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Privasea Technology

Abstract. As the amount of data being generated and the number
of users accessing data-driven applications increase, there are concerns
about privacy protection and the lack of computational power. One po-
tential solution to these issues is Al computation networks, which can
offer efficient methods to stimulate computation power and maintain pri-
vacy throughout the data processing cycle. This whitepaper introduces
the Privasea AI Network, which allows multiple parties to collaborate
without revealing sensitive information. Our proposed system employs
Fully Homomorphic Encryption (FHE) technology to ensure the privacy
and security of data during the AI computation process. Additionally,
we provide demonstrations of AI models running on the Privasea Al
Network to showcase its effectiveness.

1 Introduction

1.1 Objectives

Machine learning is a powerful technology that has the potential to significantly
improve our lives. By using advanced algorithms to analyse large amounts of
data, machine learning can help people make better decisions, solve complex
problems, and even predict future events.

However, there are concerns about the privacy and security of personal data,
as many sensitive types of information such as medical records, financial informa-
tion and personal identification information require external computing power
for AI processing. This has created a need for privacy-preserving Al that can
protect each individual’s privacy while still allowing accurate machine learning.

Privasea Al Network is designed to address the aforementioned issues and
provide Al solutions that protect privacy. One of its primary objectives is to
comply with data protection regulations, such as the General Data Protection
Regulation (GDPR) in the European Union. These regulations have stringent
requirements for the collection, processing and storage of personal data. To meet
these requirements, organisations can use privacy preserving Al techniques that
ensure personal data is protected during the model training and inference pro-
cess.

Another objective is to safeguard users’ sensitive data from unauthorised
access. Data leakage can result in substantial harm to individuals whose data
has been compromised. Privacy-preserving Al techniques can help prevent data
breaches by encrypting sensitive data during AI processing.

Finally, privacy-preserving Al can aid in enhancing trust in machine learn-
ing systems. Many individuals are hesitant to share their personal data with



organisations because they are concerned about how it will be used. By using
privacy-preserving Al techniques to protect personal data during machine learn-
ing, organisations can help build trust and encourage more people to share their
data.

1.2 Overview

Privasea Al Network is a privacy-preserving machine learning project that uses
Fully Homomorphic Encryption or FHE as its core technology. The project aims
to bridge the gap between user data and distributed computing power while
ensuring security. One of the key features of Privasea Al Network is its strong
security and comprehensive functionality.

FHE is a powerful technology that permits arbitrary computations to be
performed on encrypted data. As a result, sensitive data can be processed with-
out ever being exposed in plaintext form. Privasea leverages this technology to
enable users to securely upload their encrypted data to the Privasea storage
layer and transfer it to the distributed computing nodes for processing. By using
FHE, Privasea Al Network guarantees that user data is always encrypted in the
network. The encrypted data can only be decrypted by the user, which ensures
that sensitive information remains inaccessible to anyone else. This provides a
high level of security and privacy for users.

In addition to its robust security guarantees, Privasea Al Network provides
comprehensive functionality for machine learning tasks and has low communi-
cation requirements compared with MPC solutions. This means that users can
utilise the platform without being concerned about long time online constraints.
The project supports a diverse range of machine learning algorithms and also
enables users to upload models of their choice. This makes it simple for users to
leverage the latest machine learning techniques while maintaining the security
of their data.

In conclusion, Privasea AI Network is a powerful privacy-preserving machine
learning project that uses Fully Homomorphic Encryption or FHE as its core
technology. The project offers strong security guarantees, low communication
requirements, and comprehensive functionality. This makes it an attractive op-
tion for users who want to take advantage of distributed computing power while
ensuring that their data remains secure.

2 FHE Fundamentals

The concept of FHE was first introduced by Rivest et al. in 1978 [1], and over the
following thirty years, many cryptographers worked to develop partially homo-
morphic encryption schemes that preserved homomorphism for single addition or
multiplication operations. These included multiplication-homomorphic schemes
such as RSA and ElGamal [2], and addition-homomorphic schemes such as Pal-
lier [3].
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In 2009, Craig Gentry proposed the first fully homomorphic encryption scheme
based on ideal lattices [4,5]. Gentry’s approach involved constructing a some-
what homomorphic encryption scheme that can homomorphically evaluate lim-
ited circuit depth, and then performing so-called bootstrapping operations. This
resulted in a scheme that could homomorphically calculate any depth circuit.

