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Remark 
We cannot disclose the fine details of our technology because of the need to protect the intellectual property 
rights of CUBE security technology. 

 

CONNECTED & AUTONOMOUS VEHICLE (CAV) SECURITY 

AND BLOCKCHAIN-BASED DATA PLATFORM  

CUBE is a network security company utilizing the Blockchain 

 
The USD 1.7 trillion automobile market has reached an important turning point. 

The rapid expansion of car connectivity has brought attention to the 

significance of network security. Newly manufactured cars from 2020 will be 

produced with built-in connectivity. This opens the connected cars to cyber-

attacks, similar to the malicious attacks on network connected PCs. CUBE is 

preparing to embrace a pivotal role in the rapidly changing vehicle market. 

CUBE’S THREE MAIN SECURITY BLOCKS 

Connected and autonomous vehicles (CAV) require a myriad of communication 

hubs: vehicle to vehicle (V2V), vehicle to network (V2N), vehicle to 

Infrastructure (V2I), vehicle to device (V2D), in fact vehicle to anything (V2X). 

The increased connectivity increases user convenience, yet also increases the 

attack surface for possible malicious malware attacks. Thus, network security is 

pivotal in stabilizing the connectivity in vehicles. CUBE utilizes Blockchain, Deep 

Learning (in-depth learning), Quantum hash encryption, Endpoint protection 

and Cloud-based Intelligence to ensure a secure automotive network. 

Blockchain 

 

CUBE Multi-layer Protection 

Endpoint 
Cloud Attacks 

 
010101010101 

010101010101 

010101010101 
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I. BLOCKCHAIN SECURITY 
The conventional blockchain technology grants security whilst maintaining 

simplicity, but has a limitation on transmitting large files. CUBE Blockchain 

security resolves the drawbacks of a conventional blockchain by utilizing 

peer-to-peer hypermedia protocol and asymmetric encryption. CUBE 

Blockchain technology will provide next generation security for the automobile 

industry, taking advantage of the impossible-to-hack nature of blockchain, 

whilst providing rapid data transfer. 

2. CUBEBOX ENDPOINT SECURITY TECHNOLOGY 
Connected cars engage in multilateral communication from various external 

sources: V2N, V2V, V2I, V2Dn and V2X. CUBE Endpoint Security Technology 

generates endpoints at all external connection points for protection. CUBE’s 

unique technology uses hashes to scan and distinguish over 300 million ‘known’ 

attacks with only 10MBs of disk space. In fact, even with our light-weight 

software, it holds the fastest endpoint processing speed amongst the existing 

endpoint security products. 

Cube Box 

Firewall 
Server 

Cube Auto Blockchain 

Check Box 

Sandbox 
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3. CLOUD CHECK BOX TECHNOLOGY 
CUBE Cloud Technology can distinguish ‘unknown’ attacks through 

transmitting suspicious files to the cloud malware database, the Check Box. Our 

Cloud Check box is partnered with more than 50,000 corporations that upload 

and share newly encountered malware on a transnational database. ‘Unknown’ 

attacks that are left unidentified are sent to a sandbox, where the files are 

allowed to run in a restricted virtual environment. Based on the verdict from the 

Sandbox analysis, the results are uploaded to the database and shared with 

other vehicles. 

 

TECHNOLOGY APPLICATION 

AUTOMOTIVE MARKET TREND 

CUBE incorporates blockchain, endpoint and Cloud-based CheckBox technology 

to implement the following business models. 

 1. DATA BUSINESS 
According to a recent Mckinsey Report, the value of data collected from the car 

exceeds that of the car itself. CUBEBOX enables anyone to become data 

producer through simply plugging our device in a car. CUBE will establish an 

ecosystem of automobile data sales and aim to become the world’s largest Big 

Data company. 
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SERVICES 

 
 
 
 
 
 
 
 
 

 

 
 

 
 

   
 

   

 
DATA CONSUMERS 

*Above companies’ logos are not related to actual contracts. 

It is a representation of potential partners. 

COLLABORATE BUSINESS FOR CUBE TOKEN VALUE 
 
 

 

TWO HALVES OF THE WHOLE: 

DATA PROVIDERS AND DATA CONSUMERS 
 

 

 
Automakers Traffic Information Providers 

Gas Companies Insurance Companies 

OTA OTA OTA 

OTA OTA 

OTA 

OTA OTA 

OTA 

DATA 

Car Sharing Companies Automotive Mechanics 

Data Providers 
The CUBE token links driving-related information from the car to data 

consumers who need this information. Drivers generate this information 

as they drive and receive CUBE tokens in return. CUBE then links it into a 

blockchain. Data providers can use this to tap into services such as 

“Over the Air” (OTA) autonomous car security, and mileage insurance 

services from data consumers. 

Data Consumers 
Data consumers who need this information will provide their services in 

exchange of CUBE tokens. Automobile generated information, is sent, 

utilized, and received by all nodes. Data consumers can also provide OTA 

services and autonomous car driving support information to data providers. 

This circulation is a key principle of the CUBE token. CUBE’s tech can be 

applied to different blockchains and improve data security and sharing 

in various real-world situations. 
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DATA EXCHANGE  

 
Cube Token Usage Plan 

 

1- CUBE 

 
2- SERVICE 

i.e. Gas Discount, 
Car Purchase Discount, 

Mileage Insurance 

3- CUBE 

 
4- INFORMATION 

i.e. Big Data, 
Driving Records, 
Fuel Efficiency, 
Vehicle Condition 

 

 
 
 

2. OTA BUSINESS 
OTA technology enables automotive software to be upgraded remotely, 

which levels up the functionality of in-vehicle software. CUBE’s blockchain 

based OTA technology will provide remote software diagnostics and the 

installation of bug patches. 

3. AUTOMOTIVE SECURITY BUSINESS 
According to ‘Cybersecurity Ventures’, the cybersecurity market grew from 3.5 

billion USD in 2004 to 120 billion dollars in 2017, more than 35-fold within a 

short time span. The switch to connected cars will further burgeon the 

demand for network security. CUBE will provide robust security, that is vehicle- 

optimized and based on blockchain, endpoint and cloud checkbox technology 

1. CUBE token owners can receive services at a CUBE affiliates. 

2. These affiliates can be gas stations, car dealers, repair shops,  

insurance companies, etc., and can provide services such  as  gasoline 

discount, vehicle maintenance, vehicle purchase discount, insurance 

discount, and cash back service. 

3. Data consumers such as automobile companies, insurance 

companies, traffic information providers can purchase mobility data 

by compensating the producers with CUBE tokens 

4. CUBE token owners can become information producers by installing 

CUBE OTA. Mobility Data includes driving records, driving 

behavior, vehicle condition, fuel consumption etc. 

 
 

 

 
Affiliate 

(i.e. Gas Station, Car Repair Shop, 

Insurance Companies) 

 

 
Data Producer 
(Date Producer, CUBE Owners) 

 

 
Data Consumer 

(i.e. Automotive Companies, 

Traffic Information Providers, 

Insurance Companies, Government, Lab) 

 
OTA 

 
OTA 
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CUBE’S BLOCKCHAIN AND SECURITY 
 

Fig.1. Attack surfaces of CAVs. 

 
INTER-COMMUNICATION NETWORK SECURITY 

An autonomous vehicle must acquire as much information as possible about its 

surroundings to operate the vehicle alone. Such information may be path 

information for navigation, traffic information, or data for updating an old 

firmware of an autonomous vehicle. Receiving such a variety of data can be very 

helpful in operating autonomous vehicles, but at the same time increases the 

risk of malicious intrusions. 

Vehicle to Vehicle (V2V) communication is a necessary component to make 

CAVs safer. In a connected car, the vehicle receives various vehicle data points 

from other nearby vehicles. 

V2V helps to operate autonomous vehicles in various aspects. There are two 

types of V2V information, short range and long range. An example of short 

range data is the distance between the vehicles and the behavior data of the 

driver. Long range data includes road conditions, accident information and 

traffic updates. 
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IOT SECURITY 

Many IoT devices are used to operate autonomous vehicles. The most 

representative is the “Guide Assist IoT,” which will be applied to smart roads. 

This IoT device informs the autonomous car of its current position, receives 

speed and driving information from the autonomous vehicle, and sends this 

information to the clients who need it. 

While a variety of technologies are available to ensure safety when an 

autonomous vehicle is operated, the technology within the vehicle alone is not 

enough. The most obvious method is to install the device on the road where 

the autonomous vehicle is running. The autonomous vehicle is constantly in 

communication with the device on the smart road. In this case, it is necessary 

to certify that the device of the smart road is properly authorized. 

The biggest problem here is the speed of authentication. An IoT device should 

be manufactured at low cost because it must be distributed in large quantities. 

Therefore, we cannot expect a high level of processing power. In particular, it is 

impossible for an IoT device to operate a full scale public chain. 

Therefore, a method of authenticating a chain closer to real-time than real-

time authentication is needed. CUBE sees this IoT’s real-time authentication 

method as one of the important future development factors. 

 

INTRA-COMMUNICATION NETWORK SECURITY 

Automakers need to communicate with autonomous cars continually. Most 

important is navigation routing information, which includes traffic information. 

For completely autonomous self-driving cars, the car should receive the routing 

information from the automaker’s traffic management centre. Even though the 

car has the navigation map data, it should receive the best route information, 

which comes with live traffic information. The potential danger is a malicious 

attacker with fake traffic information, such as fake traffic or a fake roadblocks. 
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An autonomous car has a much more complicated Electronic Control Unit 

(ECU), which includes the Break Control Unit, Transmission Control Unit, Wheel 

Control Unit, and many other units to control self-driving functions. An ECU 

being penetrated by a malicious attacker could be seriously dangerous. A great 

problem arises in terms of security because of the network between 

automakers and the gateway of autonomous cars. An automotive company 

should check each autonomous car's connectivity surfaces to make sure that 

every autonomous car's ECU works without problem. At the same time, an 

automotive company should upgrade their automotive car's firmware remotely 

through the network. These checks and upgrades must be done regularly as all 

of these network connections will make the automotive cars vulnerable to 

malicious attacks. 

 

1. BLOCKCHAIN LAYER 
The key to blockchain is that the technology ensures trust. CUBE uses 

blockchain technology to ensure the security of autonomous mobile networks. 

But there are various difficulties in applying traditional blockchain to 

autonomous vehicle safety. The problem of blockchain is the slow speed and 

the low scalability. 

At the heart of blockchain is securing trust with technology. So far, no 

technology has been able to prevent hacking 100% in the network. But the 

blockchain has shown a remarkable ability to prevent hacking completely 

without any failure in the past decade. 

