
Celer IM Overview

Celer IM fundamentally changes how multi-blockchain dApps are built and used. Instead of deploying multiple
isolated copies of smart contracts on different blockchains, developers can now build inter-chain-native dApps
with efficient liquidity utilization, coherent application logic, and shared states. Users of Celer IM-enabled dApps
will enjoy the benefits of a diverse multi-blockchain ecosystem with the simplicity of a single-transaction UX,
without complicated manual interactions across multiple blockchains.

The Celer IM framework is very easy-to-use and allows a “plug’n’play” upgrade that often requires no
modifications with already deployed code. As an example, Uniswap and Sushiswap can be transformed into a
cross-chain DEX with just . There have been some projects that implemented this functionality in
production such as and .

a simple plug-in
ChainHop Rango Exchange

In the above cross-chain DEX example, a user of Sushiswap can swap their ETH on Arbitrum to BNB on Binance
Smart Chain (BSC) with a single, simple transaction. Behind the scenes, the following has happened:

ETH -> USDT on the Arbitrum-side via Sushiswap

USDT on Arbitrum is bridged to BSC via cBridge as part of the Celer IM framework

An inter-chain message to execute a USDT->BNB swap is sent to BSC via Celer IM

USDT -> BNB swap on BSC-side Sushiswap is triggered by that remote call on Sushiswap

Inter-chain App Use Cases
Next

Last modified 7mo ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/apps/examples/TransferSwap.sol
https://app.chainhop.exchange/
https://app.rango.exchange/
https://im-docs.celer.network/developer/celer-im-overview/inter-chain-app-use-cases
https://im-docs.celer.network/

Inter-chain App Use Cases

The current common practice of making a “multi-blockchain” dApp is done by simply replicating the same code
on multiple chains where the liquidity, application logic and states of the same dApp on different chains are
completely isolated from each other. In fact, except for the UI and the protocol token, nothing is shared
between these instances.

This approach often suffers from low liquidity efficiency, disconnected states, and a degraded user experience.
Celer IM allows dApps to tap into the true potential of the multi-blockchain world by enabling a single-click user
experience that benefits from much higher liquidity efficiency and coherent application logic.

Some high-level examples:

DEXes that allow users to swap tokens across multiple chains from just one chain and with only a single
transaction (e.g., and).ChainHop Rango Exchange

NFT Bridge that allows users to send their NFTs across different chains (e.g.,).cBridge NFT

Yield aggregators that allow users to manage multi-blockchain vaults from a single chain

Lending protocols where collateral can be provided on one chain in order to borrow assets on a different
chain

DAO governance protocols that allow unified governance mechanisms without requiring governance tokens
to be moved across different chains

NFT marketplaces where a user from one chain can place bids on an auction taking place on a completely
different chain

Metaverse games where users can interact seamlessly in the game with virtual items from various chains

New kinds of cross-chain asset transfer bridges with different liquidity models, validation models, or even
privacy features that can be built and co-exist under the same framework. In fact, can be seen as an
asset bridge built on Celer IM.

cBridge

Let’s walk through some examples in more detail and then we can dive into a more technical flow walkthrough.

Decentralized Exchanges

Today a multi-blockchain DEX has to build liquidity pools for the same key asset pairs on every chain they are
deployed on. As a result, a DEX has to spread out the farming incentives across all of these different chains for
these pairs. Even though the total liquidity across all of the chains may be fairly high, the liquidity depth of each
pool on each individual chain is actually spread thin. Unfortunately, this harms the overall trading experience by
creating high slippage. In addition, for users who want to make a trade for a token where deep liquidity exists on a
different chain, they have to manually swap on the originating chain, use a separate fund bridge app, and then
switch to the other chain to make the final swap.

DEXes built using Celer IM have a significantly improved trader experience by automatically routing their trade to
the deep liquidity pool with just a single transaction. With this innovation, a DEX project will be able to concentrate
the farming incentives for a pair of tokens on a single pool, creating deeper liquidity with low slippage.

Lending Protocols

Today, if a user provides collateral in a lending protocol on one chain, they can only borrow assets on that same
chain. In order to borrow assets from a different chain, they have to withdraw their liquidity, manually move it to a
different chain, then provide liquidity in the new chain’s collateral pool.

Celer IM enables a new kind of inter-chain lending where a user is able to seamlessly move their collateral from a
liquidity pool on one chain to a pool on a different chain, all in a single transaction. Then, they can directly borrow
assets on that new chain. With this functionality, users will have a simple and clean UX that lets them accomplish
what they need to without having to leave the lending application!

NFT Marketplaces

Today, if a user wants to participate in an NFT auction, they must have funds on the blockchain where the NFT
exists. It excludes people who would normally partake in the auction but don’t have funds on that particular chain.
When a marketplace like OpenSea is deployed on a chain like Ethereum, a good chunk of the audiences that are on
other chains are excluded due to the complicated bridging operations and high gas costs.

Celer IM can help to expand NFT marketplaces to reach a wider audience. An auction will have the ability to take
bids across chains other than where the NFT was initially minted. On top of this, there isn’t a need to make any
individual cross-chain fund transfers before the auction results are finalized. This significantly reduces the costs of
participating in an NFT auction, decreasing the barriers to entry and enlarging the trader pool for the marketplace
as a whole.

Celer IM Overview
Developer - Previous

Architecture Walkthrough
Next - Developer

Last modified 7mo ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://app.chainhop.exchange/
https://app.rango.exchange/
https://cbridge.celer.network/nft
http://cbridge.celer.network/
https://im-docs.celer.network/developer/celer-im-overview
https://im-docs.celer.network/developer/architecture-walkthrough
https://im-docs.celer.network/

Celer IM Design Patterns

In this section, we introduce the architecture of Celer IM via a step-by-step walkthrough of common application
design patterns.

Cross-chain logic execution with accompanying fund transfer

For many inter-chain-native applications, the core flow often involves the process of sending funds to one or
more chains and using those bridged funds to do something on the destination chain(s). In fact, the DEX demo
given above uses this exact pattern. Links to the demo code will be provided throughout this walkthrough.

While the above flow diagram seems complicated, we want to highlight that most of this flow is handled by Celer
IM, and that developers will only need to work with two simple functions in the framework’s . application template

Step 1: User initiates a transaction to dApp

Instead of interfacing directly with the existing dApp smart contracts, a user now interacts (mark A) with a new
dApp Plug-in contract to express their intention of cross-chain logic execution. This dApp plug-in becomes part of
the overall dApp business logic and may interact with existing smart contracts on the source chain. This is usually
the only transaction that a user sends to interact with this inter-chain dApp.

In the DEX example shown, the function serves as this entry point that allows a user to express
the intention of “swap Token A to Token B on Chain X and use the resulting Token B to swap for Token C on
Chain Y”.

transferWithSwap

Of course, users usually do not manually specify these intentions. dApps using this framework are expected to
compose higher-level user intent to these kinds of function calls.

Step 2: dApp Plug-in sends a message and associated cross-chain fund transfer

After completing the necessary actions on the source chain, the dApp Plug-in sends the resulting funds and the
associated message across to the destination chain (marked B, C). The message specifies the action that needs
to be carried out on the destination chain. In the , it is “swap the bridged token B to token C and
give token C to the user”. The message and the fund transfer are automatically associated together by simply
calling . The message is then sent to the , and the fund transfer is
sent via an asset bridge, in this case, .

DEX’s example

sendMessageWithTransfer Message Bus contract
cBridge

Note: Celer IM can utilize other asset bridges in this application pattern, while cBridge is just the first asset bridge
that is supported.

Step 3: State Guardian Network (SGN) routes the message and cross-chain fund transfer

To understand this step, we must first introduce a core component in Celer IM: the State Guardian Network
(SGN). The SGN is a Proof-of-Stake (PoS) blockchain built on Tendermint that serves as the message router
between different blockchains. Node providers have to stake CELR tokens to join the consensus process of the
SGN as a validator. The SGN uses the same security mechanisms as L1 blockchains like the Cosmos and Polygon
PoS chains. The SGN’s CELR staking and slashing mechanisms are all implemented on Ethereum L1 smart
contracts.

The SGN validator nodes are continuously monitoring the transactions happening on all of the connected chains.
When a transaction triggers a in the contract (marked D), validators will
first reach a consensus on the existence of such message and concurrently generate a stake-weighed multi-
signature attestation. This attestation is then stored on the SGN chain and waits to be relayed to the destination
via an Executor subscribing to the message (marked H).

cross-chain message event Message Bus

For the cross-chain asset transfer, the cBridge contract can be seen as a specialized message bus with built-in
optimizations for this purpose. A similar consensus and attestation process takes place (marked E). Instead of
relaying this built-in fund transfer attestation to an off-chain Executor, the SGN validators themselves send the
on-chain transaction to the cBridge contract (marked F) and trigger the fund transfer to the destination chain’s
dApp Plug-in contract (marked G). Again, Celer IM can be connected to any asset bridge but starts with Celer’s

 set as the default. cBridge

Step 4: Executor performs cross-chain application logic

The Executor’s task is to read the stake-weighted multi-signature attestation from the SGN blockchain and simply
relay it to the Message Bus on the destination chain (marked I). An Executor can be run by anyone for any
application as the functionality is simply relaying the message. Of course, dApps are expected to take Executor
incentives into consideration as it is the entity that sends out the transaction and pays the gas fee on the
destination chain.