Since Gentry’s breakthrough, there has been significant progress in the de-
velopment of FHE schemes [6,7,8,9,10,11,12,13,14,15,16,17,18]. Currently, most
FHE schemes are based on the Learning with Errors (LWE) problem or its ring
variant (RLWE) on lattice [19,20]. These schemes can be divided into three main
categories based on their plaintext space and computation method: BGV/BFV
schemes perform arithmetic calculations on finite fields; CKKS schemes perform
approximate arithmetic calculations on real/complex numbers; GSW/FHEW /TFHE
schemes can easily calculate logical circuits.

2.1 BGYV Scheme

In 2012, Brakerski et al. proposed the BGV scheme [10]. They constructed a
new multiplication method, using tensor product and so-called relinearization
technologies, to ensure that the ciphertexts will be decrypted into the prod-
uct of plaintexts. However, each addition or multiplication operation will cause
noise expansion. BGV proposed a module switching technique, which can re-
duce the relative size of noise and noise upper bound by switching the modulus
once after homomorphic multiplication. Therefore, it can calculate circuits of
any depth without bootstrapping as long as the module sequence is set appro-
priately according to the required circuit depth during parameter selection. This
scheme greatly improved the efficiency of homomorphic implementation, and
had a certain degree of usability. Later, this scheme was continuously optimized
and improved, such as SIMD parallel computing.

Encryption/Decryption
Given plaintext m € {0,1},m = (m,0), r < Ra, e = (eg, e1) < x>
— Key Generation: a <+~ Ry, e < x, b= —as+2e mod q € R,
sk=(1,s) € R3
pk = (b,a) € RZ

— Encryption:

¢ = (co,c1) =7 pk+m+2e = (rb+m+ 2eg,ra + 2e1) € R

— Decryption:
m = {c,sk) mod g mod 2



Homomorphic Evaluation
Given two BGV cyphertexts ¢1 = (c10,¢11),¢2 = (c20, €21)
— Homomorphic Addition: c™ =c; ®cy = (c10 + €20, €11 + €21)
— Homomorphic Multiplication: ¢* = ¢1 ® ca = (¢10¢20, ¢10¢21 +¢11¢20) +

C11C21 rlk
where rlk denotes relinearization key:

by =—dis+e +1, a]
ok — by, = —ahs+es+s, ab
by = —aks+e3 +s, ab
W= —ajs+eq+5% a)

Fig. 1. BGV encoding and homomorphic multiplication

Modulus Switching

After performing homomorphic multiplication, the resulting ciphertext c¢* sat-
isfies the equation (c*,sk’) = mq - ma + 2¢ - (r1ma + ramy) + rira - (2¢)%. The
size of the noise changes from O(e) to O(e?). The modulus switching tech-
nique is used to address the issue of exponential noise expansion. The imple-
mentation method is as follows: Given the original ciphertext c, let ¢’ repre-
sent the integer closest to f% - ¢ and satisfy ¢ = ¢’ mod 2, In other words,
¢’ + Scale(c,q,p,2). Then, (c¢/,sk) mod p mod 2 = {(c,sk) mod ¢ mod 2,

and satisfies [(¢/, sk) mod p| < g

2.2 BFV Scheme
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In 2012, Brakerski and Junfeng Fan et al. respectively proposed fully homomor-
phic encryption schemes based on LWE and RLWE that do not require modulus
switching [12,11,13]. The BFV scheme is a combination of these schemes. This
scheme is different from the BGV scheme in the message encoding method. The
message is multiplied by a scaling factor before encryption. Therefore, to ensure
the homomorphism, BFV’s multiplication needs to divide the expansion factor
after tensor product and relinearization, which simultaneously reduces noise, and
thus it does not need modulus switching.

