Glacier Network: Building A Modular, Dynamic
and Scalable NoSQL Database for Large-scale
Decentralized Applications

Glacier Labs, v0.2.3
Mar 1st, 2023

Abstract

Modular, dynamic, and scalable databases are one key challenge for fu-
ture blockchain-based large-scale applications. Currently, a large number
of Web3 applications have to temporarily store a vast amount of user and
product data on centralized cloud services due to the lack of developer-
friendly decentralized storage tools. Glacier believes that with the de-
velopment of Web3 applications and servers, more Web3 developers will
choose to store data in a completely decentralized underlying protocol.
Glacier’s vision is to provide Web3 developers with a NoSQL Database of
Data Availability and Data Composability, to help them avoid the risks
associated with centralized databases. (Glacier will not only provide de-
velopers with decentralized database services, but also help them mine
and analyze the public data on the user chain, such as address informa-
tion, transaction data, content data, and social relations, in order to build
more valuable information and data trading market, which will help in the
monetization of blockchain data.

“Information is power. But like all power, there are those

who want to keep it for themselves.”

Aaron Swartz

Contents

1 Background 4
L.l WEBS BEOrapR v s o m s ¢ ¢ 5 8 6 8 5 98 E% £ ¢ 5 3 8 6 5 § BEEE 4
1.2 Web3 Database 4
2 Introduction 6
D1 Kalaeie? DEEEDASE - o o ¢ 2 8 5 5 5 6 2 5@ @ 8 5 & 5 5 6 6 8 5@ 6.8 b 6
2.2 Design PFIiciples =« « ¢« s 5 8 5 s s s @ s ¢ ¢ 84 8 8 6 6 5 & @ % s 7
2.5 Pesition:in 'Web3d DtorageStack. « « wwow w5 5 5 5 5 5 5 5 oo 8
2.4 Competitive Edge in Web3 Database 8
P 1DBtA NIOHELIZELION . & & ¢ 5 5 5 6 8 &5 @& 8 8 K 5 6 & 6 6 & @ &4 § 9
3 Glacier Architecture 9
3.1 Full Network 9
3.2 Technical Stack 11
3.3 GID Account and Control & Access Keys 13
34 NamedSpace : o o s w ¢ ¢ ¢ 5 5 6 3 5 9 5@ '% € ¢ § 5 8 § 5 5 @@ &% 14
4 (lacier Network 15
4.1 DB Engine e 15
42 DB SHEEdIHE o 5s.s 5 5 1 68 § 6860006 38588608 a0E8s 17
4.3 Decentralization of Rollup Sequencer 19
4. Dota Wrting Proeess . - « 2 « ¢ « mommom o 6 5 « 3 % 3 5 5w = 19
4.5 Indexer e e e 20
4.6 CodeDemo e 21
5 Glacier Rollup 22
6 Key Features 23
7 Use Cases 23
8 Future Work 24
8.1 Decentralized Idenbity « : : 2 s s s v e « ¢ 5 5 8 3 3 5 95 5% 24
8.2 Data Cross-Rollup 24
8.3 Graph Database for Web3 Social 24

1 Background
1.1 Web3 Storage

Since the development of Web3 storage is still in its early stages, a large number
of Web3 applications still choose to store data on centralized servers or cloud
services. Unfortunately, centralized systems pose risks such as single points
of failure, data loss, privacy leakage, etc. Glacier believes that the decentral-
ized storage of Web3 is now taking shape. With the improvement of storage
infrastructure, more and more Web3 developers will choose to store data in
decentralized storage protocols.

With the development of Web3 storage, the underlying file storage protocol
has gradually been adopted by many Web3 developers. However, since the
underlying distributed storage protocols, such as Arweave and IPF'S, can only
store static files, developers only get a storage file ID. This cannot meet the
requirements of structured storage, query, and data modification.

Web3d’s data is fully accessible on the blockchain and is of great value. User
data created and recorded by Web3 DApps is also one of the greatest assets for
Web3 devs. Web3 developers should be easily able to develop new applications
based on related data and generate essential business insights, but it is funda-
mentally impossible for Web3 developers to achieve this right now due to the
following challenges:

e Poor Data Accessibility. Today, Web3 data is locked in different decen-

tralized storage files, preventing complete data visibility to the developers.
This leads to poor customer experience, missing insights, and slower app
development.

e Lack of agility. Demands for faster and easier deployment to the fast-
moving Web3d markets and higher productivity are held back by today’s
extremely unfriendly storage environment and rigid relational data mod-
els.

e Limited data support. Web3 developers have limited data support for
easily analyzing, querying and monitoring their own user data through
different channels like web and mobile.

e High Cost. Expensive fees in decentralized storage, huge jumps in costs
as workloads scale, and multi-chain storage management impose barriers
to innovation.

Therefore,there is a huge demand for the Web3 database layer that could

provide a fully decentralized database service built for resilience, scalability, and
the highest levels of data privacy and security in Web3.

