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Abstract

Project TXA is a protocol for peer-to-peer settlement of self-custodied digital assets. It allows traders to
enjoy self-custody of funds enabled by decentralized smart contracts while trading on trust-minimised
orderbooks. A cross-chain network of validators is incentivized to witness on-chain transactions and
off-chain trade data, earning fees for relaying the resulting obligations to traders upon request. This enables
a novel method of settlement where peers clear funds directly between each other through self-custody
smart contracts. The paper elaborates on the architectural considerations of such a system in its integration
with a digital assets exchange, listing, or auction system. The paper then discusses the design and key
elements of the TXA Decentralized Settlement Layer and its novel method of settlement and clearance.
Finally, the paper describes the morphology of TXA tokens through an in-depth exploration of how different
types of closed-loop token ecosystems can interact together to incentivize all players in the ecosystem.

[. INTRODUCTION

asset and wish to exchange it for a quantity of a second asset. The exchange design

task is to provide low-latency (efficient), liquid, and fair exchange services between assets.
Exchanges typically operate by keeping track of trader balances and orders and facilitating
trades when desired quantities and prices match. This requires an order management and trade
settlement system to allocate assets to trader accounts. Implementation of exchange services differ
significantly, and are tailored to the assets in question. In this work we focus on exchange design
for cryptocurrency assets.

Each solution to the exchange design problem may emphasize some requirements at the
expense of others. For example, centralized exchanges typically excel at providing low-latency
order matching between traders. However, centralized exchanges require users to cede custodial
control over their assets. This requires extra vigilance, as it exposes users to at least two major
custodial vulnerabilities: (1) centralized control of fund custody and (2) centralization of fund
transfer. Both characteristics may engender perverse incentives within the operator of the exchange.
Additionally, centralized exchange architecture creates a security theater where constant and
exceptional vigilance (e.g. in the form of costly and byzantine audits) is required to confirm that
funds are secure. In short, centralized exchanges trade security and transparency for speed and
efficiency.

More recently, blockchain-based exchange solutions have emerged thanks to the technology’s
ability to provide efficient mechanisms for trustless consensus. Decentralized exchanges (DEXes)

Fmancial exchanges provide a market solution to parties which are in possession of an
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Figure 1: Visual depiction of the trio of competing requirements in the exchange design problem. Highly secure,
non-custodial systems sacrifice speed for security. Cross-chain operations can also incur excessive latency
while exposing traders to cross-chain vulnerabilities.

improve security and transparency by preserving trader custody of assets. However, they are
limited by the underlying blockchain’s blocktime for updating the ownership of an asset from
one trader to another. Architectural constraints severely limit the ability to run a fully on-chain
orderbook with competitively low latency. Furthermore, any benefits of security and transparency
are contingent on proper implementation of smart contracts. Even if a contract is free of bugs, it
may still grant privileged addresses the ability to call admin/upgradability functions, which can
be misused to take control of funds or break determinism. Lastly, blockchain-based assets may
originate from inherently different networks, for example, different blockchains, and a solution
must handle exchange between them.

The above considerations motivate a trio of competing requirements that reflect important
tradeoffs in exchange design (Figure 1). The first requirement is efficient operation, which encom-
passes competitive latency and infrastructure requirements as well as sufficient liquidity. The
second requirement is security: this is primarily captured by the requirement that the solution
be non-custodial, i.e. assets are maintained by exchange users rather than exchange operators.
However, the security requirement also addresses a need for transparency of operation and of
architecture. The third important requirement for a cryptocurrency exchange is the cross-chain
compatibility, reflecting the ever-increasing diverse origins of this family of assets.

We propose the Project TXA Decentralized Settlement Layer (DSL) and Cross-chain Settlement
Protocol (CSP) as a solution that successfully navigates these diverse requirements. Project TXA
simultaneously overcomes the speed limitations of decentralized exchanges while improving
on the security and transparency of centralized exchanges. It is designed with the ability for
cross-chain monitoring and settlement without bridging requirements. Finally, it is developed as a
protocol-level solution to the exchange design problem to create transparency and openness on
both the architectural and operational level.

i. Core Design Objectives

We present the protocol at multiple levels of abstraction, starting from a high-level application
layer and proceeding down to a payment signaling layer (Figure 2). The core features of the Project
TXA protocol may be summarized as follows, presented roughly in order of the relevant layer of
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Figure 2: Conceptual hierarchy of the layers of abstraction used by the Project TXA protocol in standardizing informa-
tion handling for payment signaling and exchannge applications. We suggest that Project TXA encompasses
protocols structuring data exchange through the rollup layer, the payment signaling layer, and part of the
application layer (in terms of defining the incentive structure for applications built atop TXA.

abstraction:

1. Consistent rules: The proposed system must have consistent rules and data across multiple
chains. Rule consistency means that the way the settlement is handled must be same across
multiple blockchains which the DSL spans. Since traders expect settlement rules to remain
consistent from the time they enter the system to when they exit, smart contracts must have
stable rule-sets that do not change between different versioned releases of the entire platform
code.

2. Deterministic trade execution and settlement: Given an order of submission from par-
ticipating traders, the handling of order matching and settlement should be deterministic.
Constraining the system to provide deterministic results for a given set of input requires
trade and settlement to be processed with causal relationships in mind. Imposing such a re-
quirement also allows for events to be fully re-playable and yield the same result. Settlement
thus needs causal relationships with one another, and the execution environment where
such settlement calculation is done must be validated.

3. Settlement network for independently operated markets: The DSL is designed to accom-
modate any trading venue which conforms to the TXA protocol requirements. The protocol
outsources settlement data provision from a Pl-provided settlement structure, which incurs
transparency and custody risk, to community-operated settlement data processing by Set-
tlement Data Providers. Thus, the debit and credit relationships of market participants are
determined independently of the PL

4. Cross-chain asset settlement: The proposed DSL attempts to resolve the cross-chain set-
tlement problem by instituting a simple collateral model which describes explicit state of
money based on the life cycle of each trade, clearance, and settlement. Since cross-chain
settlement is not purely atomic in nature, the associated settlement risk must be controlled.
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5. Value-at-risk for traders: Since the proposed TXA DSL will have the responsibility of
providing the settlement data, classical issues of collusion and time-based attacks need to be

considered in assessing risk premiums and value at risk for traders seeking to settle using
TXA DSL.

6. Self-custody of collateral assets: The proposed DSL aims to reduce systemic risks arising
from relinquishing control and centralizing custody. An effective means to reduce perverse
incentives is to restrict the actions that trading venue operators can perform beyond matching,
recording, and reporting on debit-credit relationships. One can further reduce potential
breaches of trust by removing the source of tension and temptation for the operators. Thus,
the contflict of interest between principal and agent can be reduced further.

7. Architectural simplicity for participating exchanges: In existing centralized and decen-
tralized exchanges, the exchange operators design the entire process path from deposit of
collateral, trade processing, to clearance and settlement. The Decentralized Settlement Layer
being proposed aims to reduce architectural complexity for the operators of the exchanges,
thus lowering the barrier to entry for many potential digital assets exchange operators.

8. Decentralized storage of orders and trade data: One of the chief aims of Project TXA is
to decentralize the data storage requirement for orders and trades so that secure storage
of orders and trades do not impose high costs and increased complexity for the exchanges
operating on top of the proposed Decentralized Settlement Layer (DSL). Secure storage is
handled by SDPs, and protocol requirements are defined for consistent and uniform data
validation.

Paper Outline

We continue by providing a review of related work in Section II. In Section III we present a
high-level overview of the protocol with respect to the design objectives. Section

II. MoOTIVATION AND RELATED WORK

Permissionless blockchains introduce the opportunity for trustless and verifiable asset exchange.
Current blockchain-based decentralized exchange solutions face significant performance bottle-
necks, which has limited their potential for adoption to date. The primary bottleneck arises from
the imposition that each order and transaction be verified via inclusion in a confirmed network
block. This creates a latency in trade confirmation that is proportional to the block confirmation
time. Lowering confirmation times can directly conflict with the security requirements of the
network. The emergence of rollups and sidechain technology has improved confirmation latencies
considerably, but not enough to justify an entirely decentralized orderbook architecture. For
example, the underlying permissionless blockchains of Bitcoin and Ethereum can only process
dozens of orders per second. With Optimism rollups in Ethereum, this increases to a few hundred
milliseconds per order. But this pales in comparison to a typical trading exchange such as the
NASDAQ, which can handle orders with a latency in the tens of microseconds.

The confirmation latency limitations in DEXs have motivated hybrid solutions that preserve
trustless and verifiable asset exchange but that outsource trade management to centralized
networks for the reduced latency. This general model has been broadly referred to as a payment
channel network (PCN) [1, 2]. The PCN allows transaction processing to occur off the main
network in a protocol-defined manner. In some cases, the processing occurs directly between
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the transacting parties, while other protocols introduce third parties to mediate the off-chain
transaction. Protocols that broadly adopt this model in the context of asset exchange applications
include TEX [3], Gluon [4] and Project TXA.

