
CADUCEUS
WHITE PAPER

The world’s first decentralised edge rendering metaverse protocol

June 2022

W
W

W
.C

AD
UC

EU
S.

FO
UN

DA
TI

ON

©Caduceus Foundation 2022

1. Abstract

Since blockchain came into existence, several distributed ledger technologies have been

developed for various purposes. Starting with the basic architecture, several modified

versions such as Ethereum Virtual Machine (EVM), distributed hash table (DHT), Time To

Live (TTL), decentralised applications (dApps) etc have entered the blockchain ecosystem.

However, as with every new technology, blockchain comes with unique challenges and

technical issues. Mining is a widespread challenge limiting the usage of blockchain

technology and posing a problem in the way of decentralisation because it heavily

consumes both time and energy.

In this paper, we introduce an improved approach that solves multiple issues and

eliminates the need for mining while maintaining all the benefits of blockchain

technology, and also makes the development and usage of blockchain easier, more

convenient and more effective. That's what Caduceus Metaverse Protocol is all about.

2. Introduction

Caduceus evolves the open source software paradigm by implementing blockchain

alongside its rich library of components - this facilitates the building of highly performant

Metaverse infrastructure that is trustworthy, efficient, secure and dependable. Caduceus

provides numerous essential infrastructures for the metaverse.

Caduceus provides the metaverse with fund security, NFT asset security, user 5

privacy security, trusted transactions, automatic settlement, token ecological

incentives, and DAO user autonomy through a high-speed, scalable blockchain

network.

Caduceus provides decentralised cloud computing support for the metaverse

through a massive distributed IPFS storage/GPU cloud rendering/SWAN custom

network.

Caduceus provides the metaverse with a blossoming device ecology through the

advanced XR Glass open-source hardware solution, lowering the hardware

threshold and increasing device penetration.

Caduceus connects blockchain seamlessly through SDK, providing interfaces and

tools for NFT art creators and application developers of the metaverse.

Caduceus enhances user experience and lowers user threshold through a 3D OS UI

system, providing a user-friendly interaction portal for the metaverse.

3. Overall Structure

3.1 Logical Structure

The Caduceus Metaverse Protocol ecosystem main elements are:

Management Platform: a management platform for blockchain, including chain

management, block information retrieval, visual monitoring and other functions.

Smart Contract Development IDE: an online development environment for smart

contracts. All contract languages supported by the Caduceus Metaverse Protocol

can be developed, compiled, and debugged on this IDE.

Command Line Tools: Caduceus Metaverse Protocol provides a wide range of tools

to facilitate user command line deployment and management operations on the

chain, such as certificate generation, chain configuration, rapid deployment.

SDK: helps users communicate with the chain through RPC and complete

functions such as contract creation, invocation and chain management.

Gateway Node: also known as the Protocol Converter, used to handle the

communication protocol between external services and the blockchain, data

format or language differences.

Verification Node: performs transaction preprocessing, verifies the signature and

legitimacy of the transaction, and converts the transaction into a read-write set.

Consensus Node: participates in consensus voting, transaction execution, event

verification and accounting.

Sync Node: also called Witness Node, the job of this node is to synchronise and

verify blocks, execute transactions, and record complete ledger data; it does not

participate in consensus voting.

Light Node: synchronises data from Consensus Nodes, verifies data validation,

filters and stores transactions belonging to the same organisation. It does not

have the function of receiving transaction requests or broadcasting transactions.

Storage Node: Distributed file storage node. For some special business needs,

each file will be cut into 4K file fragments, and then stored in different nodes.

Storage Service: Caduceus Metaverse Protocol supports the storage of large files

such as videos, audio, pictures in the blockchain network.

Normally when building a chain, the number of consensus nodes to be deployed should

fulfil the consensus algorithm requirements, as for whether to add more consensus

nodes or synchronisation nodes, this should be decided according to specific business

needs.

Figure 1: Logical Structure

3.2 Core Process

The event processing flow is as follows:

Receiving Transaction: The source of transactions in the transaction pool is either:

a. Clients (submitted by a client), or

b. Other node(s) (broadcasted by another node). Transactions submitted by

clients need to be simulated by the verification nodes.

Then all transactions (from both client and other nodes) and result sets get

stored in the transaction pool.

Proposing Event: The proposing node then uses the core engine to select a batch

of transactions, asynchronously verifies the transactions and result sets in

batches, generates an event, then sends the event to the consensus module.

Management
Platform

Contact
Development IDE

Command
Line Tool

Video Storage
Service

Audio Storage
Service

File Storage
Service

Picture Storage
ServiceSDK

Gateway Node Gateway Node

Verification
Node

Verification
Node

Verification
Node

Verification
Node

Verification
Node

Sync Node Consensus Node Consensus Node

Consensus NodeConsensus NodeLight Node Storage Node

Storage Node

Broadcasting Event: The consensus module then broadcasts the proposed event

through the P2P protocol to other consensus nodes.

Receiving Event: Every node that receives the broadcast event then executes the

witness algorithm on the event; every witness in Round R + 2 will collect votes

from Round R + 1; witnesses in Round R + 2 that strongly see witnesses (Events)

of Round R + 1 can also strongly see events that are witnesses of Round R + 1. If

the number reaches the requirement of an absolute majority, the event is

confirmed immediately, reaching the consensus of the entire network and cannot

be changed.

Forming/Shaping Block: Based on the transactions information in the event, a

block will be formed.

Performing transactions in batches: Based on the transactions in the block, verify

the transactions and result sets in batches asynchronously, and analyze the

transactions Directed Acyclic Graph (DAG); asynchronously write read-write sets

into the global database.

Figure 2: Core Process

Client

Submit Transaction

RPC Server
Submit

Transaction
Execution

Verification Node

Virtual Machine

Contract Engine

Other Nodes

Broadcast Transaction

P2P

Transaction and
Read-write Set Transaction Pool Trigger Transaction

Packaging

Core Engine

Transaction
Packaging

Asynchronous
Batch Verification

Asynchronous Batch Verification

Event
Proposal

Event

Consensus Engine

Broadcast Consensus
Proposal Event

P2P

Broadcast Consensus Proposal Event

P2P

Consensus Node

Contract Engine

Receive and Verify
Candidate Events

YES
Passed

Verification?
Passed

Consensus?

NO
Throw
Away

YES

Event Placement

Consensus Event
Storage

NO

Throw AwayTrigger Verification
Engine

Batch Transaction Execution

Analyzing Transaction DAG

Batch Write Transactions to
the World Database End of

Execution

Forming Block

Consensus Node

Consensus Node

Verify Transaction and
Read-write Set

Consensus Node

Verification Node

Time Verification

Double-spending
Verification

Read-write Set
Verification

Signature
Verification

4.Core Features

4.1 Autonomous and Controllable Underlying Platform

Original blockchain underlying technology architecture with deep modularity,

assemblability and high-performance parallel execution.

4.2 Flexible and Ef cient Assembly Mode

Deep modularity. Different modules and components can be selected according to the

user's needs to quickly assemble a customised blockchain system. Pluggable, detachable

and autonomous core framework that has the ability to quickly access the underlying

modules/single customised development modules.

4.3 International Advanced Processing Performance

Transaction processing is parallelized to the fullest extent, and the peak transaction

processing speed of a single chain can reach 100,000 transactions per second. Memory

based data systems are supported, improving processing performance for transactions.

4.4 Standardised Open Ecosystem

Adopting user-friendly open-source agreements and open software source code.

Promoting the standardisation of multiple technical systems, establishing a

standardised development ecosystem.

4.5 Complete Integrated Set of Convenient Support Tools

Support for large screens, charts, various forms of interface interaction

management, monitoring, operations and maintenance.