1.2 Web3 Database

A16z published an article co-authored by Harvard Business School associate
professor Scott Kominers and Koodos co-founder Jad Esber called How to Build
a Reputation-Based Decentralized Identity System. It points out that there is
tremendous value in on-chain data. How to manage and apply this data requires

publicly accessible data standards—agreed data formats such as "what a proof
of contribution looks like” or "how to represent an on-chain record.”

Structuring this complex information ensures interoperability:

(1) enabling users to effectively combine their “identities” from different
services.

(2) minimizing the friction that may occur between different information of
varied reputations on the platform or personal chains.

As multi-chain develops, the free circulation of crypto assets has been real-
ized. However, with the development of on-chain applications, a wider gap is
constantly forming - the data gap.

With the prosperity of Web3 applications, more applications bring about
more complex data, which are stored in centralized servers or public clouds
instead of decentralized systems such as Arweave. This data is stored as static
files, which are structured and of high shareability. At the same time, the
data stored by the decentralized storage protocol of the underlying file is not
structured; only the ID of the transaction or storage file is. This makes it quite
complicated for Web3 developers to query storage files and to call and update
data in storage files.

A decentralized database is needed between the Web3 application and the
underlying file static storage protocol to solve the issues of structured storage of
data and realize the data availability and data composability of Web3. It is due
to the lack of Web3 database services that a large number of Web3 developers
still choose to store data structures on centralized servers or cloud services. To
some extent, this results in a high sharing barrier between the data of Web3
applications, restricting the free flow ot data.

Theretore, Web3 now urgently needs a decentralized on-chain database pro-
tocol to help developers build a decentralized, structured, shareable, and com-
posable data storage, which will ultimately achieve low-cost data storage, shar-
ing, and circulation.

Centralized Decentralized

< >
(T N (T N (T 7

Applications Applications Applications
Processing Processing Processing
(local server, EC2) (local server, EC2) (Ethereum, Hyperiedger)
File System File System Blockchain ; Blockchain
(Linux FS, ﬂthjéz (Linux FS, r?nifh:;; Database F"?I;‘sggtem Database
HDFg) | |(MongoDB) HDFs) | |(MongoDB) | y6nqoDB))| |(MongoDB)

\- i Y .

The spectrum of centralized vs decentralized deployments

]

2 Introduction

2.1 Glacier Database

The prosperity of Web3 has led to an explosion of on-chain data, including
address information, transaction data, content data, and social relations. If
developers of Web3 applications want to mine the data on these user chains, then
SQL databases are no longer suitable for these applications. Instead, NoSQL
databases can handle these vast amounts of data well.

Glacier’s mission 1s to build a secure, decentralized, and highly scalable
Web3 NoSQL database to better help Webd3 applications store massive amounts
of institutionalized data and fully mine the Web3 on-chain data in order to
provide better data services to users. The main types of NoSQL non-relational
databases provided by Glacier are Key-value, Document, Columnar, and Graph.

With the decentralized architecture of Web3, developers need to deal with a
large amount of scattered and complex data on the chain, which greatly hampers
the application’s development cycle, as well as the experience and scalability
of the application itself. Glacier database greatly simplifies the development
process of applications and protocols by providing highly scalable decentralized
data storage and query services, enabling dApps to seamlessly insert data from
other applications. By incorporating on-chain decentralized data into a NoSQL
database, Glacier will help Web3 developers better store structured data for
their applications.

Glacier defines a new standard for the structured storage of Web3 data.
Under this standard, Web3 data can be easily called, queried, and even traded.
A large amount of user data of Web3 is in the public state on the chain and has
strong intrinsic value. At the same time, the data structure of NFT' is similar
to that of a NoSQL database. So, Glacier can make it very convenient for users
to generate Data NF'T from the data they own, which can be then monetized
by trading the data in Glacier’s Data Marketplace.

Web3.0 DApp Glacier Dev SDK Glacier Operational Layer Data Consumers
o o P : g :
| _ | : ' ' GlacierDB Engine I | |
. DeFi : | : : | i | Web3.0 Devs | |

| | |
: : : : Batch Load : NoSQL Model I | |
. . . | - : Unifile Query API : Research :
| GamekFi . : I | |
| . BatchFile | Extract '\ Diaila Load | Rollup :‘ | Agency |
| | Exports _» Transform : g4 ' | '
, | , Lisd | : Data Pool | | |
, NFTs | | e | : | | Investors | |
I ' | |
: : : ; : : Permanent Storage | | '
| | ; I . I
. SocialFi : | : : , : . | Social Graph :
| | | | | Arweave Chain | | Builders |
I | | | 1
I | I i o T : : :
| Metaverse | ' ' ! : | | |
. | : | , | Glacier Data Protocol | . |Data Services| |
I | . I I
| | DHEE:;“""'E | | Data | Data : : :
: DAG : ata Changes I ;Change Data : Monetization | Management , Data Trade or Rent m— |
| , , | Capture | >, P | arketing | |
| . | | , Data NFT Minting : | Agency :
[| '
' : | : : | | |
| DID . | . : Data Marketplace : ' | DID Service :
| : : : : ' | | . | Providers | |
| ! GlacierDB | : Deployment : : :
Change Data
| Etc. | g | : l | | Etc. |
, | | Streams | | , , I | I
(o | PR, | . .. Lo S S
L] L] .
2.2 Design Principles

