
SQD Network Whitepaper

Whitepaper

WARNING

The SQD whitepaper and any other documents attached or linked to this statement are

intended only to provide a broad overview of the general direction of SQD and the SQD

Network. The whitepaper and these documents are intended for information purposes only

and may not be incorporated into any contract. These materials are not and should not be

considered to offer a commitment to deliver any material, code, functionality, token, and

should not be relied upon in making token purchase decisions or any kind of investment. All

details related to the development, timing, or issue of any SQD feature or token remain at

the sole discretion of Subsquid Labs GmbH.

Intro

Blockchain, while initially designed solely for peer-to-peer transfers (Bitcoin), has since evolved

into a general purpose global execution runtime. The introduction of smart contract blockchains

(Ethereum being the first) has enabled the creation of decentralized Apps (dApps) that are now

catering to users in countless verticals, including:

Decentralized Finance (DeFi) and tokenized real-world assets (RWA)

Decentralized Social application (DeSoc)

Decentralized Gaming with peer-to-peer game economies (GameFi)

Decentralized physical infrastructure (DePIN)

Decentralized creator economy (Music, Videos, NFTs)

One of the key fundamentals that has allowed countless dApps to thrive is the emergent

infrastructure addressing the challenges of scaling, storage, and retrieval of data. We also refer to

this as the "Web3 tech stack". The below all form part of the stack:

Scalable execution (L2 chains, Rollups, Bridges, Solana)

Bringing off-chain and real-world data on-chain (Oracles like Chainlink)

Permanent and long-term storage for large data (Arweave, Filecoin)

Application-specific databases and APIs (TheGraph, POKT, Kwil, WeaveDB)

However, there is still one part missing. One of the biggest challenges dApp developers face is

accessing data at scale. It's currently highly complex to query and aggregate the exponentially

growing amount of data produced by blockchains (transactions and state data), applications

(decoded smart contract states), and any relevant off-chain data (prices, data kept in IPFS and

Arweave, pruned EIP4844 data). In Web2, data produced by applications (such as logs or client

data) is stored in centralized data lakes like BigQuery, Snowflake, Apache, and Iceberg to

facilitate access. Storing Web3 data in similar centralized data lakes would defeat the purpose of

open, resilient access. Still, Web3 app data, if aggregated, filtered, and easily extractable, will

serve as a catalyst to unlock the potential of the industry in a multi-chain paradigm.

Instead of replicating Web2 approaches the permissionless and decentralized nature of Web3

requires a fundamentally different solution with the following properties:

Infinite horizontal scalability: the capacity of the lake should grow indefinitely as new nodes join

Permissionless data access: the data can be uploaded and queried without any gatekeeping or
centralized control

Credible neutrality: no barrier for new nodes to join the network

Trust-minimized queries: the data can be audited, and all clients can verify the query result

Low maintenance cost: the price per query should be negligible

The SQD Network is built to satisfy all the above properties, thanks to its architecture where:

The raw data is uploaded into permanent storage by the data providers, which act as oracles
but for "big data"

The data is compressed and distributed among the network nodes

Node operators have to bond a security deposit, which can be slashed for byzantine behavior

Each node efficiently queries the local data with DuckDB

Any query can be verified by submitting a signed response to an on-chain smart contract

With the recent advances in in-process databases like DuckDB and an ever-decreasing price of

quality SSD storage, the operational cost of a single node handling 1Tb of data is as low as 35/mo

[1] and will likely decline further in the future.

In the first stage, the SQD Network only supports simple queries that can be resolved by

querying the local data of a suitable node. This already provides a fundamentally new primitive

for on-chain data availability, fully eliminating the need to maintain expensive archival blockchain

nodes to access historical blockchain data.

After the bootstrapping period, the network will be expanded with an additional query planning

and execution layer supporting general-purpose SQL queries inspired by Apache Calcite and

DataFusion.

Design Overview

The below actors all participate in the SQD Network:

Data Providers

Workers

Scheduler

Logs Collector

Rewards manager

Data Consumers

Data Providers

Data Providers produce data to be served by SQD Network. Currently, the focus is on on-chain

data, and data providers are blockchains and L2s. At the moment, SQD only supports EVM- and

Substrate chains, but we plan on adding support for Cosmos and Solana in the near future.

