

Space and Time (SXT Chain)
The blockchain for ZK-proven data.

Scott Dykstra Jay White, PhD Catherine Daly Ian Joiner, PhD

May 2025

v2.0
whitepaper

Abstract

Smart contracts lack native data processing capabilities, and securely connecting external data is
cumbersome. Space and Time (SXT Chain) addresses these challenges by introducing Proof of
SQL, a breakthrough zero-knowledge (ZK) circuit that provides verifiable SQL queries against
tamperproof tables. Delivered as a decentralized database loaded with ready-to-go indexed
blockchain data compatible with Proof of SQL, SXT Chain is ushering in a new era of data-rich
smart contracts.

By storing only cryptographic commitments onchain, SXT Chain secures an unlimited number
of tables/ledgers without bloating the blockchain. Developers gain the ability to run ZK-verified
queries on massive datasets from major blockchains or user-provided offchain data, all while
supplementing the limited compute power of smart contracts. This powerful combination propels
the creation of sophisticated, cross-chain dapps—ultimately fulfilling the blockchain vision of a
permissionless, trustless, and data-rich digital economy.

1

Table of Contents
Abstract 1

Table of Contents 2
1 The Problem: Untapped Potential of Web3 4

1.1 Smart Contracts Can’t Access Critical Data 4
1.2 Current ZK Solutions and Their Limitations 5
1.3 The Need for an “Onchain Database” 5

2 The Solution: SXT Chain with Proof of SQL 6
2.1 Coprocessing Unlocked for Smart Contracts 6
2.2 Query Examples for ZK-proven Onchain Data 6
2.3 Design Goals 8
2.4 Components of the Network 9

2.4.1 Indexer Nodes 9
2.4.2 Prover Nodes 10
2.4.3 SXT Chain Validators 10
2.4.4 Onchain and Offchain Components 11

2.5 Ingestion Layer with Verifiable Indexing 12
2.6 Decentralized Database Design 12
2.7 Infinite Tables with Onchain Verification 13

3 Design of the Proof of SQL Protocol 15
3.1 Overall Architecture 15

3.1.1 Data Ingestion 15
3.1.2 Query Request 17
3.1.3 Proof Protocol Overview 17

3.2 Parsing 18
3.3 Query Executor and Interactive Protocol Builder 18

3.3.1 Query Execution / Witness Generation 19
3.3.2 Commitment Computation / Multiple Rounds 21
3.3.3 Constraint Building 21

3.4 Notation 21
3.5 Example Subprotocols 22

3.5.1 Equality Protocol Builder 22
3.5.2 Group By Protocol Builder 23

3.6 Relation Proof Protocol (Sum-check) 25
3.7 Commitment Evaluator 26

4 Use Cases for the Next-Generation of Web3 27

2

4.1 Building a Flexible ZK-Rollup/L2 27
4.2 Secure Bridges and Multichain Data Backends 27
4.3 Dapp Backend (Decentralized) 27
4.4 Data-Driven Lending 28
4.5 Cross-Chain Financial Instruments 28
4.6 Gaming Rewards 28
4.7 Social Apps 28
4.8 Settlement Systems and Third-Party Auditing 29
4.9 Real World Assets (RWAs) 29
4.10 Transaction Security and Wallet Whitelists 30
4.11 Liquidity Pool Rebalancing Based on Market Conditions 30

5 Economic Model for SXT Chain 31
5.1 $SXT Token Utility 32
5.2 Security Budget Vault 32
5.3 Table Owner Rewards Vault 33
5.4 Network Fee Structure and Data Marketplace 33

6 Conclusion 34
Appendix 35

A Data that Smart Contracts Can Access (without Space and Time) 35
B HTAP to Replace Point-Solutions 36
C Proof of SQL “Bring Your Own Database” 37
D Leveraging an Append-Only Database as a Tamperproof Offchain
 Ledger 39
E Space and Time in the Market 40

E.1 Web3’s evolution as a digital economy powering novel apps 40
E.2 Proven value in data warehousing 41
E.3 New compute paradigm removes trust-requirements 41

References 43

3

1 The Problem: Untapped Potential of Web3

1.1 Smart Contracts Can’t Access Critical Data

Smart contracts underpin major decentralized finance (DeFi) protocols like Uniswap, Aave,
Compound, and Synthetix, each securing billions on the Ethereum Virtual Machine (EVM).
While these protocols provide trustless, permissionless asset management, they lack data-driven
sophistication—Aave, for instance, can’t differentiate a new borrower from one with established
onchain history.

In traditional finance (TradFi), options derivatives exceed their underlying assets’ capital, with
over 40 million contracts traded daily. Yet these options are largely missing onchain because
trustless deployment requires external data processing, which standard smart contracts cannot
perform. By contrast, onchain perpetual futures see an annual volume of $39 trillion, thanks to
simpler logic that relies only on token price feeds.

Smart contracts can only access wallet balances, current transaction data, basic blockchain
metadata, and their own internal state. They cannot directly query the historical data stored by
blockchain nodes. Using archive nodes, an external offchain client can only access simple
datapoints such as:

● The state of the entire blockchain at any given time in history (e.g. who is the first owner
of the “Cryptopunk #1” NFT).

● The transactions—and events emitted as a result of transactions—at any given time in
history (e.g. John’s wallet swapped 1000 USDC to 0.5ETH on 4/18/2023).

Offchain indexing solutions can parse this history but introduce trust assumptions; such solutions
are typically centralized and unverified. Decentralized oracle networks bridged this gap by
providing the infrastructure to aggregate, validate, and deliver offchain data to blockchains, but
require connectivity to external systems to handle complex datasets, SQL execution, rich onchain
history, etc.

As multichain protocols spread, many rely on a “hub” contract on Ethereum linked to “spoke”
contracts on other chains. Monitoring spoke activity in a trustless way remains difficult.
Similarly, Web3 games struggle to reward in-game actions or onchain NFT milestones because
the underlying data isn’t directly accessible to the smart contract. Some teams resort to
centralized services, undermining the trustless ethos of Web3 and highlighting an urgent need for
trustless data processing.

4

1.2 Current ZK Solutions and Their Limitations

ZK proofs have been heralded as the panacea for trustless data access, offering client verification
by allowing data to be confirmed without revealing its contents to the client. By offloading
computation offchain and verifying the results onchain, ZK proofs can bolster the limited data
access and compute power of smart contracts. They eliminate the need for cumbersome offchain
consensus by letting a single node act as a coprocessor to an L1/L2 chain. However, current ZK
solutions are still maturing and face several key challenges.

First, ZK proofs lack scalability when handling large-scale data. Proof generation often takes
minutes, making ZK proofs impractical for complex queries against, for example, multi-year
transaction histories. Second, the ecosystem is highly fragmented, with some projects aimed at
privacy, others at scaling, and still others at specific use cases like rollups. Tying these disparate
solutions together is time-consuming, costly, and prone to error. Third, the developer experience
remains unfamiliar and demanding, often requiring new languages (e.g., Cairo) and specialized
hardware deployments (e.g., zkEVM rollups). Finally, existing ZK solutions do not address the
missing query layer in Web3, leaving decentralized applications without a truly trustless way to
process and analyze large datasets.

1.3 The Need for an “Onchain Database”

In traditional SaaS applications, business logic follows a straightforward cycle of querying data,
executing actions based on the query results, and updating system state. This pattern is evident
across industries: lenders check a borrower’s creditworthiness, decide terms, and update loan
states; e-commerce platforms query product availability, manage purchases, and adjust
inventories; travel services query accommodations and flights before finalizing bookings; and
social networks query a user’s connections to display and rank content. However, in Web3, while
blockchains and smart contracts provide state management and basic logic, they lack a dedicated
query layer which limits data processing and onchain computation for more advanced
decentralized applications. Space and Time addresses this gap by serving as a “query
coprocessor,” delivering robust offchain data processing alongside major blockchains.

Over the past 15 years, tech conglomerates have accumulated and monetized user data within
proprietary cloud warehouses. This centralized control conflicts with the Web3 vision of a
decentralized internet, where individuals manage their own information, maintain privacy via
wallet-based identities, and participate in transparent governance. A community-operated
database model can help reclaim data sovereignty, as end users collectively determine how data
is accessed, used, and monetized. Through wallet-based public key infrastructure (PKI),
individuals can sign off on how their interactions are recorded, shared, or deleted.

5

Yet, existing blockchains primarily function as single-ledger databases with no native query
engine, resulting in state bloat and limited data capabilities. Achieving the data flexibility
required by modern decentralized apps calls for a more expansive approach—one that supports
near-infinite tables/ledgers, each dedicated to a specific crypto app domain, while preserving the
trustless security model of blockchains.

2 The Solution: SXT Chain with Proof of SQL

2.1 Coprocessing Unlocked for Smart Contracts

SXT Chain addresses the need for a query coprocessor for smart contracts by providing a
tamperproof, community-operated decentralized database that indexes and verifies data from
major blockchains or user-owned tables using ZK proofs. Community-operated validators store
threshold-signed cryptographic commitments (one per table) instead of raw data. Validators and
archive nodes locally pin raw data or act as comprehensive repositories to ensure redundancy and
availability. Indexed data from major blockchains (e.g., Ethereum, Bitcoin, ZKsync, Sui,
Avalanche, Base) is validated and summarized into onchain cryptographic commitments (e.g.,
KZG, Nova, Dory), which act as tamperproof digital fingerprints of the underlying tables. When
data insertions are submitted via DDL/DML transactions, the network updates the affected
table's cryptographic commitment to reflect its new state.

Proof of SQL is a groundbreaking ZK proof protocol that ensures the accuracy of SQL query
results and the integrity of underlying data tables stored on SXT Chain using cryptographic
commitments specifically to ensure underlying data tables are tamperproof as part of the
mechanism (described in a later section of this paper). The network's Prover nodes, running the
Proof of SQL protocol, handle both query processing and proof generation. The protocol targets
online latencies while proving computations over entire chain histories an order of magnitude
faster than state-of-the art zkVMs and coprocessors. SQL proving times are currently
benchmarked at under a second for analytic queries on million-row tables using a single NVIDIA
GPU.

2.2 Query Examples for ZK-proven Onchain Data

Ultimately, Space and Time allows smart contracts to “ask ZK-proven questions” regarding
activity on their own chain, other chains, or offchain. For example, a smart contract can request
the SQL equivalent of:

6

● Loans paid off: “Show me the volume of loans already paid off by this wallet attempting
a borrow transaction” (in order to offer a discounted loan rate to a loyal borrower who
has paid off loans onchain already).

● Liquidity Pools TVL: “Show me all liquidity pools with a TVL greater than $1M that
were deployed at least one month ago.”