(Glacier’s vision is to provide the most user-friendly, scalable, and decentralized
database services for Web3 developers. We will design the Glacier protocol with
the following principles:

Large-scale on-chain adoption with zk-Rollup. Glacier’s innovative
solution allows for processing massive amounts of data in production while
also improving data services for users. Glacier’'s modularization and de-
centralization are secured by the implementation of zk-Rollup technology.
Fully supporting NoSQL. Glacier will mainly focus on providing NoSQL
database features, including the types of key-value, the graph, the docu-
ment, and the column family.

Efficient querying. Glacier will support efficient querying throughout
for Web3 developers by providing a unified query API tool.
Decentralization. All the data will be stored in a decentralized manner
through Glacier’s nodes cluster and the Arweave blockchain. The data
owners will have full control over their own database, and the Glacier
Protocol will be tully controlled by GLC token holders.

Immutability. All the data flow and storage will be recorded on the
Glacier chain with an ordered sequence of blocks, with each block holding
an ordered sequence of transactions. This will make all the data stored
on Glacier immutable.

2.3 Position in Web3 Storage Stack

In the entire Web3 technical stack, the data storage protocol from the client
to the bottom can be divided into six layers. Glacier is mainly working at
the database layer, which solves the problems of how to help Web3 developers
realize structured data storage.

|

| &

: End-User Wallet | g METAMASK :E I_Edger & WalletConnect

|

bttt e e e i e |

| Web3.0 DA »¢ CyberC ' by 0o R E - .

| eb3.0 DApp yberConnec LIS\ SANDEBOR |

|

S A

[

: Blockchain Domain | { :\ ENS Egiﬁ%ﬂ?fble @ Bonfida

|

o e x|

! |

I Data Query Service ¥ Dune

| Query Services | g tg'FEph Ananics @Etheracan |

| i
*

[Decentralized Database | kuwud ¥ |GLACIER & ceramic]

|ﬂ_ __ |

! |

| : arweave

| Decentralized Storage | @ e Filecoin |

|

b A R A R R o A R A e R T T R R R R R A R R R R R R R R e N i I R SR R R R R

2.4 Competitive Edge in Web3 Database

In the world of blockchain, the leading projects that focus on data-structured
storage positioning are Ceramic, WeaveDB and Kwil. Compared to them,
Glacier has the following edges:

1) Glacier is the first Web3 database protocol built on the zk-Rollup to serve
as the NoSQL database.

2) Glacier not only solves problems associated with the institutional storage
of Web3 data, but also combines NF'T' technology with the ownership of Web3
data to realize the monetization of Web3 data.

3) Glacier will enable all data to be freely combined and traded through
Glacier’s database service, and provide a professional Data Marketplace to re-
alize free data trade, indexing and renting.

Key Metrics Glacier Ceramic Kwil WeaveDDB

NoSQL Graph SQL NoSQL

Aoy Heature Data(iase Datf;base D(itabase Da,ta%ase

Validator Network Yes Yes Yes No

Validator Incentives Yes No Yes No
Yes, based Yes, based

Own Chain on No on Secret No
ZK-Rollup Proof

Data Monetization Yes No No No

Data Owner-Access

Architecture Yes No NGO xe8

NFT Support Yes No No Yes

2.5 Data Monetization

Glacier will not only provide Web3 developers with a friendly distributed database
but will also provide any Web3 user with a tool for data monetization. Users
will not only be able to store data in Glacier in a structured way but also store
all their data in Glacier in order to generate NF'T assets while realizing the
transaction of data asset ownership.

Different permissions of the data structure can also generate NF'T assets
corresponding to different attributes:

e Proprietary NFTs. The NFT's anchor the ownership of the data, namely
the Owner Key. The address that holds the ownership NFT's will have the
Owner Key corresponding to the metadata.

e Access NFTs. The NFT's anchor the access rights to the data, namely the
Access Key. Addresses that hold access rights to NF'T's can have the right
to access the corresponding metadata.

For the generation of access rights NF'T's, Glacier will support personalized
programming, such as the number of visits, the duration of the visit, whether
it can be transferred, etc.

At the same time, Glacier will build a low-gas, efficient, and secure market-
place to trade the data NFTs. Everyone could use the Glacier marketplace to
trade data NFT's, including those issued by Glacier and those issued by other
protocols.

3 Glacier Architecture

3.1 Full Network
Modular, Dynamic & Scalable NoSQL Structure

The core of Glacier Network is a modular, dynamic, and scalable NoSQL database
GlacierDB. It is built for resilience, immutability, interoperability, and the high-
est levels of data privacy and security in Web3.