By solving the slow speed problem and the scalability issues that the blockchain 

has, we are able to provide the highest level of autonomous car security 
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1.1 THE PROBLEM OF CONVENTIONAL SECURITY 

AND NEED FOR BLOCKCHAIN 

There are three major problems in traditional automotive technology. 

The amount of data that the car must process is tens of times larger than the 

data amount of other virtual currencies. 

CENTRALIZATION ISSUE 

The amount of data received from the outside while driving is estimated to be 

more than 4 Terabytes per day. Such a large amount of data causes a serious 

problem. Centralisation reduces the operation speed of the CPU and eventually 

stops the system if the number of cars increases. 

PRIVACY ISSUE 

The centralised approach eventually threatens the privacy of the driver. If 

someone can access the central server, you can access the personal 

identification of all drivers as well as the driving record. 

SAFETY ISSUE 

A malicious attack on a car's network cannot be blocked 100% by current 

security methods. Alternatives must be created in order to reach maximum 

security. 

Considering the weakness of conventional security methods, CUBE adopted 

blockchain as a key security platform for autonomous car. Blockchain is a 

distributed database that maintains a growing list of blocks that are chained to 

each other. Blockchain is managed by a distributed peer to peer network. 

There are various difficulties in applying traditional blockchain to autonomous 

vehicle safety. Blockchain instantiations suffers from high overhead and low 

scalability. All transactions and blocks are broadcast to the entire network 

which results in extremely large packets. 
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1.2 DECENTRALIZED SECURITY PLATFORM FOR 

AUTONOMOUS VEHICLE 

The key difference in autonomous vehicles compared to conventional vehicle is 

that the autonomous vehicles are connected to a network. This is similar to a 

computer: just as a computer is at risk of being hacked the second it connects 

to the Internet, autonomous vehicles are at risk of being hacked when 

connected to a network. 

Autonomous vehicles, especially, are almost always dependent on 

communication. These vehicles are design to move only when they receive (or 

download) the route and destination via communication. In addition, V2X 

(connecting to roadside IoT, traffic lights) and V2V (connecting to other 

autonomous vehicles) communications are essential. The consequences can be 

devastating if hacking occurs in these autonomous vehicles that rely and 

depend on a multiplicity of connections. Hacking into the vehicles, unlike 

hacking into bank accounts, is directly linked to an individual’s life. Therefore, 

autonomous vehicles must have an impregnable protection from malicious 

attacks. 

The major problem with existing security, is the fact that it is not fully 

protective against attacks such as DDoS. Cube will contribute to strengthening 

the autonomous vehicle security by the use of Merkle Tree, a key technology of 

blockchain. 

The first version of Cube’s blockchain layer can be summarized to an efficient 

transmission based on Merkle Tree (Hash Tree) and by Key refreshment via 

Secret Sharing. 

Cube’s first project is to thwart malicious attacks from Byzantine attackers by 

decentralizing the server, thus eliminating the attacks during a vehicular 

update from server to end-point, and during the upload of the driving data to 

the server. 
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ARCHITECTURE OF SYNAPSE’S PLATFORM 
 

Figure 1) Converts Firmware to Merkle Tree structure. 
 

• Professors Ravi Kiran Raman and Lav R. Varshney of the University of Illinois at 
Urbana-Champaign suggested that blockchain is cryptographically secure as 
it stores data in the form of Merkle Tree. 

• Seeder sends Uncle Layer’s hash list, root hash and corresponding leaf hash–
the other participating servers are responsible for sending the other leaf hash. 

• Sends file fragments encrypted with OTA – File construction is performed 
once each autonomous vehicle receives the file fragments (Upon receiving the 
file fragments, the integrity of the file is verified through hash list and root 
hash). 

• Forms private blockchain network between parallel servers. 

• Implements PAXOS Consensus, Dynamic Leader Election and Active/Active 
Failover for high availability. 
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DESIGN PURPOSE(S) AND PRECONDITIONS 

Peer-assisted firmware updates using the autonomous vehicle as a ‘peer’ are 

extremely complicated and its efficacy cannot be guaranteed until the 

preconditions (stability, efficiency, and performance of vehicle-to-vehicle 

communication) are fully met. Therefore, the most ideal method of firmware 

update is to use Merkle Tree, as it has its own direct trusted cloud-base server 

groups for autonomous vehicle networks, operators and vendors. 

The security platform is activated not only when vehicle receives update data 

from the server via OTA, but also when driving data from vehicle, collected via 

OBD through CubeBox, is transmitted to the server. 

 

ARCHITECTURE OF CUBE’S PLATFORM 

(1) Overview: Following the platform architecture for conventional Big 
Data processing and analysis, but with a new design for solving 
stability/reliability aspects of data collection and management. 

(2) Reference Architecture for Big Data Platform 
 
 
 
 
 

 

Figure 2) Architecture for Cube Big Data Platform 
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SYNAPSE BIG DATA PLATFORM 

- Typical Cloud-based structure illustrated in Figure 2. 
- Transmits partitioned personal data in Merkle Tree format after the 

formation of multi-channel between autonomous vehicle and parallel 
servers. 

- Merkle Tree’s root hash and uncle layer hash list, which can be seeded, 
are further partitioned and transmitted via secret sharing technique to 
ensure safety 

Cube’s algorithm is based on a core technology of blockchain, Merkle Tree. The 

founder of Ethereum, Vitalik Buterin, and many others in the field suggested, the 

Merkle Tree is the basic structure of blockchain and the essential key of making 

it feasible. 
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2. AI DEEP LEARNING LAYER 
 
 

 

 

 

To enhance the security level, artificial intelligence (AI) is applied at this stage. 

Recently, attacks on hackers’ networks with malicious intent have rapidly been 

evolving. Until now, however, cybersecurity technology has been a passive 

method of collecting vaccines to defend against the attacks that have already 

been perpetrated. Cube has developed deep learning network security where a 

method is chosen based on predictions of malicious attacks that will occur, 

rather than a passive approach that uses defensive (instead of active) methods. 

CUBE will continue to learn how malicious attackers have attacked the network 

to prevent future attacks. 

 

  CUBE’S SELF-TAUGHT LEARNING 

An invasion detection system thinks of a common kind of attach situation, 

where affected data packets are inserted into the in-vehicle Controller Area 

Network (CAN). 
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Artificial neural networks have not worked well in the past to protect against 

these attacks, which is why new methods are needed. Three catalysts cause 

and maintain the explosions of malicious data—new mathematical 

computations are the spark, big data represent the fuel, and massive 

computation can be viewed as the horsepower. Cube uses previous cases of 

malicious attacks to recognise them. Cube allows the AI to train the Cube 

platform on cases of previous malicious attacks and predict hundreds of 

millions of new possible malicious attacks through this reinforcement learning. 

It then creates a defense system for each case. 

Cube employs TensorFlow, an open-source library built by Google. There are 

many other ways of implementing deep running, but at present, TensorFlow 

has the best position in the market. In addition, there are a lot of data going on 

while watching the source code, which makes TensorFlow the most 

advantageous library. TensorFlow is an open-source software library for 

numerical computation using dataflow graphs; one reason for its popularity is 

that it can be developed with Python. 

A graph is a connection between one node and another, while a dataflow 

graph is an operation. This edge is data to be easily said; this is called a data 

array. TensorFlow enables calculations through this process, and the 

TensorFlow runtime is a cross-platform library. Google designed TensorFlow 

for large-scale distributed training and inference, but it is also flexible enough 

to support experimentation with new machine learning models and system-

level optimisation. 
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Cube builds the first graph in TensorFlow. First, it can create a “placeholder” 

node, and each node becomes a placeholder. When a placeholder is created, it 

passes the value to the “feed data” as the graph runs through the session. This 

graph is then executed and updated as needed, or it returns an output 

indicating whether a malicious attack has occurred. A large quantity of data 

must be input regarding previous malicious attacks in order to make the output 

more accurate. CUBE’s neural network is initially trained by being fed large 

amounts of data. Training consists of providing input and asking the network 

what the output should be. For example, to build a network for identifying 

malicious attacks, the initial training may include a series of past malicious 

attacks. Each input is accompanied by the matching identification. Providing 

the answers allows the model to adjust its internal weightings to learn how to 

do its job better. For example, if nodes A1, B1, and C1 tell node D1 that the 

current input data represent a malicious attack, while node E1 says they are 

normal data, and the training program confirms a malicious attack, CUBE will 

decrease the weight it assigns to E1's input and increase the weight given to 

A1, B1, and C1. 
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Cube uses a neural network to determine the malicious attacks expected in the 

future. In fact, neural networks do not always provide good results. There are 

three problems with such networks, namely underfitting, low speed, and 

overfitting. Underfitting refers to a problem whereby the learning is 

insufficient. Low speed is an issue where it takes too long to learn. Finally, 

overfitting means that the network is inflexible, even when it has learned. 

These three problems make a neural network’s results unreliable. 

UNDERFITTING 

The first problem, underfitting, means that learning is not effective enough. A 

neural network learns via backpropagation. It updates itself by repeating the 

processes of differentiation, multiplication, and adding, and all in vice versa. 

The problem, however, is that a sigmoid function is used for activation. We 

have found a repeated issue with the vanishing gradient phenomenon: As the 

layer becomes deeper, the updates disappear. Therefore, underfitting occurs, 

which results in poor fitting. 

Instead of a vanishing sigmoid, Cube uses an activation function that does not 

disappear. Specifically, rectified linear units (ReLUs) are used as the activation 

function. This solves the problems related to the vanishing gradient. 

LOW SPEED 

The second problem to be solved for neural networks is the low speed 

problem. Existing neural networks have used gradient descent (GD) to optimise 

the weighting parameters. The gradient is obtained from the current weight of 

the loss (or cost) function, and it is updated to reduce the loss. To put it briefly, 

this is wrong (Slide 35). There are hundreds of millions of training data on 

hacking, and if we consider those hundreds of millions of hits each time we hit 

a mark, the network will slow down significantly. This raises the following 

question: Could there not be a faster optimiser than GD? Here, we find the 

stochastic gradient descent (SGD) method. The concept of SGD is that it is a 

method that can be completed quickly, even if the results are not perfectly 

accurate. As Mark Zuckerberg has said, “Done is better than perfect.” Gradient 

descent is a method that takes one step after a full batch; in contrast, SGD uses 

mini-batches and moves forward step by step. 
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Cube employs Adam as an improved version of SGD. Combining the advantages 

of RMSProp + Momentum, this solution is suitable in terms of both the step 

size and direction. In the future, we can consider attaching NAG to Adam 

instead of Momentum. 