Encryption/Decryption
Given plaintext m € Ry, m = (m,0), r < Ra, e = (eg,e1) + x>
— Key Generation: a,a’ + Ry, e,¢ « x, b= —as+e mod g € Ry,
sk=(1,s) € R3
pk = (b,a) € ’Rg
rik =0 =—ds+¢e + % -s%,a') € R}
— Encryption:
_ _ q _ q 2
c = (cg,c1) —r~pk+¥m+e— (rb+ n “m+eg,ra+e1) € R,
— Decryption:
t
m=|--{(c,sk) mod q] modt
q

Homomorphic Evaluation

Given two BFV cyphertexts ¢1 = (c10, ¢11),¢2 = (20, C21)

— Homomorphic Addition: ¢ = c; @ c2 = (c19 + ¢20, C11 + €21)

— Homomorphic Multiplication: ¢c* = ¢; ® cg = % - (e10¢20, c10C21 +

q
c11620) + a cricor - ik

2.3 CKKS Scheme

In 2017, Cheon et al. proposed CKKS scheme which is a homomorphic scheme
that performs approximate arithmetic calculations on real/complex numbers
[15]. This scheme targets scenarios such as machine learning that do not require
exact calculation results. In 2018, the team implemented CKKS’s bootstrap-
ping. In terms of implementation, the HEAAN open-source library was released



Fig. 2. BFV encoding and homomorphic multiplication

at the same time as the paper. In addition, due to necessity of floating-point ho-
momorphic operations in specific scenarios, the HElib and SEAL libraries have
also updated support for CKKS schemes.

Encryption/Decryption

Given plaintext m € R,, m = (m,0), r + Ra, e = (eg, 1) < x>

— Key Generation: a,a’ <+ Ry, e,¢/ < x, b= —as+e modg € Ry, b/ =
—a's+¢ modgeR,
sk=(1,s) € R3

pk = (b,a) € R?
rlk = (b = —d's +¢ +ps*d) € ’Rﬁq

— Encryption:

c=(co,c1)=r-pk+m+e= (rb+m-+ep,ra+e1) ERi
— Decryption:
m' =m+é=(c,sk) mod q

Homomorphic Evaluation

Given two CKKS cyphertexts ¢1 = (c10,¢11),¢2 = (20, C21)

— Homomorphic Addition: ¢t = c; @ ca = (c19 + ¢20, C11 + €21)

— Homomorphic Multiplication: ¢* = ¢1 ® ca = (¢10¢20, C10¢21 + ¢11¢20) +
C11C21 rlk
— Rescale: ¢/ + {%cx—‘, where % ~p

1 is the rescale factor.
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Fig. 3. CKKS encoding and homomorphic multiplication

2.4 GSW/FHEW/TFHE Scheme

In 2013, Gentry et al. proposed the GSW scheme [14]. The characteristic of
this scheme is bit-wise encryption. The ciphertext space is a matrix ring, thus
addition and multiplication on this ring naturally satisfy homomorphism and do
not require specific design. The key to implementing leveled fully homomorphic
encryption is Flatten technology, which controls the noise expansion after opera-
tions. Brakerski et al. designed a bootstrapping algorithm for the GSW scheme,
it takes about half an hour for one bootstrapping operation. In 2015, Ducas et
al. proposed the FHEW scheme [21]. This scheme borrowed GSW’s ciphertext
form and constructed an accumulator with GSW ciphertexts on rings to achieve
bootstrapping, reducing the time for one bootstrapping to 0.69 seconds and re-
leasing FHEW open-source library. In 2016, Chillotti et al. continued to study
this idea and proposed the TFHE scheme [16,17,18]. This scheme also borrowed
GSW'’s ciphertext form and used external multiplication of ring GSW cipher-
texts and LWE ciphertexts to construct an efficient CMUX gate. It was applied
to build blind rotation algorithms during bootstrapping to further reduce one
bootstrapping time to 0.013 seconds.