Large-scale On-chain Adoption with ZK-Rollup

Glacier powers massive amounts of data in production and fully mines the on-

chain data to provide better data services to users. Modularization and decen-
tralization are secured by zk-rollup.

Built On the Top of Arweave Storage and More

Glacier applies Arweave Log Data (ALD) based storage-based consensus paradigm
(SCP) designed to store, share, and host datasets at scale to make the storage
and query fully secure. Powered by Bundlr and Warp.

Mint & Build Your Own Datasets in One Minute

With Glacier, developers can securely mint and build their own database in a
permissionless way that enables Web3 devs to utilize data easily and eflortlessly
at an ultra-low cost.

dApps

Glacier SDK

A

l Glacier NoSQL Protocol

{ Glacier Gateway]

1
|
‘ i \ LEHder:
|

- T N O S S O O O O
N O S O .
- O O

@

¥ Validator) # ‘L Validator) & N Validator i

DB Shard1

- - . - .

DB Shard...

L I B -

- =~ T

-

L}

‘ X \ Leader

DB Meta
Registry

O I G O S O G
Lo R T

. Validator .

T — — - =

%

Data Blocks Data Proofs

—————————————

————————————

[bA) " [Arweave E | Ethereum | !
| [FIL : | BSC :

= E [Greenfield E E Solana i
-+ : 4 : . * S

Indexer | [A L Y
-—_--“"’-'--_- : - ¥ :' : e & :

- O . . . s

10

3.2 Technical Stack

The core of Glacier protocol is a fully decentralized NoSQL database service.
We call it GlacierDB, built for resilience, scale, and the highest levels of data
privacy and security in Web3. With GlacierDB, Web3 developers can easily
build their own database in a decentralized and secure foundation that enables
Web3 devs to store and deal with the data easily and effortlessly.
GlacierDB technical stack mainly consists of the following layers:
1) Web3 DApps, which are accessing the Glacier decentralized protocol through
Glacier Dev SDK.
2) Glacier decentralized protocol, which is the main part of GlacierDB and
consists of the following segments:

e Glacier Dev SDK
e Glacier NoSQL Access Protocol

Database Engine Shards

Database Transaction Rollup (Data Transactions Rollup)

Data Permanent Availability Network

L1 (Layer 1) Settlement

e Indexer Network

3) The permanent storage layer of the Glacier database is currently compat-
ible with Arweave storage. In the future, we plan to support additional
decentralized storage options that can be easily integrated.

11

dApps

Glacier SDK

L A

l Glacier Protocol

[Glacier Gateway }

,/”//l\

- - r
NoSQL NoSQL Graph
DB Shard1 DB Shard2 DB Shard1 L3

Data Rollup J Data Rollup J Data Rollup J Scalable DB Data Rollup
h . b
Proof
Y
C ™
DB Meta /|
Registry . L L2
Meta Rollup Data Block DA L Data Block DB Meta Rollup
4 A
Proof Data Block
_______ B R .
E Ethereum E i Arweave E
[Bsc | FIL i s
E) | E r I | Indexer 1} gt{[lm t/ St / Ind
I Solana : ! Greenfield I — ettiemen orage / inaexer
. : o : J
I: \ E :1. \, ;JI'
L1 Settlement Permanent Storages

In most cases, a dApp is an independent Web3 web application running
on a browser or client, and the dApp accesses the Glacier Network through
the Glacier SDK. Glacier SDK is implemented in JavaScript. It integrates
functions such as user wallet signature and authentication, encapsulation of
query requests, and processing of Glacier network communication protocols,
allowing developers to quickly connect their dApps to Glacier Network with
just a tew lines of code.

Glacier Network is the core of Glacier which is based on a decentralized
protocol. It consists of two layers: Data Rollup and Meta Rollup. The Data
Rollup layer supports various types of NoSQL database engines such as KV,
Graph, etc. Data engines of the same type can also be sharded to distribute
data to different processing nodes within a single engine, enabling scalability for
massive data. This layer can be considered as a Layer 3 network.

The Meta Rollup layer provides registration, management, and settlement
capabilities for numerous database engines/shardings in the upper layer, serving
as a Layer 2 network. Meta Rollup supports the extension of various database

12

engines and sharding, thereby providing flexibility and support for big data.

The dApp’s data will first be written to the Glacier Network to achieve
higher data availability and resistance to modification. The Glacier Network
periodically generates Data Blocks and Data Proofs, which are submitted to
the L1 Settlement contract to ensure correctness. These Data Blocks are then
submitted to the DA Network, which encodes and makes them public to achieve
Data Availability. Finally, these Data Blocks are archived in decentralized stor-
age such as Arweave and others. In this way, even in the event of a catastrophic
situation, Glacier can retrieve the data from Arweave and rebuild all the histor-
ical data of the Glacier Network, ensuring that the user’s stored data will not
be lost.