Within the scope of PCN-based exchanges, there are a variety of new tradeoffs encountered.
The foremost concern is the continued prevention of fraud. Other important concerns include
information availability and proper incentives for network custodians. These considerations have
led to implementations that emphasize the tradeoffs differently. A prominent example is the
commit chain architecture, which supports user-custodied exchange with payment verification
outsourced to a network of centralized but trustless operators [2]. Operators are tasked with
maintaining balance of payments. The commit chain architecture uses an account-based data
representation system, in contrast to networks which manage the UTXOs directly (UTXO-based).
UTXO models preserve peer-to-peer settlement, while accounts-based models commit account
balances directly. In practice, these representations approach the scalability problem differently.

More generally, a successful exchange should independently address the following areas of
concern in a manner that does not catastrophically impact any other area:

* Custody: A user should not be forced to cede control of their assets to the exchange operator
for management of the trades. Exchange operators may have perverse incentives.

* Liquidity: The exchange must be able to facilitate trades at fair price.

* Latency: Order and trade execution must occur on timescales requested by users. This is
impacted by multiple factors, including illiquidity, insufficient infrastructure, computational
overhead of the operations, or limitations of the underlying technology.

* Latency Arbitrage: Latency arbitrage occurs when information about user trades is broadcast
and then exploited by other traders before it is executed, constituting a form of front-running
and leading to perverse trader incentives [5, 6].

* Infrastructure: Exchange operation is degraded or a service outage is experienced as a result
of high demand or insufficient supporting infrastructure. This is exacerbated by periods
of market volatility, news, high-volume trading strategies, etc. A detailed model may be
required for the exchange operators to understand the likelihood of a surge in trading and
to allocate an appropriate amount of infrastructure.

* Tick Size: Order queuing creates adversarial races to optimize one’s position in the ordering
with low latency.

e Private Information: some traders have an asymmetric information advantage, creating
opportunities to exploit uninformed participants. This could include an exchange operator
illicitly profiting off privileged order information.

* Transparency: The exchange may not be able to accurately honor the listed prices due to
possibly undisclosed implementation inefficiencies. More generally the exchange may not be
able to verify that it operates in the manner that it claims to.

* Uptime Requirement: Traders may need to be online for settlements to be serviced.

* Regulation Risk: The technology driving exchange operation may be unapproved by
regulators. This can prevent the exchange from providing consistent service.

* Decentralized Incentive Risk: When introducing novel centralized or decentralized systems
of actors in an exchange architecture, there is a possibility for unforseen perverse incentives
to emerge.

The underlying design principles of various exchanges can be seen as varied attempts to prioritize
solutions to these inefficiencies, often some subset of at the expense of the rest. Our presentation
of the TXA protocol is motivated to demonstrate how it addresses each of these exchange
implementation concerns.
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III. PEER-TO-PEER TRADING AND SETTLEMENT

Project TXA is composed of a Decentralized Settlement Layer and a Cross-chain Settlement
Protocol. Any exchange that operates on top of the TXA DSL must conform to the CSP. For
simplicity, exchanges conforming to CSP will be called Participating Interfaces (). A Pl is tasked
with operating a trust-minimized orderbook and interfacing with a DSL. The DSL is designed in a
manner that combines the performance and efficiency of a centralized service while minimizing
trust requirements from participating traders.

The TXA DSL provides guarantees to all settlement participants that a trader’s funds are
immobilized and will only move as a result of smart contract logic based on trader-initiated
settlement, SDP-reported obligations, and exchange-signed data. However, this on its own
provides no guarantee to traders that a participating exchange does not manipulate trade data
or improperly match orders. Nor does it prevent SDPs from colluding and reporting data that
was not actually signed by the exchange. Without these guarantees, PIs and SDP’s can manipulate
settlements and steal trader’s funds. To mitigate this, the TXA smart contracts must enforce
constraints on all settlement data generated by PIs and reported by SDPs.

The most trustless way to enforce these constraints would be to simply implement the entire
logic for both order-matching and settlement in on-chain smart contracts. However, this severely
limits order and trade throughput and imposes high costs for traders due to transaction/gas fees.
Instead, we rely on a combination of cryptographic verification and economic incentives whereby
auditors explicitly detect and punish violations of constraints while implicitly allowing correct
state updates to pass through. This allows us to delegate most of the storage and computation
costs of settling trades to off-chain entities. Additional data is only ever brought on-chain to prove
to the smart contracts that a state update is invalid.

In order to protect such a system from Sybil attacks, PIs and SDPs must stake collateral in
Collateral Custody Contracts in order to operate. These smart contracts implement the logic for
when and how much collateral must be locked, slashed, or released during the settlement process.
In concert with the ACCs they also handle payment of fees from traders to PEs and SDPs upon
successful completion of each settlement. The TXA Cross-chain Settlement Protocol, presented in
more detail below, prevents the manipulation of settlement data through a cryptographically and
economically enforced system of incentives.

We outline the role of each element of the TXA ecosystem, visualized in Figure 3.

Trader

The trader is an end-user. The trader collateralizes assets through the PI via self-custodied escrow
contracts, called the Asset Custody Contracts (ACC). The trader is required to collateralize digital
assets at a ratio of only slightly above 1. The risk premium involved in trading with each ACC is a
function of multiple risk factors, such as systemic risk, individual settlement risks, underlying
asset viability, and so on. The trader may unlock funds with a settlement request, and funds are
released once their validity is confirmed in the DSL.

Upon initial trader deposit, assets in the ACC become immobilized. The trader is then granted
a corresponding balance on the centralized venue to make or take liquidity on the orderbook. The
trader begins interacting with the PI through the orderbook, triggering the following tasks and
responsibilities in the PI: (1) verification of asset collateralization, (2) orderbook management, and
(3) trader internal balance-of-payments updates, (4) trade reporting to the peer-to-peer coordinated
settlement network.
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Figure 3: A high-level diagram of the Project TXA system. Traders interact with Pls for orderbook management. Pls
report trade activity to the peer-to-peer SDP network, which verifies trades and enables settlement and release
of settled funds to the trader.

Participating Interface

The participating interface’s core responsibility with respect to the protocol is to process incoming
deposit and settlement events, to generate new trade events arising from its order matching, and
to submit these events to the ledger processing engine for verification by the SDPs. Two or more
orders are considered executed once they are included in a trade signed by the PI, and once the
PI emits the trade for witnessing by a peer-to-peer network of Settlement Data Providers (SDP).
SDPs record both initial deposits to the Asset Custody Contracts and monitor all trades emitted by
the PI. This allows them to maintain a database of obligations between counterparties involved in
trades. At any point, an SDP servicing a PI may detect an opportunity to earn fees by providing
trade and obligation data for a trader settlement request. This allows a trader to request assets
owed as a result of trading on the PI, and that the assets are accurately accounted for.

PIs must not spend a trader’s balance without the trader’s explicit authorization via a signed,
standard order. They must also prevent traders from spending more than what was originally
deposited or credited as a result of trading activity. All trades emitted by the exchange must
reference two orders, each signed by a trader. The smart contracts validate that the orders were
signed by the same traders that had sufficient balances of the assets in question and that the
parameters of each order (such as price or size) properly match with each other and with the
resulting balances of the trade.

Settlement Data Provider

SDPs conduct settlements in a peer-to-peer manner, with a PI providing no service or data at the
time of settlement. The PI and SDP operators are both subject to incentive and penalty systems
based on verification of net obligations by other nodes in the network. This avoids the issue of
placing too much trust in a single SDP. Importantly, the settlement model allows for cross-chain
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Figure 4: The SDP network is comprised of a peer-to-peer network of SDP nodes. These nodes may act as data providers
or optionally as auditors of other SDPs. SDPs acting as auditors may report fraud with proof, triggering a
dispute resolution mechanism and possible reversion of the network state.

settlement (depositing an asset into an ACC on one chain and trading it for an asset on an ACC
on another chain) through duplication of trade data across each chain and RPC-based bridging of
fraud detection.

For each settlement, SDPs must report trade data that was signed by the exchange. Trades
reported must be in the correct range and sequence. The smart contracts validate that each trade
was signed by the same participating exchange for which settlement was requested and that the
identifier of each trade is within the correct range of identifiers.

When a trader initiates settlement of an asset through the ACC, it informs the network of SDPs
and the PI by emitting a smart contract event. The PI signals to the SDPs that it has acknowledged
the request and marked the corresponding ledger entries as settled. At this point, both the trader’s
assets in the ACC and the trader’s balance on the participating exchange are immobilized. By
including the acknowledgement in the same linear sequence as trades, the PIs allow the SDPs
to use a snapshot of balances at a discrete moment in the sequence of events to calculate the
resulting obligations (analogous to a time-tick). After obligation data is reported and a quorum is
reached among SDPs, the trader is able to request owed funds from peers and withdraw the asset.
A dispute period must pass before the participating SDPs are able to withdraw any provided
collateral.

IV. DATA REPRESENTATION IN THE ROLLUP LAYER

We now outline the relevant data structures for enforcing the protocol operating constraints,
introducing appropriate notation where relevant. To enforce constraints on the data emitted by
the participating exchanges and reported by SDPs, the CSP defines a standard way to represent
orders, trades, and balances of a deposited asset. Recall that Project TXA is implemented with an
unspent transaction output (UTXO)-based data representation. UTXO data structures mediate
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interaction with the DSL and structure PI and SDP protocol participation. The state of the balances
in a participating exchange on the DSL is represented as a set of UTXOs in a directed acyclic graph
(DAG) structure and also as a hash-linked list of trades.