OVERFITTING 

The final problem with neural networks is their inflexibility. To solve this 

problem, we can deliberately omit information or turn off the intermediate 

nodes when training a neural network. Dropout lets us learn what the 

important factors are without obsessing over specific parts. Thus, the problem 

of overfitting relates to obtaining flexibility without dropout. 

Cube solves the three problems related to neural networks, namely 

underfitting, low speed, and overfitting. The problem that Cube is trying to 

solve is not snapshot data like images, but sequential data that discriminate 

whether the signals are malicious attacks. Hence, Cube uses a recurrent neural 

network (RNN) or long short-term memory (LSTM). 
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AUTONOMOUS VALET PARKING 

THE PROBLEM 

A recent analysis has found that a driver spends on average 20 minutes every 

day on parking.  This is a waste of time and a cause of stress, and it is also 

completely unnecessary. Cube AI’s Autonomous valet parking (AVP) is the 

solution to this problem which will save significant amounts of time and effort 

for drivers. 

THE COMPETITION 

Most of the big IT players and automakers have started significant investment 

in autonomous driving. They are all set to launch autonomous vehicles in the 

coming years. However, the reality of autonomous driving has a lot of 

challenges and risks that need to be handled prior to operating such vehicles 

on the road.  

The Cube AI project of Cube Intelligence is working on a niche field within 

autonomous driving: that of autonomous valet parking. Because of the limited 

environment of a car park, particularly with very low speeds and few 

pedestrians, an autonomous parking solution can be adopted much more 

rapidly than other more inclusive forms of autonomous driving. 

THE OVERALL PROFIT MODEL: 

The rising number of vehicles and cars and how to park them is a key issue 

facing the transportation market of the future. Cube AI has developed an 

innovative parking system that will spur the growth of the unmanned parking 

sector. By leveraging AI technology and computer vision to identify objects and 

read data, Cube AI can generate highly detailed and context-rich data for 

unmanned car parks. This is a system that particularly beats out the 

competition in adverse weather conditions and can therefore be deployed 

anywhere in the world. 



CUBE Intelligence  Page 22 

 

 

CUBE TOKEN UTILITY SCHEME 

Cube tokens can used by customers to pay for parking in lots that feature Cube 

AI technology . Right  now , the first Cube  parking  lot has  been  introduced  in 

Korea and it will be installed in several other places in coming time. We will not 

only  offer premium  services  to Cube  token  holders , but we will  also  provide 

them cube parking lots to make parking procedure extremely smooth. 

CONCLUSION 

Right now, the Cube Intelligence system is used in two different platforms. The 

first one is autonomous  car blockchain  security  system  and the other  is Cube 

Token via Cube box. Though the first platform called SYNAPSE has already been 

developed , it will take a significant time for full commercialization  of this 

method . On the other  hand , the Cube  Box  was  launched  in 2018  and  many 

people are already reaping the benefits of this technology . In the near future, 

unmanned  parking, autonomous  valet parking, Cube Token plan and premium 

car  services  of  will  create  dramatic  changes  in  the  mobility  sector .  Cube  

Intelligence  will launch these services  by creating  partnerships with reputable  

companies to offer extraordinary services to customers. 
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TRANSPARENCY POLICY 
CUBE considers transparency to be of the utmost importance. CUBE has 

established policy for transparent operations and will execute the following: 

1. CUBE shall publish monthly operational reports and financial reports to 

contributors to share the operational status of the company after token 

distribution. 

2. When hiring new staff members, such as new developers, CUBE shall   build up 

a validation process as well as thoroughly examining portfolios from past and 

set the reward policies in accordance with their abilities. 

3. The company's budget shall be tightly managed so that it would always be 

possible to operate and manage the company without additional funding for 

more than three years. 

 

CONTRIBUTORS COMMUNICATION 
1. CUBE shall send a monthly report every month to share important company’s 

update, after the token distribution. 

2. In case of an important occasion, CUBE must share the important matters by 

email immediately. 

3. Follow CUBE’s social media accounts for live company updates and to 

communicate directly with the team. 

 

TOKEN VALUATION OPERATION POLICY 
To provide its contributors with better usage and utility, Cube will be operated as 

follows. 

1. The executive managers of CUBE are under the effect of Lock-Up System, 

which means they are not entitled to token sale for one year. The lock-up 

policy is intended to make sure the company focuses on the development of 

CUBE platform and company’s growth. 

2. Cube shall strictly control the use of its budget for transparent operation. At 

least 2/3 of the beginning budget must remain after one year of funding. In 

case of any event which requires using more than 1/3 of the beginning budget, 

the approval of the board and the contributors participating in the ballot must 

be at least one-half. 
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APPENDIX 

PROTECTION FROM THE BYZANTINE BROKER AND 

MALICIOUS ATTACKS 

Synapse’s security transmission method ensures reliable and confidential 

delivery even with Byzantine brokers. Our key solution is to enable secret 

sharing to securely transmit the decryption key. 

The Byzantine brokers are malicious relay node(s) that attempt to mutually 

intercept, steal and forge the message. Cube’s Security technology will ensure 

seamless and efficient transfer of data from automobile companies, or IoT, to the 

vehicles itself despite these presence of malicious Byzantine brokers. This 

technique can also be applied when transferring data from vehicle to another 

IoT. 

In particular, Cube’s Security ensures that following requirements are fully met 

even in the presence of Byzantine brokers. First, ensuring that the data 

transmitted to vehicle is not corrupted (Reliability requirement). Second, 

preventing subscribers or Byzantine brokers from accessing confidential 

messages without permission (Confidentiality requirements). 
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The automobiles’ network security has been vulnerable, and usually only utilizes 

the replication and encryption technology only at the end-point level. Even the 

use of currently listed network encryption technologies will only provide 

replication and encryption technology. However, these tasks may be 

compromised and abused by the Byzantine brokers. Byzantine brokers are able 

to delete a key to prevent subscriber from decrypting a message. And a 

Byzantine broker with corrupted key can decrypt private messages and able to 

disclose it to unauthorized subscribers. In addition, Byzantine brokers can 

delete encrypted messages and decryption keys. Cube is solving these risks by 

employing the Secret sharing technique. 

Cube is developing a technique to apply secret sharing to the groups of 

replicated brokers that are chained to the pub/sub secret overlay. To provide an 

overview of the Cube’s solution, the broker replicas are first placed end-to-end; 

between the publisher and the subscriber. The publisher will utilize a secret 

sharing scheme to partition the decryption key. This then will be transmitted 

with an encrypted publishing message, which we call ‘secret sharing’. Secret 

sharing is created and passed to the replicated broker in such method that the 

original decryption key cannot be reconstructed by the Byzantine broker. With 

this technique, it provides an extra protective layer even when confidential 

messages are leaked. The replicas are used to prevent hackers from deleting 

data, keys or releasing data to unauthorized third parties. Cube’s approach can 

increase the overhead performance by adding more brokers to the pub/sub 

overlay. We are now faced with a challenge of making the most efficient use of a 

given broker replica. To address the issue, we are creating a framework for the 

pub/sub overlay mangers to dynamically and strategically allocate broker 

replicas based on stability and performance that can flexibly be defined. 
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In a Pub / sub architecture, a central source called a broker receives and 

distributes all the data. Pub / sub clients can subscribe to publish data to a 

broker or to retrieve data from a broker. Clients that publish data send data only 

when the data changes (Report by Exception or RBE). Clients that subscribe to 

data receive messages automatically from the broker, but only receive messages 

when they change. The broker does not store data. It simply moves data from 

the publisher to the subscriber. When data comes in from the publisher, the 

broker immediately sends the data to all clients that subscribe to that data. 

In the Request-response architecture, each client opens a direct connection to 

each server because the client requests data directly from the server. Clients 

request data at regular intervals because they do not know when the data will 

change. Request-response is a proven and reliable communication method as 

long as the server can respond to client requests and the network can handle the 

traffic volume. However, if you have a large number of clients and servers, the 

amount of traffic in the Request-response architecture can quickly become a 

problem. 

 
Figure 3) Request-Response & Pub-Sub Architecture 

 

By contrast, the pub / sub architecture simplifies communication. Direct 

connections to data and repeated requests are not required. The network is 

replaced with a single link from each device to the broker. The connection 

between the client and the broker is open and very lightweight. There are only 

two moves through this connection. This is a signal that allows the broker to 

know that the client is still there and the data that has changed. 
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Therefore, it is recommended to use the pub / sub model for mobility data 

transactions that require sharing data and services between multiple servers 

and clients. Because the broker is the central processing unit for data, individual 

servers do not have to process multiple clients and clients do not need to 

connect to multiple servers. In addition, data is posted and transmitted on an 

RBE basis only when data changes, not at regular intervals, thereby reducing 

overall network traffic. 

For this reason, Pub / sub is widely deployed in many application areas such as 

social networking, distributed business processes and real-time mission-critical 

systems. Many Pub / sub applications are sensitive to message loss and privacy 

infringement. To overcome this problem, Cube has developed a new way to use 

secret sharing and replication technology. This is to provide reliable and 

confidential decryption keys with encrypted publications even when there are 

multiple Byzantine brokers in the Pub / sub overlay network. We have also 

developed a framework for dynamically and strategically allocating broker 

replicas based on criteria that can be flexibly defined for stability and 

performance. 

CUBE has commercialized the following our team member’s theoretical study, 

presented at 2018, and 2016. 

 

SYNAPSE’S PUBLISH/SUBSCRIBE OVERLAY 

NETWORKS 

Publish/subscribe is a communication paradigm where loosely-coupled clients 

communicate in an asynchronous fashion. Publish/subscribe supports the 

flexible development of large-scale, event-driven and ubiquitous systems. 

Publish/subscribe is prevalent in a number of application domains such as social 

networking, distributed business processes and real-time mission-critical 

systems. Many publish/subscribe applications are sensitive to message loss 

and violation of privacy. To overcome such issues, we propose a novel 

method of using secret sharing and replication techniques. 
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This is to reliably and confidentially deliver decryption keys along with 

encrypted publications even under the presence of several Byzantine brokers 

across publish/subscribe overlay networks. We also propose a framework for 

dynamically and strategically allocating broker replicas based on flexibly 

definable criteria for reliability and performance. 

 

ROUTING STATE UPDATES ON PUB/SUB OVERLAY 

Publish/Subscribe (in short pub/sub) is a communication paradigm where 

loosely-coupled clients communicate in an asynchronous fashion. Subscribers 

issue subscriptions to express their interest in certain topics and/or content. 