Data providers are responsible for ensuring the quality and timely provision of data. During the

bootstrapping phase, Subsquid Labs GmbH acts as the sole data provider for the SQD Network,

serving as a proxy for chains from which the data is ingested block-by-block. The ingested data is

validated by comparing hashes. It's then split into small compressed chunks and saved into

persistent storage, from which the chunks are randomly distributed between the workers.

The metadata is saved on-chain and is updated by the data provider each time a new piece of

the data is uploaded. The metadata describes the schema, the data layout, the reserved storage,

and the desired replication factor to be accommodated by the network. You can find the

metadata structure in the Appendix.

The data provider is incentivized to provide consistent and valid data, and it is their responsibility

to make the data available in persistent storage. During the bootstrap phase, the persistent

storage used by Subsquid Labs is an S3-compatible service with backups pinned to IPFS. As the

network matures, more data providers and storage options will be added, with data providers

being vetted by on-chain governance and known trusted parties.

Data providers pay on-chain subscription fees to the network to make data available and to have

it served by workers. These fees are sent to the SQD Network treasury.

Scheduler

The scheduler is responsible for distributing the data chunks submitted by the data providers

among the workers. The scheduler listens to updates of the data sets, as well as updates of the

worker sets, and sends requests to the workers to download new chunks and/or redistribute the

existing data chunks based on the capacity and the target redundancy for each dataset. Once a

worker receives an update request , it downloads the missing data chunks from the

corresponding persistent storage.

Workers

Workers contribute the storage and compute resources to the network. They serve the data in a

peer-to-peer manner for consumption and receive $SQD tokens as compensation. Each worker

has to be registered on-chain by bonding 100_000 SQD tokens, which can be slashed if the

worker provably violates the protocol rule. $SQD holders can also delegate to a specific worker

to signal the reliability of the worker and earn a portion of the rewards.

The rewards are distributed each epoch and depend on:

The previous number of epochs the worker stayed online

The amount of data served to clients

The number of delegated tokens

Fairness

Liveness during the epoch

Workers submit ping information along with their signed logs of the executed query requests to

the Validator, thus committing to the results returned to the clients.

Logs collector

The Logs Collector's sole responsibility is to collect the liveness pings and the query execution

logs from the workers, batch them, and save them into public persistent storage. The logs are

signed by the workers' P2P identities and pinned to IPFS. The data is stored for at least 6 months

and used by other network participants.

Reward Manager

The Reward Manager is responsible for calculating and submitting worker rewards on-chain for

each epoch. The rewards depend on:

Worker liveness during the epoch

Delegated tokens

Served queries (in bytes; both scanned and returned sizes are accounted for)

Liveness since the registration

The Reward Manager accesses the logs, calculates the rewards, and submits a claimable

commitment on-chain for each epoch. Each worker then claims their reward individually. The

rewards may expire after an extended period of time

Data Consumers

To query the network, data consumers have to operate a gateway or use an externally provided

service (public or private). Each gateway is bound to an on-chain address. The number of

requests a gateway can submit to the network is capped by a number calculated based on the

amount of locked $SQD tokens. Consequently, the more tokens are locked by the gateway

operator, the more bandwidth it is allowed to consume.

One can think of this mechanism as if the locked SQD yields virtual "compute units" (CU) based

on the period the tokens are locked. All queries cost the same price of 1 CU (until complex SQL

queries are implemented).

The query cap is calculated by:

Calculating the virtual yield in SQD on the locked tokens (in SQD)

Multiplying by the current CU price (in CU/SQD)

Boosters

The locking mechanism has an additional booster design to incentivize gateway operators to lock

their tokens for longer periods of time for an increase in CU. The longer the lock period, the more

CUs are allocated per SQD/yr. The APY is calculated as BASE_VIRTUAL_APY * BOOSTER .

At the launch of the network, the parameters are set to be BASE_VIRTUAL_APY = 12% and 1SQD

= 4000 CU .