Support for Java, Golang and JavaScript blockchain SDKs.

Support for various implementation methods such as customized deployment and

BaaS.

Friendly and convenient online smart contract development environment.

Supports rich set of mechanisms for processing blocks, transactions, subscriptions

and event monitoring

4.6 Abstract and Uni ed Execution Flow

The overall processing of every blockchain implementation varies greatly. In order to

assemble all kinds of blockchains’ protocol requirements, Caduceus Metaverse Protocol

needs to reasonably abstract the overall execution process of the blockchain and combine

modules based on this general process. The Caduceus Metaverse Protocol will also

consider increasing the flexibility of the overall process to support more abundant

blockchain settings.

4.7 Deep modularity

Caduceus Metaverse Protocol not only requires complete independence of blockchain

module functions, clear interface definitions, pluggable replacements, but also complete

virtualization of communication between modules, which can support calls from

functions, inter-process communication (IPC) to various network communication

protocols and other different implementation modes. This makes it possible to assemble

and combine convenient and free modules.

4.8 Comprehensive Supporting Protocol and Assets

The Caduceus Metaverse Protocol fully supports the asset agreement of the existing

public chain, such as:

ERC20: (A Fungible Token or FT) The unit value of all tokens is the same and can be

divided.

ERC721: (A Non Fungible Token or NFT) Each token is different and has its own

unique properties and value. Of course, this also means that they are both

indivisible and traceable. Caduceus Metaverse Protocol Supports the creation of

new native NFTs or imports existing NFTs from external chains. Governance

enables platform stakeholders to vote on the direction of the chain and the

infrastructure. Caduceus Metaverse Protocol will be bound by a governance plan

specifically designed to recognize its nuances.

ERC1155: Uses a new method to define tokens. Items are stored in a central

smart contract, which takes up very little space and is only used to distinguish

each other. It supports batch transmission of multiple token IDs in a single

transaction. Any token can be merged into a single ‘Token Package’, which also has

its own independent ID.

ERC998: (A Composable NFT, or CNFT) It is an extension to the ERC-721 standard

that adds the ability for non-fungible tokens to own other non-fungible tokens and

ERC-20 tokens. Non-fungible tokens that implement ERC998 also implement the

ERC-721 standard.

4.9 The Core Application:

4.9.1 Decentralised Storage

Caduceus Metaverse Protocol is committed to developing new underlying technologies to

help provide solutions for data storage (Distributed Storage). This solves issues raised by

existing centralised storage. With distributed storage systems, there is no need to reply

to a large number of centralised data islands; nor do these data islands undermine

important values such as privacy and freedom of information.

The application is a decentralised storage network based on an InterPlanetary File

System (IPFS). It is the only incentive layer on IPFS. A token is issued, based on blockchain

technology. Miners can obtain tokens by providing storage and retrieval services for

customers, and customers can compensate miners by spending tokens on the storage or

distribution of their data.

The IPFS is a protocol and peer-to-peer network for storing and sharing data in a

distributed file system. IPFS uses Content-Addressing to uniquely identify each file in a

global namespace connecting all computing devices. Content-based addressing allows

customers to access specific data based on its unique fingerprint. No matter where this

data is stored, if the customer has a unique fingerprint of it, they can get its content. In

the content-based addressing mode (within the concept of IPFS), content is no longer

obtained through a single address on the Internet. Instead, it can be obtained from any

specific IPFS network node that stores the content requested by the customer.

Fragments of the content are shared by many participants and can always be obtained

from a single node as a whole – such as through the pinning service node, or collected

and compiled from multiple nodes.

The Caduceus Metaverse Protocol implements a new type of storage proof. Storage 13

miners need to prove to the verifier that they store the corresponding data on a specific

device, instead of storing multiple copies of data on one device, effectively preventing

Sybil attacks, Outsourcing attacks and Generation attacks. With the combination of

timestamp technique, proof that the miner stored data for a given period of time is

obtained. Even if, at some point in the future, the user is not online, the time and space

proof can be used to verify the data stored by the miners during that period.

The fastest growing content category in the crypto world is that of NFTs. However, NFTs

have begun to be used as a research object for usability and sustainability issues, all of

which can ultimately be attributed to the field of content addressing and sustainability.

When we discuss the minting and trading of NFTs, we actually mean the changes in the

records behind the artwork (or other asset). The content and metadata of this artwork

(colour, shape, sound, etc) does not automatically exist on the blockchain. ‘Content’ refers

to the picture itself. ‘Metadata’ refers to the CID identification number that describes the

text/artist information/real content, etc. If the content and metadata of the NFT is not

reliably stored, it will expose many problems in the addressing and sustainability of the

NFT. The decentralised storage of the Caduceus Metaverse Protocol can solve the

addressing problem of NFTs, and the incentive mechanism of the Caduceus Metaverse

Protocol encourages global storage space providers to continue to store NFT content and

related metadata for extended periods.

4.9.2 Analysis of Caduceus Decentralized Edge Rendering Technology

Caduceus decentralized Edge Rendering is a remote service that provides computational,
rendering, application, and display capabilities for Metaverse and Web3 in the decentralized
cloud.

Decentralized Edge Rendering technology is still an emerging sector and rapidly growing,
most widely used in the fields of gaming, teaching, medicine, and defense. There is an
ongoing trend to replace traditional rendering technology with Decentralized Edge
Rendering because of its multiple advantages, including fast deployment, easy
management, high maintenance efficiency, safety and reliability, and lower energy
consumption than the traditional rendering technologies.

Decentralization itself is a structure that occurs only in systems with many users or nodes
dedicated to similar tasks. Technically speaking, every user or node is at the center, and
everyone can connect and influence other nodes within the group. This technology system
or structure of flattening, open-source, and equalization is called decentralization. It allows
for the formation and relationship of content and data processing, and brings with it a new
type of network content production innovatively and complimentary to traditional
centralization.

Caduceus combines the core technologies of cloud computing, cloud rendering, and cloud
storage, with decentralization technology that tackles high-performance demands.
Caduceus’ cloud edge rendering transmits video back to users and leverages streaming
techniques that create new visual experiences and business opportunities from gaming
through to video editing.

The edge cloud servers bring unparalleled scaled computing and image processing, which
allocate and optimize application resources through virtualization technology. They also
provide the application programs and rendering results required by users in the form of
PaaS and SaaS. The PaaS provides the cloud function of customer applications, which can
offer online rendering and experience services for more users, while the SaaS can render the
output online for the final customer.

The following diagram is a schema of computing and distributed rendering that
represents the bespoke development Caduceus has designed. This solves interactions
with real-time data �ows, including large quantities of calculations, which are some of the
challenges in the gaming space:

The design of Caduceus’ Decentralized Edge Rendering Technology is divided into �ve
parts:

 • Edge service framework
 • Network protocol
 • End-to-end interaction engine
 • End-to-end scheduling system
 • Application development tool chain

The edge service framework, network protocol, and interaction engine are shown in the
�gure below. These are responsible for the frame service capabilities of edge nodes,
protocol processing of network communication, and terminal interaction and the
rendering engine itself. The edge scheduling system intelligently balances edge node
computing power with the user’s local rendering capabilities in order to schedule
rendering service processing between the user terminal or at the edge node.

VR RENDERING

CLOUD GAMING 6 DOF

GAME ENGINE RENDERING
SERVICE

SESSION
SERVICE

STREAMING
SERVICE

NETWORK PROTOCOL

EDGE NODE

INTERACT
IVE CMD

LIVE STREAM

INTERACTIVE APPLICATION

VIEW CONTAINER

INTERACTIVE
PROCESSING RENDERING

NETWORK PROTOCOL

USER TERMINAL

CDN Node

Transcoding Service Safe Distribution Service

Media Storage

Edge Node
Player

Dispatch Centre

Caduceus has self-developed a secure and e�cient image transmission protocol to
enhance the network optimization usage of cloud edge rendering. These enhancements
include image information cache matching, adaptive video compression, intelligent
transmission �ow control, zero bus peripheral mapping and �ne-grained transmission
channels.