The functionality of the MessageBus is to check the validity of the attested message and verify that the
associated payment has been received by the dApp Plug-in (mark J). After that, the message (logic execution
instruction) is delivered to the dApp Plug-in contract, which hosts the dApp’s inter-chain business logic on the
destination chain (marked K).

The dApp Plug-in only needs to implement the interface. In the DEX example,
 will execute the “Token B to Token C swap” on the destination chain.

executeMessageWithTransfer this
function

Cross-chain logic execution without fund transfer

Many applications only need to send cross-chain messages or logic execution instructions without fund transfer. In
the NFT marketplace for example, if a user participates in an auction that takes place on a different chain, they
will only need to lock up their funds without actually transferring them to the destination chain in order to place a
bid. It is only after they win the auction that a fund transfer will be required.

The flow for this would just be a simplified version of the first pattern. The dApp Plugin would only need to
implement the logic to call on the source chain and then implement the function on
the destination chain’s dApp Plug-in contract.

sendMessage executeMessage

Failure Handling

Due to the asynchronous nature of the above inter-chain message patterns, failure handling should be considered
as part of the application logic. In these application patterns, failures can happen in the following three steps, and
they should each be handled accordingly:

1. Source chain dApp logic execution failure. This is not related to Celer IM and should be handled by the dApp
business logic itself (e.g. deadline exceeded for a DEX swap).

2. Fund transfer failed in the asset bridge. The source chain dApp will be notified via a common interface and
handle the refunded asset transfer by either retrying the fund transfer or sending it back to the user.

3. Destination chain dApp logic execution failure. When a user’s fund reaches the destination chain, the dApp
logic execution can still fail at that point. The dApp developers should prepare for this and should implement
fallback functions in order to handle such a failure. A common way to handle such a failure can be to stop the
execution and send the funds to the user on the destination chain or transfer the funds back to the source
chain, but it is entirely up to the dApp developer to implement the specific logic of the fallback functions.

Architecture Walkthrough
Developer - Previous

End-to-End Workflow
Next

Last modified 7mo ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://github.com/celer-network/sgn-v2-contracts/tree/main/contracts/message/framework
https://github.com/celer-network/sgn-v2-contracts/blob/1c65d5538ff8509c7e2626bb1a857683db775231/contracts/message/apps/examples/TransferSwap.sol#L104
https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/apps/examples/TransferSwap.sol
https://github.com/celer-network/sgn-v2-contracts/blob/1c65d5538ff8509c7e2626bb1a857683db775231/contracts/message/apps/examples/TransferSwap.sol#L104
https://github.com/celer-network/sgn-v2-contracts/tree/main/contracts/message/messagebus
http://cbridge.celer.network/
https://github.com/celer-network/sgn-v2-contracts/blob/1c65d5538ff8509c7e2626bb1a857683db775231/contracts/message/messagebus/MessageBusSender.sol#L15-L27
https://github.com/celer-network/sgn-v2-contracts/tree/main/contracts/message/messagebus
http://cbridge.celer.network/
https://github.com/celer-network/sgn-v2-contracts/blob/1c65d5538ff8509c7e2626bb1a857683db775231/contracts/message/framework/MessageReceiverApp.sol#L47
https://github.com/celer-network/sgn-v2-contracts/blob/1c65d5538f/contracts/message/apps/examples/TransferSwap.sol#L249
https://github.com/celer-network/sgn-v2-contracts/blob/1c65d5538f/contracts/message/framework/MessageSenderApp.sol#L28
https://github.com/celer-network/sgn-v2-contracts/blob/1c65d5538f/contracts/message/framework/MessageReceiverApp.sol#L21
https://im-docs.celer.network/developer/architecture-walkthrough
https://im-docs.celer.network/developer/architecture-walkthrough/end-to-end-workflow
https://im-docs.celer.network/

End-to-End Workflow

This section shows the more detailed end-to-end cross-chain message implementation diagrams.

Cross-chain message without token transfer

SrcApp at the source chain wants to send an arbitrary message to DstApp at the destination chain without
associated token transfer. Figure below describes the end-to-end workflow.

The SrcApp sends a message to the MessageBus contract on the source chain, which emits the message event.
SGN catches the event and collects signatures from all validators. The executor then submits the SGN-signed
message to the MessageBus contract on the destination chain, which will verify the message info and then call
the message execution function of the DstApp.

Cross-chain message with token transfer

SrcApp at the source chain wants to send some tokens to DstApp at the destination chain, along with an arbitrary
message associated with the transfer. Figure below describes the end-to-end flow of such transfers. Blue
represents token transfer flow, while green represents message passing flow. Numbers show time sequence, which
means steps with the same number can happen concurrently.

The SrcApp sends both cross-chain token transfer and message passing requests in a single transaction. SGN
catches and correlates both events, then completes the token transfer at the destination chain. The executor
then submits the SGN-signed message and token transfer info to the MessageBus at the destination chain, which
will verify the submitted info and call DstApp to execute the message.

Celer IM Design Patterns
Previous

Fee Mechanism
Next

Last modified 7mo ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://im-docs.celer.network/developer/architecture-walkthrough/celer-im-design-patterns
https://im-docs.celer.network/developer/architecture-walkthrough/fee-mechanism
https://im-docs.celer.network/

Fee Mechanism

SGN Fee

SGN charges fees to sync, store, and sign messages. Whoever calls sendMessageWithTransfer or
sendMessage in should put some fee as msg.value in the transaction, which will later be
distributed to SGN validators and delegators. The fee amount is calculated as

.

MessageBusSender
feeBase + _message.length

* feePerByte

Executor Fee

Executor charges fees to submit execute message transactions. How to charge and distribute executor fees is
entirely decided at the application level. Celer IM framework does not enforce any executor fee mechanism.

End-to-End Workflow
Previous

CELR Token Utility
Next

Last modified 7mo ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/messagebus/MessageBusSender.sol
https://github.com/celer-network/sgn-v2-contracts/blob/1c65d5538f/contracts/message/messagebus/MessageBusSender.sol#L133-L135
https://im-docs.celer.network/developer/architecture-walkthrough/end-to-end-workflow
https://im-docs.celer.network/developer/architecture-walkthrough/celr-token-utility
https://im-docs.celer.network/

CELR Token Utility

Network Value Accrual and Fees

It is obvious that CELR token stakers and validators in the SGN are indispensable in the smooth operation of Celer
IM, as explained in both of the above models.

As such, users of Celer IM are required to pay fees to the SGN in return for its services of reaching consensus and
storing attestations of the source chain messages, as well as the fund transfer. This is very much like a fee being
paid for any other PoS blockchain validators. These fees are distributed to the CELR stakers corresponding to the
SGN nodes that generate the block.

Fee Mechanism
Previous

Development Guide
Next - Developer

Last modified 1yr ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://im-docs.celer.network/developer/architecture-walkthrough/fee-mechanism
https://im-docs.celer.network/developer/development-guide
https://im-docs.celer.network/

Contract Framework

We provide a , which implements the common process of Celer IM. By inheriting the app
framework , the cross-chain smart contract developers only need to focus on the app-
specific logic.

dApp contract framework
MessageApp.sol

Send Message

To send cross-chain messages, the dApp contract needs to interact with the Celer IM
 on the src chain.

MessageBus
(MessageBusSender) contract

Send a message without an associated cross-chain token transfer

The dApp contract should use the of the inherited MessageSenderApp contract to send a
cross-chain message.

sendMessage function

function sendMessage(
 address _receiver,
 uint64 _dstChainId,
 bytes memory _message,
 uint256 _fee
) internal

The message will be typed as MsgType.MessageOnly , and will be identified in Celer SGN through its messageId,
which is computed as a hash of <msgType, sender, receiver, srcChainId, srcTxHash,
dstChainId, message> . The caller needs to make sure of the uniqueness of the messageId. If multiple
messages with the same Id are sent, only one of them will succeed at the destination chain.

Send a message with an associated cross-chain token transfer

The dApp contract should use the of the inherited MessageSenderApp
contract to send messages with associated cross-chain token transfers.

sendMessageWithTransfer function

function sendMessageWithTransfer(
 address _receiver,
 address _token,
 uint256 _amount,
 uint64 _dstChainId,
 uint64 _nonce,
 uint32 _maxSlippage,
 bytes memory _message,
 MsgDataTypes.BridgeSendType _bridgeSendType,
 uint256 _fee
) internal returns (bytes32) // return transferId

The could be Liquidity, PegDeposit, PegBurn, PegV2Deposit, PegV2Burn,
PegV2BurnFrom .

BridgeSendType

The message will be typed as MsgType.MessageWithTransfer , and will be identified in Celer SGN through the
returned transferId

Message Fee

For both function calls above, message fees are charged in the native gas token. Here is how to
.

calculate and
query the fee

Receive Message

To receive cross-chain messages, the dApp contract needs to implement (some of) the message execution
functions defined in the inherited . MessageReceiverApp

These functions return ExecutionStatus , which could be Success , Fail , or Retry . The
 which calls the dApp's message execution functions will ensure that each

message will be executed exactly once if the function returns Success or Fail or is reverted. If the function
returns Retry , the message can be executed again later.

MessageBus
(MessageBusReceiver) contract

Receive a message without an associated cross-chain token transfer

The dApp contract should implement the to receive a message without associated
token transfer.

executeMessage interface

function executeMessage(
 address _sender,
 uint64 _srcChainId,
 bytes calldata _message,
 address _executor
) external payable virtual override onlyMessageBus returns (ExecutionStatus) {}

Do not forget to use the onlyMessageBus modifier, as message execution functions should only be called by
the MessageBus contract.