For example, if a gateway operator locks 100 SQD for 2 months, the virtual yield is 2SQD, which

means it can perform 8000 queries (8000 CU). If 100 SQD are locked for 3 years, the virtual

yield is 12% * 3 APY, so the operator gets CUs worth 108 of SQD, that is it can submit up to

432000 queries to the network within the period of 3 years.

Query Validation

The SQD Network provides economic guarantees for the validity of the queried data, with the

added possibility of validating specific queries on-chain. All query responses are signed by the

worker who executed the query, acting as a commitment to the query response. Anyone can

submit such a response on-chain, and if it is deemed incorrect, the worker bond is slashed. The

smart contract validation logic may be dataset-specific depending on the nature of the data

being queried, with the following options:

Proof by Authority: a white-listed set of on-chain identities decides on the validity of the
response.

Optimistic on-chain: after the validation request is submitted, anyone can submit a claim
proving the query response is incorrect. For example, assuming the original query was "Return
transactions matching the filter X in the block range [Y, Z] " and the response is some set of

transactions T. During the validation window, anyone can submit a Merkle proof for some

transaction t matching the filter X yet not in T. If no such proofs are submitted during the

decision window, the response is considered valid.

Zero-Knowledge: a zero-knowledge proof that the response exactly matches the requests. The
zero-knowledge proof is generated off-chain by a prover and is validated on-chain by the smart
contract.

Since submitting each query for on-chain validation on-chain is costly and not feasible, clients

opt-in to submit query responses in an off-chain queue, together with the metadata such as

response latency. Then, independent searchers scan the queue and submit suspicious queries for

on-chain validation. If the query is deemed invalid, the submitter gets a portion of the slashed

bond as a reward, thus incentivizing searchers to efficiently scan the queue for malicious

responses.

SQD Token

SQD is the ERC-20 protocol token that is native to the SQD Network ecosystem. The token

smart contract is to be deployed on the Ethereum mainnet and bridged to Arbitrum One. This

strategy seeks to ensure the blockchain serves as a reliable, censorship-resistant, and verifiably

impartial ledger, facilitating reward settlements and managing access to network resources.

The SQD token is a critical component of the SQD ecosystem. Use cases for the SQD token are

focused on streamlining and securing network operations in a permissionless manner:

1. Alignment of incentives for infrastructure providers: SQD is used to reward node operators

that contribute computation and storage resources to the network.

2. Curation of network participants: Via delegation, the SQD token design includes built-in

curation of nodes, facilitating permissionless selection of trustworthy operators for rewards.

3. Fair resource consumption: By locking SQD tokens, consumers of data from the

decentralized data lake may increase rate limits.

4. Network decision making: SQD tokenholders can participate in governance, and are enabled

to vote on protocol changes and other proposals.

The SQD token’s innovative curation component allows the SQD community to delegate SQD to

Node Operators of their choice, ensuring trustlessness. SQD’s utility as a tool for adjusting rate

limits is unique in increasing trustless performance, by locking SQD tokens, without having to pay

a centralized provider for quicker or more efficient data access.

Appendix I -- Metadata

The metadata has the following structure:

The on-chain state of the dataset should be updated by the data provider periodically, and the

total space must not exceed reserved_space . The dataset can be in the following states:

The Scheduler changes the state to IN_PREPARATION and ACTIVE from SUBMITTED . The

COOLDOWN and DISABLED states are activated automatically if subscription payments aren't

made.

At the initial stage of the network, the switch to disabling datasets is granted to Subsquid Labs

GmbH, which is going to be replaced by auto payments at a later stage.

Appendix II -- Rewards

The network rewards are paid out to workers and delegators for each epoch. The Reward

Manager submits an on-chain claim commitment, from which each participant can claim.

The rewards are allocated from the rewards pool. Each epoch, the rewards pool unlocks APY_D

* S * EPOCH_LENGTH in rewards, where EPOCH_LENGTH is the length of the epoch in days, S is

the total (bonded + delegated) amount of staked SQD during the epoch and APY_D is the

(variable) base reward rate calculated for the epoch.

Rewards pool

The SQD supply is fixed for the initial pool, and the rewards are distributed from a pool, to which

10% of the supply is allocated at TGE. The reward pool has a protective mechanism which caps

the amount of rewards distributed per epoch, and it is subject to change via governance.