● Liquidity Pools Collateral: “Sum up the total collateral available right now in all
liquidity pools our protocol operates across the following four chains…”

● DEX Loyalty Program: “Given that wallet ‘xyz’ is currently attempting a trade, show
me the number of prior trades this wallet has already made with DEX liquidity pool
address ‘xyz’” (in order for the DEX contract can apply a discount or reward to the
current trade).

● LP position management (active/dynamic): “Alert me when the delta between $LINK
average price and $ETH average price has deviated more than 10%” (for Uniswap v4 LP
rebalancing via hooks).

● Avg. Lending Rates Onchain: “Show me the volume-weighted average lending rate for
USDC on Aave, Maker, and Compound right now.”

● Wallets with Token Balance Criteria: “Show me all wallets that have a balance >
$1000 of $LINK token and have interacted with at least one Chainlink smart contract.”

● Bridge Transactions: “Show me all transactions across ‘xyz’ bridges that moved at least
$1M of tokens per wallet from Chain A to Chain B.”

● Gamer Achievements: “Show me all gamer wallets that have at least 2 hours of
playtime in-game, have minted our NFT, and played with ‘xyz’ weapon.”

● CeFi Options Markets: “Give me the at-the-money implied volatility of Bitcoin call
options expiring end-of-year averaged (volume-weighted) across Deribit and Binance.”

● Gas Oracles: “Show me the average gas used across all transactions on ‘xyz’ bridge over
the last hour.”

● Token Price Oracles: “Show me the volume-weighted average price of $LINK and
wrapped $LINK token traded across the hundreds of liquidity pools that swap $LINK:
Uniswap, PancakeSwap, Sushiswap, Trader Joe, Quickswap, etc.”

● Trustless ETFs/Indexes: “Create a volume-weighted index of the following 10 tokens
calculated from price oracle SQL calculations and deliver it to my contract as a single
price index.”

● Airdrop Criteria: “Roll up the wallet transaction histories of all wallets that meet the
following criteria for my airdrop…”

● Governance Engagement Score: “Roll up engagement scores for wallet activity that
meets the following criteria… where volume transacted in ‘xyz’ token, onchain
governance voting participation, and past NFT ownership will contribute to
rewards/discounts associated with a wallet engagement score.”

7

● Governance Qualification: “Find all wallets that have participated in governance votes
and rank them with a cross-section of the amount of ‘xyz’ token held and how long it’s
been held.”

● Weather (Onchain Insurance Payouts): “Show me the average wind speeds across all
reported weather stations in Miami, Florida today.”

● Github Activity (Open Source Contributions): “Rank developer wallets by their total
code contributions through ingested GitHub activity data.”

● Oracle Activity: “Show me total volume of oracle requests over the last hour that did not
complete the request within two blocks.”

● Pricing Blockspace: “Determine blockspace ‘market rates’ by averaging transaction gas
fees along with block header metadata.”

● NFT Floor Prices: “Look at NFT trading information onchain and find the current
average floor price for collection ‘xyz.’”

● Perp Funding Rates: “Calculate the implied volatility of both $ETH and $BTC using
onchain perpetual futures funding rates as a leading indicator.”

● Ethereum Staking Yields: “Show me the risk-minimized average returns on Ethereum
liquid staking via Lido over the past hour.”

2.3 Design Goals

The Space and Time solution was designed with the following goals around data processing:

1. End-to-End Trustless: Leverage a ZK approach for proving rather than building yet
another consensus-based, ‘trust-minimized’ approach with 12 to 30 nodes. This removes
reliance on a manually configured set of permissioned nodes while offering improved
scalability.

2. Verifiable Onchain: Ensure ZK proofs generated offchain are verifiable within the
computational capabilities of the EVM, rather than only verifying offchain using a
third-party service such as an oracle or relayer. Thus, a smart contract on any major chain
(consensus-based or ZK-rollup chains) can verify the proof and relay the verified query
result to a client contract which made the request.

3. Familiar, Easy Developer Experience: Provide a UX common in Web2 (SQL) so
developers don’t have to learn any extensive new frameworks or languages.

4. Support for Arbitrary Computations: Facilitate common data processing jobs that
require aggregations, sorts, filters, arithmetic, joins, etc., as well as Turing-complete
arbitrary computations using SQL.

5. Low-Latency at 100 Gigabyte-Scale: Deliver verified query results back to a client
smart contract within seconds—not minutes—using a more scalable approach than

8

redundant computations proven with consensus. Must support queries over the entire
chain state (often multiple terabytes of data per chain since genesis, broken up into
sub-tables that often exceed 100 gigabytes each).

6. Comprehensive Chain Data Coverage: Persist entire copies of each major chain
(including all events, transactions, blocks, logs, balances, token price changes, etc.) to
facilitate cross-chain queries against current and historical activity.

Given the limitations of arbitrary ZK proof circuits and the potential strengths of a circuit
constructed around a SQL parser, we considered the following:

1. Optimized Circuit Design: We narrowed our initial focus to only SQL operations in
order to create highly optimized ZK circuits tailored for data processing. This level of
specificity allows for streamlined verification and reduced computational overhead.

2. Broad Applicability: SQL is ubiquitous—a widely understood and universally accepted
language for data operations that operates at the heart of both complex financial systems
and basic web applications. The basic constructs of SQL (selections, projections, joins,
and aggregations) cover most of the processing requirements for large datasets.

3. Relational Data Models: Blockchain indexing necessitates the decomposing of the
blockchain ledger into multiple tables (wallets, blocks, transactions, smart contract
logs/events, price feeds, etc.) in a relational data model. For example, the “wallets” table
can be joined with the “blocks” table, which can be joined with the “transactions” table.
SQL is suitable for accessing structured, relational data.

2.4 Components of the Network

Space and Time is a three-layer decentralized network of user-operated nodes serving distinct
purposes:

2.4.1 Indexer Nodes

Indexer nodes are lightweight servers designed to redundantly fetch and process data from
popular blockchains such as Ethereum, Polygon, and Avalanche. These nodes:

● Continuously extract the latest block data, transactions, balance changes, smart contract
event logs, storage slot updates, and more.

● Transform raw blockchain data into a relational SQL-compatible format, effectively
performing Extract, Transform, Load (ETL) operations.

● Submit the transformed data as insert-data transactions to SXT Chain, ensuring the data is
securely incorporated into tamperproof tables.

9

● Can be deployed as a restaking-secured service using SXT Chain queries for rewarding
or slashing Indexer nodes based on the accuracy of the source chain data they deliver.

2.4.2 Prover Nodes

Prover nodes handle client requests for ZK-proven SQL execution against tamperproof tables
secured by SXT Chain (via a threshold-signed commitment for each table). Their primary
responsibilities include:

● Receiving client queries, often from smart contracts on EVM-compatible chains such as
Ethereum.

● Executing ZK-proven SQL queries against indexed data or other secured tables.
● Generating cryptographic proofs to verify both the query’s computational accuracy and

the integrity of the underlying data.

2.4.3 SXT Chain Validators

Validator nodes are the backbone of SXT Chain, responsible for maintaining the integrity of the
network. They:

● Update cryptographic commitments stored onchain whenever insert-data transactions are
processed, ensuring that the tamperproof tables accurately reflect the latest data state.

● Collaborate via Byzantine Fault Tolerance (BFT) consensus to threshold-sign new
commitments, providing a decentralized and secure mechanism for data verification.

10

Figure 0: Space and Time Primary Components

2.4.4 Onchain and Offchain Components
Space and Time is seamlessly integrated with major blockchains, delivering ZK-proven query
results against onchain and offchain data to smart contracts. Below is an overview of how each
step is handled:

● Client Request (Onchain): The client contract sends a payment along with query
specification to the Space and Time Verifier contract, which then emits an event onchain
requesting query/proof fulfillment (data processing jobs for indexed or offchain data).

● Proof Generation (Offchain): A single Space and Time Prover node (GPU) within the
decentralized network listens for requests emitted onchain, then executes Proof of SQL

11

by generating a ZK proof and the associated query result for the request. Both the result
and the proof are submitted to a client for verification.

● Proof Verification (Onchain): The Space and Time Verifier contract accepts the query
result and proof from the Prover nodes. It verifies the proof and hands the verified query
result to the client that requested fulfillment.

Space and Time aims to address the pervasive problem of fragmentation in Web3 by developing
a comprehensive solution that combines indexed data, proof generation, and verification, and the
efficient relaying of data to smart contracts.

2.5 Ingestion Layer with Verifiable Indexing

Data ingestion into Space and Time (SXT Chain) leverages BFT consensus across the Validator
set, to cryptographically verify that indexed data from popular chains is accurate to that source
chain. This can also be useful for customer-owned tables as well. For example, a client can
define a tamperproof table in Space and Time that persists stock prices from traditional equity
markets, with external business logic that captures real-time pricing information from 12
different stock market data APIs simultaneously. Space and Time Validator nodes can achieve
consensus on the price of Apple stock across these 12 different data providers, for example, and
only insert into SXT Chain the threshold-signed, consensus-approved price of Apple stock at the
current moment.

Similarly, with indexed blockchain data that the network captures, Space and Time leverages a
decentralized Indexer node set to redundantly process the entire state of popular chains like
Ethereum, Bitcoin, Polygon, ZKsync, etc. Each Indexer runs a light client for the source chain,
an RPC service internally to get the latest block/transactions/events, decodes and transforms the
data into a relational database format, and finally builds cryptographic commitments on recently
indexed blocks. Indexers submit their transformed chain data to SXT Chain for consensus
approval by the Validators. Through this process, Space and Time is commoditizing indexed
blockchain data, and offering it at low cost through the network (SXT Chain only charges for
compute costs of queries executed in Space and Time, not the underlying data storage).

2.6 Decentralized Database Design

The decentralized database serves as an integral resource for smart contracts to efficiently
offload computation and data storage. The solution enhances chain scalability, enables faster
contract execution, and reduces the amount of gas spent onchain while allowing the entire stack
to remain permissionless to operate. A growing number of developers are even starting to build
ZK-rollups leveraging Proof of SQL as the L2 or L3 ledger that’s settled on a main chain

12

periodically, via a rollup contract on that main chain querying the ledger in Space and Time for
updated account balances batched in a single transaction. This enables:

● Decentralization with Self-Custody: Data is stored and processed across a network of
community-owned and operated nodes. Role-based and row-based access to each
table/ledger in the database is governed by decentralized mechanisms using “biscuits,”[3]
a budding approach to encoding user secrets and sharing permissions around CRUD
operations to a table/ledger. This also facilitates self-custody of data in Space and Time,
where an end-user can write directly to “public write-permissioned” tables/ledgers
without intermediaries, and subsequently remove content or govern how other dapps that
read from these tables/ledgers can access content.

