperative that the key should be protected from the Byzantine

brokers. Here, we employ Shamir’s secret sharing scheme [23]. With this

technique, a secret can be split into n shares in such a way that at least k shares

are needed to reconstruct the original secret. In other words, even if up to k-1

shares are compromised, the original secret cannot be re-generated. This is

called the (k, n) threshold scheme with the constraint that k > 1 and n ≥ k. In our

context, the secret is the key necessary for subscribers to decrypt the

publication messages that are encrypted by publishers. In this section, we focus

on the case where the Byzantine brokers reside along the end-to-end path

between publishers and subscribers. We show how the original decryption key

should be split by a publisher assuming that there is up to f number of Byzantine

brokers at the next immediate hop. Then, we explain how the split secret shares

should be propagated towards the interested subscribers.

INITIAL KEY SPLIT

Suppose the publisher P1 sends out a publication p1 via broker B1 as shown in

Fig 4. Assume that B1 is the Byzantine broker and drops p1. In order to prevent

the loss of messages, a redundant path can be established via replica B’1 .

Duplicate publications can be sent through the redundant paths so that at least

one message is guaranteed to be forwarded towards the subscribers. With the

replica, the pub/sub overlay becomes tolerant to a single failure of reliable

delivery. As a generalization, if there are f failures at each hop on an overlay, at

least f + 1 replicas are needed on that hop. These replicas form a group that we

call a virtual node.

CUBE Intelligence Page 33

Figure 5) A simple broker replication example for handling the case where a Byzantine
broker violates the reliable publication delivery requirement.

For decryption keys, we use the secure in-band key delivery strategy. Similar to

the previous case, we need to add broker replicas in order to tolerate node

failures. However, the simple replication technique we used in the previous

example is not sufficiently safe for the case of transferring the decryption key.

The difficulty stems from the fact that it is impossible to perfectly detect

whether a broker is Byzantine or not. In order to prevent the Byzantine brokers

from obtaining the decryption keys, we choose to employ the secret sharing

technique to safely split the decryption keys into multiple shares, initially at the

publishers. Assume that there are replicas in the virtual node V which is the next

hop of publisher P. The brokers in V to which the publishers are directly

connected are referred to as publisher-edge brokers. A secret can be split into r

shares by a publisher, and these shares can be evenly distributed among the

replicas at V. Having only one secret share, each replica cannot reconstruct the

original secret. However, we cannot rule out the possibility of multiple

Byzantine brokers colluding to collect a sufficient number of shares required for

the reconstruction of the original secret. Also, assuming that (k, n) threshold

scheme is used by the publishers, the f Byzantine brokers among the publisher-

edge brokers may drop k secret shares. Even if other non-Byzantine brokers

correctly deliver k-1 secret shares to the authorized subscribers, those secret

shares are not sufficient for reconstructing the secret decryption key. Based on

this observation, we have to first assume that the number of Byzantine brokers

should be less than k in order to prevent these brokers from breaking the (k, n)

threshold scheme and the requirement of reliably delivering the secret

decryption key to the authorized subscribers.

CUBE Intelligence Page 34

2

2

This assumption is more formally stated in Assumption 1 as follows.

Assumption 1 At every virtual node V, there are [V] + 1 brokers that are non-

Byzantine.

For example, if there are 5 brokers in a virtual node, we assume that there are up

to 2 (=[5]) Byzantine brokers and there are at least 3 (=[5] +1) non-Byzantine
2 2

brokers.

Assumption 1 reflects the maximum fault-tolerance we aim to achieve. This is a

reasonable assumption given the following threat model. Each server running a

broker replica follows independent authentication and authorization process,

thus a security breach on a particular server does not immediately and/or

automatically lead to another security breach on other servers.

Given Assumption 1 and the (k, n) threshold scheme, we have to ensure that k

secret shares among the n secret shares must be delivered only to k non-

Byzantine brokers. In other words, if there are f Byzantine brokers, there have to

be at least f + 1 additional replicas that are non-Byzantine brokers. Therefore,

the threshold-scheme to be used at the publisher can be expressed as (f + 1,

2f + 1). Alternatively, we can express the threshold scheme as ([n] + 1, n)

where n is the number of replicas in the next-hop virtual node. For example, if

there are 5 publisher-edge brokers at the next hop of a publisher P, then a (3, 5)

threshold scheme should be used by P.

However, the initial key split alone does not guarantee that the secrete shares

can be safely delivered to the subscribers beyond the publisher-edge brokers.

We articulate this problem further in the following subsection.

CUBE Intelligence Page 35

PROPAGATION OF SECRET SHARES
Before we present the problem of reliably propagating the secret shares to the

subscribers, we enlist key notations as follows.

● V: A virtual node
● Vf: A virtual node with forwarding brokers
● Vr: A virtual node with receiving brokers

● prec(V): A virtual node that precedes V, e.g., Vfprecedes Vr

● |V|: The number of brokers in virtual node V
● reconstruct(S): A predicate that returns true if a currently received set of

split secret shares S can be used to reconstruct the secret split at the
preceding virtual node Vp.

● nByz: A non-Byzantine broker
● Byz: A Byzantine broker
● nByz(V): A set of non-Byzantine brokers in V
● Byz(V): A set of Byzantine brokers in V
● B(V): A set of all brokers in V

The first challenge is to prevent Byzantine brokers from tampering with the

secret shares it received from the previous hop. Such tampering can be trivially

prevented with a well-known security measure such as digital signature for

checking the integrity of the message on the subscriber side.

A more challenging task is to ensure that no more than k shares end up at any

single broker down the publication delivery path when (k, n) threshold scheme is

enforced. If a broker that received k shares happens to be Byzantine, then it can

drop all the shares, leaving only k-1 shares at the virtual node. In such a case, the

original key cannot be reliably reconstructed on the subscriber side. If multiple

Byzantine brokers collude each other to collect at least k shares, then these

Byzantine brokers can reconstruct the secret and abuse it. Therefore, it is

important to make sure that Byzantine brokers at every hop do not collectively

receive more than k shares.

As the very first step, we impose a basic secret share propagation scheme called

(k, n) threshold propagation. The implementation of this propagation scheme is

provided in Algorithm 1. This algorithm is designed in such a way that no broker

on the next-hop virtual node receives more than k shares among the n split

secret shares.

CUBE Intelligence Page 36

Algorithm 1: Deterministic (k, n) threshold propagation scheme

/* Input: n initial shares generated with (k, n) secret sharing scheme*/

1 foreach Forwarding broker Bf Vf do

2 x = total secret shares Bf has;z

3 foreach share i x do

4 foreach Receiving broker Br

Vr do

5 t = total received secret shares of Br;

6 if t < k then

7 send i to Br;

8 t = t + 1;

Algorithm 1 has a serious limitation since a forwarding broker Bf can violate the

scheme and arbitrarily send its share to a receiving broker at the next hop, which

breaks the requirement that a receiving broker must not receive more than k

shares out of n original split shares. Consider the following example in Fig 5.