During the initial 3-year bootstrapping phase, the reward cap and the total supply of SQD is fixed.

Afterwards, the reward cap drops significantly until the governance motion concludes on the

inflation schedule and new tokens are minted to replenish the reward pool.

Unlike most projects who fix the inflation schedule before the launch, postponing this decision

leaves a lot more flexibility and allows the community to analyze the historical 3-year data to

make and informed decision on the future issuace of SQD .

Reward rate

The reward rate depends on two factors: utilization of the network and staked supply. The

network utilization rate is defined as

The target capacity is calculated as

where the sum is over the non-disabled datasets d .

The actual capacity is calculated as

The WORKER_CAPACITY is a fixed storage per worker, set to 1Tb . CHURN is a discounting factor

to account for the churn, set to 0.9 .

The target APR (365-day-based rate) is then calculated as:

The base_apr is projected to be around 20% in the equilibrium state, when the actual worker

capacity matches the desired network capacity, set externally. It is increased up to 70% to

incentivize more workers to join the network until the target capcity is reached:

The APR_CAP cut-off is added to cap the total rewards per epoch. One defines first

to be the total amount of reward-earning SQD locked by workers (bonded) and delegators

(delegated) respescitvely.

We then define

It is set so that after the 3 year boostrapping period at most 90% of the initial reward pool is

spent.

Worker reward rate

For each epoch, rAPR is calculated, and the total of

is unlocked from the rewards pool.

The rewards are then distributed between the workers and delegators, and the leftovers are split

between the burn and the treasury.

For a single worker and stakers for this token, the maximal reward is rAPR/365 * (bond +

staked) * EPOCH_LENGTH . It is split into the worker liveness reward and the worker traffic

reward.

Let S[i] be the stake for i -th worker and T[i] be the traffic units (defined below) processed

by the worker. We define the relative weights as

In other words, s[i] and t[i] correspond to the contribution of the i -th worker to the total

stake and to total traffic, respectively.

The traffic weight t[i] is a geometric average of the normalized scanned (t_scanned[i]) and

the egress (t_e[i]) traffic processed by the worker. It is calculated by aggregating the logs of

the queries processed by the worker during the epoch, and for each processed query, the worker

reports the response size (egress) and the number of scanned data chunks.

The max potential yield for the epoch is given by rAPR described above:

The actuall yield r[i] for the i -th worker is discounted:

D_traffic is a Cobb-Douglas type discount factor defined as

with the elasticity parameter alpha set to 0.1 .

It has the following properties:

Always in the interval [0, 1]

Goes to zero as t_i goes to zero

Neutral (i.e., close to 1) when s_i ~ t_i , that is, the stake contribution is fair (proportional to

the traffic contribution)

Excess traffic contributes only sub-linearly to the reward

D_liveness is a liveness factor calculated as the percentage of the time the worker is self-

reported as online. A worker sends a ping message every 10 seconds, and if there are no pings

within a minute, the worker is deemed offline for this period of time. The liveness factor is the

percentage of the time (with minute-based granularity) the network is live. We suggest a

piecewise linear function with the following properties:

It is 0 below a reasonably high threshold (set to 0.8)

Sharply increases to near 1 in the "intermediary" regime 0.8-0.9

The penalty around 1 is diminishing

Finally, D_tenure is a long-range liveness factor incentivizing consistent liveness across the

epochs. The rationale is that

The probability of a worker failure decreases with the time the worker is live thus freshly
spawned workers are rewarded less

The discount for freshly spawned workers discourages the churn among workers and
incentivizes longer-term commitments

Distribution between the worker and delegators

The total claimable reward for the i -th worker and the stakers is calculated simply as r[i] *

s[i] . Clearly, s[i] is the sum of the (fixed) bond b[i] and the (variable) delegated stake d[i] .

Thus, the delegator rewards account for r[i] * d[i] . This extra reward part is split between

the worker and the delegators:

The worker gets: r[i] * b[i] + 0.5 * r[i] * s[i]

The delegators get 0.5 * r[i] * s[i] , effectively attining 0.5 * r[i] as the effectual

reward rate.