● Offloading Compute and Storage: To maintain the efficiency and speed of onchain
operations, smart contracts can offload to Space and Time any computationally intensive
processes, account balance management, or voluminous storage requirements.

● Transparent data processing vs. ZK for privacy: Varying business requirements across
a wide range of use cases require that some dapp developers transparently publish all data
as “public read” tables/ledgers to their individual communities, while others must hide
data processing to protect sensitive information. For example, a protocol that whitelists
wallet addresses and calculates risk scores (for compliance reasons, OFAC protection,
fraud prevention, etc.) may want to transparently publish their whitelist as a “public
read-permissioned” table in Space and Time, as well as the actual model used to define
risk scores associated with each wallet. On the other hand, a protocol that enables
undercollateralized onchain lending may want to provide query results to smart contracts
around real-world credit scores without actually revealing those credit scores to the
public. Proof of SQL allows a smart contract to ask the SQL equivalent of “Is this user’s
credit score greater than 600?” and prove that the ‘yes/no’ response from Space and Time
is accurate without revealing the actual credit score.

● Network Effects and Scalability: As the network integrates more chains and more
participants join the network, this not only increases protocol security but also the public
datasets available (as well as third-party ecosystem integrations). This is traditionally
known as “data gravity” and is a lucrative focus for traditional cloud database vendors.

2.7 Infinite Tables with Onchain Verification

Space and Time capitalizes on the moats of both data warehousing and onchain protocol security
to generate powerful network effects. By marrying the trustless properties of blockchain
technology with the scale and efficiency of a data warehouse, Proof of SQL drives a new market
standard of verifiable data processing at scale across both Web2 and Web3.

13

Figure 2: Marrying Scale and Provability with Proof of SQL

On one hand, smart contracts can transact with Space and Time’s Verifier contracts onchain,
incurring fees for data retrieval and verification. Simultaneously, enterprises can access Space
and Time’s vast blockchain data (or their own customer-loaded tables), sometimes paying in fiat,
which is then used to enhance the native token’s utility for:

● Offchain ZK-proven Queries on Analytic Tables: Direct access to Space and Time
database nodes offchain can be achieved with REST APIs and RPC connection proxies
deployed on or near the Validator nodes, for both tamperproof queries secured
cryptographically by Proof of SQL as well as unverified queries secured optimistically by
token-economic security.

● Cross-Chain Interoperability: Smart contracts on “Chain B” can query current or
historical data (entire chain state) from “Chain A”, with arbitrary SQL business logic
deployed en route.

● Joining Onchain and Offchain Data: Developers often write complex queries that join
offchain data (such as TradFi market data, in-game activity, or traditional data lake reads
for Web2 business processes) with onchain data (such as token swaps or perps, NFT
activity, or blockchain rewards/metadata) while still retaining ZK-proven computation of
query results if needed.

Here is how onchain verification works, on any popular EVM chain: An SXT Chain query
relayer contract is deployed to the EVM chain, which acts as an onchain endpoint for client
smart contracts to interact with. The client contract sends a tiny payment along with a query ID,
and the SXT Chain relayer emits an event that SXT Chain nodes listen for. A Prover node is
chosen to execute the query and build the associated proof, and acts as a ZK-oracle to return the
query result and proof back onchain. In doing so, the Prover builds an EVM transaction and pays

14

the EVM verification gas for the SXT Chain relayer contract to ZK-verify the provided query
result before returning the result to the client contract via a callback. This entire process often
happens within a block of the original client contract request.

3 Design of the Proof of SQL Protocol
Within the Space and Time network, Proof of SQL is a novel cryptographic data-processing
protocol that allows verifiable outsourced SQL execution using ZK proofs. This enables Space
and Time to extend the security of Ethereum and other major L1s, L2s, or L3s/appchains to SQL
databases. The protocol cryptographically guarantees to the client both that the underlying
requested data (in many cases, indexed blockchain data) is tamperproof, and that the
computational steps of the query request have been executed accurately. Proof of SQL eliminates
the inefficiencies of consensus-driven data processing and offers practical, low-latency proof
generation from a single Prover node (a single GPU) at a scale sufficient for enterprise-grade
applications.

The protocol was designed with several goals in mind. First, the protocol supports fast
end-to-end queries. Second, the verification of the queries is cheap enough to run in constrained
environments like EVM smart contract functions. Third, we have built it to be extremely
developer-friendly: SQL is the most popular data query language and provides a familiar UX for
anyone starting to build a data-forward application. Finally, this protocol facilitates complex data
processing rather than simply running serial compute or blob data retrieval.

3.1 Overall Architecture

In this section, we describe the general design and architecture behind the Proof of SQL
protocol. The following sections go into more details about how the proof is constructed. To
summarize the following sections: Section 3.1 gives an overview of the basic data flow; Section
3.2 describes the parsing of the query; Section 3.3 describes the query execution and proof setup;
Section 3.4 introduces some mathematical notation that is used in later sections; Section 3.5
gives some examples of the protocol described in Section 3.3; Section 3.6 describes the
sum-check protocol, which is a key primitive of the proof; Section 3.7 describes the commitment
scheme.

3.1.1 Data Ingestion

There are two main types of interactions as part of the Proof of SQL protocol. The first type of
interaction is data ingestion and the second is a query request. Both of these could be initiated by
a smart contract, a decentralized application, or any party interested in producing or consuming
data. In practice, the actual data source does not need to be the verifier, but can instead be a

15

trusted data source. For example, the data could come from a trusted central party, from a
trustless protocol such as the Space and Time Indexer nodes, or, as previously noted, from the
Verifiers themselves. For the sake of this architecture discussion, we will separate the role of the
Verifier from the role of the Validators, since this is the design of the Space and Time network.
Other architectures could exist that leverage Proof of SQL and combine these roles. During data
ingestion, the data source wishes to send data to the Prover so that the Prover can later query that
data. However, to ensure that the data will not be tampered with, the Validators need to compute
commitments of this data. The Verifier can then access these commitments, while the Prover
holds onto the actual data. Without these commitments, the Prover would be able to modify the
data at will, or return incorrect execution against the data.

When a service or a client sends data that is to be added to the database, that data is routed to the
Validators so they can create a commitment to that data. This commitment is a small “digest” of
the data but holds enough information for the rest of the protocol to ensure that the data is not
tampered with. After creating this commitment, the Validators route the data to the database for
storage. The Validators store this commitment for later usage.

An important design constraint is that the commitment must be updatable (see section 4.7). In
other words, suppose that the Validators already hold the commitment to a specific table, but
new data is to be ingested and appended to the table. To do this efficiently, the Validators must
be able to combine the old commitment with the incoming data to create a new commitment to
the entire updated table. The key constraint here is that the Validators must be able to do this
without access to the old existing data.

Figure 3: Sequence Diagram of Data Ingestion

16

3.1.2 Query Request

The second type of interaction is a query request between the Verifier and the Prover. For
example, the Verifier wants to have some data analytics executed on the data that the Prover is
holding and for the result to be returned to the Verifier. The Verifier is able to trust this result
because of the commitment to the underlying data.

When a service, client, or the Verifier themselves send a query request, that request is routed to
the Prover. At this point, the Prover parses the query, computes the correct result, and produces a
proof. It then sends the query result and the proof to the Verifier. Once the Verifier has this proof,
it can use the commitment to check the proof against the result and verify that the Prover has
produced the correct result to the query request. The majority of this section (3) is dedicated to
describing how this proof is constructed and verified. See the next subsection (3.1.3) for an
overview.

Figure 4: Sequence Diagram of Query Request from Verifier to Prover

3.1.3 Proof Protocol Overview

In the following sections, we go into detail about how the Prover generates a proof, and how the
Verifier checks that proof. Broadly, this can be divided into four sections:

1. Parsing: The query text must be parsed into a format that the Prover and Verifier can
agree to (Section 3.2).

2. Query Execution and Protocol Builder: This step is effectively a “proof setup” phase.
This is where the ZK “circuit” is created and the query is actually executed. (Section 3.3)

3. Relation Prover: This is the step in which the bulk of the proof is actually generated,
utilizing the multilinear sum-check protocol (Section 3.5).

17

4. Commitment Evaluator. The last step of the sum-check protocol requires a commitment
opening. (Section 3.6)

Figure 5: Proof Protocol Overview Diagram

3.2 Parsing

The first step in the process of creating a Proof of SQL proof is parsing the SQL text. This
effectively acts as a preprocessing step, creating an abstract syntax tree (AST) that can be
consumed by the remainder of the process. See this resource for a more in-depth explanation of
how many query engines work.

The parser works similarly to other parsers: by first creating an AST. This AST is a tree of SQL
operations and components. For instance, consider the following query, which is converted to the
AST shown below:

SELECT hash, timestamp FROM blocks WHERE block > 1000 AND transaction_count = 0

Figure 6: Diagram of AST Nodes for Example Query

3.3 Query Executor and Interactive Protocol Builder

The second step in the process of creating a Proof of SQL proof is to execute the query and build
the protocol that will produce the proof. The resulting protocol is an interactive protocol, in part

18

https://howqueryengineswork.com/

because the protocol depends on the data that is in the database. While this protocol is described
as an interactive protocol, the Fiat-Shamir transformation allows the proof to be non-interactive.
In the language of most other ZK-protocols, this is the step in which the circuit is designed.

To execute the query and build the proof, the Prover passes over the AST nodes and does the
following four things for each node:

1. Query execution
2. Witness generation
3. Commitment computation
4. Constraint building

To verify the query, the Verifier also passes over the AST node. When doing this, the Verifier
only needs to do the last step out of the four that the Prover does (that is, constraint building).

3.3.1 Query Execution / Witness Generation
The most obvious example of a Verifier is a smart contract that is querying the database, but it
can be any trusted party. For example, an end client’s browser could act as a Verifier. Proof of
SQL is necessary when an application has either restricted compute or restricted storage but still
needs a security guarantee that the analytics run on data has been executed correctly, and that the
underlying data has not been tampered with. The Prover is computationally intensive, whereas
the Verifier is lightweight and designed to be executed on client devices or within smart contracts
(which have extremely limited storage and computation capability). However, the Prover can be
any device since there is no need to trust it, and in practice, it will be the cheapest resource
available.

A key architectural concept worth highlighting here is the idea of a commitment, which is a type
of digital fingerprint – a lightweight digest of the data in the table. Commitments are the source
of truth for a table. In order to detect tampering, the Verifier compares the Prover’s response with
the commitment. This is the primary reason for SXT Chain: to maintain the commitments for
tables. In one sense, the Proof of SQL protocol can be thought of as a query engine, while Space
and Time is the entire database management system. The remainder of this section is primarily
focused on describing the query engine: Proof of SQL proper. The chain’s Validators are
responsible for maintaining these commitments. This is described elsewhere in the paper. For the
purposes of this section, we will simply assume that the Verifier has trustworthy access to this
commitment so that it is able to detect any tampering.