We introduce basic notation for UTXO-mediated transactions. We use [n] for natural number n
to abbreviate the set {0,...,1n — 1} where relevant. Protocol end-users, alternatively referred to as
traders or transactors are indexed by a natural number, so we have u € [N] where N is some total
number of possible users. Each user is assigned a public and a private key. For user u we define
the functions returning the public and private key as Hpy(u) and Hpr(u). Suppose there are M
choices of assets in the asset universe. Then we have asset set A = [M] and assets a € [M]. The
descendants of a node v are those nodes w for which a directed path exists.

The UTXO model is best visualized as a time-dependent transaction graph. For discretized
time interval k we define the graph G[k] = (V[k|,£[k]) — the graph whose vertices are a set of
transactions v € V and set of edges ¢ € £. Edges are represented as tuples comprised of a public
key k, an asset 2 € A, and a spend amount v € R, where R signifies the positive-signed real
numbers. Example: ¢ = (Hpy(up),a1,0.1) indicates that user 1 spent 0.1 of asset a1, which is
represented as an edge. If edges are directed, as in the example of Figure 5, the arrows depict
the chain of causality, i.e. the evolution of previous UTXOs to new UTXOs. The spend amount
associated with an edge is A : £ — R4, e.g. A(e) = 0.1. The asset associated with an edge is
p:E€— [M],eg. ple) =a.

A vertex, or a node v € V[k| encodes transactions as transformations of edges. A vertex v € V|k]
is, therefore, a tuple comprised of a set of incoming edges Ejnpu(v) € £[k| and a set of outgoing
edges Eoutput(?) € Qpu X A X R. Each epoch, the new transactions create a new set of edges
which form a part of the new set £ [k + 1]|. Deposit vertices are those which have a deposit edge as
an outgoing edge. These are a special type of vertex for which Ej,put(v) = @, i.e. they have no
incoming edge so the input set is empty. Other than deposit vertices, a vertex can be interpreted
as joining two or more edges, i.e. public keys and amounts.

The set of descendants of a vertex can be used to verify necessary relationships for balanced
transactions. We define the function P : V x V — {0,1} as the directed path function, where
P(v,w) = 1 if a directed path exists from vertex v to vertex w. If P(v, w) = 1, then the vertex v is
the ancestor of w and w the descendant of v. The graphical characterization of UTXO relationships
invites diagrammatic depictions like the example graph depicted in Figure 5.

The set of edges U k] C E[k| which are not connected to a vertex at both ends forms the set
of UTXO edges, or UTXOs. A new transaction of asset a in amount x for user u at time k +1 is
captured by a vertex v whose input set Ejnp,¢(v) contains that user’s UTXO (Hpu(u),a, x) € U[k].
The vertex defines a set of output UTXOs resulting from the transaction, captured in Emtput(z)).
New transactions are logged as new vertices in the graph V[k + 1]. A UTXO may additionally
represent an input to an asset custody contract, where it serves as a deposit. A deposit operation is
a new transaction, represented as a vertex with no incoming UTXO edges and one outgoing UTXO
edge d € U [k + 1]. We formally distinguish deposits as the subset of UTXOs D C If arising from
deposit actions. An initial deposit amount by user u in asset a is captured by the function D(u, a).

Deposit

A deposit D(u) represents a balance of a digital asset that was deposited into the ACC, linked to
user 1. Upon deposit of a digital asset into the ACC, the contract emits an event. When the PI
detects this event, it creates a UTXO for the amount deposited and credits it to the depositor’s
balance on the PI. The PI must then broadcast a signed acknowledgement of the deposit, which is
validated by SDPs. When the depositor places a trade, the PI references the deposit UTXO as a
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Figure 5: A diagrammatic depiction of a UTXO graph state at an arbitrary time interval. Circular nodes represent the
vertices in the vertex set V k|, while the set of edges forms the set £[k|. Edge labels are explicitly represented
for some of the edges, but each edge is characterized by such a tuple.

spent input when proposing an update to the ledger. All balances on the PI must therefore be
traced to deposit UTXOs. This yields an invariant: the sum of the outgoing edges of a deposit
UTXO's descendants that do not themselves have descendants must be equal to the original
amount of the deposit UTXO. Since the outgoing edges of a childless UTXO vertex are the set of
UTXO edges, we may say that

Y. Y Ale)= ), A(f), VdeD (1)

w:P(v,w)=1 e€Eqyput(w)N(UUS) fFEEoutput(d)

Order

Orders are handled on the participating interface and are processed independently of the sidechain.
This allows for relative freedom in the data representation of orders. Nevertheless, there are some
minimal representation constraints that must be satisfied by orders. A user balance is a function
B : [N] x A — R representing the quantity of an asset that a user possesses. For example, user u's
balance of asset a is B(u,a). Then an order must specify an asset pair and an amount, where the
amount does not exceed the balance. The order must be associated with a user via a signature
generated using the private key Hp:(u). Orders must be further specified as buy or sell types, as
well as the order execution type (e.g. limit, market, stop). Identical orders are those which are
placed for the same asset at the same price, and must be distinguished by the time of placement
and serviced in order of arrival.

10
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Trade

A trade is generated and signed by a PI when two or more user-initiated orders are matched. A
trade carries a partial representation in the UTXO layer, where its effect can be understood as
a transformation of a set of input UTXOs into a set of output UTXOs. This is captured by the
inclusion of a new vertex in the UTXO graph representation which encodes the transformation.
At the level of the PI, trades are further associated with the users that signed the matched orders
and their balances. The order matching condition requires that the sum of the amounts in the
orders for each asset must match, given exchange ratio p; for asset 2 in terms of asset 1. This is
extended to an equivalent condition on UTXOs, where the user input UTXO amounts must also
match. Supposing a vertex v captures a trade between assets a; and ap, we require that

Y. pAle)= Y Afe). (2)

eEVinpul{D} fevinput(i-']

ple)=0; ple)=a2

Input UTXOs for a trade must be either deposit UTXOs or obligation UTXOs without children.

Just as with orders, the PI is responsible for linearly sequencing all trades according to the
time they were serviced, granting each an incrementing identifier according to time of placement.
In addition to proper exchange-sequencing, the trades must be hash-linked, meaning each trade
must include the hash of the previous trade in the sequence. Each trade must include two orders
signed by a trader, as well as the price and size of the base asset. The parameters of the two orders
must match with each other, as well as the price and size specified by the trade.

Each trade generates a minimum of four UTXOs:

* one or more output UTXOs credited to maker
* one or more output UTXOs credited to taker
* two or more output UTXOs credited to PI and SDP for fee payment

The sum of the amounts of output UTXOs must match the sum of the amounts of the input
UTXOs, per asset in the trade, i.e., given a vertex v representing a trade,

Y, A(e)= ). Ae) Vac A. (3)
PEEianIt(U] C’EEnutput(U)
ple)=a ple)=a

Obligation UTXO

As soon as a deposit is used as an input in a trade, the deposit UTXO no longer represents the
latest balance on the exchange, and is split into one or more new UTXOs. The new UTXOs are
considered children of the input UTXO. All output UTXOs of trades are considered Obligation
UTXOs until they become part of a settlement.

Settled UTXO

When a trader requests settlement of an asset, the PI must identify all obligation UTXOs that meet
the following criteria:

¢ The address requesting settlement belongs to the trader to whom the UTXO is credited
¢ The asset represented by the UTXO is the same asset being settled
¢ The UTXO has no children

11
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The settlement consumes those UTXOs as inputs and generates vertices with no output edges as
outputs. The sum of the UTXOs connecting to these settlement vertices represents the total amount
that the trader will be able to request from counterparties and withdraw through the ACC. Let S
be a settlement node, then the total amount requestable r is defined as r = } . Sinput A(e). Each
Settled UTXO thus represents a portion of an immobilized deposit that can now be transferred.
When reporting Settled UTXOs, the sum of the collateral staked by SDPs participating in the
settlement must be greater than the sum of the amounts of the UTXOs.

i. Rollup State Structure

Deposits, Trades, and Settlements proposed by the PI along with all input and output UTXOs are
packaged into blocks. The headers of each block are stored on-chain. The UTXOs are aggregated in
a Merkle tree structure for storage, following typical formulations of such structures [7, 8]. Let M
designate a general Merkle tree structure. Because the Merkle tree state may have a dependence
on the settlement period, divided arbitrarily, we may choose to reflect this dependence, e.g. M|k]
at discretized time k. Each block header for a block of events serves as the root hash of a Merkle
tree. Thus, the state that the funds have reached on-chain is represented by a sequence of events
that can be compared to blocks in a typical roll-up design. Each settlement stores hashes akin to
block headers.

Accumulators are a type of Merkle tree that are used significantly throughout the TXA protocol.
For example, the trades accumulator can be defined as M,,q.. Its leaves are the trade UTXOs
specified in Section IV. The settlement accumulator is denoted M.y.. It stores all obligation
UTXOs that are relevant to a given settlement block. The rollup contract must provide functions
that can be called by auditors to prove that a proposed settlement contains state that is valid. The
Merkle tree rollup provides a structure designed around such verification actions.

i.1 Data Storage

Each data type must be stored on-chain and off-chain. The protocol specifies storage mechanisms
for key data structures, highlighted below.