Publisher P1 sends out secret shares to brokers B1, B2 and B3 at the virtual node

V1. Now suppose the secret shares have to be relayed to the succeeding virtual

node V2 that also has three replicas. In an ideal case, each broker in V2 should

receive just one share. However, assume that B3 of V1 and B2 of V2 happen to be

Byzantine brokers, as shown in Fig 5(A). B3 of V1 may ignore the secret share

propagation policy and forward its shares to B2 of V2. Upon the receipt of the two

shares, B2 of V2 may either reconstruct the secret key or intentionally drop the

keys. In order to prevent this case, we may consider strengthening the secret

sharing scheme at V1 as follows.

CUBE Intelligence Page 37

The threshold is increased from (2, 3) to (3, 5), and two more replicas (B4 and B5)

are deployed at V1 as shown in Fig 5(A). In this way, B2 at V1 cannot reconstruct

the secret, and other non-Byzantine brokers can safely forward the three shares

that are sufficient for reconstructing the original secret. However, we can

trivially come up with a case where this new threshold scheme also fails. As

shown in Fig 5(B), suppose that B1 instead of B3 at V2 turns out to be the

Byzantine broker. Also, suppose that another Byzantine broker B3 of V1 forwards

its share to B1 of V2. These examples show that it is not possible to prevent the

situation where k shares arrive at an arbitrary single broker at any hop. There are

two reasons for this. First, the brokers at the forwarding node cannot detect

with certainty whether a replica in the next hop is Byzantine. Second, Byzantine

brokers can yield an arbitrary behavior such as sending shares to any replicas on

the next hop.

Figure 6) The issues with the propagation of secret shares through multiple hops.

As an alternative, we considered splitting the original secret using linear

network coding [25]. With linear network coding, a secret is split into n encoded

blocks. We distribute the n encoded blocks according to the propagation

scheme in Algorithm 1. This is seemingly a stronger mechanism for preventing

the Byzantine brokers to illegally reconstruct the original secret, as the

Byzantine brokers need the entire n encoded blocks to decode the original

secret. If (k, n) threshold scheme is used on the other hand, then only k+1 shares

are needed for the Byzantine brokers to reconstruct the original secret.

CUBE Intelligence Page 38

If we assume that the majority of the forwarding brokers on a virtual node is non-

Byzantine, then it is impossible for a Byzantine broker to receive all n encoded

blocks as long as the non-Byzantine brokers abide by the propagation scheme

described in Algorithm 1. The linear network coding paired with Algorithm 1

may exhibit a higher fault-tolerance. However, this version of secret

propagation can also fail. For example, as shown in Fig 6(A), suppose a

decryption key is encoded into three blocks, c1, c2 and c3. Assume that c2 and c3

reach B2 of V2 as the Byzantine broker B3 of V1 arbitrarily sends his blocks of code

to B2 instead of B3 of V2. There is no concern that B2 of V2 will be able to

reconstruct the original decryption key. However, this broker may arbitrarily

forward all the encoded blocks to B1 of V3 at the next hop, which leads to a

situation where all the necessary encoded blocks are collected. If B1 of V3 turns

out to be Byzantine, then this broker can reconstruct the key and use it for any

malicious intent.

Figure 7) An example of failed delivery of encoded publication messages
and an example of guaranteed reliable propagation of secret shares.

Note that the aforementioned propagation scheme above splits the original

secret only once at the publisher. We now opt for splitting a secret share further

down the path, and we prove that this is the most viable solution. For example,

as shown in Fig 7(B), after B1 of V1 receives a secret share s1 from publisher P1, it

further splits the share into three sub-shares as s11, s12 and s13. Then, B1 of V1

relays those further split secret shares to the next hop V2.

CUBE Intelligence Page 39

2

This propagation scheme called iterative secret propagation is implemented in

Algorithm 2.

Algorithm 2: Iterative secret share propagation scheme

/* Input: n initial shares generated with (k, n) secret sharing scheme*/

1 foreach Forwarding broker Bf

2 x = total secret shares Bf has;

3 foreach share i x do

Vf do

4 S(I) = List of secret shares by splitting i with (|Vr|—|Byz(Vr)|,|Vr|) threshold
scheme;

5 x = first index of Vr;

6 foreach iʹ S(i) do

7 send iʹ to x’th broker in Vr;

8 x = x+1;

We prove that under Algorithm 2 Byzantine brokers in a virtual node cannot

receive a sufficient number of secret shares to reconstruct the original secret.

Before we proceed with the proof, we set a few additional key assumptions.

Assumption 2 Publishers behave correctly.

In contrary to Assumption 2, publishers can attack publish/subscribe overlay.

For example, Wun et al. presented the possibility of publishers participating in

the denial-of-service attack [26]. However, note that this paper is focused on

handling the issues with Byzantine brokers, and devising the security measures

against the malicious publishers is not in the scope of this paper.

Assumption 3 Non-Byzantine brokers abide by the message propagation

rules.

Now we prove that Theorem 1 holds if Algorithm 2 is enforced by the

brokers,

Theorem 1 A broker B in Vr cannot receive more than [Vf] sets of secret shares

from Vf such that, for every set S B received, reconstruct(S) holds.

CUBE Intelligence Page 40

2

2

Proof 1 Suppose B in Vr received [
Vf] + 1 sets of secret shares from V , such that,

2 f

for every set S B received, reconstruct(S) holds.

This occurs only if [Vf] + 1 Byzantine brokers in Vf violate the protocol in Algorithm

2 that a broker must distribute its split shares Sʹ in such a way that

reconstruct (Sʹ) does not hold (as enforced in Algorithm 2: 8–10). This

implies that the majority of the brokers in Vf are not non-Byzantine.

Therefore, it contradicts Assumption 1.

Theorem 1 states that Byzantine brokers cannot reconstruct a secret unless

they receive all split secret shares, which is not possible given our assumptions.

Theorem 2 Non-Byzantine brokers in Vr receive secret shares from the non-

Byzantine brokers in Vf that precedes Vr which are sufficient for reconstructing

original secret S generated by a publisher PUB.

We prove Theorem 2 by mathematical induction as follows.

Proof 2 Basis: There is only one virtual node between PUB and the interested

subscribers.

Assume that the number of secret shares the non-Byzantine brokers in Vr

receive is less than [Vf] + 1 . This implies that the publisher did not generate a

sufficient number of secret shares. Hence, this contradicts Assumption 2.

Inductive Step: Assume that non-Byzantine brokers in i’th consecutive virtual

nodes from PUB receive m secret shares in total that are sufficient for

reconstructing the original secret S. We show that in the subsequent virtual

node Vi+1, non-Byzantine brokers receive a sufficient number of secret shares to

reconstruct S.