First, the Prover must generate the result of the query and any intermediate values needed to
produce the result and proof. The word “witness” is used to mean intermediate values that are
needed to verify certain steps of the query execution, but aren’t known by the Verifier. The
Verifier doesn’t actually need to have knowledge of what the witness is, but the protocol

19

guarantees that such a witness exists. The existence of a valid witness is sufficient to prove that
the result is correct. This is, in part, why the term zero-knowledge applies, since the Verifier has
zero knowledge of the witness.

Query execution and witness generation are almost the same, and are tightly linked. The SQL
execution engine operates on table data in a columnar fashion, and produces intermediate values.
The witness is the intermediate columns that are needed to verify the SQL execution. In some
situations, additional witness columns on top of those needed solely for execution are also
needed.

As an example, we will look at the previous query again, and will use the following table as the
blocks table:

SELECT hash, timestamp FROM blocks WHERE block > 1000 AND transaction_count = 0

block hash timestamp transaction_count

997 0xef6e7e8 01:23 2

998 0xad5674d 01:33 1

999 0xcbc4567 01:44 0

1000 0x1ea13ea 01:52 4

1001 0xc460f97 02:04 0

1002 0x96b501c 02:15 6

The output of the Equals, Inequality, and And nodes would be:

Equals
(transaction_count = 0)

Inequality
(block > 1000)

And

0 (false) 0 (false) 0 (false)

0 (true) 0 (false) 0 (false)

1 (true) 0 (false) 0 (false)

0 (false) 0 (false) 0 (false)

1 (true) 1 (true) 1 (true)

0 (false) 1 (true) 0 (false)

20

While none of these are the actual result, they are used in the computation of the result, and are
needed to verify that the result is correct. Thus, they are considered part of the witness, and must
be generated by the Prover.

3.3.2 Commitment Computation / Multiple Rounds

Once the witness has been computed, it must be committed to, ensuring that the Prover cannot
“change its mind” after the fact. This is the most computationally expensive step of the process
and is therefore pushed to GPUs. For the most part, the commitment scheme can be treated as a
“black box” compared with the rest of the protocol. See section 3.7 for more details on the exact
commitment scheme used.

Some of the nodes in the AST require a two-round protocol to efficiently create a witness. This
is because the witness depends on random challenges from the Verifier. As a result, the
commitment computation step and witness generation step execute twice. After the first
computation of the commitments, new random challenges are sent from the Verifier (see, for
example, the Group By protocol). When the commitment computation is done in a two-rounds
fashion, the Verifier simulates the interactive protocol via the Fiat Shamir heuristic. This is done
before passing over the AST nodes, meaning that the Verifier needs only one pass through the
nodes.

3.3.3 Constraint Building

Finally, polynomial constraints are created that specify relationships that must hold between the
witness columns. This is a very natural mapping because SQL is a relational language whose
queries correspond cleanly to these polynomial relationships/constraints between the
intermediate columns of the SQL execution. See sections 3.5 and 3.6 for more details on what
these polynomial constraints look like.

3.4 Notation

We will briefly discuss some of the mathematical notation needed for the following sections.
Most of this notation follows the literature fairly closely, although we diverge in some areas so
that we can write things more concisely.

Since we are dealing primarily with data in tables that are processed in a columnar fashion, we
will use notation that reflects this. We will notate columns of data with capital letters such as

 where is the number of rows. If needed, we can embed in a larger vector space
simply by appending 's to the column. Furthermore, we can think of as a multilinear
polynomial in variables. That is, there is a unique multilinear

21

https://www.codecogs.com/eqnedit.php?latex=A%5Cin%5Cmathbb%7BF%7D%5En#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=0#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=%5Cnu%20%3D%20%5Clceil%5Clog_2(n)%5Crceil#0

 such that for .
In other words, the bit representation of the index of a value gives the coordinates that
evaluate to that value for .

As an example, if , then

.

We write to denote entrywise multiplication. So, means that for

all . We write to denote the sum of the (non-zero) entries of . So,

means that .

Finally, we let denote the column that is 1 for the first entries and 0 otherwise.

3.5 Example Subprotocols
The following examples are explicit examples of nodes of the query plan. The first is an example
of a boolean expression and the second is an example of a sum aggregation node.

3.5.1 Equality Protocol Builder

One of the simplest examples is an equality expression: Consider the Equals node from the
example in sections 3.1 and 3.2, where we let be the transaction_count column and be the
result of the Equals node.

It is straightforward to show that this result is correct if and only if there exists a witness column,
, such that, and . These two equations are the constraints that

must be satisfied. It happens that the following column is a valid witness.

 - transaction_count - result of Equals node
(transaction_count = 0)

22

https://www.codecogs.com/eqnedit.php?latex=f_A%5Cin%5Cmathbb%7BF%7D%5Bx_0%2C%5Cldots%2Cx_%7B%5Cnu-1%7D%5D#0
https://www.codecogs.com/eqnedit.php?latex=f_A(x_0%2C%5Cldots%2Cx_%7B%5Cnu-1%7D)%3DA%5Cleft%5B%5Csum_%7Bi%3D0%7D%5E%5Cnu%20x_i2%5Ei%5Cright%5D#0
https://www.codecogs.com/eqnedit.php?latex=(x_0%2C%5Cldots%2Cx_%7B%5Cnu-1%7D)%5Cin%5C%7B0%2C1%5C%7D%5E%5Cnu#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=f_A#0
https://www.codecogs.com/eqnedit.php?latex=A%3D(100%2C101%2C102%2C103%2C104)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7Df_A(X)%20%26%3D%20100(1-x_0)(1-x_1)(1-x_2)%5C%5C%26%5Cquad%2B101x_0(1-x_1)(1-x_2)%5C%5C%26%5Cquad%2B102(1-x_0)x_1(1-x_2)%5C%5C%26%5Cquad%2B103x_0x_1(1-x_2)%5C%5C%26%5Cquad%2B104(1-x_0)(1-x_1)x_2%5Cend%7Balign*%7D#0
https://www.codecogs.com/eqnedit.php?latex=A%5Ccdot%20B#0
https://www.codecogs.com/eqnedit.php?latex=A%5Ccdot%20B%3D0#0
https://www.codecogs.com/eqnedit.php?latex=A%5Bi%5D%5Ccdot%20B%5Bi%5D%3D0#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=%5Csum%20A#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=%5Csum%20A%5Ccdot%20B%3D0#0
https://www.codecogs.com/eqnedit.php?latex=%5Csum_%7Bi%3D0%7D%5E%7Bn-1%7D%20A%5Bi%5D%20%5Ccdot%20B%5Bi%5D%3D0#0
https://www.codecogs.com/eqnedit.php?latex=I_%5Cell#0
https://www.codecogs.com/eqnedit.php?latex=%5Cell#0
https://www.codecogs.com/eqnedit.php?latex=C#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=P#0
https://www.codecogs.com/eqnedit.php?latex=C%5Ccdot%20R%3D0#0
https://www.codecogs.com/eqnedit.php?latex=1-R%3DC%5Ccdot%20P#0
https://www.codecogs.com/eqnedit.php?latex=C#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=P#0

2 0 (false)

1 0 (false)

0 1 (true)

4 0 (false)

0 1 (true)

6 0 (false)

3.5.2 Group By Protocol Builder
For this example, we will describe a simplified version of an aggregation/GROUP BY clause.
Consider the query SELECT from_wallet, SUM(amount) FROM table GROUP BY from_wallet
for the table:

 - amount - from_wallet to_wallet

74 1025 1034

24 1034 1099

12 1025 1099

56 1099 1025

22 1099 1000

45 1025 1025

The correct result is:

 - from_wallet (result) - sum (result)

1025 175

1034 24

1099 34

It can be shown that the result of this query is correct if and only if there exist witness columns
 and such that the following hold for some randomly chosen :

23

https://www.codecogs.com/eqnedit.php?latex=2%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=1#0
https://www.codecogs.com/eqnedit.php?latex=0#0
https://www.codecogs.com/eqnedit.php?latex=4%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=0#0
https://www.codecogs.com/eqnedit.php?latex=6%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=F#0
https://www.codecogs.com/eqnedit.php?latex=T#0
https://www.codecogs.com/eqnedit.php?latex=W#0
https://www.codecogs.com/eqnedit.php?latex=S#0
https://www.codecogs.com/eqnedit.php?latex=Q#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0

, , and where is the number of
rows in the original table, while is the number of rows in the result.

It is important to note that and depend on , while and do not. If was chosen
before the commitments of and were sent to the Verifier, the values of and could be
changed based on the value of allowing a malicious Prover to provide the wrong result. In
other words, must be a function of and .

Suppose, for example, that happened to be . Then, we would have the following:

74 1025 1025 175

24 1034 1034 24

12 1025 1099 34

56 1099 0 0 0

22 1099 0 0 0

45 1025 0 0 0

In summary, this would be the sequence of interactions in the interactive version of the protocol:

● Verifier → Prover: The query: SELECT from_wallet, SUM(amount) FROM table GROUP
BY from_wallet

● Prover → Verifier: The results and any intermediate results: and .

● Verifier → Prover: Random challenges: .

● Prover → Verifier: Witness columns: and .

● Verifier and Prover: Remaining interactive protocol (sum-check + commitment opening)

3.6 Relation Proof Protocol (Sum-check)

The first two steps of the protocol (sections 3.2 and 3.3) allow the Prover and Verifier to agree on
a collection of relations between columns of data and provide the Verifier with commitments to
these columns of data. The next step is for the Prover to convince the Verifier that these relations
hold.