LWE Encryption/Decryption

Given plaintext m € Z, a < Zy, e < X,

— Key Generation:
s« {0,1}", sk =s



] —y
M |B a g
3 = (ap,...,0,1,b)

v

(50,--,50-1) € {0,1}" uniform random

Fig. 4. LWE

— Encryption:

t
c=(ab=—-a-s+e+--m) GZZH
q
— Decryption:
t
m=|-(b+a-s) modgq| modt
q
RLWE Encryption/Decryption

Given plaintext m € Ry, a < R4, e < X,

— Key Generation:
S Ra,sk=s

— Encryption:
t 2
c=(ab= —a~s+e+5-m) ER,
— Decryption:
t
m = Lgb—i—a-s mod ¢] mod ¢
RGSW

We say that (to, e ,tdg_1) is a gadget decomposition of t € R, if t = Z?igl gi

t; where § = (go,...,9a,~1) is a gadget vector, and [|t;||,, < By . We then
give the definitions of RLWE’ and RGSW. For a gadget vector § , we define
RLWE (m) and RGSW(m) as follows:

RLWE, (m) := (RLWE; (go - m) ,RLWE; (g1 - m),--- ,RLWE; (gq,-1 - m)) € R2*
RGSW(m) := (RLWE,(z - m),RLWE, (m)) € R2**?

Homomorphic Evaluation
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M(X) H A% |[Boo
S0 = (A(X)),B(X))

I I

Sp+ SyX+a. Sy, XV A+ Axt..tAy g XN
s; €{0,1} A € Zq uniforn random

Fig. 5. RLWE

HX) i A0 || B

C () (B

So+ SyX+...+Sy.1 XV
s; €{0,1}

RLWE key

Fig. 6. RGSW

— External Product (I):
0 : RGSW x RLWE — RLWE
(A,b) — AGb = gadget *(b) - A
— Internal Product (K):
X : RGSW x RGSW — RGSW

AX b, gadget—1(by) - A
(A,B)— AX B = : = :
AKX b, gadget=1(b,) - A

2.5 Key Switching Algorithm

Key switching can switch the secret key to a new one, but the message is the
same. That is, Alice can easily share her data with Bob, by switching her cipher-
text to which Bob can decrypt. We use mainly three kinds of key switching:

— Private KS: Private key switching algorithm refers to computing a given
secret function while switching keys from LWE to (R)LWE ciphertext.
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Fig. 7. Key Switching

— Public KS: Public key switching algorithm refers to computing a given
public function while switching keys from LWE to (R)LWE ciphertext.

— RLWE to RLWE KS: RLWE to RLWE key switching algorithm can
switch keys from RLWE to RLWE.

3 Machine Learning Fundamentals

Machine learning, a subfield of artificial intelligence (AI) and Computer Science,
is characterized by the capacity of machines to autonomously acquire knowledge
from data and algorithms. It enables machines to enhance their performance
based on past experiences and make decisions without the need for explicit
programming. The machine-learning process commences with the acquisition
of historical data, and it constructs logical models for future inferences. Upon
receiving new data, it predicts the outcomes with the aid of this model. The pro-
cess of Machine Learning is depicted in Figure 8. Machine Learning algorithms
can be further categorized into three types: supervised learning, unsupervised
learning, and reinforcement learning.

3.1 Supervised Learning

Supervised learning is a type of machine learning algorithm that uses a labelled
dataset (called the training dataset) to make predictions. The training dataset
includes input data and response values. From it, the supervised learning algo-
rithm seeks to build a model that can make predictions of the response values
for a new dataset. A test dataset is often used to validate the model. Using
larger training datasets often yield models with higher predictive power that
can generalize well for new datasets.

Supervised learning includes two categories of algorithms: classification and
regression.
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Training Learn from data New data

Input past Machine learning Building Output
LELE] algorithm N logical models

Fig. 8. Machine learning process

— Classification: A classification problem is when the output variables to be
predicted are categorical and discrete in nature, such as “Red” or “blue” or
“disease” and “no disease”.

— Regression: A regression problem is when the output variable is a numerical
value, such as “dollars” or “weight”.

3.2 Unsupervised learning

A central goal of unsupervised learning is to acquire representations from unla-
beled data or experience that can be used for more effective learning of down-
stream tasks from modest amounts of labeled data. Two types of unsupervised
learning are Generative models and Manifold learning.