Receive a message with an associated cross-chain token transfer

The dApp contract should implement the to receive a message with an
associated cross-chain token transfer.

executeMessageWithTransfer interfaces

The will guarantee that the correct amount of tokens have already been received by the
dApp contract before calling the dApp's message execution functions.

MessageBus contract

// receive and execute messages at dst chain
function executeMessageWithTransfer(
 address _sender,
 address _token,
 uint256 _amount,
 uint64 _srcChainId,
 bytes calldata _message,
 address _executor
) external payable virtual override onlyMessageBus returns (ExecutionStatus) {}

If the function above got reverted for any reason. The dApp contract can optionally implement a fallback function
to decide what to do with the received tokens.

// optional fallback function at dst chain
function executeMessageWithTransferFallback(
 address _sender,
 address _token,
 uint256 _amount,
 uint64 _srcChainId,
 bytes calldata _message,
 address _executor
) external payable virtual override onlyMessageBus returns (ExecutionStatus) {}

A cross-chain token transfer could fail due to bad slippage or other reasons. In this case, the Celer SGN will refund
the token to the dApp contract on the source chain, which should implement a message execution function to
handle the possible refund.

// handle messages with refunded token transfer at src chain
function executeMessageWithTransferRefund(
 address _token,
 uint256 _amount,
 bytes calldata _message,
 address _executor
) external payable virtual override onlyMessageBus returns (ExecutionStatus) {}ol

Development Guide
Developer - Previous

Contract Examples
Next

Last modified 7mo ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/framework
https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/framework/MessageApp.sol
https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/messagebus/MessageBusSender.sol
https://github.com/celer-network/sgn-v2-contracts/blob/563638cdd0f056d01f391f412dcec2cdca8914e3/contracts/message/framework/MessageSenderApp.sol#L18-L35
https://github.com/celer-network/sgn-v2-contracts/blob/563638cdd0f056d01f391f412dcec2cdca8914e3/contracts/message/framework/MessageSenderApp.sol#L48-L89
https://github.com/celer-network/sgn-v2-contracts/blob/563638cdd0/contracts/message/libraries/MsgDataTypes.sol#L6-L15
https://github.com/celer-network/sgn-v2-contracts/blob/563638cdd0f056d01f391f412dcec2cdca8914e3/contracts/message/messagebus/MessageBusSender.sol#L128-L135
https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/framework/MessageReceiverApp.sol
https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/messagebus/MessageBusReceiver.sol
https://github.com/celer-network/sgn-v2-contracts/blob/6e19c559a8b8c644060af53286aa57cb1fc9a46c/contracts/message/framework/MessageReceiverApp.sol#L14-L26
https://github.com/celer-network/sgn-v2-contracts/blob/6e19c559a8b8c644060af53286aa57cb1fc9a46c/contracts/message/framework/MessageReceiverApp.sol#L37-L90
https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/messagebus/MessageBusReceiver.sol
https://im-docs.celer.network/developer/development-guide
https://im-docs.celer.network/developer/development-guide/contract-examples
https://im-docs.celer.network/

Hello World

Here is a hello-world example that sends and receives cross-chain messages with simple logics:

Users call sendMessage on the source chain to send a cross-chain message.

The receiver side implements executeMessage to receive and emit the message at the destination chain.

. Source code at GitHub

// A HelloWorld example for basic cross-chain message passing
contract MsgExampleBasic is MessageApp {
 event MessageReceived(
 address srcContract,
 uint64 srcChainId,
 address sender,
 bytes message
);

 constructor(address _messageBus) MessageApp(_messageBus) {}

 // called by user on source chain to send cross-chain messages
 function sendMessage(
 address _dstContract,
 uint64 _dstChainId,
 bytes calldata _message
) external payable {
 bytes memory message = abi.encode(msg.sender, _message);
 sendMessage(_dstContract, _dstChainId, message, msg.value);
 }

 // called by MessageBus on destination chain to receive cross-chain messages
 function executeMessage(
 address _srcContract,
 uint64 _srcChainId,
 bytes calldata _message,
 address // executor
) external payable override onlyMessageBus returns (ExecutionStatus) {
 (address sender, bytes memory message) = abi.decode(
 (_message),
 (address, bytes)
);
 emit MessageReceived(_srcContract, _srcChainId, sender, message);
 return ExecutionStatus.Success;
 }
}

Contract Examples
Previous

Hello World with Token Transfer
Next

Last modified 7mo ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/apps/examples/MsgExampleBasic.sol
https://im-docs.celer.network/developer/development-guide/contract-examples
https://im-docs.celer.network/developer/development-guide/contract-examples/hello-world-with-token-transfer
https://im-docs.celer.network/

Hello World with Token Transfer

Here is a basic hello-world example that sends and receives cross-chain messages with associated token
transfers:

Users call sendTokenWithNote on the source chain to send some tokens with an arbitrary bytes note to
the destination chain

The receiver side implements executeMessageWithTransfer , which records received token balances for
each sender, and emits events with transfer info including the note.

. Source code at GitHub

contract MsgExampleBasicTransfer is MessageApp {
 using SafeERC20 for IERC20;

 event MessageWithTransferReceived(
 address sender,
 address token,
 uint256 amount,
 uint64 srcChainId,
 bytes note
);
 event MessageWithTransferRefunded(
 address sender,
 address token,
 uint256 amount,
 bytes note
);

 // acccount, token -> balance
 mapping(address => mapping(address => uint256)) public balances;

 constructor(address _messageBus) MessageApp(_messageBus) {}

 // called by user on source chain to send token with note to destination chain
 function sendTokenWithNote(
 address _dstContract,
 address _token,
 uint256 _amount,
 uint64 _dstChainId,
 uint64 _nonce,
 uint32 _maxSlippage,
 bytes calldata _note,
 MsgDataTypes.BridgeSendType _bridgeSendType
) external payable {
 IERC20(_token).safeTransferFrom(msg.sender, address(this), _amount);
 bytes memory message = abi.encode(msg.sender, _note);
 sendMessageWithTransfer(
 _dstContract,
 _token,
 _amount,
 _dstChainId,
 _nonce,
 _maxSlippage,
 message,
 _bridgeSendType,
 msg.value
);
 }

 // called by MessageBus on the destination chain to receive message with token
 // transfer, record and emit info.
 // the associated token transfer is guaranteed to have already been received
 function executeMessageWithTransfer(
 address, // srcContract
 address _token,
 uint256 _amount,
 uint64 _srcChainId,
 bytes memory _message,
 address // executor
) external payable override onlyMessageBus returns (ExecutionStatus) {
 (address sender, bytes memory note) = abi.decode(
 (_message),
 (address, bytes)
);
 balances[sender][_token] += _amount;
 emit MessageWithTransferReceived(
 sender,
 _token,
 _amount,
 _srcChainId,
 note
);
 return ExecutionStatus.Success;
 }

 // called by MessageBus on the source chain to handle message with
 // failed associated token transfer.
 // the failed token transfer is guaranteed to have already been refunded
 function executeMessageWithTransferRefund(
 address _token,
 uint256 _amount,
 bytes calldata _message,
 address // executor
) external payable override onlyMessageBus returns (ExecutionStatus) {
 (address sender, bytes memory note) = abi.decode(
 (_message),
 (address, bytes)
);
 IERC20(_token).safeTransfer(sender, _amount);
 emit MessageWithTransferRefunded(sender, _token, _amount, note);
 return ExecutionStatus.Success;
 }

 // called by user on destination chain to withdraw tokens
 function withdraw(address _token, uint256 _amount) external {
 balances[msg.sender][_token] -= _amount;
 IERC20(_token).safeTransfer(msg.sender, _amount);
 }
}

Hello World
Previous

In-Order Delivery
Next

Last modified 7mo ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/apps/examples/MsgExampleBasicTransfer.sol
https://im-docs.celer.network/developer/development-guide/contract-examples/hello-world
https://im-docs.celer.network/developer/development-guide/contract-examples/in-order-delivery
https://im-docs.celer.network/

In-Order Delivery

Here is an example that sends and receives cross-chain messages with guaranteed in-order delivery.

.Source code at GitHub

// a simple example to enforce in-order message delivery
contract MsgExampleInOrder is MessageApp {
 event MessageReceived(
 address srcContract,
 uint64 srcChainId,
 address sender,
 uint64 seq,
 bytes message
);

 // map at source chain. (dstChainId, dstContract) -> seq
 mapping(uint64 => mapping(address => uint64)) public sendSeq;

 // map at destination chain (srcChainId, srcContract) -> seq
 mapping(uint64 => mapping(address => uint64)) public recvSeq;

 constructor(address _messageBus) MessageApp(_messageBus) {}

 // called by user on source chain to send cross-chain message
 function sendMessage(
 address _dstContract,
 uint64 _dstChainId,
 bytes calldata _message
) external payable {
 uint64 seq = sendSeq[_dstChainId][_dstContract];
 bytes memory message = abi.encode(msg.sender, seq, _message);
 sendMessage(_dstContract, _dstChainId, message, msg.value);
 sendSeq[_dstChainId][_dstContract] += 1;
 }

 // called by MessageBus on destination chain to receive message
 function executeMessage(
 address _srcContract,
 uint64 _srcChainId,
 bytes calldata _message,
 address // executor
) external payable override onlyMessageBus returns (ExecutionStatus) {
 (address sender, uint64 seq, bytes memory message) = abi.decode(
 (_message),
 (address, uint64, bytes)
);
 uint64 expectedSeq = recvSeq[_srcChainId][_srcContract];
 if (seq != expectedSeq) {
 // sequence number not expected, let executor retry.
 // Note: cannot revert here, because once a message execute tx is
 // reverted, it cannot be retried later.
 return ExecutionStatus.Retry;
 }
 emit MessageReceived(_srcContract, _srcChainId, sender, seq, message);
 recvSeq[_srcChainId][_srcContract] += 1;
 return ExecutionStatus.Success;
 }
}

Hello World with Token Transfer
Previous

Batch Transfer
Next

Last modified 7mo ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/apps/examples/MsgExampleInOrder.sol
https://im-docs.celer.network/developer/development-guide/contract-examples/hello-world-with-token-transfer
https://im-docs.celer.network/developer/development-guide/contract-examples/batch-transfer
https://im-docs.celer.network/

Batch Transfer

Here is an example app that sends tokens from one sender at the source chain to multiple receivers at the
destination chain through a single cross-chain token transfer.