CUBE Intelligence Page 41

2

2

Assume that the total number of secret shares the nByz(Vi+1) received is less than

([m] + 1)([Vi+1] + 1) from the Byz(V). Note that every non-Byzantine broker nByz
2 2 i

in Vi must generate a total of |Vi+1| secret shares for every secret nByz received

from the B(Vi−1). We assumed that a correct number of secret shares are received

by the non-Byzantine brokers up to i’th virtual node as the inductive step.

Therefore, the assumption that the non-Byzantine brokers in Vi+1 received less

than ([m] + 1)([Vi+1] + 1) implies that at least one non-Byzantine broker in Vi
2 2

generated less than [Vi+1] + 1 for one of the shares it received from B(Vi − 1). This

also means that the non-Byzantine broker violated the rule specified in

Algorithm 2, and therefore it contradicts Assumption 3.

Theorem 2 states that non-Byzantine brokers are guaranteed to always forward

a set of secret shares that are sufficient for reconstructing the original secret at

the authorized receiver. Finally, we can derive Theorem 3.

Theorem 3 A non-authorized subscriber (SUB2) that is not entitled to the

messages published by a publisher PUB cannot receive a sufficient number of

secret shares from the brokers to reconstruct the original key S generated by

PUB. An authorized subscriber (SUB1) that is entitled to the messages published

by PUB must receive a sufficient number of secret shares to re-construct the

original key generated by PUB.

Proof 3 Basis: There is only one virtual node V between PUB and the two

subscribers, SUB1 and SUB2.

Assume that the number of secret shares SUB1 receives is insufficient to re-

construct S. This assumption implies that non-Byzantine brokers in V failed to

send sufficient number of secret shares. Therefore, this assumption contradicts

Theorem 2.

Assume that the number of secret shares SUB2 receives is sufficient to re-

construct S. This assumption implies that Byzantine brokers in V were able to

collude each other to send a sufficient number of secret shares to SUB2 for re-

constructing S. However, the number of secret shares PUB sent to Byz(V) is less

than [V] + 1. Therefore this assumption contradicts Assumption 2 and Assumption

1.

CUBE Intelligence Page 42

2

Inductive step: Assume that Theorem 3 holds when there are i consecutive

virtual nodes between PUB and the two subscribers, SUB1 and SUB2. Show

that Theorem 3 holds when there are i + 1 virtual nodes between PUB and the

two subscribers, SUB1 and SUB2.

Assume that the number of secret shares SUB1 receives via Vi+1 is insufficient to

reconstruct S. This assumption implies that non-Byzantine brokers in Vi+1

failed to forward a sufficient number of secret shares to SUB1. This

contradicts with Theorem 2.

Assume that the number of secret shares SUB2 receives is sufficient to

reconstruct S. This can occur only when the [[Vi+2]]+1 brokers in Vi+1 sent their

shares to SUB2. This indicates that the majority of the brokers in V i+1 is

Byzantine, which contradicts Assumption 1.

In order to reconstruct the original key, a subscriber should know how many

virtual nodes the secret shares traversed and how many replicas are allocated at

each virtual node. The number of virtual nodes corresponds to the number of

reconstructions to apply on the received secret shares. The number of replicas

at every virtual node gives a subscriber the necessary information about what

threshold scheme to apply when executing the reconstruction. Publishers and

brokers tag these pieces of information to the secret shares while the brokers

forward them down the end-to-end path towards the subscribers.

SOLUTION ANALYSIS AND ADAPTATIONS
Assume that a decryption key is sent along with every publication. Then, the

maximum number of split secret shares a subscriber receives at the end will be at

most p
rh

where p is the number of disjoint end-to-end paths from the publishers

to the subscribers, r is the average number of replicas at each hop on the end-to-

end path and h is the path length measured as a hop count. Suppose f is the

average number of Byzantine brokers at each hop. Then the minimum number of

secret shares a subscriber receive at the end is prh − p(r − f)h. The number of secret

shares can increase significantly as the path length increases. However, with the

rise of Cloud-based pub/sub systems [27], pub/sub overlays are getting flatter,

i.e., the end-to-end path length is at most 3.

CUBE Intelligence Page 43

However, if the number of secret shares is a non-negligible concern, there are

two adaptation techniques to reduce the secret shares. One is to refresh the

decryption key for a bulk of publications instead of generating one for every

publication.

Another adaptation technique is to deliver the secret shares out of band through

an external repository. This repository can also be replicated to hold the secret

shares separately. This may incur less traffic increase compared to the in-band

delivery of secret shares. However, because subscribers have to pull the keys

from the repository through another communication channel, opening up the

publication content can be delayed further. In contrast, the in-band secret

delivery method incurs no additional latency, since the publication content can

be opened up immediately with the decryption key that is piggybacked on the

publication. The in-band delivery approach also adheres to the nature of

pub/sub that the clients are decoupled in time and space to ensure scalable

communication [1].

PROPAGATION OF ENCRYPTED CONTENT

So far, we have introduced a decryption key propagation method that is applied

to a pub/sub overlay with replicated brokers. Note that replicas introduce

multiple alternative routes through which the encrypted content can be

forwarded. Typically alternative routes offer opportunities for traffic load-

balancing. However, in our context, those routes entail a new issue with the

reliable delivery of publication content itself. Given the next hop virtual node

with n replicas, a forwarding virtual node can prepare n duplicates of the

encrypted content in order to guarantee the reliable delivery. Replicating the

content in such a way down the path towards the interested subscribers can

significantly increase network traffic. To avoid this problem, we can opt for

sending only one publication to one of the replicas and re-transmit the

publication in case it gets lost. However, re-transmitting the publication may

incur non-negligible delay. In order to reduce the redundant traffic and delay

caused by the re-transmission, we can encode and split the file into multiple

blocks and then send them out at the same time through multiple paths. Only

the missing blocks need to be re-transmitted.

CUBE Intelligence Page 44

There can be a situation where all the n blocks end up in the hands of Byzantine

brokers at a certain virtual node. This is still safe because the blocks are

encrypted and can only be decrypted with the keys that are transferred securely

through the secret share propagation method that we devised in the previous

section. For the case of the Byzantine brokers corrupting the blocks, publishers

and subscribers can use a digital signature mechanism to check the integrity of

each block. Overhead of this approach is measured in the evaluation section of

this paper.

THE MANAGEMENT OF BROKER REPLICAS
In the previous section, we took advantage of the replicas across the broker

overlay in order to secure the publication propagation. In this section, we

present a novel framework and protocols for managing these replicas.