3.2.1 Generative Models ”Generative” designates a category of statisti-
cal models, thus, Generative model is a crucial form of unsupervised learning.
Through the Generative model, we can create new data that is not present in
the training dataset. Generative models utilize a training set, comprising samples
drawn from a distribution pgutq, and learn to somehow represent an estimation
of that distribution. The outcome is a probability distribution p,,eqe;- In certain
instances, the model explicitly estimates ppode;- In other cases, the model is
merely capable of generating samples from p,,o4e;. Some mod

The Generative model is an essential type of unsupervised learning. ” Gen-
erative” describes a class of statistical models. By the Generative model, we
can generate new data that is not contained in the training data set. Generative
models take a training set, consisting of samples drawn from a distribution pyuzq,
and learns to represent an estimate of that distribution somehow. The result is
a probability distribution p,,ode;- In some cases, the model estimates pyoder €X-
plicitly. In other cases, the model is only able to generate samples from p,,odei-
Some models are able to do both.

Generative models, which attempt to create a classification (recogniser or
encoder) network and a generative image (generative model) model at the same
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Fig. 9. Generative adversarial networks architecture

time. This approach has its origins in the pioneering work of Goodfellow and Ben-
gio [22], the architecture of Generative adversarial networks is shown in Figure
9. Deep generative models that can learn via the principle of maximim likeli-
hood differ with respect to how they represent or approximate the likelihood. We
construct the taxonomy of Generative models shown in Figure 10. Every leaf in
this taxonomic tree has some advantages and disadvantages. On the left branch
of this taxonomic tree [23,24,25,26,27,28], models construct an explicit density,
DPmodel (2;6), and thus an explicit likelihood which can be maximized. Among
these explicit density models, the density may be computationally tractable, or
it may be intractable, meaning that to maximize the likelihood it is necessary
to make either variatioanl approximations or Monte Carlo approximations (or
both). On the right branch of the tree [22,29,30], the model does not explicitly
manifest a probability distribution over the space where the data resides. Rather,
the model offers a certain means of interacting less directly with this probability
distribution. Commonly, the indirect manner of interacting with the probability
distribution is the capability to draw samples from it. Some of these implicit
models that possess the ability to sample from the distribution do so by em-
ploying a Markov Chain; the model delineates a way to stochastically transform
an existing sample to obtain another sample from the same distribution. Others
can generate a sample in a single step, commencing without any input. Although
the models utilized for GANs can occasionally be structured to define an explicit
density, the training algorithm for GANs solely utilizes the model’s capacity to
generate samples. Hence, GANs are trained by employing the strategy from the
rightmost leaf of the tree: utilizing an implicit model that samples directly from
the distribution represented by the model.

3.2.2 Manifold Learning Manifold learning constitutes an approach to non-
linear dimensionality reduction and can be regarded as the nonlinear counterpart
of PCA. The domain of manifold learning is characterized by explicitly making
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Generative models

Explicit density Implicit density

Tractable density Markov chain

Approximate density Direct

« Fully visible belief
LGS

« NADE

+ MADE

« PixelRNN

Variational Markov chain

Variational Boltzmann machines
auto-encoders

Fig. 10. Taxonomy of Generative models

this assumption: it presumes that the observed data reside on a low-dimensional
manifold embedded within a higher-dimensional space. Despite the existence of
supervised variations, the typical manifold learning problem is unsupervised; it
acquires the high-dimensional structure of the data from the data itself, with-
out the utilization of pre-determined label inf. Specifically, the manifold learning
hypothesis underpins the majority of prevalent dimensionality reduction tech-
niques, such as PCA, Isomaps [31], Laplacian Eigenmaps [32], Diffusion maps
[33], local linear embeddings [34], local tangent space alignment [35], and so
forth.

3.3 Reinforcement Learning

Reinforcement Learning is a sort of ML approach that allows an agent to ac-
quire knowledge in an interactive setting through trial and error, utilizing feed-
back from its own actions and experiences. Let’s review some crucial terms that
delineate the fundamental components of a Reinforcement Learning issue:

— Environment: Physical world in which the agent operates.