. The high-level workflow consists of three steps:Source code at GitHub

1. The sender calls batchTransfer at the source chain, which internally calls app framework's
sendMessageWithTransfer to send tokens and a message specifying a list of <receivers, amounts> to
the app contract at the destination chain.

2. The receiver side implements the executeMessageWithTransfer interface to handle the batch transfer
message, and distribute received tokens according to the message content. It also internally calls
sendMessage to send a receipt back to the source chain app contract.

3. The sender side implements the executeMessage interface to handle the receipt message.

contract BatchTransfer is MessageApp {
 using SafeERC20 for IERC20;

 struct TransferRequest {
 uint64 nonce;
 address[] accounts;
 uint256[] amounts;
 address sender;
 }

 enum TransferStatus {
 Null,
 Success,
 Fail
 }

 struct TransferReceipt {
 uint64 nonce;
 TransferStatus status;
 }

 constructor(address _messageBus) MessageApp(_messageBus) {}

 // ============== functions and states on source chain ==============

 uint64 nonce;

 struct BatchTransferStatus {
 bytes32 h; // hash(receiver, dstChainId)
 TransferStatus status;
 }
 // nonce -> BatchTransferStatus
 mapping(uint64 => BatchTransferStatus) public status;

 modifier onlyEOA() {
 require(msg.sender == tx.origin, "Not EOA");
 _;
 }

 // called by sender on source chain to send tokens to a list of
 // <_accounts, _amounts> on the destination chain
 function batchTransfer(
 address _dstContract, // BatchTransfer contract address at the dst chain
 address _token,
 uint256 _amount,
 uint64 _dstChainId,
 uint32 _maxSlippage,
 MsgDataTypes.BridgeSendType _bridgeSendType,
 address[] calldata _accounts,
 uint256[] calldata _amounts
) external payable onlyEOA {
 uint256 totalAmt;
 for (uint256 i = 0; i < _amounts.length; i++) {
 totalAmt += _amounts[i];
 }
 uint256 minRecv = _amount - (_amount * _maxSlippage) / 1e6;
 require(minRecv > totalAmt, "invalid maxSlippage");
 nonce += 1;
 status[nonce] = BatchTransferStatus({
 h: keccak256(abi.encodePacked(_dstContract, _dstChainId)),
 status: TransferStatus.Null
 });
 IERC20(_token).safeTransferFrom(msg.sender, address(this), _amount);
 bytes memory message = abi.encode(
 TransferRequest({
 nonce: nonce,
 accounts: _accounts,
 amounts: _amounts,
 sender: msg.sender
 })
);
 // send token and message to the destination chain
 sendMessageWithTransfer(
 _dstContract,
 _token,
 _amount,
 _dstChainId,
 nonce,
 _maxSlippage,
 message,
 _bridgeSendType,
 msg.value
);
 }

 // called by MessageBus on the source chain to handle token transfer failures
 // (e.g., due to bad slippage).
 // the associated token transfer is guaranteed to have already been refunded
 function executeMessageWithTransferRefund(
 address _token,
 uint256 _amount,
 bytes calldata _message,
 address // executor
) external payable override onlyMessageBus returns (ExecutionStatus) {
 TransferRequest memory transfer = abi.decode(
 (_message),
 (TransferRequest)
);
 IERC20(_token).safeTransfer(transfer.sender, _amount);
 return ExecutionStatus.Success;
 }

 // called by MessageBus on the source chain to receive receipts
 function executeMessage(
 address _sender,
 uint64 _srcChainId,
 bytes memory _message,
 address // executor
) external payable override onlyMessageBus returns (ExecutionStatus) {
 TransferReceipt memory receipt = abi.decode(
 (_message),
 (TransferReceipt)
);
 require(
 status[receipt.nonce].h ==
 keccak256(abi.encodePacked(_sender, _srcChainId)),
 "invalid message"
);
 status[receipt.nonce].status = receipt.status;
 return ExecutionStatus.Success;
 }

 // ============== functions on destination chain ==============

 // called by MessageBus on destination chain to handle batchTransfer message by
 // distributing tokens to receivers and sending receipt.
 // the lump sum token transfer associated with the message is guaranteed to have
 // already been received.
 function executeMessageWithTransfer(
 address _srcContract,
 address _token,
 uint256 _amount,
 uint64 _srcChainId,
 bytes memory _message,
 address // executor
) external payable override onlyMessageBus returns (ExecutionStatus) {
 TransferRequest memory transfer = abi.decode(
 (_message),
 (TransferRequest)
);
 uint256 totalAmt;
 for (uint256 i = 0; i < transfer.accounts.length; i++) {
 IERC20(_token).safeTransfer(
 transfer.accounts[i],
 transfer.amounts[i]
);
 totalAmt += transfer.amounts[i];
 }
 uint256 remainder = _amount - totalAmt;
 if (_amount > totalAmt) {
 // transfer the remainder of the money to the sender as a fee for
 // executing this transfer
 IERC20(_token).safeTransfer(transfer.sender, remainder);
 }
 bytes memory message = abi.encode(
 TransferReceipt({
 nonce: transfer.nonce,
 status: TransferStatus.Success
 })
);
 // send receipt back to the source chain contract
 sendMessage(_srcContract, _srcChainId, message, msg.value);
 return ExecutionStatus.Success;
 }

 // called by MessageBus if handleMessageWithTransfer above got reverted
 function executeMessageWithTransferFallback(
 address _srcContract,
 address _token,
 uint256 _amount,
 uint64 _srcChainId,
 bytes memory _message,
 address // executor
) external payable override onlyMessageBus returns (ExecutionStatus) {
 TransferRequest memory transfer = abi.decode(
 (_message),
 (TransferRequest)
);
 IERC20(_token).safeTransfer(transfer.sender, _amount);
 bytes memory message = abi.encode(
 TransferReceipt({
 nonce: transfer.nonce,
 status: TransferStatus.Fail
 })
);
 // send receipt back to the source chain contract
 sendMessage(_srcContract, _srcChainId, message, msg.value);
 return ExecutionStatus.Success;
 }
}

In-Order Delivery
Previous

Cross-Chain Swap
Next

Last modified 7mo ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/apps/examples/BatchTransfer.sol
https://im-docs.celer.network/developer/development-guide/contract-examples/in-order-delivery
https://im-docs.celer.network/developer/development-guide/contract-examples/cross-chain-swap
https://im-docs.celer.network/

Cross-Chain Swap

Here is an example app that allows swapping one token on chain1 to another token on chain2 through cBridge and
DEXes on both chain1 and chain2.

.Source code on GitHub

For the simplicity of explanation, let's say we deploy this contract on chain1 and chain2, and we want to input
tokenA on chain1 and gain tokenC on chain2.

Public functions transferWithSwap and transferWithSwapNative are called by a user to initiate the
entire process. These functions takes in a SwapInfo struct that specifies the behavior or "route" of the
execution, and execute the process in the following fashion:

1. Swap tokenA on the source chain to gain tokenB

2. Packages a SwapRequest as a "message", which indicates the swap behavior on chain2

3. sendMessageWithTransfer is then called internally to send the message along with the tokenB through
the bridge to chain2

4. On chain2, executeMessageWithTransfer is automatically called when the bridge determines that the
execution conditions are met.

5. This contract parses the message received to a SwapRequest struct, then executes the swap using the
tokenB received to gain tokenC. (Note: when executeMessageWithTransfer is called, it is guaranteed
that tokenB already arrives at the TransferSwap contract address on chain2. You can check out this part of
verification logic in MessageBusReceiver.sol's executeMessageWithTransfer).

6. If the execution of executeMessageWithTransfer of TransferSwap contract on chain2 reverts, or if the
executeMessageWithTransfer call returns false , then MessageBus would call
executeMessageWithTransferFallback . This is the place where you implement logic to decide what to
do with the received tokenB.