REPLICA PLACEMENT FRAMEWORK

In practice, fully replicating every node in a pub/sub overlay may not be feasible

due to cost and limited budget. Therefore, we devise a framework that directs

the placements of replicas strategically on the most appropriate locations in a

pub/sub overlay for the efficient usage of resources. In our framework, we allow

administrators to explicitly specify the criteria for the replica placements. These

criteria are mainly broken into two categories. The first criteria specifies the

reliability factor (R). The second one specifies the performance factor (P). With

the placement of additional replicas, a pub/sub overlay becomes more fault-

tolerant. On the other hand, the addition of the replicas can degrade

performance since secret sharing at the replicas increases the latency and

traffic, which potentially leads to congestion. To strike the balance between the

two contradicting problems above (i.e., reliability versus performance), we have

devised a 3-phase allocation method. The input to this method is the set of the

end-to-end paths between all publisher and subscriber pairs.

CUBE Intelligence Page 45

Given n nodes in an overlay, there can be at most n(n − 1) end-to-end paths. In

the first phase, our framework allocates replicas based on the reliability criteria.

A priority is assigned to every end-to-end path. The priority (ρ) is measured as a

product of the following metrics on the end-to-end path: (1) path length

measured as the number of hops; (2) failure frequency ratio over a fixed period

of time (γ) and (3) user-defined weight (ω). The failure frequency ratio (γ) is the

fraction of the number of failures that have occurred on an end-to-end path

over the total number of failures occurred on all end-to-end paths. The weight

(ω) indicates the importance of an end-to-end path, and the user (the

administrator) can freely assign a numeric value to it. The replicas are allocated

proportionally to ρ.

In the second phase, the replicas allotted for each end-to-path are now

distributed among the nodes that constitute the end-to-end path. The replicas

are distributed proportionally to the failure frequency ratio within the end-to-

end path. This frequency ratio of a node on the end-to-end path is measured as

the fraction of the number of failures by the node over the total number of

failures among all the nodes within the end-to-end path. Fig 7 illustrates a

sample placement of replicas after the completion of the second phase for the

end-to-end paths between publisher P and the subscribers S1, S2 and S3. Assume

that the ρ values for the paths, P − S1, P − S2 and P − S3 are 2, 3 and 5, respectively,

are given. Given 10 available replicas in total, the number of replicas for each

path is determined in the first phase, as shown in the table in Fig 7. In the second

phase, replicas are assigned to the nodes based on their individual failure

frequency ratio. We observed a couple of interesting things about this phase.

First, there can be cases where a virtual node consists of only two replicas. In

such cases, secret sharing cannot be enforced because we cannot assure that a

majority of the nodes will be non-Byzantine. Second, all 3 end-to-end paths

intersect at B1 and B2. Thus, those two brokers receive a batch of replicas more

than once during the execution of the second phase. A possible variation of the

second phase is to assign a pack of replicas only once to a node. For example, the

2 packs of replicas can be removed from B1 and be re-assigned to any under-

provisioned nodes.

CUBE Intelligence Page 46

Figure 8) An example of replica placement for the end-to-end path
from publisher P to subscribers S1, S2 and S3.

REPLICA PLACEMENT FRAMEWORK
In this section, we provide a protocol for flexibly re-deploying brokers across the

pub/sub broker overlay at runtime. This re-deployment protocol involves

attachment and/or detachment of brokers. This protocol is designed in such a

way to prevent disruptions to the publication delivery service. Upon the

attachment or the detachment of replicas, the threshold scheme for secret

sharing gets updated among the broker replicas on the virtual nodes.

Before we articulate the re-deployment protocol, we describe the extended

broker architecture of the reference pub/sub overlay implementation [20, 21].

As shown in Fig 8, each broker has a single input queue and multiple output

queues. Output queues are grouped to be associated with each virtual node in

the next hop. Each output queue is designated to a broker replica in the next-

hop virtual node. A broker receives secret shares from the previous virtual node

through its input queue. When a secret share from the previous hop gets

dequeued from the input queue, the broker runs a topic-based matching in

order to determine where the secret shares and publications should be

forwarded to. The topic does not need to be encrypted as long as it does not

reveal private information. However, if the topic has to be encrypted as well,

then homomorphic matching techniques have to be used as introduced in [29],

which is the subject for future work. Upon the detection of the next virtual node

to forward the secret, a broker first splits the received secret share once again.

CUBE Intelligence Page 47

Figure 9) The architecture of the extended pub/sub broker for secret forwarding.

Algorithm 3: Broker replica detachment

/* For a detaching broker Bd: */

1 Sends its own ID to the all forwarding virtual nodes for Bd ();

2 while Not received ACK from every V and input queue not empty do

3 Keep processing messages in the input queue;

4 Enqueue output messages into appropriate output queues;

5 Flush all output queues;

6 Disconnect from all forwarding and receiving virtual nodes for Bd;

CUBE Intelligence Page 48

Algorithm 4: Broker replica attachment

 /* For an attaching broker Ba: */

1 Initialize an input queue;

2 Replicate routing state;

3 Configure output group and output queues;

4 Connects with forwarding virtual nodes for Ba;

5 Notifies the forwarding virtual nodes the ID of Ba and a new threshold scheme;

Algorithm 5: Updates at a broker in the forwarding virtual node for a broker B

 /* When received a notification message */

1 if Received detachment notification then

2 Change threshold scheme;

3 Flush the output queue mapped to B;

4 Remove the output queue mapped to B;

5 Send ACK to the next hop;

6. else

 /* When attach notification received:

7 Create and map an output queue to B;

8 Change threshold scheme;

CUBE Intelligence Page 49

2

2

Now we explain the protocol for re-deploying brokers as specified in Algorithm

3, Algorithm 4 and Algorithm 5. Here we provide a couple of definitions that

specify a relationship between virtual nodes. A virtual node Vx is a forwarding

virtual node for a virtual node Vyif Vy sends publications to Vx. On the other hand,

a virtual node Vx is a receiving virtual node for a virtual node Vy if Vx receives

publications from Vx. Acknowledgements exchanged between the brokers are

denoted as ACK.

For the detachment of a broker Bd, the brokers in the forwarding virtual nodes

for Bd have to update the threshold scheme for secret sharing. If Bd is detached,

the number of brokers in the virtual node Bd belongs to (denoted as VBd) gets

decremented by 1. Suppose the threshold scheme running at the forwarding

virtual nodes for Bd was originally ([r] + 1 , r) assuming that the number of broker

replicas is r at VBd. Upon the detachment of Bd, the brokers in the forwarding

virtual nodes should newly enforce a ([r-1] + 1, r − 1) threshold scheme. The only

disruption is caused when the brokers in the forwarding virtual nodes cease to

process incoming messages when the threshold scheme is updated. However,

the update process is executed instantly, thus the disruption is negligible. This

update task is highly critical to the confidential delivery of secret keys. If the

brokers at the forwarding virtual nodes do not pause the processing of incoming

messages, then an incoming message may be split with the old threshold

scheme.

This can cause a case where the majority of secret shares can reach a single

broker, which may result in the reconstruction of the secret in case the broker is

Byzantine. After the threshold scheme is updated, the brokers at the forwarding

virtual nodes continue to process the incoming messages as well as flush the

output queue mapped to the detaching broker replica.