— State: Current status of the agent.

— Reward: Feedback from the environment.

Policy: Method to map agent’s state to actions.

Value: Future reward that an agent would receive by taking an action in a
particular state.

The architecture of Reinforcement Learning is illustrated in Figure 11.
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Fig. 11. Reinforcement Learning architecture.

Reinforcement learning algorithms can be classified into two types: model-free
algorithms and model-based algorithms. On the one hand, the model-free algo-
rithm does not require the model of the environment and interacts directly with
the real environment to obtain feedback. In recent years, a significant amount of
research in reinforcement learning has begun to be integrated with Deep learn-
ing. For example, [36] proposes the Deep Q-network (DQN), which is based on
Q-learning and CNN network structure. Instead of the conventional Q-table,
they utilizes Q-network to choose the action that maximizes Q value in a given
state. However, in many real world applications, DQN algorithm tends to overes-
timate the Q-value. Thus, several scientific work such as [37] proposes the Double
DQN algorithm, in which one extra Q-network is introduced, which is assigned
to make decisions, and the original Q-network only estimates the Q-value. In
the case when action and state space are not discrete but continuous, the Policy
Gradient algorithm is used to choose an optimal action for the current state, take
[38] for example, which uses deterministic policy gradient (DPG) to find optimal
action. Besides, we can theoretically prove that the gradient of the deterministic
policy equals the expectation of the Q-function’s gradient and the deterministic
policy is more efficient than the stochastic one. To stablize the algorithm, similar
as DQN, we also have doulbe network version of DPG, i.e., Deep Deterministic
Policy Gradient (DDPG) algorithm ([39] ), wchih is updating by altering the Q
function to Q-network. Moreover, they add a target Q network and a target pol-
icy network to improve the stability of their algorithm. Furthermore, Schulman
et al. [40] present the Trust Region Policy Optimization (TRPO) method, which
provides a monotonic approach and theoretical guarantees to policy improve-
ment in order to assure that the new policy is not worse than the original policy.
The Actor-Critic method is essential in model-free algorithms, the framework
of the Actor-Critic is displayed in Figure 12. On the other hand, model-based
algorithms require the simulation of the environment and obtaining feedback via
interaction with the simulated environment. Prior to executing an action, the
agent has the capability to generate predictions regarding the subsequent state
and corresponding rewards. There are some typical methods such as Dyna [41],
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Model-based policy optimization (MBPO) [42], Model-based value expansion
(MVE) [43], etc.

Actor

Action

TD error
Critic

Reward

Environment

Fig. 12. The Actor-Critc framework.

4 Privasea AI Network

In an era where data privacy is of paramount importance, the need for secure and
privacy-preserving Artificial Intelligence (AI) solutions has become increasingly
critical. To address this challenge, we present a cutting-edge architecture for a
Privasea AI Network that combines the power of Fully Homomorphic Encryption
(FHE) and blockchain-based incentives. This innovative network allows users to
harness the potential of Al while ensuring the utmost confidentiality of their
sensitive data.

4.1 Solutions

Our solutions enable users to leverage the abundant distributed computing re-
sources provided by the blockchain while retaining complete control over their
data and models during Al processing. The core technology is called Fully Ho-
momorphic Encryption. Privasea AI Network divides FHE from theory to ap-
plication into the following four layers: Application Layer, Optimisation Layer,
Arithmetic Layer and Primitive Layer. The network provides both generalised
and customised solutions to bridge the gap between user privacy and distributed
computing resources during Al processing, covering all four layers of FHE.

4.1.1 Generalised solution with FHE Infrastructure

The generalised solution of Privasea Al Network encompasses the bottom two
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Four Layers of FHE

Application Layer (Easy-to-use interface)

Neural networks, Machine learning, Geolocation, Medical Statistics and so on.

Optimization Layer
(Scenario-specific algorithm optimization)

Large-scale matrix vector multiplication, High-precision floating-point operations, Mixed linear/
nonlinear operations.

Arithmetic Layer
(More arithmetic type support and optimization)

More complex arithmetic operations (ReLu, Sigmoid) and logical operations (sorting, extraction).