24

https://www.codecogs.com/eqnedit.php?latex=%5Csum%20A%20%5Ccdot%20Q%20-%20S%20%5Ccdot%20R%3D0#0
https://www.codecogs.com/eqnedit.php?latex=Q%5Ccdot%20(F%20%2B%20%5Cbeta)%20%3D%20I_n#0
https://www.codecogs.com/eqnedit.php?latex=R%5Ccdot%20(W%20%2B%20%5Cbeta)%20%3D%20I_r#0
https://www.codecogs.com/eqnedit.php?latex=n#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=r#0
https://www.codecogs.com/eqnedit.php?latex=Q#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=W#0
https://www.codecogs.com/eqnedit.php?latex=S#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=W#0
https://www.codecogs.com/eqnedit.php?latex=S#0
https://www.codecogs.com/eqnedit.php?latex=W#0
https://www.codecogs.com/eqnedit.php?latex=S#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=W#0
https://www.codecogs.com/eqnedit.php?latex=S#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=30000#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=F#0
https://www.codecogs.com/eqnedit.php?latex=W#0
https://www.codecogs.com/eqnedit.php?latex=S#0
https://www.codecogs.com/eqnedit.php?latex=Q#0
https://www.codecogs.com/eqnedit.php?latex=R#0
https://www.codecogs.com/eqnedit.php?latex=31025%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=31025%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=31034%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=31034%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=31025%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=31099%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=31099%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=31099%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=31025%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=W#0
https://www.codecogs.com/eqnedit.php?latex=S#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=Q#0
https://www.codecogs.com/eqnedit.php?latex=R#0

Once the first two steps of the protocol are complete, the Prover has constructed a collection of
witness columns and a collection of polynomial constraints that these witness columns satisfy.
Additionally, the Prover has sent commitments to each of the witness columns to the Verifier,
and the Verifier has constructed the same collection of polynomial constraints and sums.

In other words, the Prover has a collection of columns and the Verifier has the
commitments . Furthermore, both the Prover and Verifier have
agreed on a collection of relations and sums between these vectors: a collection of low degree
polynomials and .

It is the Prover’s job to show that for each . Note that this is the same as
saying that for all , but not for arbitrary .

Additionally, the Prover must show that for each .

At this point, the Verifier sends the Prover the challenges

. This gives a structured challenge column, , defined by for
. This, in turn, allows the Prover and Verifier to agree on the following combined

constraint:

This constraint holds with high probability exactly when the original constraints hold as well.
This is proven using the multilinear sum-check protocol. See section 4.1 of Thaler[5] for an
excellent explanation of how sum-check works. The last step of sum-check is the evaluation of
the combined polynomial at a random point, which reduces to evaluations of at that
point. These evaluations are proven using the commitment scheme and the commitments

, described in the next section.

3.7 Commitment Evaluator

After the first three steps (sections 3.1, 3.2, 3.5), the Prover has produced a proof of the query
along with the result with only one missing component: the opening/evaluation of the
commitments/columns of data. There are a variety of commitment schemes that enable this, so
for the rest of the protocol, this can be treated as a black box. However, because the biggest
computational cost revolves around the commitments and their uses, the decision of which
commitment scheme to use is important. Proof of SQL uses the Dory commitment scheme[6] and
the HyperKZG commitment scheme, and are working on a third, novel, scheme that will
supersede both. Importantly, the Space and Time Validators are designed to maintain multiple

25

http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=A_0%2C%5Cldots%2CA_m#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=Commit(A_0)%2C%5Cldots%2CCommit(A_m)#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=p_0%2C%5Cldots%2Cp_%7B%5Cell-1%7D%5Cin%5Cmathbb%7BF%7D%5By_0%2C%5Cldots%2Cy_m%5D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=q_0%2C%5Cldots%2Cq_%7Bs-1%7D%5Cin%5Cmathbb%7BF%7D%5By_0%2C%5Cldots%2Cy_m%5D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=p_k(A_0%2C%5Cldots%2CA_m)%3D0#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=k#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=p_k(f_%7BA_0%7D(X)%2C%5Cldots%2Cf_%7BA_m%7D(X))%3D0#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=X%5Cin%5C%7B0%2C1%5C%7D%5E%5Cnu#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=X#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Csum%20p_k(A_0%2C%5Cldots%2CA_m)%3D0#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=k#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Crho_0%2C%5Cldots%2C%5Crho_%7B%5Cnu-1%7D%2C%20%5Calpha_0%2C%5Cldots%2C%5Calpha_%7B%5Cell-1%7D%2C%5Cbeta_0%2C%5Cldots%2C%5Cbeta_%7Bs-1%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=Q#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=f_Q(x_0%2C%5Cldots%2Cx_%7B%5Cnu-1%7D)%3D%5Crho_0%5E%7Bx_0%7D%5Ccdots%20%5Crho_%7B%5Cnu-1%7D%5E%7Bx_%5Cnu-1%7D#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=X%5Cin%5C%7B0%2C1%5C%7D%5E%5Cnu#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Csum%20Q%5Ccdot(%5Calpha_0%20p_0%2B%5Ccdots%5Calpha_%7B%5Cell-1%7Dp_%7B%5Cell-1%7D)%2B%5Cbeta_0q_0%2B%5Ccdots%2B%5Cbeta_%7Bs-1%7Dq_%7Bs-1%7D%3D0#0
https://docs.google.com/document/d/1SLcAbZyqC7Yi4lnFoTq8jIWXo3SbUypnHqQWjjCIMrQ/edit#heading=h.gb2dbxw4hd1
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=A_0%2C%5Cldots%2CA_m#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=Commit(A_0)%2C%5Cldots%2CCommit(A_m)#0
https://docs.google.com/document/d/1SLcAbZyqC7Yi4lnFoTq8jIWXo3SbUypnHqQWjjCIMrQ/edit#heading=h.gb2dbxw4hd1

commitment schemes, and more can be added in the future as new, state-of-the-art commitment
schemes are developed. There are several motivating factors that drive these choices. We will list
them in rough order of importance.

1. Updateable/Homomorphic Commitments: As a reminder, in the Proof of SQL
protocol, the Prover holds the data that is in the tables, while the Verifier holds onto the
commitments. Since the vast majority of tables in a database are not static, there needs to
be some mechanism by which the Verifier can update commitments when new data is
appended to a table. More specifically, we want some function such that:

new commitment = Update(old commitment, appended data)

In other words, data access is not required in order to update commitments to the data.
Any homomorphic commitment scheme has this property. Dory and HyperKZG are
homomorphic commitment schemes. In addition to being updateable, homomorphism has
other helpful properties, such as supporting deltas/snapshots.

2. Efficient Verifier: Because the amount of data that is being queried against can be very
large, we need the Verifier to have sub-linear performance. Dory’s and HyperKZG’s
verifiers run in time. However, the HyperKZG is additionally cheap enough to
be run inside an Ethereum smart contract.

3. Transparency: While this is a beneficial property for any protocol, it is particularly
important for Proof of SQL because large data volumes exist. Without a transparent
setup, a trusted setup would be necessary, which would require an upper bound on table
size. While a large upper bound could be set, making this sufficiently large would require
a very large trusted setup. Unfortunately, HyperKZG requires a trusted setup. However,
there is a highly reputable universal setup initial run for ZCash (and later others) that
supports up to 0.5 billion rows of data.

4. Partition Friendly: In any efficient database, partitioning and other smart indexing
schemes are essential to running performant queries. In particular, we need to be able to
run queries without needing to process all of the data in the tables. In addition to being
homomorphic, Dory is a 2D commitment scheme, and the Prover time is in
certain circumstances. This means that access to all of the data is not needed for certain
evaluations.

26

https://www.codecogs.com/eqnedit.php?latex=O(%5Clog%20n)#0
https://www.codecogs.com/eqnedit.php?latex=O(%5Csqrt%7Bn%7D)#0

4 Use Cases for the Next-Generation of Web3

4.1 Building a Flexible ZK-Rollup/L2

Proof of SQL can power bridgeless, gas-minimized microtransactions across multiple ledgers.
ZK-rollups reduce Ethereum gas fees by batching offchain transactions and posting a single
proof onchain. With Proof of SQL, developers can build a ZK-rollup on top of Space and Time,
instantly appending transactions to a tamperproof ledger and rolling them up to the main chain.
Unlike typical L2 solutions, Proof of SQL supports data processing (joins, aggregations, etc.)
and scales beyond a single ledger, while providing instant finality and bridging-free cross-chain
interactions. Transactions incur gas only for deposits and withdrawals; execution remains
offchain, dramatically reducing fees and complexity.

4.2 Secure Bridges and Multichain Data Backends

Crypto app ecosystems remain fragmented, with each chain operating in isolation. Space and
Time unifies these silos by indexing data from multiple chains and storing it in tamperproof
tables. A smart contract on Ethereum, for instance, can verify real-time state from BNB Chain
via Proof of SQL—no bridging required. This reduces engineering overhead, eliminates the need
for separate cross-chain infrastructure, and enables more reliable bridge security: a bridge
contract can verify locked assets on Chain A before releasing tokens on Chain B, using
ZK-proven indexed balances for fraud-resistant transfers.

4.3 Dapp Backend (Decentralized)

Traditional dapps rely on a lightweight onchain contract plus a centralized backend for data
processing. Space and Time replaces the centralized component with a serverless, decentralized
backend and database, providing APIs for SQL queries, role-based auth, and Python-based
business logic. Smart contracts emit events that Space and Time automatically indexes, and
offchain data can also be stored for fast retrieval and tamperproof verification. Developers retain
a purely decentralized stack without compromising performance.

4.4 Data-Driven Lending

DeFi lending protocols today offer identical interest rates to every borrower, ignoring onchain
credit history. Space and Time solves this by enabling a lending contract to access ZK-proven
borrower data, aggregating multiple loan histories (onchain or offchain) into a verifiable credit

27

score. Lenders can offer dynamic rates based on repayment patterns, leading to higher returns for
liquidity providers and lower rates for reputable borrowers.

4.5 Cross-Chain Financial Instruments

Complex financial instruments—options, futures, derivatives—rely on diverse data sources
across multiple chains. Proof of SQL simplifies this by offering a single ZK-verifiable platform
to pull token prices, trade volumes, and more from any chain in real time. Derivatives gain
precise and trustless valuations without manually bridging data or relying on a patchwork of
APIs.

4.6 Gaming Rewards

Smart contracts alone can’t process nuanced offchain gameplay data. Space and Time allows
developers to store and query detailed player metrics—like playtime, achievements, or NFT
activity—and then deliver rewards based on advanced, tamperproof logic. Complex attributes
(cooperative play, skill ranking, etc.) can be aggregated offchain, yet trustlessly verified onchain.

4.7 Social Apps

Developers building Web3-native social networks must overcome:

1. Massive Scale
Blockchains are ill-suited for petabyte-scale data. Storing everything onchain is
infeasible, and centralized solutions lack trustless guarantees. By offloading high-volume
data (posts, comments, likes) to Space and Time’s tamperproof tables, apps can handle
billions of interactions without sacrificing decentralization.

2. Rewarding Creators Onchain
Tracking engagement metrics (e.g., views, watch time) for content payouts is nearly
impossible onchain. By processing these metrics in Space and Time—then rolling up
payouts to smart contracts—developers can deliver provably fair, transparent rewards
without relying on a centralized, tamperable backend.