CUBE Intelligence Page 50

2

Likewise, there is a very brief pause at the forwarding virtual nodes for attaching

broker Ba. Similarly, the threshold scheme must change from ([r] + 1 , r) to ([r+1] + 1,
2 2

r+1). As stated in Algorithm 4:2, the attaching broker Ba has to replicate one of

the brokers at the virtual node to which Ba newly belongs (denoted as VBa). We

do not employ any popular VM cloning tools such as REMUS [30] and

SNOWFLOCK [31] for promptly replicating the VM where the broker to

replicate might reside. This is because VM cloning replicates the VM state

including the security-sensitive information such as the secret share. Because

of the security hole in the VM cloning techniques, we resort to adapting the on-

demand replication technique of constructing the routing state of the newly

attached broker [24]. Subscription and advertisement topics are the ingredients

for constructing the complete routing state at Ba. Ba can ask any broker in the

neighboring virtual nodes to forward their subscriptions and advertisements.

However, there can be Byzantine brokers at these neighboring virtual nodes.

The Byzantine broker may arbitrarily drop or corrupt the advertisements and

subscriptions, thus sabotaging the replication effort by Ba. Hence, Ba has to

accept only the subscriptions and the advertisements that are sent by the non-

Byzantine brokers. Note that Ba cannot identify which broker at VBa is Byzantine.

However, we assume that the majority of r brokers are non-Byzantine.

Therefore, Ba accepts a subscription or an advertisement only if it is received at

least [r] + 1 times where r is the number of replicas at VBa . This procedure of

checking the validity of subscription and advertisement topics may contribute

to the delay in replicating the complete routing state for Ba. However, we employ

the technique that allows the publications to be delivered at the neighboring

brokers of Ba promptly after matching subscriptions are added at Ba. Thus,

publication delivery resumes very quickly. The non-disruptive nature of our

dynamic replica deployment protocol is based on the technique developed in

[24]. It allows the broker placements to be revised dynamically if necessary, as

explained in the previous section.

CUBE Intelligence Page 51

PERFORMANCE EVALUATION

In this section, the performance of our solution is evaluated. We fully integrated

the secret sharing in PADRES [20] which is one of the reference implementation

of pub/sub overlays. We measured the overhead of our scheme in terms of

latency and traffic volume. We empirically assessed the tradeoff between

different variations of our scheme, under the presence of Byzantine brokers.

We used specific SNS traces that were introduced in [32]. These are the logs of

interactions among specific SNS users over a 12-month period. There are 3

million anonymous users with 28.3 million relations in total. Note that the data

we used in our study was originally collected by the authors of [32], through

specific SNS API. We contacted the authors to obtain the dataset which was

collected for research purpose, and the mode of collection fully complies with

the Terms and Conditions of specific SNS. We assumed that the anonymous

specific SNS users in this dataset are connected as subscribers to one of the 400

brokers in a pub/sub overlay. Given the placement of the specific SNS

subscribers, we replayed the interactions in the logs with our new message

forwarding scheme enabled.

THE EFFECT OF SECRET SHARING ON LATENCY

AND TRAFFIC

Our Java implementation of Shamir’s secret sharing scheme [23] is integrated

into the PADRES pub/sub broker. We ran this broker on a machine with Intel

Core2 Duo CPU T5550 at 1.83 GHz and 3GB memory. We first measured the

number of secret shares as the path length between publishers and subscribers

increase. The number of secret shares increases exponentially as the path length

and the node fanout increase, as shown in (Fig 9(A) and 9(B)). As mentioned

earlier, to reduce the secret shares, publishers can refresh the decryption key for

a bulk of publications instead of generating one for every publication. For

example, as shown in (Fig 9(C) and 9(D)), the traffic increase can be

approximately 10 times less when keys are refreshed every 1GB as oppose to

refreshing the keys every 200MB of data.

CUBE Intelligence Page 52

2

Figure 10) The effect of secret forwarding on latency and traffic with
varying node fanout and path length.

We also measured the latency in splitting a secret into 3 to 10 shares. We

measured the latency in reconstructing the secret as well. The secret is either an

AES-128 or an AES-256 key. We set the threshold scheme (k, n) where n = [k] + 1 .

As shown in Fig 10, the time it took to split the secret was well under 1ms. The

time it took to reconstruct the secret increased proportionally to the number of

shares. It took longer to reconstruct than to split the keys. For example, at the

maximum of 10 shares, it took just 5.2ms on average. However, the

reconstruction is done only once by the subscriber, and the brokers along the

end-to-end path do not involve in the reconstruction. Our scheme requires the

secret splitting at every virtual hop. Thus, the secret splitting overhead is

incurred at the broker replicas at every virtual hop. This causes the overall end-

to-end latency to increase with the number of hops. However, the end-to-end

latency does not grow with the number of replicas at every virtual hop, because

the secret splitting is done concurrently among the broker replicas.

CUBE Intelligence Page 53

Figure 11) Performance overhead of secret splitting and reconstruction.

THE EFFECT OF FRIENDS DISPERSION

Specific SNS users may have friends who are dispersed on many geographical

locations. That is, some user may have friends scattered all around the globe,

and some user may only have friends from the local region. We conducted a set

of experiments on the effect of scattered friends on the overhead of our

scheme. We generated a fully connected pub/sub broker overlay topology that

does not contain any redundant path. This overlay was assumed to be deployed

on a wide area network. Given the overlay, we randomly assigned specific SNS

users to brokers according to a Zipf distribution. The degree of skewness is

controlled by the variable α. With a high α value, specific SNS users are clustered

close together. On the other hand, with a low αvalue, Specific SNS users are

disperse and relatively far from each other. We first generated a 400-node

overlay with the average node fanout of 2. At every node we assigned 3 replicas

that follow the (2, 3) threshold scheme. Fig 11(A) shows the cumulative

distribution function of the total secret shares that are delivered during an

interaction between a publisher and a subscriber via brokers, over a one-month

period. With α = 0.5, the median secret shares generated was approximately

80,000. However, the average was 5 million.

CUBE Intelligence Page 54

The pairs of publishers and subscribers that were far apart contributed

significantly to this high average. On average, the publishers and the subscribers

were 10 hops away from each other with α = 0.5. With a higher α value of 2, the

average number of secret shares per interaction dropped sharply to 860 as the

publishers and the subscribers were apart 2.6 hops on average. From this result,

we affirmed that the end-to-end path length between the publishers and the

subscribers affects the overhead of our scheme. This can guide the

administrator of pub/sub broker overlays to reduce the number of hops by

consolidating the brokers along the publication delivery paths, so that the

number of secret shares is reduced. Also, the node fanout can be controlled to

adjust the structure of the overlay. For example, the node fanout of the previous

overlay were changed to 5, and the number of brokers are kept the same. Fig

11(B) shows that the number of secret shares per interaction was significantly

decreased compared to the case in Fig 11(A). For the same α value of 0.5, the

case in Fig 11(B) exhibited 939 secret shares generated on average for each

interaction. This was a 99% decrease of secret shares compared to the case

where the 400-node overlay had a node fanout of 2.