* Deposits

- On-chain, every deposit UTXO is first generated from a transaction to the Asset
Custody Contract. The UTXO resulting from the deposit is hashed and used as a key in
a mapping to store the deposited amount.

- Off-chain, each deposit is stored as an uncompressed UTXO.

e Trades

— On-chain, each trade must reference a minimum of four UTXOs. A minimal-UTXO
trade will require two UTXOs for the two orders used to define the trade. Another two
2 are input UTXOs (1 for each asset in the trade). Every trade stores the hash of the
previous trade in the sequence. For every settlement, the latest trade hash is reported.
Every trade occurring in the settlement period is packaged into a Merkle tree. The root
of the tree is reported, while the final trade message is reported unhashed.

— Off-chain, every trade is stored uncompressed until enough time passes such that it
meets the condition for being pruned.

¢ Obligation UTXOs:

12
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— On-chain, for every update to the state of obligations, all new output UTXOs generated
as a result of trading are packaged into a Merkle tree M,4e. The root of the tree is
reported.

- Off-chain, every obligation UTXO is stored uncompressed until enough time passes
such that it meets the condition for being pruned.

e Settlement UTXOs

— On-chain, for every settlement, all obligation UTXOs that will be frozen as a result of
settlement are packaged into M. The root of the tree is reported. Once a settlement
is finalized, the UTXOs must be used to update on-chain balances by being written as
obligations, thus affecting the amount of an asset one trader can claim from another
trader within the Asset Custody Contract.

— Off-chain, Every uncompressed UTXO has a flag indicating whether or not it has been
included in a settlement.

i.2 Rollup State Invalidation

A series of assertions are included as a pre-defined set which applies to the proposed state. Most
of these assertions involve referencing state that was committed to the contract in the form of
deposits or previous blocks. The assertions are defined to accept accumulator roots as input, and
to return a confirmation bit asserting validity (1) or invalidity (0). Assertion functions can be
further categorized into: (a): membership assertions (answering questions of the form “is this
leaf a member of either this block or a previous block?") and (b): invariance assertions (function
answers questions of the form “does the tree have this invariance property?").

ii. Fraud Proofs

For a smart contract to enforce protocol operating constraints on relevant data structures, it must
additionally verify that the state of balances after a settlement is the result of a valid transition
from the state of balances before a settlement based on deposits, trades, and previous settlements.
Validating every trade and calculating updated balances after each trade is too computationally
slow and expensive to perform on-chain. Leveraging a rollup-style architecture allows the SDPs
to package many trades and changes to balances into a single on-chain state update. Instead of
writing every single trade to the chain, the SDPs construct a Merkle tree using a set of trades and
report the single root hash of that tree.

In order to verify the validity of the state change, each event is subject to a fraud period during
which an auditor can submit proof that the smart contract can use to determine if the Merkle root(s)
included in the update are invalid. If an auditor submits proof and it passes all checks by the smart
contract, then the state update is either reverted or corrected (depending on the kind of fraud)
and assets posted as collateral by the SDPs which proposed the update are penalized. Some of the
slashed funds must be rewarded to the auditor who reported the fraud. A similar mechanism is
used for reporting fraud committed by a participating interface. Participating interfaces must also
provide collateral to operate on the TXA DSL. If fraud is reported, the collateral is slashed and the
DSL stops supporting settlements for that exchange up to the trade where fraud was detected.

ii.1 Collateral Requirements

By requiring PEs and SDPs to stake collateral in order to operate on the DSL, TXA can use positive
and negative incentives to maintain proper behavior of participants.

13
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SDP

In order to report settlement data, an SDP must stake at least two tokens:

» Settlement Asset: same asset that users being serviced request for settlement. Total staked by
SDPs must be greater than total amount reported as settled from any given settlement event.

» TXA: Total staked by SDPs must be greater than 10% of the total settlement asset amount,
with a flat minimum set by governance.

Both tokens are locked when the SDP reports data for a settlement. In the locked state, the
collateral cannot be queued for withdraw or used to qualify for a different settlement. If an auditor
detects fraud in the proposed settlement data and reports it to the smart contract, both tokens
will be slashed and used to compensate any traders, reward the auditor, and optionally pay a
community fund. If the settlement completes without fraud, the SDPs earn fees proportional to
the amount settled (and thus to the amount staked). Fees are paid in the settled asset.

PI

The TXA smart contracts do not allow any deposits for trading on a PI until a significant amount
of collateral is provided by the PI. The amount of collateral is determined by governance, and
used to punish the PI if any violated constraints are detected in events signed by the PI. Any
aggrieved parties are compensated with the slashed funds, with anything remaining going to a
community fund.

V. CoNsENsUS AND DisPUTE RESOLUTION

In this section we formally detail fraud resolution mechanisms required for protocol constraint
enforcement. We express all sub-protocols in the language of the formalized data structures
presented in Section IV. Algorithmic descriptions of relevant fraud proofs can be found in
Appendix B.

i. SDP Fraud

The most likely auditor to report fraud by an SDP reporting for a settlement would be another SDP,
since any SDP with the latest trade data from the PI and the latest events from each blockchain
can quickly calculate the correct settlement data and compare the resulting Merkle roots. Fraud
reporting requires identification of a specific instance of fraud in the settlement and a report to to
the smart contract.

Fraud committed by SDPs is mostly limited to:

* Incorrectly ordering trades in the Merkle tree
e Omitting a trade that should be included
* Including an invalid trade (doesn’t have signature of correct PI)

If there is fraud related to incorrect order-matching by the PI, SDPs are expected to report it
outside of the settlement process as it supersedes cases of SDP fraud. Ideally, the incentive for
an SDP to report PI fraud should be much higher than an SDP earning fees on a settlement with
fraudulent data. If an SDP reports it anyways, it will be slashed when an auditor reports the PI
fraud.

14
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ii. PI Fraud

The types of fraud committed by a participating interface are more complex, and mostly arise from
either a violation of UTXO invariants, or from failing to sequence on-chain events in time-ordered
fashion.

PI fraud modalities may be summarized as:

Trade has no input UTXOs

Trade input UTXOs have already been spent

Sum of amounts of output UTXOs do not match sum of input UTXOs

Deposit, Trade, or Settlement sequencing doesn’t match expected ordering or trade sequence
number has been already used

The P1 is therefore required to maintain proper classification, accounting, and time-sequencing
of all new on-chain events. State updates are the set of events which cause an update to the ledger
state. It is crucial that the PI performs state updates correctly, as errors can create conditions
for the SDPs to report fraud and halt support for the PI. Proper sequencing of state updates is
partially enforced by the normal operation of the smart contract with additional event-handling
oversight provided by the PI and confirmed by SDPs. Proper cross-chain sequencing is a related
topic that we discuss in this section. At a high level, the PI, throughout the course of its general
event processing tasks, submits proposed state updates to the network in a standardized form for
consideration by SDPs. The state update is then subjected to validation checks by the SDPs that
uphold honest operation of the network.

The possible classes of state updates are four-fold: the DepositAcknowledgement indicates a
user-initiated deposit event at the PI, the Trade event indicates that orders have been matched
and assets marked as exchanged, the SettlementAcknowledgement is generated from a user-
initiated request for settlement, and the SettingsAcknowledgement is generated as part of the
Pl-onboarding process on the network. One of these four classifications is stored as the event
typeldentifier of a state update message. As mentioned, the PI must sequence these state
updates in a linear, time-ordered fashion for each chain.

The SDP network monitors for irregularities in trade reporting. The UTXO model presented in
Section V serves as a useful framework for expressing violations of trade conditions. Considering
a trade, represented as a vertex v, in context of the first three PI fraud modalities presented in this
subsection. A reported trade with no input UTXOs is equivalent to the condition Vinput(v) =@. A
reported trade with one or more UTXOs already spent indicates that Je € Vipput(v),v2 € S such
that e € Vinput(vz). A mismatch between the sum of the input and the sum of the output UTXOs
is captured as the condition of Equation (3).

ii.1 State Update Message Structure

PI state update proposals are generated according to a protocol-defined message format and
reporting process. First, every state update proposal consists of the following:

* uint8 typeldentifier: this specifies the type of state update, previously mentioned as ei-
ther DepositAcknowledgement, SettlementAcknowledgement, Trade, or SettingsAcknowledgement
* uint256 id a sequential identifier of the message in the participating interface’s ledger
* address participatingInterface: the address of the participating interface for which the
message applies
* bytes structData: data that deserializes to the struct specified by the typeIdentifier
* bytes32 previousUpdateHash: the hash of the previously signed state update
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Figure 6: The dynamics of a PI state update process.

e Signature sig: the signature of everything above, signed with the Participating Interface
trade signing key

ii.2 State Update Proposal Dynamics

The Pl-coordinated state update process can be broken into the events depicted in Figure 6. All
incoming chain events are filtered to retrieve deposits and settlements. These constitute the
blockchain state transitions. The stream of trades, which originates with the PI order-matching
process rather than on-chain, is merged into the event stream and all are enqueued in sequential
order. The resulting stream is the set of state transitions. The PI processes state transitions by
structuring them in the protocol-compliant message format, after which they become state updates.
The state updates are finally signed by the PI and broadcast to the SDP network for verification.

ii.3 Event Sequencing

We first summarize the contributions provided by the smart contract itself toward maintaining
honest PI sequencing. The contract associated with each chain assigns a chainSequenceID to each
event. This represents a contractually-enforced canonical ordering that can serve as an oracle to
verify honest PI sequencing. Indeed, chainSequenceID arises as an invariant in the DepositUTXO
fraud checking process, described in Appendix B and enforced by SDPs during settlement. In
a similar manner to deposits, the PI settlement request processing must uphold honest time-
sequencing on the PI layer. To this end, the contract also generates a settlementRequestID
functioning as another sequencing label that can be used to verify honest PI sequencing. This
procedure has an obvious benefit — honest PIs can simply consult the smart contract sequencing
data to enforce honest sequencing.