Here is the performance comparison between decentralized edge rendering and
traditional rendering:

At present, the advantages of Decentralized Edge Rendering are:

1. Comprehensive enterprise end experience

 • A digital graphical workspace that’s available anywhere to enhance mobile
 productivity
 • Enhance the experience, whether visual or digital, with zero downloading and
 high rendering quality
 • Protect critical assets, secure access, developer, creator and user can fully control
 the ownership of their assets
 • Simplify IT - centralized operation and maintenance of hardware assets
 • More environmentally friendly.

2. Ability to quickly build basic services

 • Cloud 3D/VR streaming for gaming or metaverse
 • Cloud host video and video editing
 • Cloud distribution
 • Cloud rendering(such as: 3D-design, industrial-design, physical-simulation)
 • Cloud Personal Computer
 • Publish dynamic content(such as:providing graphic and video services) for Web3.0

3. Application opportunities

 • There is a huge amount of data transmission and processing in scenarios such as
 industrial internet, autonomous driving, smart transportation, cloud gaming, and VR/AR.
 • Decentralized Edge Rendering brings together ultra-low latency, massive data
 processing, edge intelligence, data security, and cloud collaboration. These are just
 some of the factors that drive businesses to enter the edge rendering space.
 • If decentralized edge rendering technology is not adopted, not only does the
 bandwidth cost remain high, but also the extremely high demands for
 ever-increasing GPU scaling continue to be di�cult to meet.

5.Core Engine

5.1 A Brief Description

The core module (core engine) is responsible for event creation, verification and 14 15

submission processing.

● Event Packaging needs to interact with the consensus module and the TxPool

module, and trigger operations based on the current latest event and the

preconditions (current) of the packaging.

● Transaction Scheduling: Responsible for calling the smart contract execution of

the transactions which are waiting for Event Packaging. If a transaction is found to

have a read-write set conflict, it will be rescheduled according to the rules,

returning the transaction execution result and transaction execution order (DAG).

At the same time, the module supports the specified DAG, executes the smart

contract and obtains the transaction execution result, which is used for validity

checks.

● Event Verification: after the node receives the Event that was received by the

consensus or synchronisation module, the engine verifies the legitimacy of the

Event. For details of the verification, please refer to the Process Description

section.

● Event Submission: After the consensus or synchronisation module confirms that

the Event is legitimate and has completed the voting process (required for

consensus), the Event and the read-write set of the Event are recorded in the

ledger database. Once the submission is successful, the latest Event information is

updated to the ledger cache (ledger module), then the event of the new Event (the

one just recorded to the ledger) is notified to the consensus, synchronisation and

message subscription modules.

5.2 Process Description

5.2.1 Event proposal

1. Determine whether the current node is the proposer node (by obtaining

notification 16 of the consensus module through the

OnReceiveProposeStatusChange method and change the proposer status of the

core engine).

2. Trigger Event Packaging

a. Based on Reentrant Lock concurrency control, only one thread performs

event packaging task execution.

b. Triggering mechanism includes: the proposer's timeout or the size of the

TxPool module exceeding the threshold.

c. Determine whether the event can be packaged, if it passes, go to step 3:

i. Confirm again that this node is the proposer.

ii. Determine that at this stage the block is not being packaged and the

proposal block is not yet in the settled status.

3. Event Packaging

a. Determine whether this node has already proposed the event at the height

of this event. If the event has already been proposed, it won't be packaged

again, but it will be voted on for consensus repeatedly.

b. Get a batch of transactions from the transaction pool.

Determine whether the ledger already exists or the obtained batch

contains duplicate transactions and de-duplicate them if there are any.

Following deduplication, if the transaction set is empty, stop packaging.

The verification node executes the transaction through the TxScheduler

smart contract, and obtains the execution result of each transaction

(including the read-write set).

Based on the result of the smart contract execution, the event gets

packaged 17 along with the event transaction number, the event TxRoot,

the event DAG hash and the event read-write set hash.

If the previous event is a configuration block, modify PreConfHeight to the

height of the previous event and associate the configuration event.

When the event packaging has completed, the current proposed event is

cached and the consensus module is notified.

If, while packaging, the proposer module is notified by the consensus

module that it is no longer a proposer module, the Halt method of

TxScheduler will be called to stop the scheduling execution of the virtual

machine and the packaging event will be terminated.

5.2.2 Transaction Scheduling (the TxScheduler)

Execution Simulation (Schedule)

Schedule the VM contract execution corresponding to each transaction

request and collect the result. If there is a conflict between read-write sets,

reschedule the execution (parallel execution).

If it times out or the contract scheduling ends, it jumps out of the parallel

execution logic.

Build a DAG.

Generate a read-write set map based on TxId, and return the map.

The Caduceus Metaverse Protocol implements an asynchronous

transaction execution algorithm to solve the problem of long transaction

processing time when the volume of concurrency is high. The verification

node performs transaction processing in batches according to the account

relevance of the 18 transactions. For example, when the transaction chain

comprises a -> b -> c and x -> y -> z, the root accounts a and x of the

transaction have relative independence and can be processed in batches in

the same batch. Meanwhile b and y need to be processed based on the

result sets of the parent account’s transaction.

Verify transaction and read-write set according to DAG (SimulateWithDAG)

Concurrently verify read and write sets based on the order of DAG.

If timed out or the contract scheduling ended, it jumps out of the parallel

execution logic.

Generate a read-write set map based on TxId and return the map.

5.2.3 Event Veri cation

In the MetaverseGraph(mGraph), we use Event to record transaction information.

Event is a data structure similar to the block in the traditional blockchain world.

Usually, each node will create Events that contain four elements: transaction set,

timestamp and two parent hashes. Every node that receives the Event will sign it,

repackage its hash into a new Event and resend it to the network. When a node

receives data containing new transaction information, it will combine them and

possibly add transactions that it knows to the new Event.

Every node in the MetaverseGraph(mGraph) will try to sort out the order of the

blocks. At this time a node will initiate a consensus proposal for itself; for example:

‘check whether block a is earlier than block b’, then the node will follow the

hardcoded logic and rules according to the hashmap saved by the node itself to

perform vote-counting and consensus calculations from the perspective of each

known node. The consensus here is asynchronous, which means that each node

will 19 initiate a virtual vote at different points in time, make a decision, and

assume that this proposal will obtain the same decision (consensus) in the entire

network.

Accept and process the received event information.

Create a new event and point to its last event and the last event of the

node that sent the event to this node (gossip node).

Assign all known events to create a round and determine whether the block

is a witness in the round.

Vote for all known witnesses blocks and calculate results to decide whether

they are famous witnesses.

Determine the consensus sequence of all blocks through famous

witnesses.

5.2.4 Transaction Veri cation

The DAG blockchain technology supports high concurrency, combined with a two

layer consensus mechanism and uses a proof-of-work consensus algorithm. In

addition, it can also prevent ‘The Double-Spending Problem’.

Data is not strongly synchronised as with Bitcoin and Ethereum, but weakly

synchronised, allowing nodes to have different data at the same time (the

data can have some slight differences).

Transactions can confirm the reference between data units, that is, the unit

that occurs later refers to the previous unit. This way there is no need to

pass the data to miners. The whole process is completed automatically,

and quickly..