The following is a more graphical explanation of all the supported flows of this demo app:

1. swap bridge swap

|--------chain1--------|-----SGN-----|---------chain2--------|
tokenA -> swap -> tokenB -> bridge -> tokenB -> swap -> tokenC -> out

2. swap bridge

|--------chain1--------|-----SGN-----|---------chain2--------|
tokenA -> swap -> tokenB -> bridge -> tokenB -> out

3. bridge swap

|--------chain1--------|-----SGN-----|---------chain2--------|
 tokenA -> bridge -> tokenA -> swap -> tokenB -> out

4. just swap

|--------chain1--------|
tokenA -> swap -> tokenB -> out

Batch Transfer
Previous

NFT Bridge
Next

Last modified 7mo ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/apps/examples/TransferSwap.sol
https://im-docs.celer.network/developer/development-guide/contract-examples/batch-transfer
https://im-docs.celer.network/developer/development-guide/contract-examples/nft-bridge
https://im-docs.celer.network/

dApp Safeguard

App Guardian
 is run by the dApp community to ensure their application security.Celer IM app guardian

The app guardian monitors the emitted from the MessageBus contracts on the
destination chains, and uses the srcChainId and srcTxHash fields in the event to look for the matched

 from the MessageBus contracts on the source chains. If it fails to find a matched event on
the source chain, it will try to or execute any dApp-specific logic if
added.

message Executed events

Message events
pause the message receiver (dApp) contracts

Note that Celer IM is already secured by the Celer State Guardian Network (SGN), which is a proven secure
decentralized platform that has processed a of cross-chain asset transfers and tons of cross-chain
messages without any security incident. This app guardian is for dApp communities who do not fully trust Celer
SGN and want further safety guarantees even if Celer IM is compromised.

large volume

Delayed Message Execution
Message dApps that require extra safeguards can choose to integrate the app contract with the

, which allows configured delayed message execution.MessageReceiverAdapter

Integration with the adapter is simple: 1) deploy a separate adapter contract for your dApp; 2) set the
 to restrict who can send messages to the dApp; and 3) enforce your dApp message receiver function to

only accept from this adapter.

allowed
senders

external calls

For each delayed message, the (detailed in the next section) will wait for the delay period to
pass and then automatically which trigger calls to the receiver dApp contract.

message executor
execute the delayed messages

The described above keeps monitoring and verifying the messages as soon as they enter the
delayed queue, and will pause the adapter contract immediately if any invalid message is detected during the delay
period, so that no invalid message will be executed in the receiver dApp contract.

app guardian

NFT Bridge
Previous

Message Executor
Next

Last modified 2mo ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://github.com/celer-network/im-guardian
https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/messagebus/MessageBusReceiver.sol#L28-L35
https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/messagebus/MessageBusSender.sol#L15
https://github.com/celer-network/im-guardian/blob/main/guardian/message.go#L35-L39
https://cbridge-analytics.celer.network/
https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/apps/adapter/MessageReceiverAdapter.sol
https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/apps/adapter/MessageReceiverAdapter.sol#L64
https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/apps/adapter/MessageReceiverAdapter.sol#L57-L60
https://github.com/celer-network/im-executor
https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/apps/adapter/MessageReceiverAdapter.sol#L40
https://github.com/celer-network/im-guardian
https://im-docs.celer.network/developer/development-guide/contract-examples/nft-bridge
https://im-docs.celer.network/developer/development-guide/message-executor
https://im-docs.celer.network/

Message Executor

 monitors the Celer SGN for messages ready to be submitted (with enough validator signatures) and
submits the to the contract.
The executor

message execution transactions MessageBus

In most cases, we recommend dApp developers use the shared executor services provided by the Celer
Network team so that the developers do not need to worry about the executor server configuration and
operation.

IMPORTANT: To make it work, contact us for letting us know your dApp contract address.

If you choose to run your own executors, please refer to the integration guides in the following sections You can
also find the config handbook of the message executor in the .GitHub Readme

dApp Safeguard
Previous

Integration Guide
Next

Last modified 2mo ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://github.com/celer-network/im-executor
https://github.com/celer-network/sgn-v2-contracts/blob/1c65d5538ff8509c7e2626bb1a857683db775231/contracts/message/interfaces/IMessageBus.sol#L50-L98
https://github.com/celer-network/sgn-v2-contracts/blob/main/contracts/message/messagebus/MessageBusReceiver.sol
https://github.com/celer-network/sgn-v2-networks/tree/main/executor
https://im-docs.celer.network/developer/development-guide/dapp-safeguard
https://im-docs.celer.network/developer/development-guide/message-executor/integration-guide
https://im-docs.celer.network/

Integration Guide

Overview
This tutorial shows how to run the with your own executor. As an overview, our app
does the following things:

cross-chain batch transfer app

1. User calls on the source chain Goerli Testnet, which triggers the sending of tokens along
with a message through the Celer IM infrastructure

batchTransfer

2. Executor polls Celer's SGN and submits SGN-signed messages to the MessageBus contract on the
destination chain BSC Testnet.

3. BatchTransfer contract on BSC Testnet receives the message and distributes the fund to the receivers
specified in the message

Following this tutorial, you will need to deploy BatchTransfer contracts on Goerli and BSC Testnets, and an
Executor node for this test dApp.

Prerequisites

1. Solidity Knowledge

2. Wallet

3. Node.js 12 installed

4. Typescript installed

5. Experience with basic Unix commands

Contract
This tutorial uses to deploy and verify the contract.Hardhat

Preparation

Download message-app-examples

git clone https://github.com/celer-network/message-app-examples.git

Get the dependencies

cd message-app-examples
yarn install

Deploy the Contract

We are going to deploy on goerli and bsc testnet. MsgExampleBasic

Modify the config file .env . Set up your account's private key at DEFAULT_PRIVATE_KEY .

Deploy the contracts and remember to record the addresses of the deployed contracts as we will need them in
the next step

set MESSAGE_BUS_ADDR in .env to 0xF25170F86E4291a99a9A560032Fe9948b8BcFBB2
npx hardhat deploy --network goerli --tags MsgExampleBasic
reset MESSAGE_BUS_ADDR to 0xAd204986D6cB67A5Bc76a3CB8974823F43Cb9AAA
npx hardhat deploy --network bscTest --tags MsgExampleBasic

Verify the Contracts

You should now have the contract addresses on both networks.

Now run the hardhat verify tasks. Note the last param is our contract's constructor param used when
deploying the contract, which is the address of the message bus.

npx hardhat verify --network goerli <your-deployed-address-on-goerli> 0xF25170F86E4291a99a9A560032Fe9948b8
npx hardhat verify --network bscTest <your-deployed-address-on-bsc> 0xAd204986D6cB67A5Bc76a3CB8974823F43Cb

Woot, that's quite some work, if everything went right, you should be able to see your contracts on
and . Now we are just one component short of making an inter-chain app. Let's look into how to deploy
the executor in the next section.

GoerliScan
BscScan

Executor
In this section, we will learn what the executor is and how it should be configured and deployed

The executor is a simple program: it polls SGN for available messages sent by the BatchTransfer contract and
calls MessageBus on the destination chain which in turn calls our BatchTransfer's
executeMessageWithTransfer on the destination chain.

Note: "available messages" are messages that

1. have been verified by enough SGN validators

2. have their corresponding token transfer verified

In addition, the executor also doesn't submit the message until the transfer associated with the message is
executed on-chain.

Now let's start deploying the executor for our app.

Preparation

Let's create a home folder for the executor first, this is where the config files will live

mkdir ~/.executor

Download the executor binary from , or use curlthis repo

Linux amd64
curl -L https://github.com/celer-network/sgn-v2-networks/raw/main/binaries/executor-<latest-version>-linux
Linux arm64
curl -L https://github.com/celer-network/sgn-v2-networks/raw/main/binaries/executor-<latest-version>-linux
MacOS Intel chip
curl -L https://github.com/celer-network/sgn-v2-networks/raw/main/binaries/executor-<latest-version>-darwi
MacOS Apple chip
curl -L https://github.com/celer-network/sgn-v2-networks/raw/main/binaries/executor-<latest-version>-darwi

Unzip it and move it to a directory on $PATH . We will use /usr/local/bin

tar -xvf executor.tar.gz && rm executor.tar.gz
mv executor-* /usr/local/bin/executor # may need sudo, or change this to your preferred location

Make sure the binary runs

shell
executor start
output
2022-04-20 17:19:23.126 |INFO | root.go:49: Reading executor configs
2022-04-20 17:19:23.127 |INFO | start.go:48: Starting executor
...

It won't actually run since we haven't setup any configs yet, but good to know it at least starts. If it doesn't,
make sure you got the right distribution for your system arch.

Database Setup

Since the executor monitors on-chain events and keeps track of message execution, we'll need a database. In
theory, the executor supports any databases that support any Postgresql dialect database, but it's only tested
with CockroachDB for now

Installation

You can visit their for more detailed instructions. Below is an example for running CockroachDB on macOS
via Homebrew

website

brew install cockroachdb/tap/cockroach

Start DB Instance

Start a single node instance in the background

cockroach start-single-node --store="$HOME/.crdb-node0" --listen-addr=localhost:26257 --http-addr=localhos

Test connection

cockroach sql --insecure

If you see this prompt then everything is right

Welcome to the CockroachDB SQL shell.
All statements must be terminated by a semicolon.
To exit, type: \q.
#
Server version: CockroachDB CCL v21.2.3 (x86_64-apple-darwin19, built 2021/12/14 15:26:20, go1.16.6) (sa
Cluster ID: 67881086-b544-4159-803f-2f7b952e1436
#
Enter \? for a brief introduction.
#
root@:26257/defaultdb>

I know that's a lot of steps ... but thankfully that's all for the database. We are almost done here, just a little more
configs, then we are off!

Configurations

The config is simple, you only need two config files and an ETH keystore file.