The sequencing IDs originating from the smart contract aid the deposit and settlement verifica-
tion mechanisms implemented by the SDPs. Trade events, on the other hand, are subjected to a
different series of fraud check mechanisms within the SDP” network. Specific fraud mechanisms
are covered in Appendix B as part of algorithms validateInputUTX0s and validateOutputUTXOs.
Finally, SettingsAcknowledgement updates are verified in a custom manner as they are Pl-specific
onboarding requirements. Specifically, onboarding includes setting the public address of the
update signing key, the fixed fee percentage paid to the PI, the fixed fee percentage paid to the
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SDP and other protocol-relevant parameters. The very first signed state update emitted by the PI
includes this data, which must match an on-chain record. Please note that all classes of events are
sequenced in a single queue per chain.

While the above specifies verification mechanisms for PI-generated state updates, the mecha-
nisms described so far generally treat each chain individually, leveraging the fact that each one is
serviced by an associated smart contract. However, PI responsibilities require maintenance of state
update proposals across all supported chains, in adherance to the CSP. This implies additional
responsibilities for maintaining proper event sequencing across different chains simultaneously. In
particular, a PI may opt to report state updates on one chain preferentially, disrupting cross-chain
synchronization. A major incentive serving to curb this behavior is that many trading pairs
provided by a PI are naturally cross-chain in the sense that the inputs used to generate a trade
involve assets from different chains. Since trades are the fee generation mechanism for Pls, PI's are
generally incentivized to report all incoming chain activities impartially. This incentive provides
another assurance of cross-chain synchronization arising from the CSP.

Deposit and settlement state updates may occur relatively asynchronously relative to order
processing. The protocol, in other words, can tolerate a slight lag in the state update processing
relative to order processing, since settlement is less time-sensitive than order processing. On
the other hand, a constant lag that’s too large can cause a processing bottleneck, where an ever
increasing queue of orders and trades across parallel markets is routed through a slow, serial
settlement process. This potential bottleneck is avoided by the PI's infrastructural responsibility of
keeping the relative lag times short between off-chain order processing and state update proposals.
Queues are expected to be cleared during periods of relative inactivity on the exchange (e.g.
low-volume sessions).

iii. Data Availability Challenge

Since all trade data for a settlement is hashed into Merkle roots, the smart contract has no
knowledge of the contents of the actual trades until an auditor provides proof that certain data
belongs in the tree represented by one of the roots. While the auditors themselves should know
the correct unhashed data, they may not have the unhashed data reported by a fraudulent SDP.
Without the unhashed data, the auditor cannot prove to the smart contract that fraud has occurred.

To prevent lack of data availability from catching a fraudulent settlement, the smart contracts
must enforce a data availability challenge. The data availability challenge allows an auditor to
stake some TXA and request that a reporting SDP provide an unhashed trade with that belongs in
a specific position in the Merkle tree. This is possible because we require all trades to be ordered
by their sequence number in the Merkle tree. Auditors can repeat this process until finding a leaf
that is different via a binary search. If reporting SDPs fail to provide proofs in a timely manner,
it is assumed that the missing data would reveal the fraud and the settlement is reverted. If the
reporting SDPs comply to all requests, then the auditor should be able to detect the fraudulent
leaf within a reasonable period.

VI. TXA TOkKENS

i. Morphology of TXA Tokens

The TXA token ecosystem consists of four tokens: TXA, TXA.B, TXA.L, and TXA.D
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Figure 7: visual depiction of the TXA token morphology and relations between tokens.

i.1 TXA Token
TXA Token is an ERC777 token minted to act as an ecosystem token that can be used for:

¢ Fee replacement

Governance

Staking

Settlement Risk Management
System Reputation Management

The TXA token has been deployed on the Ethereum mainnet at address here 1.

i.2 TXA.B

TXA.B Token is minted for traders who participate and provide liquidity for participating interfaces.
It is not transferable between addresses, nor is it intended for listing in secondary markets.

i.3 TXA.L

TXA.L Token is minted when TXA.B is destroyed by a holder of TXA.B. It is not transferable
between addresses, nor is it intended for listing in secondary markets.
TXA.L Token is used for:

Fee Replacement

Governance

Staking

Settlement Risk Management
System Reputation Management

IThe TXA token has additionally undergone an audit, the results of which can be viewed in this GitLab repository:
https://gitlab.com/ProjectTXA-audit/txa-token

18



O Ny W

Project TXA e Mar 2023 e ver. 2.1 ¢ SUBJECT TO FURTHER REVIEW AND UPDATE

i4 TXA.D

TXA.D Token is airdropped to pre-staking participants as well as to addresses with locked and
unclaimed TXA tokens at the time of the airdrop snapshot.
TXA.D Token is used for:

e (Governance

Appendices

A. TECHNICAL SPECIFICATIONS

In this appendix section we present a detailed technical description of the TXA protocol data types
and requirements.

i. TXA CSP Data Types

This section describes the data types that must be standardized across participants in the DSL.

All data types are defined in Solidity, as this is the format they must take to be properly
validated on-chain. Services written in other languages need to ensure proper serialization/deseri-
alization.

i.1 Deposits

struct Deposit {
address trader;
address asset;
address participatingInterface;
uint256 amount ;
uint256 depositld;
nint256 chainlId;
}

struct DepositUTX0 {
Deposit deposit;
bytes32 depositHash;
}

i.2 Products

struct Asset {
uint64 assetld;
uint64 networkType;
uint64 chainld;
uint64 extra;

}

struct Product {
uint256 assetA;
uint256 assetB;
}
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mapping (bytes32 => Product) products;

i.3 Orders

The order type is used to trace an executed trade to a signed order (original payload submitted by
trader) with matching parameters.

For complex orders that resolve to limit orders, some will have a predetermined range of prices
for which the contracts can verify a proper execution price.

For some complex orders, the price cannot be known ahead of time and will be set as 0.

Absolute minimum necessary to represent a limit order:

struct Order {
Product p;
boolean buy0OrSell;
uint256 size;
uint256 price;
address trader;
uint64 traderld;
uint64 participatinglnterface;
uint8 v;
bytes32 r;
bytes32 s;

When a Participating Interface receives an order and moves it through its system, it will
apppend additional data to the original signed payload. When the order is included in a trade, it
will have this additional data.

For example, the participating interface must assign a timestamp to each order received.

This will also be used when handling complex and contingent orders.

In all cases, an order MUST include the original payload signed by the trader.

i.4 Trades

The two orders included in a trade must have attributes that allow one to prove that the parameters
of the trade is compatible with each order.

Participating Interface must designate input UTXOs used to fill each side of the trade. Partici-
pating Interface must generate output UTXOs.

First input UTXOs in list MUST fill side represented by Order a Last input UTXOs in list
MUST fill side represented by Order b

struct TradeParams {
// Sequence ID
uint256 tradeld;
// Participating Interface ID
uint64 participatingInterface;
// Trade Parameters
Order a;
uint256 timestampl;
Order b;
uint256 timestampB;
Product p;
uint256 size;
uint256 price;
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16 struct UnsignedTrade {

17 TradeParams params;

18 // Input and Output UTXOs
19 bytes32[] inputUTXOs;

20 bytes32[] outputUTXO0s;

21 }

22

23 struct Trade {

24 UnsignedTrade trade;

25 // PI Signature

26 uint8 v;

27 bytes32 r;

28 bytes32 s;

29 // Root of tree of all UTX0 outputs after appending this trade’s outputs
30 bytes32 stateRoot;

31 }

32

33 struct TradeSide {

34 uint256 amount ;

35 address asset;

36 address trader;

37 }

38

39 struct ValidateTradeResult {
40 bool wvalid;

41 // Below only included if wvalid is false
42 FraudInfo fraudInfo;

43 3}

i.5 ObligationUTXO

When a deposit is used as an input UTXO in a trade, it generates obligation UTXOs that represent
the new state of the balance. Each obligation must reference the deposit UTXO from which it
originates. Obligations do not require signatures from PI, as the hash of each output obligation is
included in each signed Trade.

struct ObligationUTX0 {
address trader;
uint256 amount;
uint256 parentTradeld
bytes32 parentUtxo;
// May be optional, as it can be derived using parent
bytes32 depositUtxo;
// May be optional, as it can be derived using deposit
address asset;
address participatinglnterface;