CUBE Intelligence Page 55

Figure 12) The CDF of secret shares generated per interaction that

randomly takes place on a 400-node pub/sub broker overlay.

We also measured the proportion of the secret shares in the data received at the

subscriber end. Since we did not know exactly what content was exchanged

during the interactions, we could only assume the content was of a certain size.

Suppose the average volume of the content per interaction was 1MB. There

were a total of 1.4 million interactions over the month in the previous example.

Therefore, the total throughput over the month was 1.3 TB/month when our

scheme was not applied. With our scheme enabled on a network of 400 nodes

with α = 0.5 and node fanout of 5, the monthly throughput of secret shares

would be approximately 144 GB/month. Hence, the secret share traffic would

constitute 11% of the total throughput. This proportion can be a useful indicator

of how costly our scheme can be. In order to reduce the proportion of the secret

shares, we can refresh the secret key less frequently than refreshing the key for

every single message. In Fig 12, the key refresh rate was set to where m is the

number of messages ranging from 1 to 10. With the key refresh rate of 0.1 and all

other settings kept same as the previous example, the monthly secret share

traffic throughput was reduced to 39 GB/month. The traffic was reduced by

79% compared to the case where the key refresh rate was 1. With a lower

refresh rate, the overlay becomes more vulnerable to the compromise of secret

keys. However, the performance overhead could be greatly reduced. This is a

simple approach of dealing with the trade-off between the performance and

reliability.

CUBE Intelligence Page 56

Figure 13) The effect of varying secret key refresh rate.

Another adaptation technique is to place an out-of-band repository for the

secret shares used by multiple subscribers. By using this technique, the secret

shares could be significantly reduced compared to the scheme of sending the

secret shares in-band, as shown in Fig 12. However, this adaptation technique

has different security and reliability implication as mentioned earlier.

THE EFFECT OF BYZANTINE BROKERS
In this section, we show how many re-transmissions can occur under the

presence of Byzantine brokers that are randomly chosen from the nodes on the

broker overlay network according to the Zipf distribution. We varied the degree

of clustering of the Byzantine brokers by varying αwhich determines the

skewness of the Zipf distribution. The higher the α gets, the closer the Byzantine

brokers by varying αwhich determines the skewness of the Zipf distribution.

The higher the α gets, the closer the Byzantine brokers are clustered together.

Similar to the previous test cases, we randomly placed the specific SNS users on

the pub/sub broker overlays according to the Zipf distribution controlled by the

value c. We assumed that Byzantine brokers drop messages in order to violate

the reliable delivery requirement. We also assume that the failure detection and

failover mechanism was not enabled. Given this setting, we replayed the

interactions on a 400-node broker overlay with a node fanout of 5, and the

result is shown in Fig 13.

CUBE Intelligence Page 57

The first thing we observed is that the increase of re-transmission is not

proportional to the increase of the number of Byzantine brokers. This is because

a broker may sit on the intersection of multiple end-to-end paths between

specific SNS users. Therefore, even a small number of Byzantine brokers can

affect the pub/sub interactions significantly. When the specific SNS users are

far apart from each other, there is a higher chance of Byzantine brokers

intersecting on different end-to-end paths. However, in a number of cases, re-

transmission occurred the most frequently when the Byzantine brokers were

moderately dispersed at α = 1. This was because the brokers closer to the core of

the overlay network were chosen, thus affecting relatively larger numbers of

intersections. The total number of re-transmissions was higher than the number

of total interactions we replayed. For example, with α = 1, c = 0.5 and f = 15, the

number of required re-transmissions exceeded 2.5 million. This indicates that

more than one broker along the end-to-end paths between the specific SNS

users failed during an interaction. From this experiment, we can see that a small

fraction of the brokers can affect the pub/sub overlay and the running services

significantly. In order to prevent this, a prompt detection of the Byzantine

brokers and failover mechanism should be devised. However, perfectly

detecting a Byzantine broker is not practically feasible. A viable solution is to

force the brokers to replicate the received piece of content further down the

path as secret share is split further down the path. However, the content can be

much larger than the secret shares. Thus, the traffic increase caused by this

solution can be impractical. Hence, a new solution that addresses the trade-off

between an imperfect failover mechanism and the rigorous replication scheme

is needed. We plan to develop this solution in the future.

CUBE Intelligence Page 58

Figure 14) The number of re-transmissions under the presence of Byzantine brokers.

RELATED WORK

In this section, we survey how the existing works address the problems with

regards to the reliability and confidentiality for pub/sub messaging through the

broker overlays. We present novelty of our work by making comparisons to

these state-of-the-art works.

Gryphon [33] is a pub/sub system that maintains multiple redundant overlays. If

failures occur on an overlay, publishers and subscribers make transition to a

backup overlay. Gryphon guarantees exactly-once delivery. However, Gryphon

requires over-provisioning of resources for the backup overlays that can be

under-utilized most of the time. In contrast, Yoon et al. devised a technique

to replicate a faulty broker on demand [24]. Upon dynamic replication of a

broker, publication delivery can be resumed in various ways to satisfy diverse

functional and non-functional requirements. This work also supports

exactly-once delivery and per-publisher FIFO ordering. However, this work is

mainly focused on replicating a single faulty broker. In [34], Kazemdzadeh et

al. devised a pub/sub system where each broker has configurable visibility of

its neighbors. For example, if the visibility is set to 3, a broker can access the

state of the neighbors that are up to 3 hops away. In this system, a broker

can adaptively establish a soft link to bypass multiple faulty brokers that are

within its scope of visibility.

CUBE Intelligence Page 59

However, the last two aforementioned works [24, 34] do not support

confidential delivery of publications. Therefore, they cannot prevent unwanted

subscribers from receiving and disclosing the content of the publication. Our

pub/sub system executes secret forwarding technique in order to conduct

confidential delivery as well as reliable delivery. Similar to the work in [24], our

pub/sub system is based on overlay that can elastically grow and shrink as

oppose to over-provisioning redundant overlays such as the systems in [33, 34].

Note that our work is more advanced than the pub/sub system in [24], as our

pub/sub system can tolerate more than one faulty brokers.

A few existing pub/sub works protect confidentiality of the contents in the

publication using access control mechanisms. For example, Gryphon provides

the access control scheme for limiting who may publish and subscribe to

portions of the information space. EventGuard [35] supports access control as

well. EventGuard assumes a threat model where routing brokers can eavesdrop

and drop or flood messages while publishers and subscribers are reliable.