Publishers disseminate their publications to the subscribers through a pub/sub 

routing system without directly being aware of their identities and/or locations 

[1]. Because of such asynchronous nature, pub/sub paradigm supports the 

flexible development of large-scale, event-driven and ubiquitous systems. 

Pub/sub is prevalent in many application domains such as distributed business 

activity monitoring [2], stock price monitoring for algorithmic trading systems 

[3], complex-event processing [4] and mission-critical systems such as air traffic 

control system [5]. A multi-national research group has adopted pub/sub 

routing paradigm to improve the architecture of Internet that recently exhibits 

more content-oriented communication patterns [6, 7]. Many social networking 

services are built around the pub/sub abstraction [8, 9]. Recently, notable 

international consortiums such as Allseen and OIC acknowledge pub/sub as the 

critical communication substrate for Internet of Everything (IoE) platforms, and 

naturally protocol standards such as MQTT and CoAP are receiving great 

attention from the IoE application developers who need to implement pub/sub 

communication [10, 11]. We can also envision potential applications of pub/sub 

systems in the study of complex networks that analyzes the patterns of 

connections between elements of real systems [12–16]. For instance, 

multivariate signals are measured from the distributed conductance sensors in 

order to analyze oil-water flow patterns, which are subsequently visualized in 

terms of community structure [17]. These sensors can be deployed on a 

pub/sub system so that interested patterns can be filtered and delivered in a 

more scalable and efficient way. 
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Pub/sub systems are typically formed into an overlay of distributed event 

matching and forwarding brokers [8–11, 18, 19] in order to process a large 

volume of events in a scalable manner. In reference implementations of pub/sub 

broker overlay [20, 21], a publisher first disseminates an advertisement to all the 

brokers before publishing events. We call a published event as a publication. 

Publication can be labeled with a specific topic and can contain messages or 

content. If a subscription matches an advertisement in the SRT (Subscription 

Routing Table), which is essentially a list of [advertisement, last hop] tuples, the 

subscription is forwarded to the last hop broker where the advertisement came 

from. In this way, subscriptions are routed towards the publisher. Subscriptions 

are used to construct the PRT (Publication Routing Table). The PRT is a list of 

[subscription, last hop] tuples, which is used to route publications. If a 

publication matches a subscription in the PRT, it is forwarded to the last hop 

broker where the subscription came from. This process continues until the 

publication finally reaches the subscriber. Fig 3 shows an example of content- 

based routing. In Step 1, an advertisement (M1) arrives at B1. In Step 2, a 

matching subscription (M2) arrives at B3. Since M2 matches M1 at broker B3, 

M2 is relayed to B1 which is the last hop of M1. After the completion of these 

steps, PRTs are updated accordingly along the path ( p ) from B1 to B3. Based on 

the routing information on the PRTs on p, a publication (e.g., M3) that matches 

the subscription M2 can be delivered to the subscriber S1 through p . 

Subscribers can specify an interest on a particular topic such as (class, = ,bar) in 

M2. Subscribers can also express the interest in a more fine-grained way by 

being specific on the content. For example, S1 expressed the interest over 

particular value range for the attribute price, as shown in Fig 3. 
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Figure 4) An example of routing state updates on pub/sub overlay 

 

Our major concern is that the pub/sub brokers can fail or be compromised and 

thus behave arbitrarily to hamper reliable and secure event delivery. We refer to 

an arbitrarily-behaving pub/sub broker as a Byzantine broker. Byzantine brokers 

can be present across and along many end-to-end delivery paths between 

publishers and subscribers. Any arbitrary behavior of the Byzantine brokers can 

subvert applications running on pub/sub overlays and lead to very harmful 

result to end-users. Therefore, we need to devise a novel solution that can 

effectively deal with this issue. Specifically, we aim to ensure the satisfaction of 

the following requirements, even under the presence of Byzantine brokers [22]. 

First, we must make sure that publication messages are delivered to the 

interested subscribers without any loss (a reliability requirement). Second, we 

should not let a subscriber or a Byzantine broker access the sensitive content in 

a publication message without access privilege (a confidentiality requirement). 

As discussed further in the related work section, existing works for countering 

the violation of the aforementioned requirements typically employ replication 

and encryption techniques. Replicated brokers can decrease the possibility of 

message loss. Encryption can protect the private portion of publication 

messages. However, to the best of our knowledge, these works overlook the 

possibility of the decryption keys getting compromised and abused by 

Byzantine brokers. Byzantine brokers can drop the keys to prevent the 

interested subscribers from decrypting publication messages. Using the 

compromised keys Byzantine brokers may decrypt private publication 

messages and disclose them to unauthorized subscribers. Byzantine brokers 

can simply drop both the encrypted messages and the decryption keys. We 

need a solution that addresses such threats to the reliable and secure operation 

of pub/sub middleware. 
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In this paper, we present a novel method that applies the secret sharing 

technique [23] to a group of replicated brokers chained on a pub/sub overlay 

[24]. To give a high-level overview of our solution, broker replicas are first placed 

along the end-to-end paths between publishers and subscribers. Publishers 

split the decryption key by using the secret sharing scheme. Spit keys that we 

call secret shares are propagated along with the encrypted publication 

messages. The secret shares are generated and forwarded to the replicated 

brokers in such a way that the original decryption keys cannot be reconstructed 

by Byzantine brokers. With this method, confidential publication message is 

safe from being leaked. The replicas are used to prevent the Byzantine brokers 

from dropping publications and keys or sending publications to unauthorized 

subscribers. 

Our method may introduce increased performance overhead due to the 

addition of more brokers to the pub/sub overlay. Therefore, we also face the 

challenge of utilizing the given broker replicas in the most efficient manner. To 

address these challenges, we propose a framework for dynamically and 

strategically allocating broker replicas based on reliability and performance 

criteria that can be defined flexibly by pub/sub overlay administrators. 

The rest of the paper is organized as follows. First, we present the details of our 

secret forwarding method and discuss various adaptations. Second, we describe 

the framework for allocating replicas according to dynamically changing 

demand on reliability and performance. Third, we analyze the performance 

evaluation result. Finally, we discuss related works and conclude. 
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THE SECRET FORWARDING METHOD 

In this section, we introduce a method that guarantees a reliable and 

confidential delivery even under the presence of Byzantine brokers. The main 

point of our solution is to enforce a secret-sharing scheme [23] for securely 

delivering decryption keys. 

SECRET SHARING IN A PUB/SUB OVERLAY 

One of our major concerns is that Byzantine brokers may arbitrarily process the 

encrypted publication messages using a compromised decryption key. 

Therefore, it is imperative that the key should be protected from the Byzantine 

brokers. Here, we employ Shamir’s secret sharing scheme [23]. With this 

technique, a secret can be split into n shares in such a way that at least k shares 

are needed to reconstruct the original secret. In other words, even if up to k-1 

shares are compromised, the original secret cannot be re-generated. This is 

called the (k, n) threshold scheme with the constraint that k > 1 and n ≥ k. In our 

context, the secret is the key necessary for subscribers to decrypt the 

publication messages that are encrypted by publishers. In this section, we focus 

on the case where the Byzantine brokers reside along the end-to-end path 

between publishers and subscribers. We show how the original decryption key 

should be split by a publisher assuming that there is up to f number of Byzantine 

brokers at the next immediate hop. Then, we explain how the split secret shares 

should be propagated towards the interested subscribers. 

INITIAL KEY SPLIT 

Suppose the publisher P1 sends out a publication p1 via broker B1 as shown in 

Fig 4. Assume that B1 is the Byzantine broker and drops p1. In order to prevent 

the loss of messages, a redundant path can be established via replica  B’1 . 

Duplicate publications can be sent through the redundant paths so that at least 

one message is guaranteed to be forwarded towards the subscribers. With the 

replica, the pub/sub overlay becomes tolerant to a single failure of reliable 

delivery. As a generalization, if there are f failures at each hop on an overlay, at 

least f + 1 replicas are needed on that hop. These replicas form a group that we 

call a virtual node. 
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Figure 5) A simple broker replication example for handling the case where a Byzantine 
broker violates the reliable publication delivery requirement. 

 
For decryption keys, we use the secure in-band key delivery strategy. Similar to 

the previous case, we need to add broker replicas in order to tolerate node 

failures. However, the simple replication technique we used in the previous 

example is not sufficiently safe for the case of transferring the decryption key. 

The difficulty stems from the fact that it is impossible to perfectly detect 

whether a broker is Byzantine or not. In order to prevent the Byzantine brokers 

from obtaining the decryption keys, we choose to employ the secret sharing 

technique to safely split the decryption keys into multiple shares, initially at the 

publishers. Assume that there are replicas in the virtual node V which is the next 

hop of publisher P. The brokers in V to which the publishers are directly 

connected are referred to as publisher-edge brokers. A secret can be split into r 

shares by a publisher, and these shares can be evenly distributed among the 

replicas at V. Having only one secret share, each replica cannot reconstruct the 

original secret. However, we cannot rule out the possibility of multiple 

Byzantine brokers colluding to collect a sufficient number of shares required for 

the reconstruction of the original secret. Also, assuming that (k, n) threshold 

scheme is used by the publishers, the f Byzantine brokers among the publisher- 

edge brokers may drop k secret shares. Even if other non-Byzantine brokers 

correctly deliver k-1 secret shares to the authorized subscribers, those secret 

shares are not sufficient for reconstructing the secret decryption key. Based on 

this observation, we have to first assume that the number of Byzantine brokers 

should be less than k in order to prevent these brokers from breaking the (k, n) 

threshold scheme and the requirement of reliably delivering the secret 

decryption key to the authorized subscribers. 
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This assumption is more formally stated in Assumption 1 as follows. 

Assumption 1 At every virtual node V, there are [V ] + 1 brokers that are non- 

Byzantine. 

For example, if there are 5 brokers in a virtual node, we assume that there are up 

to 2 ( =[ 5 ]) Byzantine brokers and there are at least 3 ( =[ 5 ] +1 ) non-Byzantine 
2 2 

brokers. 
 

Assumption 1 reflects the maximum fault-tolerance we aim to achieve. This is a 

reasonable assumption given the following threat model. Each server running a 

broker replica follows independent authentication and authorization process, 

thus a security breach on a particular server does not immediately and/or 

automatically lead to another security breach on other servers. 