The Indexer Network supports different types of data indexing to enable
further processing and analysis of the data, providing various views to acceler-
ate queries. The layer provides various views to users, which helps users easily
understand the data and perform various tasks like data analysis, data visualiza-
tion, and data exploration. The layer also supports data aggregation, filtering,
and sorting, enabling users to extract insights from the data easily.

3.3 GID Account and Control & Access Keys

Before using Glacier’s database service, users need to create a Glacier On-chain
ID account, namely a GID account, to interact with Glacier Network. Users
have tull ownership and control of the data they have deposited into Glacier by
controlling the private key of the GID.

~

ﬁ GID Account

FrQ | R

>_ . Sign Write Request With
. Access Key

i e Glacier
~/ :

Control Keys

Access Key

The Control Key is a public/private key pair, and Glacier users use a Control
Key to create a GID and associate this Control Key with the GID. The Control
Key already associated with the GID can be used to add a new Control Key to
make it associated with the GID, or delete the old Control Key. So one single
GID can be paired with multiple Control Keys. This design can bring a lot of
convenience to Web3 users, because one user may have multiple addresses and
private keys, or even multiple addresses and private keys on different chains. A
GID account can make the same Web3 user share a centralized data package
from different blockchain environments.

13

When users write data to Glacier, each write operation needs to be signed
with the Access Key private key. The Access Key public/private key pair is
temporarily generated. The Access Key private key is stored on the client
side. After the Access Key public key is signed with the Control Key, it will be
registered in Glacier Network and associated with the user’s GID. The advantage
of using the Access Key to sign the written data instead of using the Control
Key directly is that the private key is usually managed by the user’s wallet
(such as Metamask). If every writes data operation needs to use the wallet
signature, every write operation needs to be confirmed on the wallet (such as
Metamask), which will seriously affect the user experience of the dApp. The
user only needs to use the Control Key to register the newly generated Access
Key public/private key pair with Glacier once. In the subsequent data writing
process with Glacier, only the Access Key can be used instead of the Control
Key. The user can regenerate the Access Key anytime or log out of the old
Access Key.

dApp Glacier

Create GID
(Sign with Control Private Key)

Generate Access Key Pair @

o
l'.- 7y
fr —
LA s

>
/ﬁ Register Access Public Key
(Sign with Control Private Key)
T Write Operation
" (Sign with Access Private Key)
>
>

Write Operation
(Sign with Access Private Key)

I:—\-\.-\"\-\.
I‘*_\. o
1 u
"

3.4 NameSpace

(Glacier 1s divided into different NameSpaces, and different NameSpaces can be
used to isolate different dApp data storage spaces. Multiple Collections can be
customized by dApps within a single NameSpace. Each Collection consists of
multiple Documents, which is similar to MongoDB.

14

Glacier provides efficient query capabilities for Collection, such as complex
conditional query, sorting, etc.

GID:25c9eac7 Storage

————————————————

— o

{Iiid'l'l: H:ZG!!'T Hname

{"id": “d4”, "name”: "bob”, “age”: 16}
{"id"; *fe”, "name”:

: “alice”, "age”: 12}

‘tom”, "age": 20}

{Iiid'l'l: "96”’ ilrﬂund!
{iiid'l'l: H55!‘I’ Hrﬂund!
{Iiidﬂ: lic.fl!:r HrDundI!:

. 1, "score™: 99}
" 2, "score”: 90}

3, "score™: 80}

4 (Glacier Network

4.1 DB Engine

The DB Engine is the core unit of the Glacier Network, and the entire network is

composed of many

DB Shards (which will be discussed in detail in the following

sections). The DB |

fngine is responsible for processing data within each Shard.

15

dApp]
Glacier SDK |

NoSQL Tx
(Create / Update / Delete)

DB Engine .

L o

-y
_jT ZK-Rollup

|

- . - . O O O O O
e o e S e o e O S S S s e S = = o

. DA : Proof
Data Blocks
| Y \J
Permanent Storages Settlement Layer

Rollup Contract

The dApp initiates CRUD (Create/Read/Update/Delete) operations to-
wards the DB Engine using the NoSQL protocol through the Glacier SDK.
The process of persisting these operations to the Permanent Storages and Set-
tlement Layer Contract is as follows. Note that, like other blockchain applica-
tions, only operations involving network data changes will trigger a persistent
action. Reading and querying operations do not require triggering Rollup, nor
do they require a signature.

(1) After the Create, Update, Delete Tx operations enter the DB Engine,
the DB Engine verifies the signature of the Tx and then applies it to the table
model of the DB Engine.This verification process ensures that the transaction
is valid and authorized before it is added to the database.

(2) At certain intervals, the DB Engine generates a Data Block containing
the Tx data trom the past interval. The Data Block is then submitted to the
Data Availability Network, which is responsible for ensuring that the data is
available and accessible to all nodes in the network. In the Data Availability
Network, the Data Block undergoes Erasure Coding reconstruction, resulting
in smaller data fragments. These fragments can be sampled and verified by
lightweight clients in the Data Availability Network, ensuring that the data is
accurate and complete.