However, these works do not address the case where multiple Byzantine

brokers collude each other to disclose private contents in publications. Our

system prevents such case by enforcing secret sharing scheme on the brokers. In

[36], role-based access control is used to enforce access control transparently

among the brokers and clients. However, this work trusts the brokers to act

correctly, whereas we account for the case where a broker can be Byzantine.

CUBE Intelligence Page 60

Another line of work for protecting publication confidentiality uses

cryptographic techniques for encrypting publications. Since the publication is

encrypted, even if malicious brokers or unintended subscribers receive the

publications, they cannot disclose the confidential content unless they possess

a decryption key. However, this method faces a non-trivial dilemma to resolve.

Although this method may prevent data leakage to a certain degree, it makes

content-based routing challenging as examining the actual content is not

possible with encrypted contents. In order to solve this dilemma, Nabeel et al.

[37] derived a set of attributes from the content of the publications and ran the

matching algorithm over these attributes instead of the encrypted payload.

Also, Nabeel et al. used homomorphic encryption techniques to execute the

matching operations over the encrypted publication content without the need

of decryption. The result of matching using this method is ensured to be

consistent with the methods of matching over the non-encrypted publications.

In [38], Choi et al. focused on reducing the performance overhead of matching

homomorphically encrypted publications against subscriptions at the brokers

using a scalar product preserving transformation. However, this line of work

requires the publishers and subscribers to contact each other in advance to

exchange decryption keys through out-of-band channels, similar to the work

presented in [39]. Unlike our approach, this breaks the unique nature of pub/sub

that the clients are normally decoupled in time and space [1]. These works do

not address the case where the broker with homomorphic matching capability

suffer crash failure. Our pub/sub system is tolerant to crash failures, since our

system dynamically adds brokers to the virtual nodes on demand. Our system is

orthogonal to these secure content-matching techniques.

CUBE Intelligence Page 61

In [40], shared secret is proposed to protect the authenticity, integrity and

confidentiality of publication from the untrusted brokers and subscribers.

However, this work is based on a centralized security infrastructure that

manages the shared secrets. This centralized approach can limit the scalability of

pub/sub systems. Moreover, the centralized security manager can become a

single point of failure. Our work does not assume any central repository for

storing shared secrets. In our pub/sub system, secrets are forwarded through

the pre-deployed distributed brokers. Therefore, there is no need to introduce

additional infrastructure to manage secrets. Our work also protects secrets

even in the case where multiple Byzantine brokers reside along the publication

propagation paths, through iterative secret propagation technique.

So far, we learned that state-of-the-art works have applied conventional

security techniques such as replication, access control and encryption to

pub/sub systems. However, to the best of our knowledge, none of the existing

works addresses the case where decryption keys can get compromised by the

Byzantine brokers, which is a serious threat to the secure delivery of private

publications. Also, oftentimes, these existing works rely heavily on expensive

synchronization mechanisms and centralized coordinators, while our work

exploits distributed brokers. None of the existing works tackle the case where

more than one Byzantine brokers reside along the publication propagation

paths. We apply the iterative secret propagation technique to delivery secrets

securely through the publication delivery paths. While the existing works focus

solely on the security issues, our work provides a framework that helps the

administrators to devise the best custom policy for striking the balance between

security/reliability and performance/efficiency requirements. Most of the

existing works assume over-provisioned redundant broker overlays that cannot

flexibly grow and shrink. Our work employs the technique of replicating and

consolidating brokers on demand based on configurable security and

performance requirements.

.

CUBE Intelligence Page 62

CONCLUSION

On pub/sub broker-based overlays, we applied the secret forwarding method to

broker replicas in order to ensure reliable and confidential delivery of encrypted

content and decryption keys. Our method is tolerant to the presence of

Byzantine brokers along the delivery path of publications as long as more than

half of the broker replicas on each virtual node at every end-to-end path are

non-Byzantine. Secret keys are split further at every virtual node down the

publication delivery path. This method is proven to prevent the situation where

Byzantine brokers can collude to reconstruct the secret key for decrypting

confidential messages. This method also prevents publication message drops by

the Byzantine brokers. We assessed the performance implication of our scheme

on a PADRES pub/sub broker overlay and discussed several adaptations to our

scheme. In addition to the secret forwarding technique, we addressed the

efficient usage of resources by devising a framework to place broker replicas

strategically on different parts of the overlay according to reliability and

performance requirements that are configurable. We also implemented a non-

disruptive protocol for detaching and attaching broker replicas to realize any

update to the placements of broker replicas.

AUTHOR CONTRIBUTIONS

Conceived and designed the experiments: YY BHK. Performed the experiments:

YY BHK. Analyzed the data: YY BHK. Contributed reagents/materials/analysis

tools: YY BHK. Wrote the paper: YY BHK. Prepared evaluation workload: YY.

Broker architecture visualization: BHK.

CUBE Intelligence Page 63

REFERENCES
1. Eugster PT, Felber PA, Guerraoui R, Kermarrec AM. The Many Faces of
Publish/Subscribe. ACM Comput Surv. 2003 Jun;35(2):114–131.

2. Fawcett T, Provost F. Activity Monitoring: Noticing Interesting Changes in
Behavior. In: Proceedings of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD’99. New York, NY, USA: ACM;
1999. p. 53–62.

3. Tock Y, Naaman N, Harpaz A, Gershinsky G. Hierarchical Clustering of
Message Flows in a Multicast Data Dissemination System. Parallel and
Distributed Computing and Systems (PDCS 05). 2005 Nov.

4. Koenig I. Event Processing as a Core Capability of Your Content Distribution
Fabric. In: Gartner Event Processing Summit; 2007.

5. Corsaro A. The Data Distribution Service for Real-Time Systems; 2010.

6. Publish-Subscribe Internet Routing Paradigm.

7. Jokela P, Zahemszky A, Esteve Rothenberg C, Arianfar S, Nikander P. LIPSIN:
Line Speed Publish/Subscribe Inter-networking. SIGCOMM Comput Commun
Rev. 2009 Aug;39(4):195–206.

8. Apache Kafka.

9. Apache Storm.

10. MQTT OASIS Standard; 2014.

11. Shelby Z, Hartke K, Bormann C. The Constrained Application Platform
(CoAP); 2014. Internet Engineering Task Force (IETF) RFC 7252.

12. Gao ZK, Yu-Xuan , Fang PC, Jin ND, Xia CY, Hu LD. Multi-frequency complex
network from time series for uncovering oil-water flow structure. Scientific
Reports. 2015;5(8222).

13. Gao ZK, Jin ND. A directed weighted complex network for characterizing
chaotic dynamics from time series. Nonlinear Analysis: Real World Applications.
2012;13(2):947–952

14. Gao ZK, Yang YX, Fang PC, Zou Y, Xia CY, Du M. Multiscale complex network
for analyzing experimental multivariate time series. EPL. 2015;109(3):30005.

15. Xia CY, Meng XK, Wang Z. Heterogeneous Coupling between
Interdependent Latti ces Promotes the Cooperation in the Prisoner’s Dilemma
Game. PLoS ONE. 2015 06;10(6):1–13.