= O e U W N
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i.6 SettledUTXO

When a trader requests settlement, the PI must query for all unspent deposits and obligations,
marking them as "spent” by creating a child UTXO which can no longer be used as an input.

struct SettledUTX0 {
uint256 settlementld;
bytes32 parentUtxo;
// May be optional, as it can be derived using parent
address trader;
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uint256 amount;

bytes32 depositUtxo;

// May be optional, as it can be derived using deposit
address asset;

address participatingInterface;

i.7 Settlement Request

struct SettlementRequest {

address trader;
address asset;

address participatinglnterface;
uint256 chainSequenceld;

uint256 chainld;

i.8 Settlement Block

When SDPs report for settlement, they must include a state commitment that contains all
StateUpdate messages signed by the PI for the range of IDs specified in the settlement.

struct SettlementBlock {
// accumulator of all trades included in the block
bytes32 tradeRoot;
//
// Note that the data rolled up in the commitments below
// is also contained in the tradeRoot. There may be
//
// accumulator of all outputs created by trades in this block
bytes32 outputsRoot;
// accumulator of all outputs spent by trades in this block
bytes32 spentlutputsRoot;
// accumulator of all outputs settled in this block
bytes32 settledlutputsRoot;
// accumulator of state root after each trade
// stateRoot = hash(tradeRoot ,outputsRoot,spentlutputsRoot,settledOutputsRoot)
bytes32 stateRootAccumulator;

i.9 Settlement Report

struct SettlementReport {
SettlementBlock proposedBlock;
SettlementAcknowledgement acknowledgement;
StateRootAccumulatorMessage stateRootMessage;
uint256 settlementld;
bytes32[] stateRoots;

}

struct StateRootAccumulatorMessage {
// accumulator of all trades included in the block
bytes32 tradeRoot;
// accumulator of all outputs created by trades in this block
bytes32 outputsRoot;
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// accumulator of all outputs spent by trades in this block
bytes32 spentOutputsRoot;

// accumulator of all outputs settled in this block

bytes32 settledOutputsRoot;

// id of trade which results in the above accumulators
uint256 tradelndex;

// PI Signature of hash of above

Signature piSig;

i.10 State Updates

A StateUpdate is a message signed by the Participating Interface. It represents an update to the
ledger. The update must be valid (doesn’t break constraints imposed by the ledger) and must
reference a signed message from each trader involved.

All stateUpdate messages must be linearily sequenced by the Participating Interface.

Note that the Trade data type defined above is also considered a StateUpdate, as each trade
must be the result of matching two trader-signed orders.
struct StateUpdate {

uint256 id;
+

i.11 DepositAcknowledgement

A DepositAcknowledgement is a StateUpdate that updates the ledger by creating a new output
UTXO symmetric to the digital asset deposited by a trader in the AssetCustody smart contract.

struct DepositAcknowledgement {
// Sequence ID
uint256 tradelD;
bytes32 depositUTX0OHash;
// Participating Interface ID
address participatinglnterface;
// Participating Interface Signature
uint8 v;
bytes32 r;
bytes32 s;

i.12 Settlement Acknowledgement

A SettlementAcknowledgement is a StateUpdate. When a trader requests settlement of an asset,
the PI must detect the smart contract event and take any action necessary to ensure that no further
trades will occur that could affect that trader’s balance of the asset. For example, a PI operating
a limit order book should ensure that there are no active orders for products which include the
requested asset.
Once a PI has confirmed that the trader’s balance is now static, it signs and emits a message

that’s included in the same sequence as trades.
struct SettlementParams {

SettlementRequest settlementRequest;

// Input UTXOs

bytes32[] inputUTXO0s;
}
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Figure 8: Core functionalities of the UTXO ledger engine. Core capabilities of the PI and SDP.

struct SettlementAcknowledgement {
// Sequence ID

uint256 tradelD;

// Settlement Params
SettlementParams settlementParams;
// Participating Interface Signature
uint8 v;

bytes32 r;

bytes32 s;

ii. UTXO Ledger Engine

The UTXO Ledger Engine defines the logic for maintaining an immutable history of all deposits,
trades, and settlements occurring on a Participating Interface. The latest state of the engine can be
used to derive the balances of all traders with assets deposited on the PIL.

Both PIs and SDPs must run an instance of the engine. SDPs must validate that UTXOs
included as inputs and generated as outputs in all trades emitted by the PI are the result of
correctly running the UTXO engine. Thus, the core logic of the engine must be deterministic, so
that given the same order of deposits and trades, the PI and all servicing SDPs reach the same
ledger state.

ii.1 Configuration

*MUST require user to specify whether the engine is being run by a PI or an SDP
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ii.2 SDP Operation

*MUST provide an endpoint for the SDP to send a Trade and call the validateTrade function,
responding with the result

ii.3 PI Operation

*MUST provide an endpoint for the PI to send a TradeParams and call the prepareTrade function,
responding with the result

*MUST provide an endpoint for the PI to send a Deposit and call the prepareDeposit function,
responding with the result

* MUST provide and endpoint for the PI to send a SettlementRequest and call prepareSettlement

ii.4 Ledger Database

* MUST store all UTXOs in a database, unhashed
* MUST support querying UTXOs by any of their attributes

iii. UTXO Ledger Functions
Note that every function defined below MUST be atomic.

i1i.1 validateTrade

Given Trade:

eextract TradeParams and pass to determineTradeUTX0s

eusing the result of determineTradeUTX0s:

ehash each input UTXO for side A

*hash each input UTXO for side B

ehash each output UTXO for side A

ehash each output UTXO for side B

eextract inputUTX0s and outputUTX0s from Trade

eif hashes of input and output UTXOs generated match UTXO hashes in Trade, return true to
indicate a valid trade

eif UTXOs don’t match, return false along with an UnsignedTrade with the correct input and
output UTXOs

iii.2 prepareTrade

Given TradeParams :
ecall determineTradeUTX0s with TradeParams
eusing the result of determineTradeUTX0s:
*hash each input UTXO for side A
*hash each input UTXO for side B
ehash each output UTXO for side A
*hash each output UTXO for side B
eusing TradeParams and the input and output UTXO hashes create an UnsignedTrade
eappend output UTXOs to the ledger
ereturn the UnsignedTrade
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iii.3 prepareSettlement

Given SettlementRequest:
equery for all unspent UTXOs with the same asset and trader to use as inputs
efor all UTXOs above, generate a Sett1edUTX0 to use as output
*hash all input and output UTXOs
euse SettlementRequest and UTXO hashes to create SettlementParams
ereturn the SettlementParams

iii.4 prepareDeposit

Given Deposit:
ecall hashDeposit
eusing Deposit and the result of hashDeposit, create a DepositUTX0
eappend the DepositUTXO0 to the ledger
ereturn the hash of the deposit

i1i.5 determineTradeUTXOs

Given TradeParams:
edetermine TradeSide for trader that submitted Order a and call determineInputUTX0s
edetermine TradeSide for trader that submitted Order b and call determineInputUTX0s
euse TradeSide and input UTXOs determined from Order a, and trader of Order b to call
generateOutputUTX0s
euse TradeSide and input UTXOs determined from Order b, and trader of Order a to call
determineOutputUTX0s
ereturn all input and output UTXOs

iii.6 determinelnputUTXOs

Given TradeSide:

equery for all unspent UTXOs with same asset and trader as specified in the TradeSide,
sorted descending by UTXO hash

eiterate through UTXOs from the query result and add to a list until the sum of the amounts
of the selected UTXOs is greater than or equal to the amount in the TradeSide

ereturn the list of selected UTXOs

iii.7 generateOutputUTXOs

Given TradeSide , list of input UTXOs, and address counterParty:

eiterate through input UTXOs and generate symmetric output UTXOs

¢if the sum of the amounts in input UTXOs is greater than the amount in the TradeSide,
then the final input UTXO will generate a second output UTXO granting the remainder to the
counterParty

iv. Participating Interface Specifications

This document specifies the requirements for the software a Participating Interface must run in
order to earn service fees from traders on the TXA DSL. This describes the minimum requirements
to comply with the TXA CSP, and does not include details for how to run an orderbook.
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ivl Cryptographic Key Management

Operating a PI requires a minimum of two ECC keypairs capable of signing transactions on most
EVM-based networks. One keypair, called the adminKey is used for registering the PI in the DSL,
staking TXA and collateral, and registering the PI tradeSigningKey, which is used by the PI to
sign trade data.

iv2 Requirements

 PISHALL generate an ECDSA private key for use as an tradeSigningKey

— PI MUST store an ECDSA private key for use as an tradeSigningKey

— PI MUST prompt the operator for the public address of the adminKey and generate a
signature using the tradeSigningKey

— PI SHOULD display instructions for including the generated signature in a transaction
to configure the PI administration contract

iv.3 Blockchain RPC Access

A PI needs to read data from and submit transactions to DSL smart contracts on every blockchain
that it supports.

iv4 Requirements

*PI MUST establish connections to RPC endpoints for each blockchain it supports
*PI SHOULD allow operator to set redunduncy endpoints incase of no connectivity

iv.5 Blockchain Indexing

Transactions to the DSL will include data or emit events that the PI needs to process.