Given Assumption 1 and the (k, n) threshold scheme, we have to ensure that k 

secret shares among the n secret shares must be delivered only to k non- 

Byzantine brokers. In other words, if there are f Byzantine brokers, there have to 

be at least f + 1 additional replicas that are non-Byzantine brokers. Therefore, 

the threshold-scheme to be used at the publisher can be expressed as (f + 1, 

2f + 1). Alternatively, we can express the threshold scheme as ( [n] + 1, n) 

where n is the number of replicas in the next-hop virtual node. For example, if 

there are 5 publisher-edge brokers at the next hop of a publisher P, then a (3, 5) 

threshold scheme should be used by P. 

However, the initial key split alone does not guarantee that the secrete shares 

can be safely delivered to the subscribers beyond the publisher-edge brokers. 

We articulate this problem further in the following subsection. 
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PROPAGATION OF SECRET SHARES 
Before we present the problem of reliably propagating the secret shares to the 

subscribers, we enlist key notations as follows. 

● V: A virtual node 
● Vf: A virtual node with forwarding brokers 
● Vr: A virtual node with receiving brokers 

● prec(V): A virtual node that precedes V, e.g., Vfprecedes Vr 

● |V|: The number of brokers in virtual node V 
● reconstruct(S): A predicate that returns true if a currently received set of 

split secret shares S can be used to reconstruct the secret split at the 
preceding virtual node Vp. 

● nByz: A non-Byzantine broker 
● Byz: A Byzantine broker 
● nByz(V): A set of non-Byzantine brokers in V 
● Byz(V): A set of Byzantine brokers in V 
● B(V): A set of all brokers in V 

The first challenge is to prevent Byzantine brokers from tampering with the 

secret shares it received from the previous hop. Such tampering can be trivially 

prevented with a well-known security measure such as digital signature for 

checking the integrity of the message on the subscriber side. 

A more challenging task is to ensure that no more than k shares end up at any 

single broker down the publication delivery path when (k, n) threshold scheme is 

enforced. If a broker that received k shares happens to be Byzantine, then it can 

drop all the shares, leaving only k-1 shares at the virtual node. In such a case, the 

original key cannot be reliably reconstructed on the subscriber side. If multiple 

Byzantine brokers collude each other to collect at least k shares, then these 

Byzantine brokers can reconstruct the secret and abuse it. Therefore, it is 

important to make sure that Byzantine brokers at every hop do not collectively 

receive more than k shares. 

As the very first step, we impose a basic secret share propagation scheme called 

(k, n) threshold propagation. The implementation of this propagation scheme is 

provided in Algorithm 1. This algorithm is designed in such a way that no broker 

on the next-hop virtual node receives more than k shares among the n split 

secret shares. 
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Algorithm 1: Deterministic (k, n) threshold propagation scheme 

/* Input: n initial shares generated with (k, n) secret sharing scheme*/ 
 

1 foreach Forwarding broker Bf Vf do 
 

2 x = total secret shares Bf has;z 

3 foreach share i x do 

4 foreach Receiving broker Br 

 
 

 
Vr do 

 

5 t = total received secret shares of Br; 

6 if t < k then 

7 send i to Br; 

8 t = t + 1; 

Algorithm 1 has a serious limitation since a forwarding broker Bf can violate the 

scheme and arbitrarily send its share to a receiving broker at the next hop, which 

breaks the requirement that a receiving broker must not receive more than k 

shares out of n original split shares. Consider the following example in Fig 5. 

Publisher P1 sends out secret shares to brokers B1, B2 and B3 at the virtual node 

V1. Now suppose the secret shares have to be relayed to the succeeding virtual 

node V2 that also has three replicas. In an ideal case, each broker in V2 should 

receive just one share. However, assume that B3 of V1 and B2 of V2 happen to be 

Byzantine brokers, as shown in Fig 5(A). B3 of V1 may ignore the secret share 

propagation policy and forward its shares to B2 of V2. Upon the receipt of the two 

shares, B2 of V2 may either reconstruct the secret key or intentionally drop the 

keys. In order to prevent this case, we may consider strengthening the secret 

sharing scheme at V1 as follows. 
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The threshold is increased from (2, 3) to (3, 5), and two more replicas (B4 and B5) 

are deployed at V1 as shown in Fig 5(A). In this way, B2 at V1 cannot reconstruct 

the secret, and other non-Byzantine brokers can safely forward the three shares 

that are sufficient for reconstructing the original secret. However, we can 

trivially come up with a case where this new threshold scheme also fails. As 

shown in Fig 5(B), suppose that B1 instead of B3 at V2 turns out to be the 

Byzantine broker. Also, suppose that another Byzantine broker B3 of V1 forwards 

its share to B1 of V2. These examples show that it is not possible to prevent the 

situation where k shares arrive at an arbitrary single broker at any hop. There are 

two reasons for this. First, the brokers at the forwarding node cannot detect 

with certainty whether a replica in the next hop is Byzantine. Second, Byzantine 

brokers can yield an arbitrary behavior such as sending shares to any replicas on 

the next hop. 

 
 

Figure 6) The issues with the propagation of secret shares through multiple hops. 

As an alternative, we considered splitting the original secret using linear 

network coding [25]. With linear network coding, a secret is split into n encoded 

blocks. We distribute the n encoded blocks according to the propagation 

scheme in Algorithm 1. This is seemingly a stronger mechanism for preventing 

the Byzantine brokers to illegally reconstruct the original secret, as the 

Byzantine brokers need the entire n encoded blocks to decode the original 

secret. If (k, n) threshold scheme is used on the other hand, then only k+1 shares 

are needed for the Byzantine brokers to reconstruct the original secret. 
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If we assume that the majority of the forwarding brokers on a virtual node is non- 

Byzantine, then it is impossible for a Byzantine broker to receive all n encoded 

blocks as long as the non-Byzantine brokers abide by the propagation scheme 

described in Algorithm 1. The linear network coding paired with Algorithm 1 

may exhibit a higher fault-tolerance. However, this version of secret 

propagation can also fail. For example, as shown in Fig 6(A), suppose a 

decryption key is encoded into three blocks, c1, c2 and c3. Assume that c2 and c3 

reach B2 of V2 as the Byzantine broker B3 of V1 arbitrarily sends his blocks of code 

to B2 instead of B3 of V2. There is no concern that B2 of V2 will be able to 

reconstruct the original decryption key. However, this broker may arbitrarily 

forward all the encoded blocks to B1 of V3 at the next hop, which leads to a 

situation where all the necessary encoded blocks are collected. If B1 of V3 turns 

out to be Byzantine, then this broker can reconstruct the key and use it for any 

malicious intent. 

 

Figure 7) An example of failed delivery of encoded publication messages 
and an example of guaranteed reliable propagation of secret shares. 

 

 
Note that the aforementioned propagation scheme above splits the original 

secret only once at the publisher. We now opt for splitting a secret share further 

down the path, and we prove that this is the most viable solution. For example, 

as shown in Fig 7(B), after B1 of V1 receives a secret share s1 from publisher P1, it 

further splits the share into three sub-shares as s11, s12 and s13. Then, B1 of V1 

relays those further split secret shares to the next hop V2. 
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This propagation scheme called iterative secret propagation is implemented in 

Algorithm 2. 

Algorithm 2: Iterative secret share propagation scheme 

/* Input: n initial shares generated with (k, n) secret sharing scheme*/ 
 

1 foreach Forwarding broker Bf 

2 x = total secret shares Bf has; 

3 foreach share i x do 

Vf do 

 

4 S(I) = List of secret shares by splitting i with (|Vr|—|Byz(Vr)|,|Vr|) threshold 
scheme; 

5 x = first index of Vr; 

6 foreach iʹ S(i) do 

7 send iʹ to x’th broker in Vr; 

8 x = x+1; 

 
We prove that under Algorithm 2 Byzantine brokers in a virtual node cannot 

receive a sufficient number of secret shares to reconstruct the original secret. 

Before we proceed with the proof, we set a few additional key assumptions. 

Assumption 2 Publishers behave correctly. 

In contrary to Assumption 2, publishers can attack publish/subscribe overlay. 

For example, Wun et al. presented the possibility of publishers participating in 

the denial-of-service attack [26]. However, note that this paper is focused on 

handling the issues with Byzantine brokers, and devising the security measures 

against the malicious publishers is not in the scope of this paper. 

Assumption 3 Non-Byzantine brokers abide by the message propagation 

rules.  

Now we prove that Theorem 1 holds if Algorithm 2 is enforced by the 

brokers, 
 

Theorem 1 A broker B in Vr cannot receive more than [Vf ] sets of secret shares 

from Vf such that, for every set S B received, reconstruct(S) holds. 
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Proof 1 Suppose B in Vr received [
Vf ] + 1 sets of secret shares from V , such that, 

2 f 

for every set S B received, reconstruct(S) holds. 
 

This occurs only if [Vf ] + 1 Byzantine brokers in Vf violate the protocol in Algorithm 

2 that a broker must distribute its split shares Sʹ in such a way that 

reconstruct (Sʹ) does not hold (as enforced in Algorithm 2: 8–10). This 

implies that the majority of the brokers in Vf are not non-Byzantine. 

Therefore, it contradicts Assumption 1. 

Theorem 1 states that Byzantine brokers cannot reconstruct a secret unless 

they receive all split secret shares, which is not possible given our assumptions. 

Theorem 2 Non-Byzantine brokers in Vr receive secret shares from the non- 

Byzantine brokers in Vf that precedes Vr which are sufficient for reconstructing 

original secret S generated by a publisher PUB. 

We prove Theorem 2 by mathematical induction as follows. 

Proof 2 Basis: There is only one virtual node between PUB and the interested 

subscribers. 

Assume that the number of secret shares the non-Byzantine brokers in Vr 

receive is less than [Vf ] + 1  . This implies that the publisher did not generate a 

sufficient number of secret shares. Hence, this contradicts Assumption 2. 

Inductive Step: Assume that non-Byzantine brokers in i’th consecutive virtual 

nodes from PUB receive m secret shares in total that are sufficient for 

reconstructing the original secret S. We show that in the subsequent virtual 

node Vi+1, non-Byzantine brokers receive a sufficient number of secret shares to 

reconstruct S. 
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Assume that the total number of secret shares the nByz(Vi+1) received is less than 

(  [m] + 1 )(  [Vi+1] + 1 ) from the Byz(V ). Note that every non-Byzantine broker nByz 
2 2 i 

in Vi must generate a total of |Vi+1| secret shares for every secret nByz received 

from the B(Vi−1). We assumed that a correct number of secret shares are received 

by the non-Byzantine brokers up to i’th virtual node as the inductive step. 