(3) Meanwhile, the Data Block will be submitted to Arweave (with support
for other permanent storages in the future), and then receive the access address

16

and storage Merkle proof of the Data Block in Arweave. This Merkle proof can
prove that the Data Block has been stored in a certain Block in Arweave.

(4) The Rollup module calculates the Data Proof based on the Data Block.
The Data Proof and Storage Merkle proof are submitted to the Settlement Layer
contract. If the Data Proof is incorrect, the contract submission will fail.

4.2 DB Sharding

In order to horizontally expand the storage and computing capabilities of the
entire Glacier Network, we do sharding for the Glacier Network, which consists
of a large number of DB Shards. Each GID Storage belongs to one of the
avallable DB Shards. Glacier has a global DB Sharding Registry that records
the DB Shard to which each GID Storage belongs, along with the ID and address
of each DB Shard.

4 N 4 N

S e bty --1 GID-X-Storage
GID-B-Storage --1-------- i --1 GID-Y-Storage
SRR O O ~ -~~~ -~~~]-~~~~~" --1 GID-Z-Storage
DB Shard1 i " DB Shard2
e : e
i GID Registry |

Data Sharding
Registry

DB Meta Rollup

Betore accessing Glacier, the Glacier SDK will first query the DB Sharding
Registry to which the current GID belongs, find the location of the correspond-
ing DB Shard from the Registry, and finally initiate an access request to the
DB Shard.

Each DB shard generates data proof and data block periodically, and the
data block is publicly submitted to the Data Availability Network and archived
into decentralized storage like Arweave. The data proof is submitted to the
Settlement Layer Contract. Using L1 as the settlement layer for DB shards
will result in linear growth of data proof writing pressure with the increase

17

in the number of data shards, which will seriously limit the scalability ot the
Glacier Network, especially in low throughput and expensive L1 networks like
Ethereum.

To ensure scalability and avoid limitations on the number of DB shards in the
(Glacier Network, a DB Meta Rollup has been introduced to provide settlement
services for data rollups. The DB Meta Rollup serves as a Layer 2 solution for
the Glacier Network, while the numerous data shards are built on top of it as
a Layer 3 data network. This layered rollup structure enables almost unlimited
expansion of the number of data shards.

DB Shard i DB Shard? ﬁ DB ShardN ﬁ
J - Glacier L3

Data Rollup J Data Rollup J Data Rollup Scalable DB Data Rollup

8

Data Proofs of L3

-

DB Meta . Glacier L2
Data Blocks of L3 Registry - DB Meta Rollup
Meta Rollup

Data Proofs of L2

L1/L0
[DA]—P[Arweave J [EthETEU'T'] - Root Settlement / Storage

The collaborative worklow between Layer 3 and Layer 2 is as follows:

(1) A large number of DB Shards are deployed on Layer 3. As Txs on the
network are continuously processed, each DB Shard will continuously generate
Data Blocks and Data Proots. The Data Blocks will be directly delivered to
the DA network and made public, and eventually stored in Arweave. The Data
Proofs will be delivered to the Glacier Layer 2 network, which serves as the
Settlement Layer for the Glacier Layer 3 network.

(2) The DB Meta Registry on Glacier Layer 2 receives Data Proof Transac-
tions from all DB Shards on Layer 3, validates and processes them, and then
performs Meta Rollup operations to generate Glacier Layer 2’s Data Block and
Data Proot. The Data Block on Layer 2 and the Data Block on Layer 3 will
both be delivered to the DA network, but the Data Proof on Layer 2 will be sent
directly to the L1 contract (such as the Glacier Rollup contract on Ethereum).

13

4.3 Decentralization of Rollup Sequencer

The rollup sequencer processes transactions, produces roll-up blocks, and sub-
mits rollup proofs to the Layerl chain, and submits rollup data blocks to the
data availability layer. To prevent negative effects such as transaction censor-
ship and downtime caused by the centralized sequencer, the rollup of the DB
Shard and DB Meta Registry uses a validation network consisting of a single
leader and multiple validators to ensure the reliability of the sequencer.

A sequencer validation network consists of multiple sequencer nodes, each
of which is independent and has the same copy of data. Among them, the se-
quencer node (leader) is responsible for receiving transaction traffic, and other
sequencer nodes (validator) are responsible for data validation and replicas. If
a new sequencer node needs to participate in the validation network, it needs
to stake a certain amount of GLC. If the leader is down due to certain cir-
cumstances or there is a problem with the block generation, the leader will be
punished, and the entire validation network will reselect a new leader to resume
work.

}'*IF "l :.r' ’,f"' '\‘
! | [:
: I ! |
| Leader : E Leader |
| | i
I I : |

' |
i | : ~ i
. : : :
: 4 Y e ™~ : E ' ™ Ve 2, :

: |
| | |
| I ' Y, _ - I
\ - o K_ J I ‘\. N + !,
-y Validators # o Validators I

DB Shard DB Meta Registry

4.4 Data Writing Process

Before writing data to Glacier, the dApp first signs the write operation with
the Access Key. The signed write operation is then sent to Glacier Gateway.
Glacier Gateway provides a REST HTTP interface to each other to provide
convenient access services for dApps, so that dApps do not need to use very
low-level protocols to interact with many Glacier Data Node nodes, but only
need to interact with the Glacier Gateway:.