3. Bootstrapping User-Created Content
Web3 social apps face a chicken-and-egg problem: limited initial content and limited user
interest. A shared “content posts” dataset in Space and Time allows multiple apps to
read/write from the same user-owned social graph, avoiding siloed content and driving
network effects.

4. Private Interactions
Blockchain data is public, making private messaging a challenge. ZK proofs in Space and

28

Time let users prove message authenticity without revealing content. This balances
privacy with the trustless ethos of Web3, keeping private conversations secure while
retaining verifiability.

By leveraging Space and Time’s decentralized database and ZK tools, Web3 social applications
gain the scalability, creator incentives, composability, and privacy they need—all without
resorting to centralized infrastructure.

4.8 Settlement Systems and Third-Party Auditing

Financial institutions often use consortium ledgers to share data among trusted parties, but these
ledgers can’t validate the underlying transactions. Banks typically store granular order book data
in offchain SQL databases and periodically update the consortium ledger with summarized
results—leaving no cryptographic proof that transactions are accurate before the data is posted.

Space and Time closes this trust gap by serving as a verifiable SQL database. Each transaction is
cryptographically provable via Proof of SQL, ensuring that no institution can manipulate its
P&L or other sensitive data. This tamperproof model also makes compliance simpler: every
operation (insert, update, delete) is immutably recorded and easily auditable for regulations like
GDPR. Because Space and Time can be deployed across multiple jurisdictions (e.g., EU-based
data warehouses), institutions can maintain data sovereignty while still running global analytics
against their datasets.

Financial institutions that leverage Space and Time for order book management gain immediate,
low-latency operations with cryptographic assurances that no third party is tampering with the
data. These order books can optionally settle on a public or private chain, but Space and Time
itself already delivers the decentralized verifiability critical for secure finance.

4.9 Real World Assets (RWAs)

Enabling tokenization use cases for real-world assets like real estate, event tickets, and
collectibles is paramount. A tokenized concert ticket, for example, might include static
information (venue, artist, seat) alongside dynamic details (real-time pricing rules or
availability). By storing such data in Space and Time, smart contracts can securely query and
retrieve up-to-date information whenever a transaction occurs, ensuring provably accurate and
transparent execution on the blockchain.

Beyond tokenization, Space and Time also serves as a verifiable backend for security and
compliance. It enables tamperproof data storage for wallet histories, risk scores, and compliance
lists (e.g., OFAC-banned or KYC-verified wallets). Security platforms can query these tables in

29

real time to validate risk scores or check against regulatory blacklists before executing
transactions, while organizations can create and populate private whitelist/blacklist tables with
offchain or onchain data. With verifiable integrity and real-time queries, Space and Time
underpins secure, compliant operations for any tokenized asset or blockchain-based application.

4.10 Transaction Security and Wallet Whitelists

A security platform can use Space and Time to access verifiable wallet history, store risk scores
in tamperproof tables, and query real-time risk assessments before transactions. Similarly,
compliance data like OFAC-banned or KYC-verified wallets can be stored transparently and
queried by smart contracts with ZK proofs to ensure compliance.

Clients can create and populate whitelist/blacklist tables with offchain or onchain data, enabling
verifiable, secure, and compliant operations in a trustless environment.

4.11 Liquidity Pool Rebalancing Based on Market Conditions

Liquidity providers in AMMs like Uniswap v4 often face impermanent loss and imbalanced
token ratios during market volatility, reducing their rewards. Dynamic pool rebalancing helps by:

1. Maintaining Asset Ratios: Ensures pools remain near target ratios (e.g., 50:50) despite
token price fluctuations.

2. Reducing Impermanent Loss: Periodic rebalancing mitigates losses and optimizes pool
configurations for higher yields.

3. Enhancing Security: Prevents large imbalances that attract arbitrage or exploitation.

Rebalancing must be trustless to prevent manipulation. Space and Time tracks pool history,
analyzes real-time market conditions (e.g., spot prices, volatility), and provides results with ZK
proofs to smart contracts. This ensures rebalancing only occurs when predefined conditions are
met, allowing liquidity providers to maximize returns securely without managing infrastructure
or relying on external actors.

5 Economic Model for SXT Chain
The SXT Chain economic model is designed to sustain a decentralized, permissionless
ecosystem that rewards participants for actively contributing to network security, high-quality
data provisioning, and efficient query processing.

30

Validators maintain the cryptographic integrity of the network by securing data commitments,
processing data insertions, and supporting ZK-proven SQL query execution. In return, Validators
receive gas fee-based block rewards that compensate them for securing and operating the
network infrastructure. Table Owners contribute by maintaining high-quality datasets and, in
exchange for onboarding and updating high-quality data, they receive a portion of the query fees,
which they can delegate to Prover nodes to ensure efficient ZK-proven query execution. This
model creates a decentralized marketplace where contributors are compensated for servicing and
securing the network and providing valuable, queryable data.

31

5.1 $SXT Token Utility

The $SXT token is the native utility token of SXT Chain, necessary for securing the network
through decentralized and permissionless validator participation. Validators must stake $SXT as
collateral to participate in cryptographic processes such as witnessing ingested data, updating
commitments on the data per the Proof of SQL protocol, threshold-signing the commitments
onchain, and ultimately offering crypto-economic security for network activities (e.g.,
tamperproof tables and query execution). Staking serves as a security guarantee to ensure
Validators act in good faith.

Validators earn compensation from network fees for performing essential services like
tamperproofing datasets and executing verifiable queries. Importantly, $SXT staked may be
partially or fully slashed when the network discovers any of the following:

● Node downtime
● Malicious tampering of tables (i.e., manipulation of cryptographic commitments for

tables held onchain, caught by EVM contracts during verification of ZK-proven query
results)

● Unverifiable query execution, or poor Prover response SLAs
● Inability to participate in the cryptographic procedures necessary for tamperproof chain

functionality (i.e., threshold-signing updated commitments on ingested data, as part of
chain consensus).

Staking $SXT is an active commitment to secure and operate core functions of SXT Chain.
Validators’ roles are fundamental to network integrity and data reliability, and the $SXT token
facilitates this utility-driven coordination.

5.2 Security Budget Vault

Stakers play a crucial role in securing the network by staking SXT tokens against Validator keys
(using Space and Time-deployed contracts on popular EVM chains), where Validators risk
slashing of their own stake as well as delegated stake for improper network participation.
Through this staking mechanism, Validators and those who delegate to them collectively
underwrite the integrity and reliability of SXT Chain’s data.

Stakers participate in two ways:

● Validator Stakers: Operate Validator nodes and actively perform essential cryptographic
functions, including data attestation, threshold signing, and query verification. Validators
directly contribute to the security and accuracy of SXT Chain and are responsible for

32

maintaining high service standards.

● Delegated Stakers: Allocate SXT tokens to Validators to support their operational
capacity and share proportionally in fee-based compensation earned from Validators’
active participation. Delegated staking helps increase the Validator set's capacity to
secure the network without requiring every participant to run a node.

The Staker rewards vault distributes network-generated fees (e.g., query payments and data
insertion fees) to Stakers based on their active role in maintaining network security and
reliability. To bootstrap a decentralized network and facilitate early validator participation, a
time-limited emission schedule of SXT tokens will supplement network fees, phasing out as
onchain activity grows to sustain validator incentives. This ensures a fee-driven and
self-sustaining economic model that aligns long-term incentives with network stability.

5.3 Table Owner Rewards Vault

Table Owners actively create and maintain tamperproof data tables on SXT Chain. They earn
fees through:

● Insert Data Payments: Fees paid by Indexer nodes or third-party data providers to insert
data into SXT Chain for secure, tamperproof storage.

● Query Payments: Fees paid by clients (such as DeFi protocols, dapps, and other users)
for executing SQL queries over tamperproof datasets. Prover nodes process these queries
and generate ZK proofs, while Table Owners receive a share of these payments for
maintaining the underlying datasets.

Query fees are shared between Table Owners and Validator Stakers, aligning incentives across
participants to ensure both data quality and network security. This cooperation incentivizes
permissionless third parties to onboard high-quality datasets to SXT Chain. By creating their
own tables and populating them with useful data, Table Owners can attract frequent queries from
the network's clients (e.g., DeFi protocols and dapps). The more queries their datasets receive,
the greater the fees they earn, and they are thus incentivized to ingest more data to their tables.

Table Owners actively curate, maintain, and update data tables to ensure relevance, accuracy, and
query responsiveness. Their compensation from query payments reflects their ongoing effort and
value contribution to the ecosystem.

33

5.4 Network Fee Structure and Data Marketplace

SXT Chain’s fee model is designed to compensate participants based on their active
contributions to network security, data availability, and query execution. Fees are sourced from
actual network activity, creating a sustainable and service-driven economy.

Query Payments: Gas fees paid for ZK-proven SQL queries are shared between Validators and
Table Owners. Validators earn their fees as block rewards for securing the network, while Table
Owners are compensated for maintaining useful datasets. Table Owners can optionally delegate
part of their earned fees to specific Prover nodes (or pools of Prover nodes working together to
fulfill high-concurrency client requests) to ensure timely execution of ZK-proven queries. This
mechanism incentivizes reliable query fulfillment from the Prover node set.

Insert Data Payments: Gas fees for inserting data into tamperproof tables are allocated entirely
to Validators as block rewards. This ensures Validators are consistently incentivized to witness
ingested data as part of BFT consensus, update commitments, and secure the tables.

Data Marketplace: By sharing a significant portion of query-related fees with Table Owners
(e.g., 50% of query payments), SXT Chain creates an open marketplace for high-quality,
queryable data. Table Owners are directly incentivized to onboard and maintain datasets that
attract client queries, aligning their interests with the network’s overall utility and
trustworthiness. As demand grows for specific datasets, Table Owners’ compensation scales
proportionally, reinforcing a self-sustaining ecosystem of valuable data provisioning.

6 Conclusion
A new generation of cryptographic tools are essential to maintaining the trustless guarantees of
blockchain while enabling, for the first time, onchain data processing for smart contracts. Space
and Time addresses these gaps by providing a decentralized network for trustless,
cryptographically verifiable data processing, often initiated by client smart contracts. The
decentralized platform ingests real-time indexed blockchain data from major chains (Ethereum,
Bitcoin, ZKsync, etc.) and allows users to integrate their own offchain data sources, such as
TradFi markets and gaming systems, with trust-minimized consensus on data ingest.

Using a novel ZK protocol, Space and Time ensures tamperproof computations at scale. SQL
queries are executed with ZK-proven results, enabling smart contracts, enterprises, and financial
institutions to verify data integrity in a trustless manner without compromising functionality
(aggregations, filters, sorts, joins, etc.).