Therefore, the assumption that the non-Byzantine brokers in Vi+1 received less 

than ( [m] + 1 )( [Vi+1] + 1 ) implies that at least one non-Byzantine broker in Vi 
2 2 

generated less  than [Vi+1] + 1 for one of the shares it received from B(Vi − 1). This 

also means that the non-Byzantine broker violated the rule specified in 

Algorithm 2, and therefore it contradicts Assumption 3. 

Theorem 2 states that non-Byzantine brokers are guaranteed to always forward 

a set of secret shares that are sufficient for reconstructing the original secret at 

the authorized receiver. Finally, we can derive Theorem 3. 

Theorem 3 A non-authorized subscriber (SUB2) that is not entitled to the 

messages published by a publisher PUB cannot receive a sufficient number of 

secret shares from the brokers to reconstruct the original key S generated by 

PUB. An authorized subscriber (SUB1) that is entitled to the messages published 

by PUB must receive a sufficient number of secret shares to re-construct the 

original key generated by PUB. 

Proof 3 Basis: There is only one virtual node V between PUB and the two 

subscribers, SUB1 and SUB2. 

Assume that the number of secret shares SUB1 receives is insufficient to re- 

construct S. This assumption implies that non-Byzantine brokers in V failed to 

send sufficient number of secret shares. Therefore, this assumption contradicts 

Theorem 2. 

Assume that the number of secret shares SUB2 receives is sufficient to re- 

construct S. This assumption implies that Byzantine brokers in V were able to 

collude each other to send a sufficient number of secret shares to SUB2 for re- 

constructing S. However, the number of secret shares PUB sent to Byz(V) is less 

than [ V ] + 1. Therefore this assumption contradicts Assumption 2 and Assumption 

1. 
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Inductive step: Assume that Theorem 3 holds when there are i consecutive 

virtual nodes between PUB and the two subscribers, SUB1 and SUB2. Show 

that Theorem 3 holds when there are i + 1 virtual nodes between PUB and the 

two subscribers, SUB1 and SUB2. 

Assume that the number of secret shares SUB1 receives via Vi+1 is insufficient to 

reconstruct S. This assumption implies that non-Byzantine brokers in Vi+1 

failed to forward a sufficient number of secret shares to SUB1. This 

contradicts with Theorem 2. 

Assume that the number of secret shares SUB2 receives is sufficient to 

reconstruct S. This can occur only when the [[Vi+2] ]+1 brokers in Vi+1 sent their 

shares to SUB2. This indicates that the majority of the brokers in V i+1 is 

Byzantine, which contradicts Assumption 1. 

In order to reconstruct the original key, a subscriber should know how many 

virtual nodes the secret shares traversed and how many replicas are allocated at 

each virtual node. The number of virtual nodes corresponds to the number of 

reconstructions to apply on the received secret shares. The number of replicas 

at every virtual node gives a subscriber the necessary information about what 

threshold scheme to apply when executing the reconstruction. Publishers and 

brokers tag these pieces of information to the secret shares while the brokers 

forward them down the end-to-end path towards the subscribers. 

 

SOLUTION ANALYSIS AND ADAPTATIONS 
Assume that a decryption key is sent along with every publication. Then, the 

maximum number of split secret shares a subscriber receives at the end will be at 

most p
rh 

where p is the number of disjoint end-to-end paths from the publishers 

to the subscribers, r is the average number of replicas at each hop on the end-to- 

end path and h is the path length measured as a hop count. Suppose f is the 

average number of Byzantine brokers at each hop. Then the minimum number of 

secret shares a subscriber receive at the end is prh − p(r − f)h. The number of secret 

shares can increase significantly as the path length increases. However, with the 

rise of Cloud-based pub/sub systems [27], pub/sub overlays are getting flatter, 

i.e., the end-to-end path length is at most 3. 
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However, if the number of secret shares is a non-negligible concern, there are 

two adaptation techniques to reduce the secret shares. One is to refresh the 

decryption key for a bulk of publications instead of generating one for every 

publication. 

Another adaptation technique is to deliver the secret shares out of band through 

an external repository. This repository can also be replicated to hold the secret 

shares separately. This may incur less traffic increase compared to the in-band 

delivery of secret shares. However, because subscribers have to pull the keys 

from the repository through another communication channel, opening up the 

publication content can be delayed further. In contrast, the in-band secret 

delivery method incurs no additional latency, since the publication content can 

be opened up immediately with the decryption key that is piggybacked on the 

publication. The in-band delivery approach also adheres to the nature of 

pub/sub that the clients are decoupled in time and space to ensure scalable 

communication [1]. 

 

PROPAGATION OF ENCRYPTED CONTENT 

So far, we have introduced a decryption key propagation method that is applied 

to a pub/sub overlay with replicated brokers. Note that replicas introduce 

multiple alternative routes through which the encrypted content can be 

forwarded. Typically alternative routes offer opportunities for traffic load- 

balancing. However, in our context, those routes entail a new issue with the 

reliable delivery of publication content itself. Given the next hop virtual node 

with n replicas, a forwarding virtual node can prepare n duplicates of the 

encrypted content in order to guarantee the reliable delivery. Replicating the 

content in such a way down the path towards the interested subscribers can 

significantly increase network traffic. To avoid this problem, we can opt for 

sending only one publication to one of the replicas and re-transmit the 

publication in case it gets lost. However, re-transmitting the publication may 

incur non-negligible delay. In order to reduce the redundant traffic and delay 

caused by the re-transmission, we can encode and split the file into multiple 

blocks and then send them out at the same time through multiple paths. Only 

the missing blocks need to be re-transmitted. 
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There can be a situation where all the n blocks end up in the hands of Byzantine 

brokers at a certain virtual node. This is still safe because the blocks are 

encrypted and can only be decrypted with the keys that are transferred securely 

through the secret share propagation method that we devised in the previous 

section. For the case of the Byzantine brokers corrupting the blocks, publishers 

and subscribers can use a digital signature mechanism to check the integrity of 

each block. Overhead of this approach is measured in the evaluation section of 

this paper. 

 

THE MANAGEMENT OF BROKER REPLICAS 
In the previous section, we took advantage of the replicas across the broker 

overlay in order to secure the publication propagation. In this section, we 

present a novel framework and protocols for managing these replicas. 

REPLICA PLACEMENT FRAMEWORK 

In practice, fully replicating every node in a pub/sub overlay may not be feasible 

due to cost and limited budget. Therefore, we devise a framework that directs 

the placements of replicas strategically on the most appropriate locations in a 

pub/sub overlay for the efficient usage of resources. In our framework, we allow 

administrators to explicitly specify the criteria for the replica placements. These 

criteria are mainly broken into two categories. The first criteria specifies the 

reliability factor (R). The second one specifies the performance factor (P). With 

the placement of additional replicas, a pub/sub overlay becomes more fault- 

tolerant. On the other hand, the addition of the replicas can degrade 

performance since secret sharing at the replicas increases the latency and 

traffic, which potentially leads to congestion. To strike the balance between the 

two contradicting problems above (i.e., reliability versus performance), we have 

devised a 3-phase allocation method. The input to this method is the set of the 

end-to-end paths between all publisher and subscriber pairs. 



CUBE Intelligence  Page 45 

 

 

 

Given n nodes in an overlay, there can be at most n(n − 1) end-to-end paths. In 

the first phase, our framework allocates replicas based on the reliability criteria. 

A priority is assigned to every end-to-end path. The priority (ρ) is measured as a 

product of the following metrics on the end-to-end path: (1) path length 

measured as the number of hops; (2) failure frequency ratio over a fixed period 

of time (γ) and (3) user-defined weight (ω). The failure frequency ratio (γ) is the 

fraction of the number of failures that have occurred on an end-to-end path 

over the total number of failures occurred on all end-to-end paths. The weight 

(ω) indicates the importance of an end-to-end path, and the user (the 

administrator) can freely assign a numeric value to it. The replicas are allocated 

proportionally to ρ. 

In the second phase, the replicas allotted for each end-to-path are now 

distributed among the nodes that constitute the end-to-end path. The replicas 

are distributed proportionally to the failure frequency ratio within the end-to- 

end path. This frequency ratio of a node on the end-to-end path is measured as 

the fraction of the number of failures by the node over the total number of 

failures among all the nodes within the end-to-end path. Fig 7 illustrates a 

sample placement of replicas after the completion of the second phase for the 

end-to-end paths between publisher P and the subscribers S1, S2 and S3. Assume 

that the ρ values for the paths, P − S1, P − S2 and P − S3 are 2, 3 and 5, respectively, 

are given. Given 10 available replicas in total, the number of replicas for each 

path is determined in the first phase, as shown in the table in Fig 7. In the second 

phase, replicas are assigned to the nodes based on their individual failure 

frequency ratio. We observed a couple of interesting things about this phase. 

First, there can be cases where a virtual node consists of only two replicas. In 

such cases, secret sharing cannot be enforced because we cannot assure that a 

majority of the nodes will be non-Byzantine. Second, all 3 end-to-end paths 

intersect at B1 and B2. Thus, those two brokers receive a batch of replicas more 

than once during the execution of the second phase. A possible variation of the 

second phase is to assign a pack of replicas only once to a node. For example, the 

2 packs of replicas can be removed from B1 and be re-assigned to any under- 

provisioned nodes. 
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Figure 8) An example of replica placement for the end-to-end path 
from publisher P to subscribers S1, S2 and S3. 

 
REPLICA PLACEMENT FRAMEWORK 
In this section, we provide a protocol for flexibly re-deploying brokers across the 

pub/sub broker overlay at runtime. This re-deployment protocol involves 

attachment and/or detachment of brokers. This protocol is designed in such a 

way to prevent disruptions to the publication delivery service. Upon the 

attachment or the detachment of replicas, the threshold scheme for secret 

sharing gets updated among the broker replicas on the virtual nodes. 

Before we articulate the re-deployment protocol, we describe the extended 

broker architecture of the reference pub/sub overlay implementation [20, 21]. 

As shown in Fig 8, each broker has a single input queue and multiple output 

queues. Output queues are grouped to be associated with each virtual node in 

the next hop. Each output queue is designated to a broker replica in the next- 

hop virtual node. A broker receives secret shares from the previous virtual node 

through its input queue. When a secret share from the previous hop gets 

dequeued from the input queue, the broker runs a topic-based matching in 

order to determine where the secret shares and publications should be 

forwarded to. The topic does not need to be encrypted as long as it does not 

reveal private information. However, if the topic has to be encrypted as well, 

then homomorphic matching techniques have to be used as introduced in [29], 

which is the subject for future work. Upon the detection of the next virtual node 

to forward the secret, a broker first splits the received secret share once again. 
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Figure 9) The architecture of the extended pub/sub broker for secret forwarding. 
 