Let's look at how DAG prevents ‘the double-spending problem’. In Directed

Acyclic Graph (or DAG), if a mainchain can be selected, all the nodes in the

20 DAG can sort this mainchain by connecting the serial numbers in a row.

This will make this graph similar to blockchain in structure (sequential

structure), that is: sorted events and each event is a transaction, not a

block. Therefore, the mainchain is determined and the total sequence can

be formed through the mainchain. The result is, in some logical states, the

transactions are still sorted, which is the most critical core of DAG.

High-speed writes to the blockchain asynchronously in units of transactions in the

traditional blockchain. The problem when making consensus, is that it needs to be

built block by block. Before generating a block, all transactions need to be put in a

Transaction Pool; the miners will pick transactions from the Transaction Pool to be

packaged and then be able to create a block and add it to the blockchain. When

generating blocks from transactions in the Transaction Pool, if no new blocks are

mined and broadcast, these transactions are unconfirmed. This is a blocking write

queue, which is a blocking issue.

The book-keeping unit became more fine-grained, the book-keeping unit is

not the block, it is the transaction. A transaction will be written

immediately as soon as it happens, which is much faster than the

traditional model of waiting for the block to be mined and then written.

DAG brings into play the ability to use P2P Mutual Verification in wallet

clients – this verification is parallel. Hypothetically, if, there were 10,000

transactions happening at the same time, they can go through 10,000

relational verifications between them. If this number is producing forks,

there will be, at the same time, different wallets book-keeping different

transactions into different forks. This leads to a problem – it can only be a

partial order, not a total order. To obtain a total order, the mainchain needs

to be determined. 21 Currently DAG-based projects such as IOTA and

Byteball have their own way of determining the mainchain. Therefore, DAG

book-keeping writes down the data, without checking for double-spending.

In fact, a certain percentage eg: 1% of double-spending can be known,

enduring double-spending for 2-3 seconds, then determining the

mainchain, as soon as the mainchain is established, the double spends can

be removed. Before the mainchain is determined, it is a parallel verification

operation and it is placed on the data structure in parallel and then the data

structure is checked to extract bad transactions. So DAG writes to the

blockchain asynchronously in units of transactions.

5.2.5 Event Submission

Obtain the proposed event from the cache. If it does not exist, it means that the

event has not passed strict verification and cannot be submitted.

Perform simple verification on the event to be submitted, including pre-hash and

the hash of the event itself.

Call the storage module interface, save events and read-write set data, if it fails,

panic.

Clear cache data, transaction pool data and snapshot data.

If it is a configuration block, notify the chain configuration (chainconf) module.

Synchronise the latest block to the consensus, synchronisation and message

subscription modules through msgBus.

6. Smart Contracts

In order to build a DAPP ecosystem based on the Caduceus Metaverse Protocol’s leading

high availability, high security and high TPS system, the Caduceus Metaverse Protocol will

build the DAPP ecosystem based on the side chain, lowering the threshold of the DAPP

construction through its own side chain and significantly lower the product development

threshold through the provided open smart contract templates, the open source

front-end module and the Bass/Fass platform. In the DAPP ecology, the XYZ chain is

committed to building a three-layer ecosystem, which includes: the underlying P2P+

network, MetaverseGraph(mGraph), and the phenomenon DAPP side chain. Caduceus

Metaverse Protocol does not encourage the development of a large number of projects

that cannot demonstrate real applications for blockchain, but it does encourage three

types of project:

1) Projects that aim to transform the centralised internet products and services into

decentralised DAPPs;

2) Projects that demand the transformation of their corresponding decentralised

token economies to DAPPs;

3) Projects that aim to innovate and replace the traditional 5G, VR, AR and AI

applications. Caduceus Metaverse Protocol is committed to building a universal and

practical token economic and commercial platform. The vision for the Caduceus

Metaverse Protocol is to facilitate the development of DAPPs which reform the

internet’s pre-existing product models and rethink user needs and experience.

6.1 Contract Classi cation and Execution Process

The Caduceus Metaverse Protocol can run smart contracts based on WASM and EVM, in

addition to multiple built-in system contracts. Smart contracts support user-oriented

programming capabilities on the blockchain, while system contracts provide the

necessary 22 23 conditions for the management and configuration of the Caduceus

Metaverse Protocol's blockchain.

When a transaction is executed in the contract module, first decide whether to

hand it over to the smart contract or the system contract for execution based on

the name of the contract.

Before the smart contract is handed over to the smart contract engine for

execution, it will go through a series of parameter verifications. These verifications

include: bytecode, version, contract calling method name, contract calling

parameters, and contract engine type.

When the smart contract execution engine is started, the bytecode, version,

contract call method name, contract call parameters will be parsed and serialised

into the data required by the smart contract execution engine and the data will be

copied to the smart contract engine.

During the execution of the smart contract execution engine, it will execute

according to the above information and return the contract execution result.

Finally, the contract execution result is handed over to the storage module.

6.2 Introduction to Contract Engine

Caduceus Metaverse Protocol currently supports four types of smart contract execution

engine:

WASMER: Supports the wasm bytecode of smart contracts generated by Rust

language, which is executed by AOT technology at runtime.

GASM: Supports the use of Go language to write contracts, uses the smart

contract wasm bytecode generated by the TinyGo compiler and uses

interpretation 24 technology to execute at runtime.

WXVM: Supports the wasm bytecode of the smart contract generated by C++

language and uses localised compilation technology to execute at runtime.

EVM: Supports the use of Solidity language to write contracts, uses the smart

contract bytecode generated by the solc compiler and uses interpretation

technology to execute at runtime.

6.3 System Contract

The current system contract includes:

SYSTEMCONTRACTCHAINCONFIG: add, delete and modify chain configuration

SYSTEMCONTRACTQUERY: query the configuration on the chain

SYSTEMCONTRACTGOVERNMENT: on-chain governance

SYSTEMCONTRACTMULTSIGN: multi-signature on the chain

6.4 Contract SDK

The Caduceus Metaverse Protocol provides an SDK for writing smart contracts in different

languages and interacting on the chain. The main interface functions provided by the SDK

include:

Read the data on the blockchain database

Write data to the blockchain database

Obtain the current transaction ID and block height

Obtain the identity information (public key, organisation, role) of the person who

created the contract 25

Obtain the identity information (public key, organisation, role) of the caller (ie the

sender of the transaction)

7. Consensus Algorithm

7.1 MetaverseGraph(mGraph)

7.1.1. Algorithm Introduction

The consensus algorithm is based on the core concepts of MetaverseGraph(mGraph),

which are as follows:

MetaverseGraph is a 3D bilayer graph structure consisting of two parallel 2-dimensional

planes.

MetaNebula - The transaction issuance graph.

MetaNeuron - The transaction validation graph. Each transaction is sorted by

consensus in MetaNebula and propagated, executed, verified and stored in

MetaNeuron. As with quantum entanglement, MetaNebula and MetaNeuron are

linked by the transaction queue number; MetaQuantum.

7.1.2. MetaQuantum

Also known as the transaction reservation number, generated by MetaNebula, which

must be non-repeatable, non-missing, non-falsifiable and non-replayable.

MetaTxNo: incremented continuously from 1. The upper limit is 2^64. MetaTxNo

cannot be repeated. For example - the MetaTxNo of two transactions cannot be

the same.MetaTxNo cannot be omitted so there cannot be other MetaTxNo

between the MetaTxNo values of two similar transactions.

MetaTxTime: The current system time (in nanoseconds) of the consensus node

when MetaTxNo is generated. MetaNebula consensus nodes need to synchronise

the time through the NTP (Network Time Protocol) to minimize the time error.

Note: This time only serves as a reference. The system is sorting the transactions

in MetaTxNo order.