Glacier Gateway will query the Glacier Network to which the GID belongs
from the Registry according to the GID of the current request, and then send
a write request to the correct Glacier DB Shard Leader. After Glacier DB
Shard receives a write request, it will first verify whether the request is legal
and whether the signature is correct. Thereafter, it will broadcast the write
operation to all the validator nodes in the current shard, and then apply the

19

operation to the local Database Engine.

Finally, when the write requests of the Glacier DB Shard Leader accumulate
to a certain amount, it will generate a Data Block and a Data Proof, the Data
Block will be pushed to Data Availability Network and made public, then it will
be written to the ArWeave Bundler. ArWeave Bundler does not immediately

write Blocks to ArWeave, but performs further accumulation, and finally writes
to ArWeave in large batches.

P acler ateway ollup eta up theraum eave
dAp Glacier SDK G DB Shard Roll DB Meta Roll DA Eth ARW

i Init Private Key

v Insert "Hello™

sign Request |

i Send Insert Req . i

Select DB Shard |

' Send Insert Req |

1: Apply to DB Engine l

Reply OK
Reply OK : |

i Reply OK " Rollup N Txs

i
' Build Block / Proof

i Post Data Block

i Stare Data Block E

Post Proof :

E Rollup N Txs |

i Build Block !/ Proof

-
L

' Post Data Block

Post Proof

4.5 Indexer

Glacier is building a unified index network for all the datasets stored to realize
customizable, fast, high-through, and stable API query for data users.

20

GameFi DataSets Importer

Index Clusters

XyzApp DataSets Importer

\ s ™ - KeyValue-Index
k\h g g
[DeFi DataSets]—.[Impnﬂer] % FullText-Index
Index e #
> Creator | > N i
o < Graph-Index
SocialFi DataSets Importer | ! v
N 4

{ SQL querier] [Retrieval API]

Glacier’s Indexing is composed of the following 2 key parts:

e Importer. Importer extracts data from source datasets and entorces data
type and data validity standards and ensures it conforms structurally to
the requirements of the indexer and then loads into the indexer. And
once there i1s a new data change in the data source, it will be captured
and synchronized to the Index system at the fastest speed.

e Index Creator. Index Creator reads data from Importer according to
the index configuration and format set by the user, and creates an index
instance.

Index clusters run and manage these user-created indexes and provide them
to the SQL Querier and related Retrieval APIs. SQL Querier provides users
with a traditional SQL-based query intertace. SQL is a standard language for
accessing and manipulating databases. As a result, many users can quickly
write SQL to complete query tasks.

In addition to SQL, Retrieval APIs also provide REST and GraphQL APIs

to respond to more complex data retrieval scenarios.

4.6 Code Demo

Glacier provides a MongoDB-like access intertace, allowing Web2 developers
to quickly switch to the Web3 world while retaining their previous experience.
With just a few lines of code, you can access the decentralized services provided

by Glacier.

import { ethers } from 'ethers';
import { GlacierClient } from 'glacierdb';

// Init
const client = new GlacierClient (endpoint, {
provider: window.ethereum
1)
const notes = client
.namespace ('myprojects')
.dataset ('mydapp')
.collection('notes')

21

// Insert
notes.insertOne({ name: 'Alice', msg: 'Hello' })

// Read
notes.find({ name: 'Alice' })

// Update
notes.updateOne({ name: 'Alice' }, { msg: 'Hello Glacier' })

// Delete
notes.deleteOne({ name: 'Alice' })

5 Glacier Rollup

Glacier will build an L2 and L3 scalable rollup network utilizing the zk-STARKSs
and Celestia Rollkit to provide the incentive layer for GGlacier nodes and Data
Monetization dApps, including NFT's Minting Platform and data marketplace.

Glacier leverages zk-Rollup technology to compress multiple transactions
into blocks and prootfs. These blocks and proofs are then submitted to the
Data Availability Network and settlement layer to ensure secure and transparent
execution of the transactions. In contrast to optimistic rollups, zk-Rollups can
more effectively compress transaction data and verify proofs at a faster rate.
This practice is also referred to as validium in some cases. It has achieved the
optimal balance between security, transparency, and cost-effectiveness. Anyone
can determine the validity of transactions published on ARWeave by publishing
zk-Dataset Proof on Settlement layer and directly ignoring invalid or malicious
transactions.

(Glacier’s state is specific to each Dataset, which represents a set of ordered,
valid database operations from its creation. The Glacier state is not a balance,
but rather a hash of the valid operations within the Dataset. To maintain the
order and determinism of operations (e.g. updateMany or deleteMany), each
Glacier Dataset has a unique, increasing nonce that guarantees the ordered
execution of operations.