First, let's create the folders and files in the executor home

.executor/
 - config/
 - executor.toml
 - cbridge.toml
 - eth-ks/
 - signer.json

Now we have the files in place, let's take a look at each individual file and what they do.

signer.json

Since the job of the executor is to submit messages on-chain, a signer keystore is required. Eventually, you may
want to delegate the gas cost of the transactions the executor makes to your users, but that's outside of the
scope of this tutorial. We will discuss this topic in later chapters.

executor.toml

This config file houses information about app contract, connectivity, and keystore location. A standard
executor.toml looks like this. Remember to fill in the contract addresses and the keystore passphrase.

since we don't want the executor to execute messages that are not sent by our
BatchTransfer contract, the following items are added to filter only
the ones we care about
[[service]]
Fully qualified absolute path only, "~" would not work
signer_keystore = "/Users/patrickmao/.executor/eth-ks/signer.json"
signer_passphrase = "<your-keystore-passphrase>"
[[service.contracts]]
chain_id = 5 # Goerli
address = "<BatchTransfer-address>"
allow_sender_groups = ["batch-transfer"]
[[service.contracts]]
chain_id = 97 # Bsc testnet
address = "<BatchTransfer-address>"
allow_sender_groups = ["batch-transfer"]
[[service.contract_sender_groups]]
the name/ID of the group. service.contracts refer to a sender group in allow_sender_groups
name = "batch-transfer"
allow = [
 # allow and execute messages originated from <BatchTransfer-address> on chain 1
 { chain_id = 5, address = "<BatchTransfer-address>" },
 # allow and execute messages originated from <BatchTransfer-address> on chain 56
 { chain_id = 97, address = "<BatchTransfer-address>" },
]

[sgnd]
SGN testnet node0 grpc. executor reads available messages from this endpoint
sgn_grpc = "cbridge-v2-test.celer.network:9094"
SGN testnet gateway grpc. all tx operations to the SGN is delegated through it
gateway_grpc = "cbridge-v2-test.celer.network:9094"

[db]
url = "localhost:26257"

cbridge.toml

Executor relies on multiple on-chain events to do its job. This config file is where we configure on-chain event
monitoring behaviors. The only things we need to care about for now is the address of the contracts and RPC
endpoint URLs

[[multichain]]
chainID = 5
name = "Goerli"
gateway = "<your-goerli-rpc>" # fill in your Goerli rpc provider url
cBridge (liquidity bridge) contract address. Executor relies on events from this
contract to double check and make sure funds are transfered to the destination
before it attempts messages on the destination chain
cbridge = "<copy-addr-from-'Contract Addresses & RPC Info'>"
MessageBus contract address. Executor relies this to keep a message execution
history (just so you can debug or help out angry customers).
msgbus = "<copy-addr-from-'Contract Addresses & RPC Info'>"
blkinterval = 15 # polling interval
blkdelay = 5 # how many blocks confirmations are required
maxblkdelta = 5000 # max number of blocks per poll request

[[multichain]]
chainID = 97
name = "BSC Testnet"
gateway = "https://data-seed-prebsc-2-s3.binance.org:8545/"
cbridge = "<copy-addr-from-'Contract Addresses & RPC Info'>"
msgbus = "<copy-addr-from-'Contract Addresses & RPC Info'>"
blkinterval = 3
blkdelay = 8
maxblkdelta = 5000
on some EVM chains the gas estimation can be off. the below fields
are added to make up for the inconsistancies.
addgasgwei = 2 # add 2 gwei to gas price
addgasestimateratio = 0.3 # multiply gas limit by this ratio

Running the Executor

Now with the configs and database out of the way, running the executor is as simple as a line of command (we'll
discuss more reliable deployment methods in)Integration Tutorial: Advanced

executor start --loglevel debug --home $HOME/.executor

Sometimes executor start might fail because of failures to dial either SGN node or SGN gateway gRPC. It's
probably because we are deploying something. Just wait a while and it'll most likely resolve.

That's it, the entire app stack is fully functional now. We've come a long way, and now is the moment of truth, will
it work or not?

Testing the App
For testing, we are using test CELR on Goerli. Please add it to your wallet
0x5d3c0f4ca5ee99f8e8f59ff9a5fab04f6a7e007f

Prepare Funds

Before we start testing make sure that executor's signer and test sender account have funds. You can go to the
 on Goerli to and call drip(0x5d3c0f4ca5ee99f8e8f59ff9a5fab04f6a7e007f) to get some CELRfaucet

Approve Token

Make sure you approve BatchTransfer for CELR usage before interacting with it.

Send the Transfer Request

Now we are ready to call our BatchTransfer contract on Goerli to initiate the whole cross-chain batch transfer
process.

Note: the first param payable amount is the fee for this cross-chain transaction, we are omitting this for now.

batchTransfer 0
_receiver <BatchTransfer-address-on-bsc>
_token 0x5D3c0F4cA5EE99f8E8F59Ff9A5fAb04F6a7e007f # CELR
_amount 100000000000000000000 # 100
_dstChainId 97 # BSC testnet
_maxSlippage 1000000 # slippage allowed at bridge, pools on testnets tend to be imbalanced, using 100% to
_bridgeType 1 # pool-based liquidity bridge
_accounts 0x05A0540E71198cF0876ECa1072b3C5D091bC26fA,0x9B5fc6C0e7163e69154168510504388E1FD9d882
_amounts 40000000000000000000,40000000000000000000 # 40, 40 to be safe since bridge takes some fee

After calling the contract, it may take around 30 ~ 120 seconds or so for SGN to monitor, verify and sign the
transfer and the message. The executor will automatically pick up the message. The logs should look like this

│2022-04-27 01:19:42.781 |INFO | executor.go:542: executed xferMsg (id f66aec9401cbc77b525eafccaec49b6f4fe

Let's copy the txhash and check it out on BscScan

If somehow the transaction on BSC testnet fails, it is likely that due to the pool imbalance on testnet, the total
amount of CELR transferred from Goerli to BSC testnet is lower than the sum of _amounts . Lower the
_amounts and try again.

And let's check if the test accounts have got their 40 CELR.

Address 0x9B5fc6C0e7163e69154168510504388E1FD9d882 | BscScan
Binance (BNB) Blockchain Explorer

Address 0x05A0540E71198cF0876ECa1072b3C5D091bC26fA | BscScan
Binance (BNB) Blockchain Explorer

They indeed got it! At this stage our simple app is fully functional, let's round up what we have done in this tutorial.

Next: Advanced Topics
To make the BatchTransfer App more production-ready, there are some advanced functionalities that need to be
added, which are covered in the .Integration Guide: Advanced

Message Executor
Previous

Integration Guide: Advanced
Next

Last modified 1mo ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://im-docs.celer.network/developer/development-guide/contract-examples/batch-transfer
https://github.com/celer-network/sgn-v2-contracts/blob/e728cfc477/contracts/message/apps/examples/BatchTransfer.sol#L48
https://hardhat.org/
https://im-docs.celer.network/developer/development-guide/contract-examples/hello-world
https://goerli.etherscan.io/
https://testnet.bscscan.com/
https://github.com/celer-network/sgn-v2-networks/tree/main/binaries
https://www.cockroachlabs.com/docs/v21.2/install-cockroachdb-linux
https://im-docs.celer.network/developer/development-guide/message-executor/integration-guide-advanced
https://goerli.etherscan.io/address/0x50B96c4374EFeEA0C183D06679A14e951E33B4Dd#writeContract
https://testnet.bscscan.com/
https://testnet.bscscan.com/address/0x9B5fc6C0e7163e69154168510504388E1FD9d882
https://testnet.bscscan.com/address/0x05A0540E71198cF0876ECa1072b3C5D091bC26fA
https://im-docs.celer.network/developer/development-guide/message-executor/integration-guide-advanced
https://im-docs.celer.network/developer/development-guide/message-executor
https://im-docs.celer.network/developer/development-guide/message-executor/integration-guide-advanced
https://im-docs.celer.network/

Integration Guide: Advanced

In the from the previous section, we walked through a minimal implementation of a cross-chain app. In
this guide, we are going to discuss the following topics to make the inter-chain dApp more
production ready. The goal is to get you on board with the patterns involved in deploying a robust service on top
of the Celer IM infrastructure.

basic guide
BatchTransfer

Enhance security through executor's "sender groups" config

Dealing with bridge failures (refunds)

Chaining messages

Configuring a retry back-off strategy

Enhance security through executor's "sender groups" config

Under the current IM architecture, any contract can send messages to any other contracts. This means that a
malicious party can forge messages that conform to your contract's message data type, send them to your
contract, and exhaust your executor's gas fund. Thus, in production, it is important that the executor checks
where a message originated from. Sender groups are designed just for that.

If you have experience with cloud services such as AWS, your might recognize that a sender group is pretty much a
"security group".

An example sender group looks like this

[[service.contract_sender_groups]]
the name/ID of the group. service.contracts refer to a sender group in allow_sender_groups
name = "your-sender-group"
allow = [
 # allow and execute messages originated from <app-contract-address> on chain 1
 { chain_id = 5, address = "<app-contract-address>" },
 # allow and execute messages originated from <app-contract-address> on chain 56
 { chain_id = 97, address = "<app-contract-address>" },
]

After defining the security groups, we need to mount it to individual contract configs

[[service]]
[[service.contracts]]
chain_id = 5
address = "<app-contract-address>"
allow_sender_groups = ["your-sender-group"]
[[service.contracts]]
chain_id = 97
address = "<app-contract-address>"
allow_sender_groups = ["your-sender-group"]

Dealing with Bridge Failures

Contract Changes

It is possible that bridging would fail when the user calls batchTransfer due to high slippage, not enough
liquidity, etc. In These cases, the executor automatically prepares a refund and executes it on the source chain. In
order for this to work, the BatchTransfer contract on the source chain needs to implement

.executeMessageWithTransferRefund

Note that this function is called with the original _message we encoded and sent out. And the funds are
guaranteed to arrive before it is called.