Algorithm 3: Broker replica detachment 

/* For a detaching broker Bd: */  

1 Sends its own ID to the all forwarding virtual nodes for Bd ( );  

2 while Not received ACK from every V  and input queue not empty do  

3 Keep processing messages in the input queue;  

4 Enqueue output messages into appropriate output queues;  

5 Flush all output queues;   

6 Disconnect from all forwarding and receiving virtual nodes for Bd; 
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Algorithm 4: Broker replica attachment 

   /* For an attaching broker Ba: */  

1 Initialize an input queue;  

2 Replicate routing state;  

3 Configure output group and output queues; 

4 Connects with forwarding virtual nodes for Ba; 

5 Notifies the forwarding virtual nodes the ID of Ba and a new threshold scheme; 

Algorithm 5: Updates at a broker in the forwarding virtual node for a broker B 

   /* When received a notification message */  

1 if Received detachment notification then  

2 Change threshold scheme;  

3 Flush the output queue mapped to B;     

4 Remove the output queue mapped to B;  

5 Send ACK to the next hop; 

6. else 

   /* When attach notification received:  

7 Create and map an output queue to B;  

8 Change threshold scheme; 
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Now we explain the protocol for re-deploying brokers as specified in Algorithm 

3, Algorithm 4 and Algorithm 5. Here we provide a couple of definitions that 

specify a relationship between virtual nodes. A virtual node Vx is a forwarding 

virtual node for a virtual node Vyif Vy sends publications to Vx. On the other hand, 

a virtual node Vx is a receiving virtual node for a virtual node Vy if Vx receives 

publications from Vx. Acknowledgements exchanged between the brokers are 

denoted as ACK. 

For the detachment of a broker Bd, the brokers in the forwarding virtual nodes 

for Bd have to update the threshold scheme for secret sharing. If Bd is detached, 

the number of brokers in the virtual node Bd belongs to (denoted as VBd) gets 

decremented by 1. Suppose the threshold scheme running at the forwarding 

virtual nodes for Bd was originally ( [ r ] + 1 , r) assuming that the number of broker 

replicas is r at VBd. Upon the detachment of Bd, the brokers in the forwarding 

virtual nodes should newly enforce a ( [ r-1 ] + 1, r − 1) threshold scheme. The only 

disruption is caused when the brokers in the forwarding virtual nodes cease to 

process incoming messages when the threshold scheme is updated. However, 

the update process is executed instantly, thus the disruption is negligible. This 

update task is highly critical to the confidential delivery of secret keys. If the 

brokers at the forwarding virtual nodes do not pause the processing of incoming 

messages, then an incoming message may be split with the old threshold 

scheme. 

This can cause a case where the majority of secret shares can reach a single 

broker, which may result in the reconstruction of the secret in case the broker is 

Byzantine. After the threshold scheme is updated, the brokers at the forwarding 

virtual nodes continue to process the incoming messages as well as flush the 

output queue mapped to the detaching broker replica. 
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Likewise, there is a very brief pause at the forwarding virtual nodes for attaching 

broker Ba. Similarly, the threshold scheme must change from ( [  r ] + 1 , r) to ([ r+1 ] + 1, 
2 2 

r+1). As stated in Algorithm 4:2, the attaching broker Ba has to replicate one of 

the brokers at the virtual node to which Ba newly belongs (denoted as  VBa ). We 

do not employ any popular VM cloning tools such as REMUS [30] and 

SNOWFLOCK [31] for promptly replicating the VM where the broker to 

replicate might reside. This is because VM cloning replicates the VM state 

including the security-sensitive information such as the secret share. Because 

of the security hole in the VM cloning techniques, we resort to adapting the on- 

demand replication technique of constructing the routing state of the newly 

attached broker [24]. Subscription and advertisement topics are the ingredients 

for constructing the complete routing state at Ba. Ba can ask any broker in the 

neighboring virtual nodes to forward their subscriptions and advertisements. 

However, there can be Byzantine brokers at these neighboring virtual nodes. 

The Byzantine broker may arbitrarily drop or corrupt the advertisements and 

subscriptions, thus sabotaging the replication effort by Ba. Hence, Ba has to 

accept only the subscriptions and the advertisements that are sent by the non- 

Byzantine brokers. Note that Ba  cannot identify which broker at VBa  is Byzantine. 

However, we assume that the majority of r brokers are non-Byzantine. 

Therefore, Ba accepts a subscription or an advertisement only if it is received at 

least [ r ] + 1 times where r is the number of replicas at VBa  . This procedure of 

checking the validity of subscription and advertisement topics may contribute 

to the delay in replicating the complete routing state for Ba. However, we employ 

the technique that allows the publications to be delivered at the neighboring 

brokers of Ba promptly after matching subscriptions are added at Ba. Thus, 

publication delivery resumes very quickly. The non-disruptive nature of our 

dynamic replica deployment protocol is based on the technique developed in 

[24]. It allows the broker placements to be revised dynamically if necessary, as 

explained in the previous section. 
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PERFORMANCE EVALUATION 

In this section, the performance of our solution is evaluated. We fully integrated 

the secret sharing in PADRES [20] which is one of the reference implementation 

of pub/sub overlays. We measured the overhead of our scheme in terms of 

latency and traffic volume. We empirically assessed the tradeoff between 

different variations of our scheme, under the presence of Byzantine brokers. 

We used specific SNS traces that were introduced in [32]. These are the logs of 

interactions among specific SNS users over a 12-month period. There are 3 

million anonymous users with 28.3 million relations in total. Note that the data 

we used in our study was originally collected by the authors of [32], through 

specific SNS API. We contacted the authors to obtain the dataset which was 

collected for research purpose, and the mode of collection fully complies with 

the Terms and Conditions of specific SNS. We assumed that the anonymous 

specific SNS users in this dataset are connected as subscribers to one of the 400 

brokers in a pub/sub overlay. Given the placement of the specific SNS 

subscribers, we replayed the interactions in the logs with our new message 

forwarding scheme enabled. 

THE EFFECT OF SECRET SHARING ON LATENCY 

AND TRAFFIC 

Our Java implementation of Shamir’s secret sharing scheme [23] is integrated 

into the PADRES pub/sub broker. We ran this broker on a machine with Intel 

Core2 Duo CPU T5550 at 1.83 GHz and 3GB memory. We first measured the 

number of secret shares as the path length between publishers and subscribers 

increase. The number of secret shares increases exponentially as the path length 

and the node fanout increase, as shown in (Fig 9(A) and 9(B)). As mentioned 

earlier, to reduce the secret shares, publishers can refresh the decryption key for 

a bulk of publications instead of generating one for every publication. For 

example, as shown in (Fig 9(C) and 9(D)), the traffic increase can be 

approximately 10 times less when keys are refreshed every 1GB as oppose to 

refreshing the keys every 200MB of data. 
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Figure 10) The effect of secret forwarding on latency and traffic with 
varying node fanout and path length. 

We also measured the latency in splitting a secret into 3 to 10 shares. We 

measured the latency in reconstructing the secret as well. The secret is either an 

AES-128 or an AES-256 key. We set the threshold scheme (k, n) where n = [ k ] + 1 . 

As shown in Fig 10, the time it took to split the secret was well under 1ms. The 

time it took to reconstruct the secret increased proportionally to the number of 

shares. It took longer to reconstruct than to split the keys. For example, at the 

maximum of 10 shares, it took just 5.2ms on average. However, the 

reconstruction is done only once by the subscriber, and the brokers along the 

end-to-end path do not involve in the reconstruction. Our scheme requires the 

secret splitting at every virtual hop. Thus, the secret splitting overhead is 

incurred at the broker replicas at every virtual hop. This causes the overall end- 

to-end latency to increase with the number of hops. However, the end-to-end 

latency does not grow with the number of replicas at every virtual hop, because 

the secret splitting is done concurrently among the broker replicas. 
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Figure 11) Performance overhead of secret splitting and reconstruction. 

 

THE EFFECT OF FRIENDS DISPERSION 

Specific SNS users may have friends who are dispersed on many geographical 

locations. That is, some user may have friends scattered all around the globe, 

and some user may only have friends from the local region. We conducted a set 

of experiments on the effect of scattered friends on the overhead of our 

scheme. We generated a fully connected pub/sub broker overlay topology that 

does not contain any redundant path. This overlay was assumed to be deployed 

on a wide area network. Given the overlay, we randomly assigned specific SNS 

users to brokers according to a Zipf distribution. The degree of skewness is 

controlled by the variable α. With a high α value, specific SNS users are clustered 

close together. On the other hand, with a low αvalue, Specific SNS users are 

disperse and relatively far from each other. We first generated a 400-node 

overlay with the average node fanout of 2. At every node we assigned 3 replicas 

that follow the (2, 3) threshold scheme. Fig 11(A) shows the cumulative 

distribution function of the total secret shares that are delivered during an 

interaction between a publisher and a subscriber via brokers, over a one-month 

period. With α = 0.5, the median secret shares generated was approximately 

80,000. However, the average was 5 million. 
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The pairs of publishers and subscribers that were far apart contributed 

significantly to this high average. On average, the publishers and the subscribers 

were 10 hops away from each other with α = 0.5. With a higher α value of 2, the 

average number of secret shares per interaction dropped sharply to 860 as the 

publishers and the subscribers were apart 2.6 hops on average. From this result, 

we affirmed that the end-to-end path length between the publishers and the 

subscribers affects the overhead of our scheme. This can guide the 

administrator of pub/sub broker overlays to reduce the number of hops by 

consolidating the brokers along the publication delivery paths, so that the 

number of secret shares is reduced. Also, the node fanout can be controlled to 

adjust the structure of the overlay. For example, the node fanout of the previous 

overlay were changed to 5, and the number of brokers are kept the same. Fig 

11(B) shows that the number of secret shares per interaction was significantly 

decreased compared to the case in Fig 11(A). For the same α value of 0.5, the 

case in Fig 11(B) exhibited 939 secret shares generated on average for each 

interaction. This was a 99% decrease of secret shares compared to the case 

where the 400-node overlay had a node fanout of 2. 
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Figure 12) The CDF of secret shares generated per interaction that 

randomly takes place on a 400-node pub/sub broker overlay. 
 

We also measured the proportion of the secret shares in the data received at the 

subscriber end. Since we did not know exactly what content was exchanged 

during the interactions, we could only assume the content was of a certain size. 

Suppose the average volume of the content per interaction was 1MB. There 

were a total of 1.4 million interactions over the month in the previous example. 