CUBE Intelligence Page 64

16. Xia CY, Meloni S, Perc M, Moreno Y. Dynamic instability of cooperation due
to diverse activity patterns i n e v o l u ti o n a r y s o c i a l d i l e m m a s . E P L .
2015;109(5):58002.

17. Gao ZK, Fang PC, Ding MS, Jin ND. Multivariate weighted complex network
analysis for characterizing nonlinear dynamic behavior in two-phase flow.
Experimental Thermal and Fluid Science. 2015;60:157–164.

18. TIBCO Enterprise Service Bus;.

19. IBM Websphere MQ.

20. Jacobsen HA, Cheung AKY, Li G, Maniymaran B, Muthusamy V, Kazemzadeh
RS. The PADRES Publish/Subscribe System. In: Principles and Applications of
Distributed Event-Based Systems; 2010. p. 164–205.

21. Carzaniga A, Rosenblum DS, Wolf AL. Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems. 2001
Aug;19(3):332–383.

22. Mühl G, Jaeger MA, Herrmann K, Weis T, Ulbrich A, Fiege L. Self-stabilizing
publish/subscribe systems: algorithms and evaluation. In: Proceedings of the
11th international Euro-Par conference on Parallel Processing. Euro-Par’05.
Berlin, Heidelberg: Springer-Verlag; 2005. p. 664–674.

23. Shamir A. How to Share a Secret. Communications of the ACM.
1979;22(11):612–613.

24. Yoon Y, Muthusamy V, Jacobsen HA. Foundations for Highly Available
Content-Based Publish/Subscribe Overlays. In: Proceedings of the 2011 31st
International Conference on Distributed Computing Systems. I C D C S ’ 1 1 .
Washington, DC, USA: IEEE Computer Society; 2011. p. 800–811.

25. Li SYR, Yeung RW, Cai N. Linear network coding. Information Theory, IEEE
Transactions on. 2003 feb;49(2):371–381.

26. Wun A, Cheung A, Jacobsen HA. A taxonomy for denial of service attacks in
content-based publish/subscribe systems. In: Proceedings of the 2007
inaugural international conference on Distributed e v e n t - b a s e d s y s t e m s .
DEBS’07. New York, NY, USA: ACM; 2007. p. 116–127.

27. Li M, Ye F, Kim M, Chen H, Lei H. A scalable and elastic publish/subscribe
service. In: Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE
International. IEEE; 2011. p. 1254–1265.

CUBE Intelligence Page 65

28. Lazowska ED, Zahorjan J, Graham GS, Sevcik KC. Quantitative system
performance: computer system analysis using queueing network models.
Prentice-Hall, Inc.; 1984.

29. Popa RA, Redfield CMS, Zeldovich N, Balakrishnan H. CryptDB: protecting
confidentiality with encrypted query processing. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles. SOSP’11. New York,
NY, USA: ACM; 2011. p. 85–100.

30. Cully B, Lefebvre G, Meyer D, Feeley M, Hutchinson N, Warfield A. Remus:
high availability via asynchronous virtual machine replication. In: Proceedings of
the 5th USENIX Symposium on Networked S y s t e m s D e s i g n a n d
Implementation. NSDI’08. Berkeley, CA, USA: USENIX Association; 2008. p. 161–
174.

31. Lagar-Cavilla HA, Whitney JA, Scannell AM, Patchin P, Rumble SM, de Lara
E, et al. SnowFlock: rapid virtual machine cloning for cloud computing. In:
Proceedings of the 4th ACM European conference on Co m p u t e r s y s t e m s .
EuroSys’09. New York, NY, USA: ACM; 2009. p. 1–12.

32. Wilson C, Boe B, Sala A, Puttaswamy KPN, Zhao BY. User interactions in
social networks and their implications. In: Proceedings of the 4th ACM
European conference on Computer systems. EuroSys’09. New York, NY, USA:
ACM; 2009. p. 205–218.

33. IBM. IBM Gryphon Project;.

34. Kazemzadeh RS, Jacobsen HA. Reliable and Highly Available Distributed
Publish/Subscribe Service. In: Proceedings of the 2009 28th IEEE International
Symposium on Reliable Distributed Systems. SRDS’09. Washington, DC, USA:
IEEE Computer Society; 2009. p. 41–50.

35. Srivatsa M, Liu L, Iyengar A. EventGuard: A System Architecture for Securing
Publish-Subscribe Networks. ACM Transaction on Computer Systems.
2011;29(4):10.

36. Bacon J, Eyers DM, Singh J, Pietzuch PR. Access Control in
Publish/Subscribe Systems. In: Proceedings of the second internat ional
conference on Distributed event-based systems. DEBS’08. New York, NY, USA:
ACM; 2008. p. 23–34.

37. Nabeel M, Shang N, Bertino E. Efficient privacy preserving content based
publish subscribe systems. In: Proceedings of the 17th ACM symposium on
Access Control Models and Technologies. SACMAT’12. New York, NY, USA:
ACM; 2012. p. 133–144.

CUBE Intelligence Page 66

38. Choi S, Ghinita G, Bertino E. A Privacy-Enhancing Content-Based
Publish/Subscribe System Using Scalar Product Preserving Transformations. In:
Database and Expert Systems Applications, 21st International Conference,
DEXA 2010; 2010. p. 368–384.

39. Ion M, Russello G, Crispo B. Design and implementation of a confidentiality
and access control solution for publish/subscribe systems. Computer
Networks. 2012;56(7):2014–2037.

40. Minami K, Lee AJ, Winslett M, Borisov N. Secure aggregation in a publish-
subscribe system. In: Proceedings of the 7th ACM workshop on Privacy in the
electronic society. WPES’08. New York, NY, USA:ACM; 2008. p. 95–104.

https://cubeint.io/ Social Pages

© CUBE Intelligence, All Rights Reserved.

E
B

C

CUB

U

Website:

https://cubeint.io/

Follow us on:

https://www.facebook.com/cubeintelligenceltd
https://twitter.com/cubeintel

https://www.instagram.com/cubeintelligence/
https://www.linkedin.com/company/cubeint-io/

https://www.youtube.com/channel/UCv8xnuzEmiPJtXAjogSbhxw
https://cubeintelligenceltd.blogspot.com/

Join us on:

https://t.me/joinchat/HEId7g9EFqAGkWqAtD67Hg

Contact:

support@cubeint.io

E

http://www.facebook.com/cubeintelligenceltd
http://www.instagram.com/cubeintelligence/
http://www.linkedin.com/company/cubeint-io/
http://www.linkedin.com/company/cubeint-io/
http://www.youtube.com/channel/UCv8xnuzEmiPJtXAjogSbhxw
http://www.youtube.com/channel/UCv8xnuzEmiPJtXAjogSbhxw
mailto:support@cubeint.io