Executor Changes

The executor has an option that needs to be explicitly turned on to enable auto refund for bridge failures.

executor.toml
[executor]
enable_auto_refund = true

Chaining Messages

You may want to "chain" or "nest" a message in executeMessageWithTransfer on the destination chain.
Since the executeMessageWithTransfer interface is payable, this usage is supported.

In the BatchTransfer contract, . a "receipt" message is chained inside

Now we need to configure the executor to add a payable value when calling executeMessageWithTransfer
to cover the fee introduced by chaining the additional message.

[service]
[[service.contracts]]
chain_id = 5 # Goerli
address = "0x09E4534B11D400BFcd2026b69E399763CeAfB42D"
add_payable_value_for_execution = 20000000000 # <-- add this line, amount in wei
[[service.contracts]]
chain_id = 97 # Bsc testnet
address = "0x570F9c2f224b002d75F287f5430Bc9598E850E13"
add_payable_value_for_execution = 20000000000 # <-- add this line, amount in wei

But how do we know how much fee is needed? This is the tricky part since we can only estimate the amount of
fee our sendMessage call is incurring. Let's take a look at how the message fee is calculated in the MessageBus
contract:

uint256 public feeBase;
uint256 public feePerByte;

function calcFee(bytes calldata _message) public view returns (uint256) {
 return feeBase + _message.length * feePerByte;
}

You can query the MessageBus contract on a chain for these parameters. If you use abi.encode to encode
your message, the message length is likely fixed. If you happen to have variable length fields in your message, you
should add a safe margin to the add_payable_value_for_execution to reduce the chance of having
message execution reverted.

Integration Guide
Previous

Query IM Tx Status
Next

Last modified 7mo ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://im-docs.celer.network/developer/development-guide/message-executor/integration-guide
https://github.com/celer-network/sgn-v2-contracts/blob/ed81198f85/contracts/message/apps/examples/BatchTransfer.sol
https://github.com/celer-network/sgn-v2-contracts/blob/ed81198f85/contracts/message/apps/examples/BatchTransfer.sol#L88-L99
https://github.com/celer-network/sgn-v2-contracts/blob/ed81198f85/contracts/message/apps/examples/BatchTransfer.sol#L138-L140
https://im-docs.celer.network/developer/development-guide/message-executor/integration-guide
https://im-docs.celer.network/developer/development-guide/query-im-tx-status
https://im-docs.celer.network/

Query IM Tx Status

G E T https://api.celerscan.com/scan/searchByTxHash

Get Tx status from CelerIM system

Request Parameter

Name Type Description

tx String Transaction hash

Response Parameters

Name Type Description

txSearchInfo Array< >TxSearchInfo All related transactions' info

TxSearchInfo

base_info BaseInfo Basic information

transfer Array< >Transfer Transfers List

message Array< >Message Messages List

BaseInfo

Name Type Description

sender String Sender's address

receiver String Receiver's address

src_chain_id UInt32 Source chain id

src_tx_hash String Source chain transaction hash

init_time UInt64 Initial timestamp

last_update_time UInt64
Lastest information update
timestamp

Transfer

Name Type Description

xfer_id String cBridge transfer id

dst_chain_id UInt32 Destination chain id

send_amt String Source chain send amount

received_amt String
Destination chain receiving
amount

src_tx_hash String Source chain transaction hash

dst_tx_hash String
Destination chain transaction
hash

src_token_addr String Token address on source chain

dst_token_addr String
Token address on destination
chain

xfer_status XferStatus Transfer status

refund_amt String
Refund token amount on source
chain. Refund only

refund_tx String
Refund transaction hash. Refund
only

XferStatus

Value Description

XS_UNKNOWN(0) Status placeholder

XS_WAITING_FOR_SGN_CONFIRMATIONS(1) Waiting for Celer SGN confirmation

XS_WAITING_FOR_FUND_RELEASE(2) Waiting for fund release on destination chain

XS_COMPLETED(3) Complete

XS_TO_BE_REFUND(4) Transfer to be refunded

XS_REFUND_TO_BE_CONFIRMED(5) Transfer refund to be confirmed

XS_REFUNDED(6) Transfer refunded

enum XferStatus {
 XS_UNKNOWN = 0,
 XS_WAITING_FOR_SGN_CONFIRMATIONS = 1,
 XS_WAITING_FOR_FUND_RELEASE = 2,
 XS_COMPLETED = 3,
 XS_TO_BE_REFUND = 4,
 XS_REFUND_TO_BE_CONFIRMED = 5,
 XS_REFUNDED = 6,
}

Message

Name Type Description

msg_id String Message id

dst_chain_id UInt32 Destination chain id

payload String payload

execution_tx String Execution transaction hash

msg_fee_gas String Message fee gas

msg_fee_volume Float Message fee in USD value

msg_status MsgStatus Message Status

MsgStatus

Value Description

MS_UNKNOWN(0) Status placeholder

MS_WAITING_FOR_SGN_CONFIRMATIONS(1) Waiting for Celer SGN confirmation

MS_WAITING_FOR_DESTINATION_EXECUTION(2) Waiting for destination chain execution

MS_COMPLETED(3) Complete

Integration Guide: Advanced
Previous

Contract Addresses & RPC Info
Next - Developer

Last modified 7mo ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://im-docs.celer.network/developer/development-guide/message-executor/integration-guide-advanced
https://im-docs.celer.network/developer/contract-addresses-and-rpc-info
https://im-docs.celer.network/

Contract Addresses & RPC Info

Mainnet

SGN/Gateway RPC

SGN gRPC (TLS): cbridge-prod2.celer.app:9094

Gateway gRPC (TLS): cbridge-prod2.celer.app:9094 (same as SGN gRPC)

Contracts

Ethereum 1

cBridge: 0x5427FEFA711Eff984124bFBB1AB6fbf5E3DA1820

MessageBus: 0x4066d196a423b2b3b8b054f4f40efb47a74e200c

BNB Chain 56

cBridge 0xdd90E5E87A2081Dcf0391920868eBc2FFB81a1aF

MessageBus: 0x95714818fdd7a5454f73da9c777b3ee6ebaeea6b

Polygon 137

cBridge: 0x88DCDC47D2f83a99CF0000FDF667A468bB958a78

MessageBus: 0xaFDb9C40C7144022811F034EE07Ce2E110093fe6

Fantom 250

cBridge: 0x374B8a9f3eC5eB2D97ECA84Ea27aCa45aa1C57EF

MessageBus: 0xFF4E183a0Ceb4Fa98E63BbF8077B929c8E5A2bA4

Avalanche 43114

cBridge: 0xef3c714c9425a8F3697A9C969Dc1af30ba82e5d4

MessageBus: 0x5a926eeeafc4d217add17e9641e8ce23cd01ad57

Arbitrum One 42161

cBridge: 0x1619DE6B6B20eD217a58d00f37B9d47C7663feca

MessageBus: 0x3ad9d0648cdaa2426331e894e980d0a5ed16257f

Moonriver 1285

cBridge: 0x841ce48F9446C8E281D3F1444cB859b4A6D0738C

MessageBus: 0x940dAAbA3F713abFabD79CdD991466fe698CBe54

Optimism 10

cBridge: 0x9D39Fc627A6d9d9F8C831c16995b209548cc3401

MessageBus: 0x0D71D18126E03646eb09FEc929e2ae87b7CAE69d

Aurora 1313161554

cBridge: 0x841ce48F9446C8E281D3F1444cB859b4A6D0738C

MessageBus: 0xc1a2D967DfAa6A10f3461bc21864C23C1DD51EeA

Syscoin 57

MessageBus: 0xf5C6825015280CdfD0b56903F9F8B5A2233476F5

Astar 592

MessageBus: 0xf5C6825015280CdfD0b56903F9F8B5A2233476F5

Ape 16350

MessageBus: 0x5471ea8f739dd37E9B81Be9c5c77754D8AA953E4

Arbitrum Nova 42170

MessageBus: 0xf5c6825015280cdfd0b56903f9f8b5a2233476f5

Milkomeda C1 2001

MessageBus: 0x81c548584189ba1d54510313d3b5e601f6679818

zkSync Era 324

MessageBus: 0xb3Ec8b87808200E1414010df87f1F8202CdfD084

Filecoin 314

cBridge: 0xd46f8e428a06789b5884df54e029e738277388d1

MessageBus: 0x317ed2054CCD6DC47d49550B4dE41589E7064154

Polygon zkEVM 1101

MessageBus: 0x9Bb46D5100d2Db4608112026951c9C965b233f4D

Testnet

SGN/Gateway RPC

The current version of executor only supports non-TLS transport since the domain for this env is not ready yet.
You can temporarily use these endpoints:

HTTPS

SGN gRPC: cbridge-v2-test.celer.network:9094

Gateway gRPC: cbridge-v2-test.celer.network:9094

Contracts

Goerli Testnet 5

cBridge: 0x358234B325EF9eA8115291A8b81b7d33A2Fa762D

MessageBus: 0xF25170F86E4291a99a9A560032Fe9948b8BcFBB2

BSC Testnet 97

cBridge: 0xf89354F314faF344Abd754924438bA798E306DF2

MessageBus: 0xAd204986D6cB67A5Bc76a3CB8974823F43Cb9AAA

Fantom Testnet 4002

cBridge: 0xFA78cBa4ebbf8fE28B4fC1468948F16Fda2752b3

MessageBus: 0xb92d6933A024bcca9A21669a480C236Cbc973110

Arbitrum Testnet 421611

cBridge: 0x9B36f165baB9ebe611d491180418d8De4b8f3a1f

MessageBus: 0x7d43AABC515C356145049227CeE54B608342c0ad

Polygon Mumbai Testnet 80001

cBridge: 0x841ce48F9446C8E281D3F1444cB859b4A6D0738C

MessageBus: 0x7d43AABC515C356145049227CeE54B608342c0ad

Avalanche C-Chain Fuji Testnet 43113

cBridge: 0xe95E3a9f1a45B5EDa71781448F6047d7B7e31cbF

MessageBus: 0xE9533976C590200E32d95C53f06AE12d292cFc47

Dexalot Testnet 432201

cBridge: 0xb51541df05DE07be38dcfc4a80c05389A54502BB

MessageBus: 0xE0d84Dd724D5e8D7D5e50926a4770D51BA933dF3

Godwoken Testnet 71401

cBridge: 0x7A4a65Db21864384d2D21a60367d7Fd5c86F8Fba

MessageBus: 0x6ec72D669DFaB92CB3c7DBD499586a8188364DB5

Shibuya Testnet 81

cBridge: 0xe4871Cede6e17c28a633453CDd14b90c2E31C23D

MessageBus: 0xa3d23891f00B8d34E31096c0CeE1734595840D4D

ConsenSys zkEVM Testnet 59140

MessageBus: 0xf5C6825015280CdfD0b56903F9F8B5A2233476F5

Filecoin Hyperspace Testnet 3141

cBridge: 0xf5C6825015280CdfD0b56903F9F8B5A2233476F5

MessageBus: 0x5471ea8f739dd37E9B81Be9c5c77754D8AA953E4

Polygon zkEVM Testnet 1442

cBridge: 0x9Bb46D5100d2Db4608112026951c9C965b233f4D

MessageBus: 0xDc44EdEde02bC11D31e1BcBC04b17C02F11ac4d7

Scroll Alpha Testnet 534353

cBridge: 0x9B36f165baB9ebe611d491180418d8De4b8f3a1f

MessageBus: 0x5471ea8f739dd37E9B81Be9c5c77754D8AA953E4

FNCY Testnet

cBridge: 0x9B36f165baB9ebe611d491180418d8De4b8f3a1f

MessageBus: 0xE48151964556381B33f93E05E36381Fd53Ec053E

Query IM Tx Status
Previous

Audit Reports
Next

Last modified 12d ago

Celer Inter-chain
Message (IM)

Search ⌘ K

https://etherscan.io/address/0x5427FEFA711Eff984124bFBB1AB6fbf5E3DA1820
https://etherscan.io/address/0x4066d196a423b2b3b8b054f4f40efb47a74e200c
https://bscscan.com/address/0xdd90E5E87A2081Dcf0391920868eBc2FFB81a1aF
https://bscscan.com/address/0x95714818fdd7a5454f73da9c777b3ee6ebaeea6b
https://polygonscan.com/address/0x88DCDC47D2f83a99CF0000FDF667A468bB958a78
https://polygonscan.com/address/0xaFDb9C40C7144022811F034EE07Ce2E110093fe6
https://ftmscan.com/address/0x374B8a9f3eC5eB2D97ECA84Ea27aCa45aa1C57EF
https://ftmscan.com/address/0xFF4E183a0Ceb4Fa98E63BbF8077B929c8E5A2bA4
https://snowtrace.io/address/0xef3c714c9425a8F3697A9C969Dc1af30ba82e5d4
https://snowtrace.io/address/0x5a926eeeafc4d217add17e9641e8ce23cd01ad57
https://arbiscan.io/address/0x1619DE6B6B20eD217a58d00f37B9d47C7663feca
https://arbiscan.io/address/0x3ad9d0648cdaa2426331e894e980d0a5ed16257f
https://moonriver.moonscan.io/address/0x841ce48F9446C8E281D3F1444cB859b4A6D0738C
https://moonriver.moonscan.io/address/0x940dAAbA3F713abFabD79CdD991466fe698CBe54
https://optimistic.etherscan.io/address/0x9D39Fc627A6d9d9F8C831c16995b209548cc3401
https://optimistic.etherscan.io/address/0x0D71D18126E03646eb09FEc929e2ae87b7CAE69d
https://aurorascan.dev/address/0x841ce48F9446C8E281D3F1444cB859b4A6D0738C
https://aurorascan.dev/address/0xc1a2D967DfAa6A10f3461bc21864C23C1DD51EeA
https://explorer.syscoin.org/address/0xf5C6825015280CdfD0b56903F9F8B5A2233476F5/transactions
https://blockscout.com/astar/address/0xf5C6825015280CdfD0b56903F9F8B5A2233476F5
https://explorer.bas.metaapesgame.com/address/0x5471ea8f739dd37E9B81Be9c5c77754D8AA953E4/contracts
https://nova.arbiscan.io/address/0xf5c6825015280cdfd0b56903f9f8b5a2233476f5#code
https://explorer-mainnet-cardano-evm.c1.milkomeda.com/address/0x81c548584189ba1d54510313d3b5e601f6679818
https://explorer.zksync.io/address/0xb3Ec8b87808200E1414010df87f1F8202CdfD084
https://filfox.info/en/address/0xd46f8e428a06789b5884df54e029e738277388d1
https://filfox.info/en/address/0x317ed2054ccd6dc47d49550b4de41589e7064154
https://zkevm.polygonscan.com/address/0x9Bb46D5100d2Db4608112026951c9C965b233f4D
https://goerli.etherscan.io/address/0x358234B325EF9eA8115291A8b81b7d33A2Fa762D
https://goerli.etherscan.io/address/0xF25170F86E4291a99a9A560032Fe9948b8BcFBB2
https://testnet.bscscan.com/address/0xf89354F314faF344Abd754924438bA798E306DF2
https://testnet.bscscan.com/address/0xAd204986D6cB67A5Bc76a3CB8974823F43Cb9AAA
https://testnet.ftmscan.com/address/0xFA78cBa4ebbf8fE28B4fC1468948F16Fda2752b3
https://testnet.ftmscan.com/address/0xb92d6933A024bcca9A21669a480C236Cbc973110
https://testnet.arbiscan.io/address/0x9B36f165baB9ebe611d491180418d8De4b8f3a1f
https://testnet.arbiscan.io/address/0x7d43AABC515C356145049227CeE54B608342c0ad
https://mumbai.polygonscan.com/address/0x841ce48F9446C8E281D3F1444cB859b4A6D0738C
https://mumbai.polygonscan.com/address/0x7d43AABC515C356145049227CeE54B608342c0ad
https://testnet.snowtrace.io/address/0xe95E3a9f1a45B5EDa71781448F6047d7B7e31cbF
https://testnet.snowtrace.io/address/0xE9533976C590200E32d95C53f06AE12d292cFc47
https://subnets.avax.network/dexalot/testnet/explorer/address/0xb51541df05DE07be38dcfc4a80c05389A54502BB
https://subnets.avax.network/dexalot/testnet/explorer/address/0xE0d84Dd724D5e8D7D5e50926a4770D51BA933dF3
https://gw-explorer.nervosdao.community/address/0x7A4a65Db21864384d2D21a60367d7Fd5c86F8Fba
https://gw-explorer.nervosdao.community/address/0x6ec72D669DFaB92CB3c7DBD499586a8188364DB5
https://shibuya.subscan.io/account/0xe4871cede6e17c28a633453cdd14b90c2e31c23d
https://shibuya.subscan.io/account/0xa3d23891f00b8d34e31096c0cee1734595840d4d
https://explorer.goerli.zkevm.consensys.net/address/0xf5C6825015280CdfD0b56903F9F8B5A2233476F5
https://hyperspace.filfox.info/en/address/0xf5C6825015280CdfD0b56903F9F8B5A2233476F5
https://hyperspace.filfox.info/en/address/0x5471ea8f739dd37E9B81Be9c5c77754D8AA953E4
https://explorer.public.zkevm-test.net/address/0x9Bb46D5100d2Db4608112026951c9C965b233f4D
https://explorer.public.zkevm-test.net/address/0xDc44EdEde02bC11D31e1BcBC04b17C02F11ac4d7
https://blockscout.scroll.io/address/0x9B36f165baB9ebe611d491180418d8De4b8f3a1f/transactions#address-tabs
https://blockscout.scroll.io/address/0x5471ea8f739dd37E9B81Be9c5c77754D8AA953E4
https://fncyscan-testnet.fncy.world/address/0x9B36f165baB9ebe611d491180418d8De4b8f3a1f?view=contract
https://fncyscan-testnet.fncy.world/address/0xE48151964556381B33f93E05E36381Fd53Ec053E
https://im-docs.celer.network/developer/development-guide/query-im-tx-status
https://im-docs.celer.network/audit-reports
https://im-docs.celer.network/