Participants operate permissionless nodes and earn query fees paid by clients such as smart
contracts or enterprises. Fees and offchain fee streams drive network growth, ensuring that value

34

accrues to users and operators of the network while also reducing costs. By combining trustless,
scalable data processing with economic incentives for network participants, Space and Time
empowers a new generation of data-driven dapps, ZK-rollups, and DeFi systems.

Appendix

A Data that Smart Contracts Can Access without Space and Time

Smart contracts on the Ethereum Virtual Machine (EVM) can natively access a range of data
pertaining to the blockchain and their own state. However, they can't natively access information
outside of the Ethereum network without the use of oracles. Here's what a smart contract can
natively access:

● Blockchain Metadata: Block number (block.number), block timestamp
(block.timestamp), and the block's gas limit (block.gaslimit), etc.

● Gas Information: The gas limit of the current block, the gas price (in wei) of the
transaction that is currently being executed, and the amount of gas remaining for the
current function execution (using gasleft()).

● Transaction Information: The transaction's sender (msg.sender), the value of ether sent
with the transaction (msg.value), and the transaction's data payload (msg.data).

● Account Data

○ Balance: A contract can query the balance of any wallet or smart contract address
(including its own) with address.balance.

○ Contract Code: A contract can get the bytecode of another contract using the
extcodesize and extcodecopy opcodes.

● Storage and Memory:

○ Contract Storage: Each contract has its own persistent storage, and it can read
from and write to this storage. This is essentially the contract's “state.”

○ Memory: This is a temporary location where data can be stored and manipulated
before being placed in storage or returned as output. It's ephemeral and will be
erased between function calls.

35

● Interactions with Other Contracts: A contract can call functions on other contracts,
sending ether and data. The result of such a call can be captured and processed. This
means that a contract can, for example, query the state or balance of another contract, or
even trigger actions in that contract. Similarly, a contract can reference its own address
using address(this).

● Ether Operations: A contract can send ether to any address and determine its own ether
balance.

● Create New Contracts: A contract can deploy a new contract using the CREATE
opcode.

Note that while smart contracts can access all the above data, they cannot natively access:

● Smart contract events (logs) emitted on their own chain or on other chains.

● Historical onchain data such as transaction history.

● Cryptocurrency prices (aggregated token price feeds or liquidity pool swap prices).

● Information about the real world (e.g., stock prices, weather data).

● Offchain data (e.g., content of a website, API responses).

● States from other blockchains.

For these types of datasets, smart contracts usually rely on oracles—trusted or trust-minimized
data providers that relay offchain information onto the blockchain.

B HTAP to Replace Point Solutions

In the data warehousing industry, hybrid transactional/analytical processing (HTAP) represents a
paradigm shift that resolves a longstanding challenge in traditional markets. Understanding
HTAP is crucial to grasping how the Space and Time database maximizes efficiency and
versatility.

In many Web2 companies and conventional markets, data processing traditionally involves a
cumbersome process. Businesses often employ separate database solutions for transactional
processing (OLTP) and analytical processing (OLAP). These solutions serve specific purposes
but also posed significant challenges:

● Data Redundancy and Complexity: Maintaining separate systems leads to data
redundancy and complexity, as data needs to be transferred between OLTP and OLAP

36

databases. This not only consumed time and resources but also increased the risk of data
inconsistencies.

● Latency Issues: Analytical processing often suffers from latency issues, as it relies on
periodically refreshed data from transactional databases. Real-time insights are a
challenge to achieve.

● Scalability Challenges: Scaling these separate solutions in response to growing data
volumes and user demands is often an intricate and expensive process.

HTAP addresses these issues by combining OLTP and OLAP capabilities within a single system.
Here's how it works:

● OLTP and OLAP Integration: HTAP systems like Space and Time have both an online
transactional processing (OLTP) engine and an online analytical processing (OLAP)
engine working in tandem. This allows data to be simultaneously ingested, processed,
and analyzed within the same environment.

● In-Memory Caching: HTAP systems often employ in-memory caching to enable
low-latency transactional processing. This means that even complex analytical queries
can be executed without significant delays.

● Eliminating Data Redundancy: By consolidating data processing into one system,
HTAP eliminates the need for data redundancy and complex data transfers between
different databases.

● Real-Time Analytics: With HTAP, analytical processing can be performed on real-time,
up-to-date data, enabling organizations to gain insights without the delays associated with
data extraction and transformation.

HTAP, as utilized by Space and Time, represents a leap forward in database efficiency and
functionality. It harmonizes transactional and analytical processing, eliminates data
redundancies, and offers real-time analytics, all within a single, streamlined system. This
approach not only simplifies data management but also paves the way for more agile and
responsive data-driven decision-making.

C Proof of SQL “Bring Your Own Database”

Proof of SQL is a ZK proof attached to SQL databases which cryptographically proves to a client
that both query execution and underlying tables are untampered with. One can leverage the Proof
of SQL protocol to trustlessly verify query results returned from not only the Space and Time
decentralized database, but also other outsourced traditional database/data warehouse solutions..

37

For example, one could “attach” the cryptographic protocol to PostgreSQL, Snowflake, Apache
Spark, Google Bigquery, AWS Athena/Redshift, Microsoft Fabric, etc. This would allow users
already building on top of these query tools to connect them directly to smart contracts without
breaking the blockchain’s trustless model, or to provide proof of query execution to a verifier on
an external client device. In essence, developers can “bring their own database,” verified with
Proof of SQL.

Here’s how it works: a Space and Time Prover node is connected adjacent to the database
engine. This is the primary integration point. The Prover is responsible for executing
tamperproof queries. To facilitate this, the Prover requires access to table data. This can be
achieved through access to the database’s local storage or external tables, or by sending requests
directly to the database itself. With Proof of SQL, the root of trust is established by creating
virtual ‘tamperproof tables’ inside the target attached database. As data gets added to these tables
by clients, special hashes (or “commitments”) are updated. Later, when validating a query and its
associated ZK proof, these commitments are used to confirm its validity.

When a tamperproof SQL query reaches the database and is directed to the Prover, the result,
accompanied by its proof of correctness, is generated. This proof-result pair is then transmitted to
the Validator node, where verification takes place. Additionally, Space and Time offers both
commitment creation and verification functionalities through a client-side library. This shifts the
root of trust to the user. Some clients prefer this approach, while others choose to delegate
verification to the Validator, which carries out this role on their behalf.

To enable Proof of SQL to ZK prove that queries against data were executed accurately and that
the underlying data hasn’t been tampered with, one must simply:

1. Provide Space and Time Prover node access to database storage (local or external).

2. Position the Space and Time Validator (which logs tiny digital fingerprints of the data
inserted, and uses these fingerprints to ZK-verify query results coming back from the
database) in front of the database as a proxy or load server.

3. Load the data into the database through the Validator. Queries executed against the
database should be routed through the Validator if they need to be ZK-verified (to
validate that the query results and underlying tables have not been tampered with).

38

D Leveraging an Append-Only Database as a Tamperproof Offchain
 Ledger

An append-only database/data warehouse can be designed to emulate some of the essential
features of a blockchain (and we’ve done exactly that in our development of the Space and Time
database):

● Immutability: Tables are append-only; transactions cannot be modified or deleted once
written.

● Double-Spend Prevention: Before a transaction is added, a mechanism compares it
against the historical record to verify that the respective assets haven’t already been
spent.

● Serialized Transaction Ordering: By nature, transactions are recorded in the order they
are received and processed.

● Transaction Consistency: The database can be implemented with specific consistency
logic to ensure that only transactions that meet predefined validity criteria are appended.
Note: In the case of Space and Time’s Proof of SQL protocol, the Transaction nodes
implement this logic to verify/authorize requests/transactions, cryptographically ensuring
that unapproved transactions cannot occur.

However, other key characteristics of the blockchain are not inherent to an append-only database:

● Zero-Trust: In a blockchain network, transactions are distributed; rules are enforced by
consensus rather than by a central authority. A single append-only database requires
inherent trust in the entity that maintains it. Though this problem persists when using
traditional database systems, Space and Time solves it as the only decentralized database
system, relying on a global committee of user-operated nodes that come to consensus in
order to prove the validity of ingested data (and verify/authorize requests/transactions).

● Concurrency: Block intervals and consensus mechanisms ensure that a blockchain
ledger remains consistent amid multiple concurrent transactions. An append-only
database would require its own mechanism to queue concurrent transactions
appropriately and ensure consistency. Space and Time has implemented consensus in the
network to appropriately serialize transactions.

● Cryptographic Security: Cryptographic chaining, where each block references a hash of
the previous, enhances the integrity of a blockchain network. Though not strictly
necessary in the case of an append-only database, such measures provide additional
security against tampering. Space and Time has implemented the Proof of SQL protocol
for cryptographic guarantees on the underlying datasets.

● Finality: Blockchains, especially those using probabilistic consensus mechanisms like
Proof of Work, operate with progressive finality: each transaction becomes increasingly

39

irreversible as more blocks are added after it. In an append-only database, finality is
immediate upon appending, but the assurance of this finality depends on the security and
trustworthiness of the system. Space and Time offers instant finality through the Proof of
SQL protocol.

In order for an append-only database to function as an offchain tamperproof ledger, these
features must be guaranteed by ancillary mechanisms or by leveraging Space and Time’s Proof
of SQL protocol directly.

E Space and Time in the Market

E.1 Web3’s evolution as a digital economy powering novel apps

While Web3 can trace its roots back to the first blockchain network in 2009, the technology has
rapidly matured over the last three years by expanding throughout the tech stack, improving
usability and accessibility, and accelerating throughput. Advancements in Web3 have led to the
broader acceptance and adoption of digital assets as an asset class, particularly by established
financial services companies.

Web3 is in the midst of transitioning into a new chapter that will see an even more rapid
maturation of the technology, a user base that grows from the millions to the billions, and
ultimately, the mass adoption of blockchain technology across all industries. The world’s largest
enterprises and financial institutions have made significant investments to leverage blockchain,
and this will only continue to accelerate.

As blockchain technology becomes widely adopted by enterprises, distinctions between Web2
technology and Web3 technology will become less significant. Enterprises will leverage both
centralized and decentralized ledgers for a variety of applications and business models (where
“trustless” vs. “trust-required” considerations are at play), many of which have not yet been
imagined. Blockchain will transition from an emerging technology to a fundamental layer in the
enterprise tech stack, Web3 and Web2 will become wholly interoperable, and the application of
AI at scale will drive further innovation.

Some recent stats to underline the market today:

● Over $20B of value settled daily on the major blockchains
● Over 750M smart contracts across the major chains
● Over 50M daily transactions across the major chains
● Over 100K dapps across major chains
● Over 35K Web3 developers building on the major chains

40

An investment today in Space and Time provides two main sources of value that are uniquely in
the same company and in the same platform: 1) delivering familiar database tools as a
Web3-native experience and 2) providing verifiable (trustless) compute, where all activity in the
database is cryptographically proven.