The rationale for this split is:

Make the worker accountable for r[i]

Incentivize the worker to attract stakers (the additional reward part)

Incentivize the stakers to stake for a worker with high liveness (and, in general, high r[i])

At an equilibrium, the stakers will get a 10% annual yield, while workers get anything between

20-30% depending on the staked funds. Note that the maximal stake is limited by the bond size.

References

[1] SuperDAO Growth Trends report

[2] Based on the estimate that read-only RPC queries constitute roughly 90% of the RPC

provider traffic

Is this page useful?

Edit this page

Previous

« Overview

Next

FAQ »

Home

Overview

Overview

Whitepaper

FAQ

Tokenomics

SQD Firehose

ApeWorx plugin

External tools

Glossary

SQD Network

Participate

Reference

Indexing SDK

SQD Cloud

Solana indexing

Fuel indexing

Tron indexing

Squid CLI

interface DataSet {
 dataset_id: string
 // how many times the dataset should be replicated
 replication_factor: int
 // a unique URL for permanent storage. Can be s3:// bucket
 permanent_storage: string
 // how much space should for a single replica.
 // the total space required by a dataset is replication_factor * reserved
 reserved_space: int
 // dataset-specific additional metadata
 extra_meta?: string
 // dataset-specific state description
 state?: string
 // reserved for future use, must be false
 premium: boolean
}

enum DatasetState {
 // submitted by the data provider
 SUBMITTED,
 // the data being distributed by the network
 IN_PREPARATION,
 // served by the network
 ACTIVE,
 // if the subscription fee
 // has not been provided for the duration of an epoch
 COOLDOWN,
 // if the dataset is no longer served by the network
 // and will be deleted
 DISABLED
}

u_rate = (target_capacity - actual_capacity)/target_capacity

target_capacity = sum([d.reserved_space * d.replication_factor])

actual_capacity = num_of_active_workers() * WORKER_CAPCITY * CHURN

rAPR = MIN(base_apr(u_rate), APR_CAP(total_staked))

total_staked = bonded + delegated

APR_CAP(total_staked) = 0.3 * INITIAL_POOL_SIZE / total_staked

R = rAPR/365 * total_staked * EPOCH_LENGTH

s[i] = S[i]/sum(S[i])
t_scanned[i] = T_scanned[i]/sum(T_scanned[i])
t_e[i] = T_e[i]/sum(T_e[i])
t[i] = sqrt(t_scanned[i] * t_e[i])

r_max = rAPR/365 * EPOCH_LENGTH

r[i] = r_max * D_liveness * D_traffic(t_i, s_i) * D_tenure

D_traffic(t_i, s_i) = min((t_i/s_i)^alpha, 1)

SearchCurrent

https://docs.sqd.ai/
https://docs.sqd.ai/subsquid-network/
https://superdao.notion.site/Web3-Growth-Trends-2023-Superdao-Report-1b51a98ad10644afba94c1d9df1e5f99
https://github.com/subsquid/docs/edit/master/docs/subsquid-network/whitepaper.md
https://github.com/subsquid/docs/edit/master/docs/subsquid-network/whitepaper.md
https://docs.sqd.ai/subsquid-network/overview/
https://docs.sqd.ai/subsquid-network/faq/
https://docs.sqd.ai/
https://docs.sqd.ai/overview/
https://docs.sqd.ai/subsquid-network/overview/
https://docs.sqd.ai/subsquid-network/whitepaper/
https://docs.sqd.ai/subsquid-network/faq/
https://docs.sqd.ai/subsquid-network/tokenomics/
https://docs.sqd.ai/subgraphs-support/
https://docs.sqd.ai/apeworx/
https://docs.sqd.ai/external-tools/
https://docs.sqd.ai/glossary/
https://docs.sqd.ai/subsquid-network/
https://docs.sqd.ai/subsquid-network/participate/
https://docs.sqd.ai/subsquid-network/reference/
https://docs.sqd.ai/sdk/
https://docs.sqd.ai/cloud/
https://docs.sqd.ai/solana-indexing/
https://docs.sqd.ai/fuel-indexing/
https://docs.sqd.ai/tron-indexing/
https://docs.sqd.ai/squid-cli/
https://docs.sqd.ai/
https://docs.sqd.ai/
https://docs.sqd.ai/