MetaTxMD5: To minimise the amount of network data and storage data,

MetaQuantum does not save the original transaction content but only the 26

transaction summary. The MD5 Message-Digest Algorithm, a widely used

cryptographic hash function, generates a 128-bit (16-byte) hash value to ensure

that the message transmission is complete and consistent. The use of MD5 has

two advantages: Firstly, it can be used by MetaNeuron to verify whether the

transaction content has been tampered with. Secondly, the transaction content

can be kept private, the MetaNebula network cannot identify the transaction

content.

MetaTxSigner: MetaQuantum's issuer address on MetaNebula MetaTxSign:

MetaTxSigner uses its private key to sign the following:

List{MetaTxNo+MetaTxTime+MetaTxMD5} Since MetaTxNo is continual,

incremental, non-repeatable and non-missable and the content of MetaQuantum

needs to go through MetaNebula for consensus, it cannot be tampered with nor

forged. Furthermore, a MetaTxNo can only correspond to one unique

transaction,so it is also non-replayable.

7.1.3. MetaNebula

Figure 3: DAG

MetaNebula is a DAG consensus network that aims to maintain MetaQuantum in a

decentralised way (As shown in Figure 3: DAG). Since the content of MetaQuantum is

straightforward and uniform, unlike blockchain smart contracts with complex data and

operations, the MetaNebula network can be made very simple and efficient. In addition,

to further improve efficiency, the Tx transaction of MetaNebula network supports batch

processing of MetaQuantum, such as generating 1000 MetaQuantum at one time, which

can increase the sorting efficiency by 2 to 3 orders of magnitude and easily reach one

million TPS.

Issuance process: The requestor generates the transaction summary MetaTxMD5

in bulk based on the transaction content + random seeds and then send it to

MetaNebula which generates List {MetaTxNo + MetaTxTime} + MetaTxSigner +

MetaTxSign back to the requestor by consensus, while saving it in the distributed

ledger with MetaTxNo as the Key and MetaTxTime + MetaTxMD5 as the Value.

Verification process: The requesting party verifies the original transaction content

and the content returned by MetaNebula with MetaTxSigner's public key and

MetaTxSigner is within the MetaNebula consensus node list. The verifier can also

verify by querying the MetaNebula transaction block content.

Network bandwidth estimation. MetaTxMD5 occupies 16 bytes, 1000 or 16KB.

MetaTxNo+MetaTxTime occupies 16 bytes, 1000 or 16KB. MetaTxSigner occupies

40 bytes. MetaTxSign occupies 64 bytes. Therefore, according to 1M TPS and

single-link transmission, the upstream bandwidth needs 16MB/s and the

downstream bandwidth needs 16.1MB/s.

Estimation of storage space. MetaTxMD5 occupies 16 bytes, 1000 or 16KB.

MetaTxNo+MetaTxTime occupies 16 bytes, 1000 or 16KB. Therefore 1M TPS

storage performance requirement is 32MB/s. Performance Scalability: To further

improve the TPS of the MetaNebula system, it can be implemented by the

following measures:1. Sharding Consensus. 2. Equalising Loading. 3. Cluster

Nodes. 4.

7.1.4. MetaNeuron

MetaNeuron is an ultra-high bandwidth P2P network with the primary goal of

broadcasting, validating, executing and storing transactions. MetaNeuron consists of two

parts: MetaAxon and MetaDendrite As shown in Figure 2:MetaAxo and Meta). MetaAxon

is located on the backbone of the global submarine fibre optic cable and MetaDendrite is

located in the data centre.

Broadcast: MetaNeuron gets the transaction data sent by the requesting party

and broadcasts it to other MetaAxons worldwide through the neighbouring

MetaAxon. 29 All MetaAxons then broadcast to MetaDendrite in the region.

Receive: The validation node pulls the transaction list from MetaDendrite

periodically according to MetaTxNo by the maximum number of transactions or by

the minimum time out of the block and packages them into blocks.

Execution: The validation node executes the following processes in parallel for

unrelated transactions from the block through the transaction parallel execution

engine. - Verify that the specified MetaTxSigner issues the MetaTxSign signature. -

Verify that the MetaTxMD5 transaction digest exactly matches the transaction

content. - Verify that the transaction initiator's signature is correct. - Verify that

the transaction initiator's NonceID is correct. - Verify whether the read/write set

conditions of the transaction have changed. - If it has changed, re-execute the

native transaction operation or call the virtual machine to execute the smart

contract and generate a new read/write. - If not changed, write the write-set to

the state database.

Verification process: To prevent the nodes of the verifier from falsifying data and

to tamper with transaction execution results. The explorer or wallet client collects

feedback from the validation nodes of the transaction and uses the number of

validation nodes that pass the validation and have the same TxHash as the

number of confirmations. The higher the number of confirmations, the more

validator nodes have validated the transaction correctly. Conversely, nodes that

intentionally validate incorrectly can be identified and rejected by the wallet node.

As shown in Figure 3:Core Process)

Votes to confirm the state

8. P2P Network

8.1 Networking Method

The P2P network of the Caduceus Metaverse Protocol is implemented and

improved based on libp2p and the network address of the node follows the libp2p

address format protocol.

Automatic node discovery and automatic connection functions can be realised

through the seed node settings. By default, each online node can serve as the seed

node of other nodes to provide network discovery services. This way, the

automatic networking mechanism of the Caduceus Metaverse Protocol is realised.

Caduceus Metaverse Protocol uses the message broadcast / subscribe function

implemented by the improved libp2p-gossip-pubsub. It can ensure that the

broadcast message can finally reach all nodes online. In the multi-chain scenario,

each chain on the node enjoys an independent GossipPubSub service and through

precise control of each Gossip routing table, the broadcast data isolation between

multiple chains can be realized, ensuring that the broadcast data is only in the

nodes in the chain. This is the certainty of spread. It is precisely this that allows all

chains of the Caduceus Metaverse Protocol to share an underlying P2P network.

The Caduceus Metaverse Protocol can theoretically realise the online networking

of tens of thousands or more nodes at the same time.

Caduceus Metaverse Protocol can provide NAT penetration, proxy forwarding and

other scenarios in complex network environment solution support.

8.2 Node Address Format Description

The Caduceus Metaverse Protocol node address follows the libp2p network address

format protocol, and the multaddr component is used to resolve the address, for example:

/ip4/127.0.0.1/tcp/6666/p2p/QmQZn3pZCcuEf34FSvucqkvVJEvfzpNjQTk17HS6CYMR35

Address starts with "/" and its segments separated by "/" with, in most cases, the

segments are as follows:

First segment: IP protocol version or DNS resolution protocol version. ip4 stands

for IPv4, ip6 stands for IPv6; dns4 corresponds to IPv4 version DNS service, dns6

corresponds to IPv6 version DNS service

Second segment: IP address or domain name, need to correspond to the first

segment

Third segment: communication network protocol, tcp is used by default

Fourth segment: listening port

Fifth segment: fixed agreement, please do not change, fixed as "p2p"

The above are just examples of node addresses in the most common scenarios. In

complex network scenarios (such as the need to use relay node, NAT penetration, etc), the

address format will be slightly different.

8.3 Network Message Data Format Description (Before Encryption)

The message data before encryption is composed of 8-bits byte indicating data length +

1- bit byte as data compression flag + actual data, for example:

[00000007801057105......80858372]

Suppose this is a network message data to be sent, where:

The first 8-bits [000000078] indicate the length of the data to be sent. When the

receiver receives the data, if the received data length is less than this value, it will

try to continue to read the data until the full length of data is received or the

reception fails.

The 9th bit, [0] or [1] is the data compression flag bit. If it is 1, the receiver will

decompress the received data after receiving the complete data to get the final

data result.