E.2 Proven value in data warehousing

The need for a platform to support data storage/data warehousing and scalable analytics both
cross-chain and offchain.

While there are many use cases today in Web3 that run on a single blockchain, the more valuable
use cases will integrate data from multiple blockchains and offchain centralized data sources. As
financial services firms take on custodial roles for digital assets, for example, analytic and
reporting needs will increase. Those analytics will need to incorporate blockchains, centralized
ledgers that track offchain assets, and databases that store customer data.

This nascent market, void of any popular solutions today, is likely to evolve similarly to how
cloud data warehousing and analytics evolved. Snowflake, a popular cloud data warehouse, held
the largest software IPO ever at the time. Data management software today is a global $75B
market with high single-digit to low double-digit growth annually. AI platforms specifically are
growing at 30+%.

While traditional Web2 database technologies are point solutions that focus on either
transactional queries (OLTP) or scalable analytics (OLAP), Space and Time combines the two
efficiently in a unified platform. Space and Time has accrued over $10M ARR, with an extensive
list of established Web2 enterprises in financial services and accounting, as well as Web3 gaming
companies that need to track tokens across multiple chains and DeFi companies that need to
incorporate offchain analytics. This growth in logos and economy makes Space and Time one of
the fastest-growing data analytics companies ever.

While the total market size today for this fast-moving category is difficult to calibrate, every
Global 500 company and all Web3 companies (~23K+) will need a database/analytics platform
with Space and Time’s functionality. Estimating based on Space and Time’s current pricing, this
market would be conservatively sized at ~$700M–$1B today, and quickly moving to a
multi-billion market over the next few years.

E.3 New compute paradigm removes trust requirements

Establishing verifiable compute as the fabric of Web3.

41

Space and Time’s breakthrough in cryptographically provable data processing solves many of the
developer, user, and scalability issues present in smart contracts and blockchain today. In fact, it
even offers a solution to traditional financial institutions that require their own offchain
transactions and market data to remain tamperproof. Thus, “verifiable compute” will effectively
create a new market category and establish a standard among enterprises.

Space and Time is a verifiable compute solution that integrates chain connectivity and ZK
provability along with familiar database storage/compute, and the stack is growing at record
speed. This solution seamlessly bridges onchain and offchain systems, effectively introducing
verifiability to the enterprise data management stack while simultaneously scaling the
capabilities of blockchains.

To date, this platform is already being embedded in the fabric of Web3.

Market coverage is as follows:

● 25% of all Web3 developers utilizing the platform with a subset contributing to the Space
and Time open-source project

● 25% of capital volume of L1 blockchains seamlessly integrated and indexed
● 90% of capital volume of L2s and protocols seamlessly integrated and indexed

Space and Time has driven a major innovation by bringing Proof of SQL to market. Simply put,
in a world that operates at the intersection of Web2 and Web3, there is significant value in
proving that a query was executed properly or that the data used to execute business logic within
a smart contract was properly filtered/aggregated. Proving the accuracy and lineage of data is
already a key topic in the training of LLMs for AI, and there are already numerous companies
integrating AI with blockchains. Lastly, companies of all sizes have embraced Proof of SQL,
particularly in the area of compliance and auditing.

At the core of all these themes is the strong market demand for trustless verification that data is
correct and was computed on properly—which is different from blockchain transaction
verification. Both are important, but the balance is tilting toward assurance of accurate data and
computation. Enterprises want confidence that their own engineers, as well as third-party
partners, have not manipulated the datasets core to their operations (particularly financial data,
where there exists a strong incentive for bad actors to tamper).

Estimating market potential is based more on analogs versus. market participants multiplied by a
price model. That said, Space and Time is vying for a near-term podium on which Proof of SQL
is established as the gold standard for all queries. This would be monetized by either cash
payments per query or through a SXT token, which is part of the roadmap today.

42

One pertinent example around financial data verifiability is the payment processing space, which
is a $65B market growing at greater than 10% annually and expected to approach $200B by
2032... and this is only one use case for Proof of SQL. Another example is the global SWIFT
network, which connects 11K institutions. Total revenue for the SWIFT network was 900M
euros in 2020, and this is a member-owned cooperative.

43

References
[1] Stock option volume report. MarketChameleon.com. (n.d.).
https://marketchameleon.com/Reports/optionVolumeReport

[2] White, J. T., & Dykstra, S. E. D. (2022, December 13). Methods for Verifying Database
Query Results and Devices Thereof.
https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/11526622

[3] Biscuit authorization (RBAC). Space and Time. (n.d.).
https://docs.spaceandtime.io/docs/biscuit-authorization

[4] Official Legal Text. General Data Protection Regulation (GDPR). (2022, September 27).
https://gdpr-info.eu/

[5] Justin Thaler (2022), “Proofs, Arguments, and Zero-Knowledge”, Foundations and Trends®
in Privacy and Security: Vol. 4, No. 2–4, pp 117–660. DOI: 10.1561/3300000030.
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf

[6] Lee, J. (2021a). Dory: Efficient, transparent arguments for generalised inner products and
polynomial commitments. Theory of Cryptography, 1–34.
https://doi.org/10.1007/978-3-030-90453-1_1 https://eprint.iacr.org/2020/1274.pdf

This document has been prepared by Space and Time Labs, Inc. (the “Company”). This document does not constitute or form part of and should
not be construed as an offer to sell or issue or the solicitation of an offer to buy or acquire securities of the Company or any of its affiliates in any
jurisdiction or as an inducement to enter into investment activity. No part of this document, nor the fact of its distribution, should form the basis
of, or be relied on in connection with, any contract or commitment or investment decision whatsoever. No money, securities or other
consideration is being solicited, and, if sent in response to this presentation or the information contained herein, will not be accepted. This
document is not financial, legal, tax or other product advice.

This document contains certain forward-looking statements relating to future events or future predictions, which are generally identifiable by use
of forward-looking terminology such as “believes”, “expects”, “may”, “will”, “should”, “plan”, “intend”, or “anticipates” or the negative thereof
or other variations thereon or comparable terminology, or by discussion of strategy that involve risks and uncertainties. These forward-looking
statements and the related information contained herein regarding matters that are not historical facts, are only predictions and estimates regarding
future events and circumstances and involve known and unknown risks, uncertainties and other factors, that may cause the Company’s or its
industry’s actual results, levels of activity, performance or achievements to be materially different from any future results, levels of activity,
performance or achievements expressed or implied by such forward-looking statements. These statements and the related information are based
on various assumptions by the Company which may not prove to be correct. The information contained herein has not been independently
verified. No representation, warranty or undertaking, express or implied, is made as to, and no reliance should be placed on, the fairness,
accuracy, completeness or correctness of the information or the opinions contained herein. None of the Company or any of its affiliates, advisors
or representatives shall have any liability whatsoever (in negligence or otherwise) for any loss howsoever arising from any use of this document
or its contents or otherwise arising in connection with the document.

The statements contained in this document speak only as at the date as of which they are made, and the Company expressly disclaims any
obligation or undertaking to supplement, amend or disseminate any updates or revisions to any statements contained herein to reflect any change
in events, conditions or circumstances on which any such statements are based. By preparing this presentation, none of the Company, its
management, and their respective advisers undertakes any obligation to provide the recipient with access to any additional information or to
update this presentation or any additional information or to correct any inaccuracies in any such information which may become apparent.

This document is highly confidential and being given solely for the information of the recipient and no portion hereof, may be shared, copied,
reproduced or redistributed to any other person in any manner.

44

https://marketchameleon.com/Reports/optionVolumeReport
https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/11526622
https://docs.spaceandtime.io/docs/biscuit-authorization
https://gdpr-info.eu/
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://eprint.iacr.org/2020/1274.pdf

	Space and Time (SXT Chain)
	Abstract

	Table of Contents
	1​The Problem: Untapped Potential of Web3
	1.1​Smart Contracts Can’t Access Critical Data
	1.2​Current ZK Solutions and Their Limitations
	1.3​The Need for an “Onchain Database”

	2​The Solution: SXT Chain with Proof of SQL
	2.1​Coprocessing Unlocked for Smart Contracts
	2.2​Query Examples for ZK-proven Onchain Data
	2.3​Design Goals
	2.4​Components of the Network
	2.4.1​Indexer Nodes
	2.4.2​Prover Nodes
	2.4.3​SXT Chain Validators
	2.4.4​Onchain and Offchain Components

	2.5​Ingestion Layer with Verifiable Indexing
	2.6​Decentralized Database Design
	2.7​Infinite Tables with Onchain Verification

	3​Design of the Proof of SQL Protocol
	3.1​Overall Architecture
	3.1.1​Data Ingestion
	3.1.2​Query Request
	3.1.3​Proof Protocol Overview

	3.2​Parsing
	3.3​Query Executor and Interactive Protocol Builder
	3.3.1​Query Execution / Witness Generation
	3.3.2​Commitment Computation / Multiple Rounds
	3.3.3​Constraint Building

	3.4​Notation
	3.5 Example Subprotocols
	3.5.1​Equality Protocol Builder
	3.5.2​Group By Protocol Builder

	3.6​Relation Proof Protocol (Sum-check)
	3.7​Commitment Evaluator

	4​Use Cases for the Next-Generation of Web3
	4.1​Building a Flexible ZK-Rollup/L2
	4.2​Secure Bridges and Multichain Data Backends
	4.3​Dapp Backend (Decentralized)
	4.4​Data-Driven Lending
	4.5​Cross-Chain Financial Instruments
	4.6​Gaming Rewards
	4.7​Social Apps
	4.8​Settlement Systems and Third-Party Auditing
	4.9​Real World Assets (RWAs)
	4.10​Transaction Security and Wallet Whitelists
	4.11​Liquidity Pool Rebalancing Based on Market Conditions

	5​Economic Model for SXT Chain
	5.1 $SXT Token Utility
	5.2 Security Budget Vault
	5.3 Table Owner Rewards Vault
	5.4 Network Fee Structure and Data Marketplace

	6​Conclusion
	Appendix
	A​Data that Smart Contracts Can Access without Space and Time
	B​HTAP to Replace Point Solutions
	C​Proof of SQL “Bring Your Own Database”
	D​Leveraging an Append-Only Database as a Tamperproof Offchain​​Ledger
	E​Space and Time in the Market
	E.1​Web3’s evolution as a digital economy powering novel apps
	E.2​Proven value in data warehousing
	E.3​New compute paradigm removes trust requirements

	References