iv.6 Requirements

*PI MUST receive a sequenced stream of parsed blockchain blocks containing data from the DSL
smart contracts for each blockchain it supports.

iv.7 Detecting Deposit

Upon detecting that a trader’s transaction to deposit an asset in the DSL for trading on the PI has
been mined and passed enough confirmations, the PI:

¢ MUST call prepareDeposit on the UTXO Engine with the Deposit as input

e MUST sign and broadcast a DepositAcknowledgement message created from the DepositUTX0
generated above

¢ SHOULD send the trader a receipt of the acknowledgement

iv.8 Order Matching

* Upon matching two orders, the PI must generate corresponding TradeParams

— Upon matching an order and generating a TradeParams, PI MUST call prepareTrade
on the UTXO Engine with the TradeParams as input
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-~ Upon receiving an UnsignedTrade from the UTXO Engine, PI MUST sign the trade
with the trade signing key to generate a signed Trade

-~ PI MUST update the state root with the signed trade

- PI MUST forward the Trade to Streamer for SDP broadcast

— PI MUST forward the Trade to Streamer for trader broadcast

iv.9 Sequencing

*PI MUST sequence all StateUpdate messages (deposits, trades, settlements) via an incremental
integer

iv.10 Responding to Settlement

Upon detecting that a trader requested to settle an asset, the PI:

* MUST call prepareSettlement on the UTXO Engine with the SettlementRequest as input

 MUST sign and broadcast a SettlementAcknowledgement message created from the SettlementParams
generated above

e SHOULD send the trader a receipt of the acknowledgement

v. Settlement Data Provider Specification

v.1 Blockchain RPC Access

In order to fully service a Participating Interface, an SDP needs to read data from and submit
transactions to DSL smart contracts on every blockchain that the Participating Interface supports.

e SDP MUST establish connections to RPC endpoints for each blockchain that it services
e SDP SHOULD allow operator to set redunduncy endpoints in case of no connectivity

v.2 Blockchain Indexing

Transactions to the DSL will include data or emit events that the SDP needs to process in order to
properly service a PL

e SDP MUST receive a sequenced stream of parsed blockchain blocks containing data from
the DSL smart contracts for each blockchain supported by each PI serviced by this SDP.

v.3 Cryptographic Key Management

Operating an SDP requires a minimum of two ECDSA keypairs capable of signing transactions on
most EVM-based networks.

One keypair, called the stakerKey is used for staking TXA and collateral assets on the DSL
and registering the SDP nodeKey, which is used by the SDP node to report settlement data to the
DSL. A relationship between the two keys must be established in the CollateralCustody contract
for the SDP to be able to report.

e SDP SHALL generate an ECDSA keypair for use as an nodeKey
- SDP MUST store an ECDSA private key for use as an nodeKey
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- SDP MUST prompt the operator for the public address of the stakerKey and generate
a signature using the nodeKey

- SDP SHOULD display instructions for submitting a transaction to the CollateralCustody
smart contract using the stakerKey that includes the signature from the nodeKey

v.4 Asset Staking

In order to participate in settlement, an SDP operator must be registered with a staking account
that has enough assets available to meet the collateral requirements of a settlement. To determine
eligibility, the SDP queries the CollateralCustody contract.

e SDP MUST check that a nodeKey is present

— SDP MUST submit an eth_call RPC request to check if the nodeKey is registered to a
stakerKey in the CollateralCustody contract

- SDP SHOULD display instructions for submitting a transaction to the CollateralCustody
smart contract using the stakerKey to deposit an asset for use as collateral

v.5 Blockchain Event Handling

v.6 Deposit
*SDP MUST forward the Deposit to the processDeposit function of the UTXO Ledger Engine

v.7 Trade Data Subscription

In order to provide settlement services for a PI, the SDP needs to listen for all trade data emitted
by that PI.

e SDP MUST listen for WebSocket events emitted by a PI
e SDP MUST request any missing trades from the P1

v.8 Trade Data Handling

Upon any event emitted by the PI, the SDP needs to validate the trade and update its internal
records of trader balances.

v.9 Trade

e SDP MUST store the Trade in a database

— SDP MUST validate that the address recovered from the signature of the trade matches
the address of the PI tradeKey that generated this message

- SDP MUST validate that the address recovered from the signature of each order included
in the trade matches the party of the trade

- SDP MUST pass the trade to the validateTrade function of the UTXO Ledger Engine

v.10 Settlement Acknowledgement

* SDP MUST store the SettlementAcknowledgement in a database

— SDP MUST validate that the address recovered from the signature of the trade matches
the address of the PI tradeKey that generated this message
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v.11 Calculating Settlement Reports

A settlement report is generated relative to a specified participating interface address, trader
address, chain ID, and asset address:

e SDP MUST query for all unspent ObligationUTX0s with the above parameters

v.12 Detecting Fraud

Fraud detection protocols are detailed in Appendix B. The requirements specified in those
algorithms are used to determine whether or not an SDP or a PI have committed fraud. The fraud
detection process also aggregates the data necessary to submit proof of fraud to the DSL smart
contracts.

Assuming full data availability, an auditor only needs to provide inclusion proofs in order to
demonstrate that fraud occurred. It should not be necessary to submit an exclusion proof in order
to demonstrate fraud.

B. FraAuD DETECTION ALGORITHMS

We specify the algorithmic fraud detection algorithms that can be employed by auditors to
verify honest participation in the protocol. The inclusion proofs specified in these algorithms are
designed to be sufficient to demonstrate fraud. The fraud engine runs a trade through a series
of functions which compare the trade data against the current state of the UTXO database. The
functions should be called in a logical order, such that checks for which fraud is easily detectable
which would cause later checks to also fail are called first. The functions may be called in parallel,
as the smart contracts must accept any type of fraud that can be proven.

i. Signature Fraud

The validate TradeSignature algorithm (Algorithm 1) detects whether the StateUpdate provided
by the PI uses a signature where the recovered address does not match the address in the Trade. It:
(1) recovers the address from the signature of each Order, (2) checks if recovered address matches
the address trader in the Order.

The validateSettlementSignature algorithm (Algorithm 2) detects whether the StateUpdate
provided by the PI uses a signature where the recovered address does not match the address in the
SettlementRequest. It (1) recovers the address from the signature, (2) checks if recovered address
matches the address trader in the SettlementRequest

Algorithm 1 validateTradeSignature

1: for Order in Trade do

2: addr < recoverOrderAddress(Order.signature)
3: assert(addr == Order.trader)

4: end for

Algorithm 2 validateSettlementSignature

1: addr < recoverSettlementAddress(SettlementRequest.signature)
2: assert(addr == SettlementRequest.trader)
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ii. Order Fraud

Order fraud occurs when the parameters of an Order included in a Trade by the PI does not
match the parameters of the trade. This is detected by validateOrderParameters (Algorithm
3). Given a trade, the algorithm (1) verifies that participatingInterface in the TradeParams
matches the one specified in each Order, (2) verifies that Product p in the TradeParams matches
the one specified in each Order, (3) verify that the size in the TradeParams is less than or equal
to the size specified in each Order, (4) verifies that the price in the TradeParams matches the
conditions specified in each Order, (5) verify that one Order sets buyOrSell as true, while the
other specifies it as false

Algorithm 3 validateOrderParameters

1: for Order in Trade do

2 assert(TradeParams.participatingInterface == Order.participatingInterface)

3: assert(Product TradeParams.p == Product Order.p)

4 assert(TradeParams.size < Order.size)

5 assert(TradeParams.price == Order.price)

6: end for

7: assert(AtLeastOne(0Order.buy0rSell == BUY) and AtLeastOne(Order.buyOrSell ==
SELL))

iii. UTXO Fraud

The validateInputUTXO0s function (Algorithm 6) protects against UTXO fraud propagated through
InputUTXOs. It (1) verifies that every input UTXO exists in the UTXO ledger. Function ExistsIn-
UTXOLedger will validate that chain Id of the asset matches chain ID of the settlement contracts.
It will additionally hash the UTXO and reveal if it either does not exist in the on-chain ledger, or if
it exists but the asset does not match, (2) asserts that ObligationUTXO0 exists in a settled root in
the ledger, or within the same proposed root but as an output of a trade earlier in the sequence by
performing appropriate inclusion proofs, (3) verifies that every input UTXO is unspent (has no
children in the ledger), (4) verifies that the spender of every input UTXO is either the signer of
Order a or Order b, (5) verifies that every input UTXO where the spender is the signer of Order
a represents the base asset, (6) verify that every input UTXO where the spender is the signer of
Order b represents the counter asset, (7) verifies that the sum of each input UTXO of the base asset
is greater than or equal to the size of the trade (8) verifies that the sum of each input UTXO of the
counter asset is greater than or equal to the size of the trade multiplied by the price.