Remaining bits, [1057105……80858372] are the original data to be sent

(compressed or uncompressed data). Whether to compress should correspond to

the 9th bit compression flag. The compression/decompression is done using the

GZip toolkit.

8.4 Advantages

Link channel security: This channel provides identity verification, realises

encrypted authentication transmission and resists man-in-the-middle attacks.

Protocol multiplexing: The underlying network service can accommodate multiple

protocols running on the same connection. Peers use the names and versions they

implement to communicate protocols, the underlying services identify compatible

protocols and start peer connections on each matching protocol.

Delivery guarantee: The protocol message has a delivery guarantee, that is, a

delivery failure caused by a network problem will result in a direct error response.

The order of message delivery in each protocol is guaranteed.

Ideally, the underlying protocol provides priority: If the protocol is multiplexed on

the same transmission channel, this probably means framing so that long

messages will not block higher priority messages.

Message serialisation: The protocol message structure supports arbitrary data

structure serialisation conventions.

9. Storage Module

The storage module is responsible for storing events, transactions, ledger data and

historical read-write set data on the blockchain. When an event is submitted, these data

will be stored by the storage module.

9.1 Processing Flow of Ledger Storage

9.1.1.Event Submission and Storage Process

1. First, the serialised event data, read-write set list, and the latest event height are

written to Eventbinarylog(wal) for recovery after abnormal interruption. At the

same time, to improve performance, the cache layer is added, after the new Event

submission request has updated the Eventbinarylog, the Event data (including

Event, transaction, status data, read-write set) is written into the cache. After

updating log and cache, the background thread will update EventDB, StateDB and

HistoryDB asynchronously.

2. Record event information and transaction information in EventDB, where

transaction information is stored with TxID as the key, event information is stored

with EventHeight as the key and only the transaction ID list is recorded in the

event information. At the same time, the mapping relationship between

EventHash and EventHeight is indexed, and the latest is recorded in EventDB. The

event height 35 (LastEventHeight) is used as a checkpoint and submitted in a

batch transaction to ensure the atomicity batch processing.

3. Record the state data modified by the transaction in StateDB, the key is the

combination of the contract name and the primary key of the object: and the latest

block height (LastEventHeight) is recorded as the checkpoint, submitted in a batch

transaction to ensure the atomicity of batch processing.

4. Record the read-write set of the transaction in HistoryDB. The read-write set uses

TxID as the key and records the latest event height (LastEventHeight) as the

checkpoint, which is submitted in the form of batch transactions to ensure the

atomicity of batch processing.

9.1.2. Ledger Recovery Process

If an exception occurs in the storage of a single database during the event submission

process, the data between the databases will be inconsistent and the program will

voluntarily exit after encountering this situation. The system will then enter the recovery

process when restarting:

Get the latest event height from Eventbinarylog, EventDB, StateDB, HistoryDB and

use the height in Eventbinarylog as the reference height to determine whether

other DBs are behind the reference height.

If there are databases behind the reference height, get the missing blocks and

read-write set from Eventbianrylog and submit them to these databases in turn.

After all databases are synchronized to the reference height, the storage module is

started and the EventChain module continues to schedule other modules to

complete the startup process.

9.1.3. Ledger Query Process

The query request first queries the kv data in the cache and return on hit, if the cache

doesn't exist, then query from the database. For the delete operation, the cache provides

a mark delete to indicate that the latest key has been deleted. For range queries, multiple

pieces of data may exist in both cache and database, and data needs to be merged.

9.1.4. Ledger Database Types

Ledger database supports multiple different databases to match different business

needs:

LevelDB

RocksDB

MySQL/Distributed MySQL

10. Transaction Pool

The transaction pool module is used to store transactions received by nodes from the

network. There are two ways to receive transactions from the network: 1) Clients

(users/high-level Apps) add transactions to nodes through RPC; 2) Receive other nodes

received and broadcast through P2P that they have received a transaction. When the

transactions stored in the transaction pool reach the capacity limit, the core module will

be notified to try to generate a new Event and DAG.

10.1 Transaction Types

The transactions stored in the transaction pool are divided into two types: configuration

transactions and common transactions:

Configuration Transactions: modify the chain configuration; if the event contains

a chain configuration transaction, the event is limited to a total of only one

transaction.

Common Transactions: such as creating contracts, calling contracts and so on.

10.2 Feature Description

Start: Start the transaction pool service.

Stop: Close the transaction pool service.

AddTx: Add transactions to the transaction pool. Source is the source of the

transaction and there are three types: RPC, P2P, INTERNAL. Transactions from

different sources correspond to different checks.

RPC: The transaction from RPC does not verify the basic transaction

information (such as whether the transaction ID and timestamp meet the

specifications) because the RPC module has done such verification. The

transaction successfully added to the transaction pool will be broadcast to

other connected nodes.

P2P: Perform all verification.

INTERNAL: If a node receives multiple valid verification events at the same

height, when one of the events is on the chain, the transactions in the

remaining events of the same height will be re-added to the transaction

pool to prevent these transactions from being discarded. At this time, the

database will be used to check the existence of transactions added to the

transaction pool and transactions that are not on the chain will be added to

the transaction pool.

GetTxByTxId: Query the transaction in the transaction pool based on the

transaction ID. If the transaction exists, return transaction data and the height of

the transaction recorded in the transaction pool. There are three types of

transactions in the transaction pool:

Transactions that do not exist in the transaction pool, and the returned

height is -1.

Transactions that exist in the ordinary queue of the transaction pool (ie: the

queue of blocks to be packaged) and the returned height is 0.

Transactions that exist in the pending queue of the transaction pool (ie:

packaged but not chained transaction) and the returned height is the event

height of the exchange.

GetTxsByTxIds: A batch interface for querying transactions in the transaction pool

based on the transaction IDs;

Return value txsRet, store transaction content information, key is txId,

value is transaction content; when the transaction does not exist, value is

nil.

Return value txsHeightRet, stores the event height of the exchange, the

key is txId, and the value is the height information

TxExists: Check whether the transaction exists in the transaction pool, return true

if it exists, and false otherwise

RetryAndRemove: re-add the transaction of parameter 1 to the ordinary queue of

the transaction pool, and if these transactions exist in the pending queue, they will

be deleted from the pending queue, and the transaction of parameter 2 will be

deleted from the transaction pool. This interface is mainly called by the core

module. When a node receives multiple different events at the same height, the

transaction of the event to be chained will be deleted from the transaction pool;

other transactions that are not connected to the chain event are re-added to the

transaction pool.

Note: The internal implementation of this interface is: first add the

transaction of parameter one and then delete the transaction of parameter

two, so that even if the transaction of parameter one and parameter two

partially overlap, they will be deleted from the transaction pool eventually.

FetchTxBatch: Get a batch of transactions from the transaction pool. The

maximum number of acquisitions is the number of transactions that can be

accommodated in a single event; and the parameter is the height of the event to

be packaged. It is called by the core module and uses the acquired transaction

package to generate a new event.

When acquiring transactions, this batch of transactions will be moved from

the normal queue of the transaction pool to the pending queue.

AddTxsToPendingCache: Add the transaction to the pending queue of the

transaction pool and if this batch of transactions exists in the ordinary queue of

the transaction pool, they will be deleted from there; the second parameter is the

event height of this batch of transactions.

When a node receives a new event, after the verification is passed, the

transaction in the event is added to the pending queue of the transaction

pool.

4.9.2 Analysis of Caduceus Decentralized Edge Rendering Technology

Caduceus decentralized Edge Rendering is a remote service that provides computational,
rendering, application, and display capabilities for Metaverse and Web3 in the decentralized
cloud.