Therefore, the total throughput over the month was 1.3 TB/month when our 

scheme was not applied. With our scheme enabled on a network of 400 nodes 

with α = 0.5 and node fanout of 5, the monthly throughput of secret shares 

would be approximately 144 GB/month. Hence, the secret share traffic would 

constitute 11% of the total throughput. This proportion can be a useful indicator 

of how costly our scheme can be. In order to reduce the proportion of the secret 

shares, we can refresh the secret key less frequently than refreshing the key for 

every single message. In Fig 12, the key refresh rate was set to where m is the 

number of messages ranging from 1 to 10. With the key refresh rate of 0.1 and all 

other settings kept same as the previous example, the monthly secret share 

traffic throughput was reduced to 39 GB/month. The traffic was reduced by 

79% compared to the case where the key refresh rate was 1. With a lower 

refresh rate, the overlay becomes more vulnerable to the compromise of secret 

keys. However, the performance overhead could be greatly reduced. This is a 

simple approach of dealing with the trade-off between the performance and 

reliability. 
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Figure 13) The effect of varying secret key refresh rate. 
 

Another adaptation technique is to place an out-of-band repository for the 

secret shares used by multiple subscribers. By using this technique, the secret 

shares could be significantly reduced compared to the scheme of sending the 

secret shares in-band, as shown in Fig 12. However, this adaptation technique 

has different security and reliability implication as mentioned earlier. 

 

THE EFFECT OF BYZANTINE BROKERS 
In this section, we show how many re-transmissions can occur under the 

presence of Byzantine brokers that are randomly chosen from the nodes on the 

broker overlay network according to the Zipf distribution. We varied the degree 

of clustering of the Byzantine brokers by varying αwhich determines the 

skewness of the Zipf distribution. The higher the α gets, the closer the Byzantine 

brokers by varying αwhich determines the skewness of the Zipf distribution. 

The higher the α gets, the closer the Byzantine brokers are clustered together. 

Similar to the previous test cases, we randomly placed the specific SNS users on 

the pub/sub broker overlays according to the Zipf distribution controlled by the 

value c. We assumed that Byzantine brokers drop messages in order to violate 

the reliable delivery requirement. We also assume that the failure detection and 

failover mechanism was not enabled. Given this setting, we replayed the 

interactions on a 400-node broker overlay with a node fanout of 5, and the 

result is shown in Fig 13. 
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The first thing we observed is that the increase of re-transmission is not 

proportional to the increase of the number of Byzantine brokers. This is because 

a broker may sit on the intersection of multiple end-to-end paths between 

specific SNS users. Therefore, even a small number of Byzantine brokers can 

affect the pub/sub interactions significantly. When the specific SNS users are 

far apart from each other, there is a higher chance of Byzantine brokers 

intersecting on different end-to-end paths. However, in a number of cases, re- 

transmission occurred the most frequently when the Byzantine brokers were 

moderately dispersed at α = 1. This was because the brokers closer to the core of 

the overlay network were chosen, thus affecting relatively larger numbers of 

intersections. The total number of re-transmissions was higher than the number 

of total interactions we replayed. For example, with α = 1, c = 0.5 and f = 15, the 

number of required re-transmissions exceeded 2.5 million. This indicates that 

more than one broker along the end-to-end paths between the specific SNS 

users failed during an interaction. From this experiment, we can see that a small 

fraction of the brokers can affect the pub/sub overlay and the running services 

significantly. In order to prevent this, a prompt detection of the Byzantine 

brokers and failover mechanism should be devised. However, perfectly 

detecting a Byzantine broker is not practically feasible. A viable solution is to 

force the brokers to replicate the received piece of content further down the 

path as secret share is split further down the path. However, the content can be 

much larger than the secret shares. Thus, the traffic increase caused by this 

solution can be impractical. Hence, a new solution that addresses the trade-off 

between an imperfect failover mechanism and the rigorous replication scheme 

is needed. We plan to develop this solution in the future. 
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Figure 14) The number of re-transmissions under the presence of Byzantine brokers. 

 
RELATED WORK 

In this section, we survey how the existing works address the problems with 

regards to the reliability and confidentiality for pub/sub messaging through the 

broker overlays. We present novelty of our work by making comparisons to 

these state-of-the-art works. 

Gryphon [33] is a pub/sub system that maintains multiple redundant overlays. If 

failures occur on an overlay, publishers and subscribers make transition to a 

backup overlay. Gryphon guarantees exactly-once delivery. However, Gryphon 

requires over-provisioning of resources for the backup overlays that can be 

under-utilized most of the time. In contrast, Yoon et al. devised a technique 

to replicate a faulty broker on demand [24]. Upon dynamic replication of a 

broker, publication delivery can be resumed in various ways to satisfy diverse 

functional and non-functional requirements. This work also supports 

exactly-once delivery and per-publisher FIFO ordering. However, this work is 

mainly focused on replicating a single faulty broker. In [34], Kazemdzadeh et 

al. devised a pub/sub system where each broker has configurable visibility of 

its neighbors. For example, if the visibility is set to 3, a broker can access the 

state of the neighbors that are up to 3 hops away. In this system, a broker 

can adaptively establish a soft link to bypass multiple faulty brokers that are 

within its scope of visibility. 
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However, the last two aforementioned works [24, 34] do not support 

confidential delivery of publications. Therefore, they cannot prevent unwanted 

subscribers from receiving and disclosing the content of the publication. Our 

pub/sub system executes secret forwarding technique in order to conduct 

confidential delivery as well as reliable delivery. Similar to the work in [24], our 

pub/sub system is based on overlay that can elastically grow and shrink as 

oppose to over-provisioning redundant overlays such as the systems in [33, 34]. 

Note that our work is more advanced than the pub/sub system in [24], as our 

pub/sub system can tolerate more than one faulty brokers. 

A few existing pub/sub works protect confidentiality of the contents in the 

publication using access control mechanisms. For example, Gryphon provides 

the access control scheme for limiting who may publish and subscribe to 

portions of the information space. EventGuard [35] supports access control as 

well. EventGuard assumes a threat model where routing brokers can eavesdrop 

and drop or flood messages while publishers and subscribers are reliable. 

However, these works do not address the case where multiple Byzantine 

brokers collude each other to disclose private contents in publications. Our 

system prevents such case by enforcing secret sharing scheme on the brokers. In 

[36], role-based access control is used to enforce access control transparently 

among the brokers and clients. However, this work trusts the brokers to act 

correctly, whereas we account for the case where a broker can be Byzantine. 
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Another line of work for protecting publication confidentiality uses 

cryptographic techniques for encrypting publications. Since the publication is 

encrypted, even if malicious brokers or unintended subscribers receive the 

publications, they cannot disclose the confidential content unless they possess 

a decryption key. However, this method faces a non-trivial dilemma to resolve. 

Although this method may prevent data leakage to a certain degree, it makes 

content-based routing challenging as examining the actual content is not 

possible with encrypted contents. In order to solve this dilemma, Nabeel et al. 

[37] derived a set of attributes from the content of the publications and ran the 

matching algorithm over these attributes instead of the encrypted payload. 

Also, Nabeel et al. used homomorphic encryption techniques to execute the 

matching operations over the encrypted publication content without the need 

of decryption. The result of matching using this method is ensured to be 

consistent with the methods of matching over the non-encrypted publications. 

In [38], Choi et al. focused on reducing the performance overhead of matching 

homomorphically encrypted publications against subscriptions at the brokers 

using a scalar product preserving transformation. However, this line of work 

requires the publishers and subscribers to contact each other in advance to 

exchange decryption keys through out-of-band channels, similar to the work 

presented in [39]. Unlike our approach, this breaks the unique nature of pub/sub 

that the clients are normally decoupled in time and space [1]. These works do 

not address the case where the broker with homomorphic matching capability 

suffer crash failure. Our pub/sub system is tolerant to crash failures, since our 

system dynamically adds brokers to the virtual nodes on demand. Our system is 

orthogonal to these secure content-matching techniques. 
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In [40], shared secret is proposed to protect the authenticity, integrity and 

confidentiality of publication from the untrusted brokers and subscribers. 

However, this work is based on a centralized security infrastructure that 

manages the shared secrets. This centralized approach can limit the scalability of 

pub/sub systems. Moreover, the centralized security manager can become a 

single point of failure. Our work does not assume any central repository for 

storing shared secrets. In our pub/sub system, secrets are forwarded through 

the pre-deployed distributed brokers. Therefore, there is no need to introduce 

additional infrastructure to manage secrets. Our work also protects secrets 

even in the case where multiple Byzantine brokers reside along the publication 

propagation paths, through iterative secret propagation technique. 

So far, we learned that state-of-the-art works have applied conventional 

security techniques such as replication, access control and encryption to 

pub/sub systems. However, to the best of our knowledge, none of the existing 

works addresses the case where decryption keys can get compromised by the 

Byzantine brokers, which is a serious threat to the secure delivery of private 

publications. Also, oftentimes, these existing works rely heavily on expensive 

synchronization mechanisms and centralized coordinators, while our work 

exploits distributed brokers. None of the existing works tackle the case where 

more than one Byzantine brokers reside along the publication propagation 

paths. We apply the iterative secret propagation technique to delivery secrets 

securely through the publication delivery paths. While the existing works focus 

solely on the security issues, our work provides a framework that helps the 

administrators to devise the best custom policy for striking the balance between 

security/reliability and performance/efficiency requirements. Most of the 

existing works assume over-provisioned redundant broker overlays that cannot 

flexibly grow and shrink. Our work employs the technique of replicating and 

consolidating brokers on demand based on configurable security and 

performance requirements. 

. 
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CONCLUSION 

On pub/sub broker-based overlays, we applied the secret forwarding method to 

broker replicas in order to ensure reliable and confidential delivery of encrypted 

content and decryption keys. Our method is tolerant to the presence of 

Byzantine brokers along the delivery path of publications as long as more than 

half of the broker replicas on each virtual node at every end-to-end path are 

non-Byzantine. Secret keys are split further at every virtual node down the 

publication delivery path. This method is proven to prevent the situation where 

Byzantine brokers can collude to reconstruct the secret key for decrypting 

confidential messages. This method also prevents publication message drops by 

the Byzantine brokers. We assessed the performance implication of our scheme 

on a PADRES pub/sub broker overlay and discussed several adaptations to our 

scheme. In addition to the secret forwarding technique, we addressed the 

efficient usage of resources by devising a framework to place broker replicas 

strategically on different parts of the overlay according to reliability and 

performance requirements that are configurable. We also implemented a non- 

disruptive protocol for detaching and attaching broker replicas to realize any 

update to the placements of broker replicas. 
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