The Glacier network state is represented by the Merkle tree, which consists of
each valid Glacier Dataset state. Each Dataset is isolated from other Datasets,
and their unique states contribute to the overall network state. This approach
ensures that the network state is transparent and secure, and anyone can verify
the validity of transactions published on ARWeave by providing the zk-Dataset
Proot, which proves the execution of valid operations within the Glacier Dataset.

Finally, to simplify network deployment and interaction, Glacier uses zk-
STARKSs, which require no trust setup and offer faster verification. Additionally,
Glacier can mitigate the size of proof data by merging multiple Glacier blocks
and submitting only one proof to the Settlement layer.

GLC token is the utility token of Glacier protocol and is designed to mainly
serve the following goals:

e Incentivizing the data node

e Access to services

22

e Avoiding the network spam
e Storage Fees
e Sequencer / Indexer Incentives

6 Key Features

To better solve the structure data storage problems of Web3, Glacier will be
developed as a NoSQL database protocol for Web3 developers with the following
innovative features:

e Scalability: The number of Glacier storage nodes can be expanded indet-
initely, and the storage capacity of each node can also be flexibly changed.

e Security: The stored data is divided into fragments and allocated in mul-
tiple Glacier nodes by methods such as zero-knowledge proof and private
network key access.

e Interoperability: Full interoperability to the Web3 data and make the
Web3 data easily queried, transferred and interoperated.

e Immutability: More than just tamper-resistant. Once stored, data can’t
be changed or deleted.

e High Query Reliability: Write and run any Glacier Database query to
search the contents of all stored transactions, assets, metadata and blocks
on the Glacier network.

e Low cost: Glacier will provide blockchain database services at a low cost
for Web3 developers.

7 Use Cases

1) Database NFT
The NF'T space is growing at a rapid pace today, and Glacier will be one

of the most professional and friendly database protocols used to store NF'T
metadata, as the metadata of NFT is also in the NoSQL data structure. NFT
will be the most important user scenario and Glacier will expand the adoption
in the NF'T space first.
2) SocialFi

SocialFi dApps mainly deal with the social connections of Web3 natives
and have great needs in storing the Web3 natives’ social connection data in
a structural way. Theretore, Glacier will help the SocialFi developers achieve
that in a friendly and low-cost way. At the same time, SocialF'i developers could
also use the Glacier database engine to easily build a social graph for its users
since they could store the user data in a graph database which is supported by
Glacier.
3) Metaverse

GameF1i projects can have thousands of NF'T items in their blockchain games,
meaning that they have a huge burden to store the related asset data and user
data. Glacier’s NoSQL database engine could help GameFi developers store

23

them in a structural way in Glacier’s nodes and the Arweave chain. At the
same time, they could use Glacier to easily update and query the related asset
data and user data by leveraging Glacier’'s SDK.

4) Data Monetization

In Web2 applications, all the user data is stored in the storage space provided
by a single technical giant, like Apple, Facebook, or Twitter. They don’t have
any desire to share their own user data with other companies to build a universal
social graph that could be of tremendous value to society.

In the Web3 world, everything is different. The user and asset data is all
public on the blockchain. Therefore, Web3 has the chance to make the data
fully open and liquid between different individuals or entities. Glacier’s vision
is to fully unlock the data monetization potentials in Web3 by utilizing the
NFTs, which could represent the ownership and query rights of the Web3 data.
In Glacier, everyone could easily manage their own Webd data, including social
connections or crypto asset information, and monetize them in NFTs which
could be traded on the Glacier Marketplace.

8 Future Work

8.1 Decentralized Identity

In Web3, the data is owned by an on-chain address that has the owner key ot
the related data. However, just the on-chain address isn’t enough to identify the
profile or record the identity and social graph. What is worse is that everyone
could easily set up hundreds of on-chain addresses in seconds. This means
that someone is required to integrate all the on-chain data to form a one-chain
Identity, which could be used in the logins, social connections, reputation system
and credit finance of the Webd3 space.

8.2 Data Cross-Rollup

Today, crypto assets are easily transferred between Ethereum mainnet and
Rollups, while the data on different Rollups are still unable to realize the
Cross-rollup transter or interoperability, which greatly limits the integration
and potential of Web3 data. Theretore, Glacier will research how to achieve the
cross-rollup transfer between different Rollups to make the data flow easily in
the tens of Rollup chains in the future.

8.3 Graph Database for Web3 Social

Web3’s openness creates an excellent foundation for building a user social graph
which has not been achieved in Web 2.0 due to the data barriers. When creating
the social graph in Web3, developers have to deal with a great load of on-chain
data which i1s not structurally stored on the blockchain nodes. In Web2, the
ocraph database, which is one of the important NoSQL database types, is used
to store the user’s social connection data to create a social graph. Therefore,

24

Glacier will consider releasing a dedicated Graph Database SDK to help Web3
developers create the social graph more easily.