Decentralized Edge Rendering technology is still an emerging sector and rapidly growing,
most widely used in the fields of gaming, teaching, medicine, and defense. There is an
ongoing trend to replace traditional rendering technology with Decentralized Edge
Rendering because of its multiple advantages, including fast deployment, easy
management, high maintenance efficiency, safety and reliability, and lower energy
consumption than the traditional rendering technologies.

Decentralization itself is a structure that occurs only in systems with many users or nodes
dedicated to similar tasks. Technically speaking, every user or node is at the center, and
everyone can connect and influence other nodes within the group. This technology system
or structure of flattening, open-source, and equalization is called decentralization. It allows
for the formation and relationship of content and data processing, and brings with it a new
type of network content production innovatively and complimentary to traditional
centralization.

Caduceus combines the core technologies of cloud computing, cloud rendering, and cloud
storage, with decentralization technology that tackles high-performance demands.
Caduceus’ cloud edge rendering transmits video back to users and leverages streaming
techniques that create new visual experiences and business opportunities from gaming
through to video editing.

The edge cloud servers bring unparalleled scaled computing and image processing, which
allocate and optimize application resources through virtualization technology. They also
provide the application programs and rendering results required by users in the form of
PaaS and SaaS. The PaaS provides the cloud function of customer applications, which can
offer online rendering and experience services for more users, while the SaaS can render the
output online for the final customer.

11. Component Description

The component description is divided into two parts: the components of the interactive

module and the components of this module:

11.1 Components of the Interactive Module

Uses the components of other modules to provide services such as network message

communication, event verification and new events on the chain.

protocol.NetService: sends or receives network requests and provides services for

network information interaction with other nodes.

msgbus.MessageBus: sends or receives messages to other internal modules and

provides services for data interaction between the internal modules of the node.

protocol.BlockchainStore: provides database query services to obtain information

on the chain, such as obtaining event data at a specified height.

protocol.LedgerCache: gets the latest on-chain status of the cache of the current

node.

protocol.BlockVerifier: provides verification services for the acquired events.

protocol.BlockCommitter: adds verified events to the chain

11.2 Components of this Module

BlockSyncServer: the overall structure of the sync module to provide external

services, which relies on external module components and internal components.

Routine: a tool which provides the hosting function of internal services, and uses a

separate routine to run the registered service. It contains a priority task queue –

the caller can add tasks to the queue and use the managed service to execute the

priority queue in turn and return the execution result to the upper caller.

4.9.2 Analysis of Caduceus Decentralized Edge Rendering Technology

Caduceus decentralized Edge Rendering is a remote service that provides computational,
rendering, application, and display capabilities for Metaverse and Web3 in the decentralized
cloud.

Decentralized Edge Rendering technology is still an emerging sector and rapidly growing,
most widely used in the fields of gaming, teaching, medicine, and defense. There is an
ongoing trend to replace traditional rendering technology with Decentralized Edge
Rendering because of its multiple advantages, including fast deployment, easy
management, high maintenance efficiency, safety and reliability, and lower energy
consumption than the traditional rendering technologies.

Decentralization itself is a structure that occurs only in systems with many users or nodes
dedicated to similar tasks. Technically speaking, every user or node is at the center, and
everyone can connect and influence other nodes within the group. This technology system
or structure of flattening, open-source, and equalization is called decentralization. It allows
for the formation and relationship of content and data processing, and brings with it a new
type of network content production innovatively and complimentary to traditional
centralization.

Caduceus combines the core technologies of cloud computing, cloud rendering, and cloud
storage, with decentralization technology that tackles high-performance demands.
Caduceus’ cloud edge rendering transmits video back to users and leverages streaming
techniques that create new visual experiences and business opportunities from gaming
through to video editing.

The edge cloud servers bring unparalleled scaled computing and image processing, which
allocate and optimize application resources through virtualization technology. They also
provide the application programs and rendering results required by users in the form of
PaaS and SaaS. The PaaS provides the cloud function of customer applications, which can
offer online rendering and experience services for more users, while the SaaS can render the
output online for the final customer.

Scheduler: an event request service. Internally maintains the status of all nodes

linked to this node (the latest height of the peer node), the status of current known

height events and the status of the requested event. When the upper caller

receives the node status, it updates the internally maintained event status; at the

same time, the upper caller periodically triggers the event request task. After the

service receives the request, it selects an event to be synchronised and a request

node according to the internal maintenance status, then sends the event request

message to the selected request node. The received event information is then sent

to the processor service.

Processor: handles events services, internal maintenance received event

information and the height of the next event to be chained. The upper caller

periodically triggers the event processing task. The service processes the event to

be connected to the chain according to its internal state. If the event does not

exist, it skips the task processing until the event is received and returns the

processing result of the event to the scheduler service.

Tim Bullman
Co-founder

Co-founded GlobalBlock in 2017
to provide agency broker
solutions to the crypto industry.
Guided the business to a
successful TSXV listing in 2021.

Jamie Khurshid
Co-founder

Shortlisted by Financial News
2014 as one of the ‘Top 40 under
40 in trading and technology’
and ‘Top 1000 most influential
people in global financial
markets’ by Exchange Invest.

Bobby Chow
Co-founder

Tech enthusiast with a Masters
in finance and over 14 years’
experience running international
businesses. Specialises in
designing business structure
across different sectors,
including Blockchain and FinTech.

Ander Tsui
Co-founder

A blockchain enthusiast and
industry pioneer active in the
space since its inception, as a
creator, investor and advisor.
Specialises in strategic planning,
tokenisation and financial
modelling.

Justin Duffy
Co-founder

A finance director with big 4
audit training and over 15 years’
experience as CFO/FD in
international FinTech and the
fast-moving consumer goods
industry.

Nicolas Rabener
Co-founder

Founder of Jackdaw Capital,
an asset manager, and
FactorResearch, a fintech.
Worked as a portfolio manager
at GIC and investment banker at
Citigroup in London & New York.

Bertie Worsley
Co-founder
Former senior partner Digital RFQ,
responsible for digital assets. Previously
investment analyst and consultant at
asset managers and FinTechs including
HausBanc, Yokiki and Volopa Capital.

David Parrish
Co-founder

An early advocate of blockchain and crypto, advising banks
and institutions on global strategy. A senior VC partner and
investment manager, specialising in early-stage DeFi,
blockchain and mining projects.

Craig Jensen
Co-founder
An innovative and analytical thinker with
extensive experience in the arts and
creative industries.

Matt McGuire
Co-founder
Extensive experience across digital innovation sectors.
CTO Heycar Group, Alphabet Collective & Critical Mass.

Tim Bullman
Head of Management

Co-founded GlobalBlock in 2017
to provide agency broker
solutions to the crypto industry.
Guided the business to a
successful TSXV listing in 2021.

Bobby Chow
Head of Public relations

Tech enthusiast with a Masters
in finance and over 14 years’
experience running international
businesses. Specialises in
designing business structure
across different sectors,
including Blockchain and FinTech.

Ander Tsui
Head of Strategy

A Blockchain enthusiast and
industry pioneer active in the
space since its inception, as a
creator, investor and advisor.
Specialises in Strategic planning,
tokenisation and financial
modelling.

Nicolas Rabener
Head of Investment

Asset manager and founder of
FactorResearch, a FinTech firm.
Worked as a portfolio manager
at GIC and investment banker at
Citigroup in London & New York.

Alex Tung
Head of Consensus

Senior Tech Developer for over 20
years. Expertise in gaming, mining,
Blockchain and consensus algorithims.

Craig Jensen
Head of Creation

An innovative and analytical
thinker with extensive experience
in the arts and creative industries.

Matt McGuire
Head of Decentralised
Edge Rendering

Extensive experience across
digital innovation sectors.
CTO of Heycar Group, Alphabet
Collective & Critical Mass.