The validateOutputUTXO function protects against UTXO fraud propagated through out-
putUTXOs. It (1) verifies that for every input UTXO, there are either 3 or 4 output UTXOs, (2)
verifies that every output UTXO is an ObligationUTX0 or a FeeUTXO0 by checking whether the
first uint8 of the signed data matches type identifier for ObligationUTX0 or FeeUTXO, (3) verifies
that every output UTXO is a child of an input UTXO by iterating through the input UTXOs and
verifying that none of the inputs match the parent of the output, (4) verifying that the asset of
every output UTXO matches the asset of its input UTXO, (5) verifying that the sum of the children
of each input UTXO matches the amount of the input UTXO
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Algorithm 4 validateDepositUTXO

Input: DepositUTX0

Deposit <— DepositUTX0.Deposit

assert(DepositUTX0.DepositHash == H(Deposit.trader,Deposit.asset,Deposit.amount))
assert(Deposit.asset == SettlementContractAssetType())
assert(existsOnLedger(DepositUTX0))

Algorithm 5 validateObligationUTXO
Input: ObligationUTXO0, Trade
1: assert(InclusionPfInSettledRoot(inputUTX0) or InclusionPfInPrevLeaf(inputUTX0))
2: for outputUTXO0 in Trade.outputUTX0s do
3: assert(outputUTX0 # ObligationUTXO0)
4: end for

Algorithm 6 validateInputUTXOs
Input: Trade

1: TradeParams < Trade.trade.params

2: InputUTX0AssetSum 0

3: InputUTX0CtrAssetSum < 0

4: OrderATraderID < TradeParams.0OrderA.trader

5: OrderBTraderID <— TradeParams.0OrderB.trader

6: for inputUTXO0 in Trade.trade.inputUTX0s do

7: assert(ExistsInUTXOLedger(inputUTX0))

8: if type(inputUTX0) == DepositUTXO0) then

9: validateDepositUTXO(inputUTX0)

10: end if

11: if type(inputUTX0) == obligationUTXO0 then

12: validateObligationUTXO(inputUTXO0)

13: end if

14: assert(isUnspent(inputUTX0))

15: UTX0TraderID < inputUTX0.trader

16: assert(UTX0TraderID == OrderATraderID or UTXOTraderID == OrderBTraderID)
17: if UTXOTraderID == OrderATraderID then

18: assert(inputUTX0.asset == TradeParams.(OrderA.p.AssetA)
19: InputUTX0AssetSum < InputUTX0AssetSum + inputUTX0.amount
20: else

21: assert(inputUTX0.asset == TradeParams.OrderB.p.AssetA)
22: InputUTX0CtrAssetSum <— InputUTX0CtrAssetSum + inputUTX0.amount
23: end if

24: end for

25; assert(InputUTXORunningSum > TradeParams.size)

N
o

: assert(InputUTX0CtrAssetSum > TradeParams.size % TradeParams.price)
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Algorithm 7 validateOutputUTXOs
Input: Trade

1: TradeParams < Trade.trade.params
2: assert(Data that hashes to the trade, including input and output UTXOs)
3: for inputUTXO0 in Trade.trade.inputUTX0s do
4: AssociatedOutputUTX0s <« 0
5 SumOf inputUTX0Children ¢ 0
6 for outputUTX0 in Trade.trade.outputUTX0s do
7: assert(Type(outputUTX0) == ObligationUTX0 or Type(outputUTX0) == FeeUTX0)
8 if IsChildOfInputUTXO(outputUTX0) then
9: AssociatedOutputUTX0 < AssociatedOutputUTX0 + 1
10: Sum0f inputUTX0Children < Sum0OfinputUTX0Children + outputUTX0.amount

11: assert(outputUTX0.asset == inputUTX0.asset)
12: end if

13: end for

14: assert(SumOf inputUTX0Children == inputUTX0.amount)

15: assert(AssociatedOutputUTX0 == 3 or AssociatedOutputUTX0 == 4)
16: end for

iv. Error Fraud

Error fraud occurs as a result of incorrectly running the UTXO Engine software. The ValidateUTX00rder
algorithm verifies that input and output UTXOs are correctly sorted in ascending order by the
numerical value represented by their hashes.

Algorithm 8 validateUTXOOrder
Input: UTXO_1, UTX0_1_Index, UTXO0_2, UTXO_2_Index
1: assert(UTX0_2_Index > UTX0_1_Index)
2: assert(H(UTX0_1) < H(UTX0_2))

C. REFERENCE EXCHANGE DESIGN

This section covers the exchange and settlement subsystems in a reference design for the DSL
architecture.
Participant Exchanges may be composed of the following subsystems:

i. Order Intake

Participating Interface relies on witnessing trader-led activities in a time-ordered fashion.
Constraints on PI:

* Simultaneous order acceptance at API gateways
* Disparate VM time sync
e Trader privacy

Desirable Properties:

* Order acceptance fairness - first-come first-serve
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Order persistence
Time-ordered

Payload validity check
Trade origin verification
Microsecond timestamp

ii. Order Matching

Constraints:

e Sparse orderbook with clustering

e Single threaded process per symbol

* Comparable orderbook updates to equity exchanges (less than 100 micro-sec)
e Full replayability of all orders and trades

Desirable Properties:

* Rapid order addition and modification

* Optimize for order cancellation (90% of orders cancel)

* O(1) search time for each price level

e O(1) time to access each order

 Fast, iterable collection at each price level, ordered by time
* Determinism when historical orders are replayed

iii. Exchange Public API

Exchange Public API is a way for external applications using REST to interact with the exchange
platform. Its responsibilities include:

Accept signed orders from traders

Show per-asset balance information given an Asset Custody Contract

Retrieve and present historical orderbook entry values for client-side initialization
Provide WebSocket hook for streaming orderbook data

Provide dApp hook for interacting with escrow contracts

iv. Un-ordered Message Subsystem

Un-ordered Message Subsystem, composed of Message Ingestion and Message Queue, is re-
sponsible for rapidly queuing various messages from Exchange Public APL. Un-ordered Message
Subsystem takes in messages as quickly as possible from as many API service hosts as possible.
Its responsibilities are:

¢ Store in semi-permanent basis all incoming messages

* Normalize all incoming messages with common encoding schema
¢ Integrate with real-time logging facility

¢ Provide streaming data to Ordered Message Subsystem
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v. Ordered Message Subsystem

Ordered Message Subsystem, also composed of Message Ingestion and Message Queue, is
responsible for taking in raw un-ordered message stream and do its best to reorder them using
time and items bucketing. Time and items bucketing is a fixed size buffer that expires. Its
responsibilities are:

* Process un-ordered messages based on receipt time

* Store in semi-permanent basis all time-ordered (processed) messages

Integrate with real-time logging facility

Provide streaming data to rest of the Tacen infrastructure, such as Order Matching Engine
Handles both standing orders as well as new incoming orders

vi. Historical Data Subsystem

Historical Data Subsystem stores and provides historical data for internal and public API con-
sumption. Its responsibilities are:

e Store bulk stream data into database
* Interface with database and provide convenient API service for consumers

vii. Ordered Message Streamer

Ordered Message Streamer takes in streaming data from Ordered Message Subsystem intended
for both public and internal consumption and sends out to all WebSocket subscribers. Its
responsibilities are:

* Send time-ordered, processed messages to WebSocket topic subscribers

viii. Orderbook and Order Matching Engine

Orderbook and Order Matching Engine maintains orderbook information. Orderbook is responsi-
ble for:

* Receive time-ordered new and updated orders

¢ Enter new order entries into orderbook with price and time priority
Update order entry in an orderbook with time priority

Match incoming and updated orders against entries in orderbook
Enqueue matched orders into Ordered Message queue for Trade Processor

ix. Trade Processor

Trade Processor takes in matched orders from OME and handles escrow balance updates. Its
responsibilities are:

e Receive time-ordered matched orders

¢ Update per-escrow balance
* Enqueue executed trades into queue in time-ordered manner
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x. Public Blockchain Interface

Public Blockchain Interface components of Participant Exchange is responsible for the following:

* Check for full-collateralization of the trades
e Listen for completion of all events required for start of settlement
* Handle multi-party coordinated settlements

The smart contracts are symmetric in nature, meaning that across multiple blockchains, their
behavior is same for the same class of smart contracts.

xi. Trader Asset Custody Contract

Collateralize the trades by assigning expiration to each asset class.
Asset Custody Contract is responsible for the following:

Accepts transfer of both tokens and native asset

Record and recall its obligations to counter-parties

Acts as an identity when submitting orders

Remits available native and token assets to its beneficiary when requested

xii. Settlement Coordinator

Settlement Coordinator acts as a task coordinator for the settlement process. Its responsibilities
are as follows:

e Keep canonical list of Settlement Data Providers

e Accept request to initiate settlement from a Asset Custody Contract

e Obtain settlement obligation information from a quorum of SDPs

* Contact Settlement Coordinator to initiate coordinated settlement on counter-product’s
blockchain

* Relay transfer instructions to escrow contracts

* Finalize a settlement

xii.1 Settlement Data Provider

Settlement Data Provider provides settlement obligation information to Settlement Coordina-
tion Contract when requested. SDP controlled wallet addresses are enrolled into Settlement
Coordination Contract RBAC. SDP responsibilities are as follows:

* Provide settlement obligation data to Settlement Coordination Contract

Listen to exchange updates via WebSocket and record into local persistent storage
Listen for completion of all events required for settlements

Calculate asset balances on ongoing basis

D. TXA.D ArRpror DETAILS

In order to bootstrap a DAO for the TXA DSL, Project TXA will distribute a governance token,
TXA.D, through an airdrop. Full details of the airdrop can be found here.
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