David Parrish
Head of Business Development

An early advocate of Blockchain
and crypto, advising banks and
institutions on global strategy.
A senior VC partner and
investment manager, specialising
in early-stage DeFi, Blockchain
and mining projects.

Bertie Worsley
Head of USA

Former senior partner at Digital
RFQ, responsible for digital assets.
Previously an investment analyst
and consultant at FinTechs including
HausBanc, Yokiki and Volopa Capital.

Justin Duffy
Head of Finance

A finance director with big 4
audit training and over 15 years’
experience as CFO/FD in
international FinTech and the
fast-moving consumer goods
industry.

Jamie Khurshid
Head of Incubator

Shortlisted by Financial News
2014 as one of the ‘Top 40 under
40 in trading and technology’
and ‘Top 1000 most influential
people in global financial
markets’ by Exchange Invest.

Giulio Pezzulli
Head of Dapp Development

An Entrepreneur and Software
Engineer in the EdTech and
Blockchain space. Founder of
AITutor and Voltaire Labs. Previous
experience with several
crypocurrency companies
including Circle and Trustology.

13. Tokenomics

MINING 50%

LABS 20%

INVESTOR 15%

CORE CONTRIBUTORS 9%

FOUNDATION 6%
1 Billion Tokens Total

Type Percentage Tokens amount Token Lockup Plan Unlocked Remaining vesting period

LABS 20% 200,000,000 24 hours before CEX listing 5% 3 month cliff, daily four year vest

CORE CONTRIBUTORS 9% 90,000,000 24 hours before CEX listing 5% 3 month cliff, daily three year vest

FOUNDATION 6% 60,000,000 24 hours before CEX listing 20%

SEED ROUND 5% 50,000,000 24 hours before CEX listing 5% 3 month cliff, daily two year vest

PRIVATE SALE 9.90% 99,000,000 24 hours before CEX listing 5% 3 month cliff, daily two year vest

IDO 0.10% 1,000,000 24 hours before CEX listing 100% 0 months

 20% 200,000,000 Mainnet Start
0%

20% for Node Mining. It is
expected to start mining after the
new version is released at the end

of the second quarter. The
minimum number of nodes is 96,

and the total number is halved
every four years.

MINING 20% 200,000,000 GPU Mining Start
0%

20% for GPU Mining, according to
the provided machine

configuration, such as GPU
resources, memory size,

bandwidth, and other factors to
give computing power. The number

of $CMP will be allocated
according to the size of the

computing power, and the specific
calculation details will be released
at the end of the second quarter.

 10% 100,000,000 Storage Mining Start
0%

10% for Storage Mining. Calculate
a computing power according to
the size of the hard disk capacity

and bandwidth factor, and allocate
the number of $CMP according to
the computing power. The specific
calculation details will be released
at the end of the second quarter.

Total 100% 1,000,000,000

NAME OF TOKEN: CMP

3 month cliff, daily four year vest

14. Conclusion

Caduceus Metaverse Protocol, by adopting the MetaverseGraph(mGraph) consensus

mechanism that uses concepts of "gossip," "gossip about gossip" and virtual voting,

solves problems of standard consensus-building algorithms such as proof of work (PoW),

by achieving greater speed and higher efficiency as it does not send any votes or details

over the network, which often leads to congestion and delays.

With the provided set of development tools (SDK, Command Line tools and IDE), building

scalable decentralised blockchain systems has never been easier, more convenient or

more efficient.

15. Disclaimer

Issuers and Caduceus do not intend to make representations, warranties or commitments

to any entity or individual. In general, without limiting the foregoing, the issuer and

Caduceus team do not guarantee the accessibility of tokens, quality, suitability, accuracy,

adequacy or completeness, nor do they make any express or implied or other statements.

Services related to the Caduceus platform or Caduceus token do not give any guarantees

including non-infringement of third party rights, title, merchantability, satisfactory quality

or fitness for a particular purpose of the guarantee.

15.1 Risk and Uncertainty

Potential buyers and holders of tokens should carefully consider and evaluate the issuer,

Caduceus platform, and the potential risks of token rights. Prior to purchasing or acquiring

tokens, it is imperative to read this white paper and terms and conditions. If any of these

risks and uncertainties develop into actual events, the distributor and/or Caduceus

platform business, financial condition, results of operations and prospects may be

materially adversely affected. In this case, you may lose all or part of the value of the

token. Risks set forth in this paper are not an exhaustive list of the risks of issuers,

Caduceus platform and/or tokens face, or may develop in the future. There may be other

risks not described here or currently unknown by the distributor, or other risks that the

distributor currently considers unimportant and these risks may become important in the

future. Other known or unknown risks might occur in the future that have significant

adverse effects and damage the business operations of the Caduceus platform and/or the

Caduceus token.

15.2 Regulatory Risk

In Singapore, the regulation of tokens is still in its infancy. There is a high degree of

uncertainty regarding how to deal with digital tokens and token-related activities. The

applicable legal and regulatory framework may change after the publication of this white

paper. Such changes (whether expected or retroactive) may be very rapid or unpredictable

and it is impossible to predict the nature of such legal or regulatory changes in any

deterministic way. In view of this, issuers and Caduceus state that laws or regulations of

tokens will be affected by any legal or regulatory changes.

If regulatory actions or legal or regulatory changes result in illegal operations or

commercially undesirable ramifications of obtaining the necessary regulatory approvals in

the jurisdiction, the issuer (or its affiliates) or Caduceus may stop operating in that

jurisdiction.

In Singapore, MAS regulations generally do not extend to the security and reliability of

cryptocurrencies, cryptocurrency intermediaries, or the proper processing of

cryptocurrency transactions. However, if a cryptocurrency intermediary is found to have

used cryptocurrency illegally, law enforcement agencies may shut down its operations. If

any digital token exchange, issuer, or intermediary violates Singapore Securities Law, MAS

will take firm action. The public should be aware that if they choose to trade on

unregulated digital token exchanges or invest in digital tokens that are beyond the scope

of the MAS regulations, there is no regulatory guarantee.

15.3 Tax Risk

The tax characteristics of tokens are not yet clear. Therefore, the tax treatment they will

receive is uncertain. All people who wish to receive tokens should seek independent tax

advice before deciding whether to accept any tokens.

15.4 Security Risk

The security, transferability, storage and accessibility of the token depend on factors

beyond the issuer's control, such as (but not limited to) mining attacks, malware attacks,

and spoofing. The issuer cannot guarantee that such external factors can prevent any

direct or indirect adverse effects on any token. Those who intend to receive replacement

tokens should note that adverse events caused by such external factors may result in the

loss of some, or all, of the tokens. This loss may be irreversible. Neither the issuer, or

Caduceus team members, are responsible for taking steps to retrieve any tokens lost in

this way.

15.5 Other Risks

The potential risks mentioned briefly above are not exhaustive, and there are other risks

associated with the purchase, holding and use of tokens, including risks that the issuer

cannot anticipate. Before purchasing or buying tokens, you should conduct a

comprehensive due diligence on the issuer, its subsidiaries and Caduceus team and

understand the overall framework, mission and vision of the Caduceus platform.

15.6 Other Considerations

No part of this white paper may be copied, reproduced, disseminated or distributed in any

way without the issuer’s prior written permission. The distribution or dissemination of

this white paper or any part of it may be prohibited or restricted by the laws, regulations

and rules of any jurisdiction. If there are any prohibitions or restrictions, you should inform

them at your own expense and to comply with any applicable prohibition or restrictions

you might.

This white paper or part thereof (as the case may be) does not assume any responsibility

that relates to the issuer and / or Caduceus.