Primitive Layer
(Basic primitives)

Boolean gate, algebraic addition and multiplication

Fig. 13. Four Layers of FHE
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layers of homomorphic application, which is accomplished through the develop-
ment of the FHE Infrastructure. FHE Infrastructure contains various FHE imple-
mentations such as TFHE, CKKS, BGV/BFV, and libraries especially TFHE-rs!
[44] from ZAMA?Z. (ZAMA is a strategic partner of Privasea, for details on the
FHE Infrastructure, please refer to section 3.1.) Users can encrypt their data
or models using a Fully Homomorphic Encryption scheme from the FHE In-
frastructure and then upload them to the Privasea-Al Network. Once uploaded,
users can access the distributed computing resources in the network to perform
machine learning or other computations on their data in an encrypted state.
The network supports a variety of computation models including neural net-
works, decision trees, clustering analysis, and other models, which can be either
publicly available on the network or provided by the user. Users have the flexi-
bility and control to upload their personal models, either publicly or encrypted,
to the network. The encrypted result can be returned to users or shared with
others using the FHE re-encryption function, providing a secure way to share
encrypted data.

4.1.2 Customised solution

Privasea AI Network’s customised solution covers the top two layers of homo-
morphic application: the Application Layer and Optimisation Layer. This allows
for more specific and tailored solutions to meet the unique needs of each user. In
addition to the functions and features of the generalised solution, the customised
solution has two important features: efficiency and user-friendliness. ‘Efficiency’
refers to the customised optimisation of homomorphic Al computation models
for users by Privasea Al Network. Compared to basic solutions in other homo-
morphic libraries, these customised computations can provide more than 1,000
times speedup. The term ‘user-friendly’ means that users do not need to have
a background in cryptography or programming to use it. To perform machine
learning processing, users simply need to upload their encrypted data or models
to the network and specify the type of processing they want to perform. The
network takes care of the rest by securely accessing the distributed computing
resources on the blockchain and returning or sharing the results in an encrypted
form. This makes the platform accessible to a wide range of users, regardless of
their technical expertise.

4.2 Architecture for Privasea AI Network

At the heart of Privasea lies the concept of Fully Homomorphic Encryption
(FHE), a revolutionary cryptographic technique that allows computations to
be performed directly on encrypted data. By leveraging FHE, we eliminate the
need to expose raw data, enabling computations to be performed directly on en-
crypted data. This ensures that the privacy of the data is preserved throughout

! https://github.com/zama-ai/tfhe-rs
% https://www.zama.ai/
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Privanetix

Fig. 14. Architecture for Privasea AI Network

the entire workflow, including model training and evaluation. To facilitate the
implementation of FHE, Privasea incorporates an FHE Infrastructure. It equips
developers with essential tools and functions to securely perform computations
on encrypted data, such as addition, multiplication, and even evaluation of ma-
chine learning models. FHE can empower users to unlock the potential of their
data without compromising privacy.

The Private AT Network also features an Application API, a user-friendly in-
terface that simplifies interaction with the network. Through the Privasea API,
users can securely submit their data, request model training, and obtain pre-
dictions while enjoying the benefits of end-to-end encryption. It handles the en-
cryption and decryption processes seamlessly, abstracting away the complexity
of FHE while ensuring data privacy and security.

Facilitating the execution of computations on encrypted data is the Pri-
vanetix, a decentralized computation network comprising a multitude of nodes.
Comprising high-performance machines with integrated FHE Infrastructure, Pri-
vanetix provides the necessary computational resources to perform FHE-based
operations on encrypted data. The collaboration among Privanetix nodes enables
efficient and scalable execution of privacy-preserving machine learning tasks.

To incentivize active participation and foster a collaborative ecosystem, Pri-
vasea Network incorporates a blockchain-based incentive mechanism. Through
smart contracts deployed on the blockchain, the incentive mechanism tracks the
registrations and contributions of Privanetix nodes, validates computations, and
rewards active participants accordingly. This ensures that contributors are moti-
vated to provide their computational resources, while maintaining transparency
and fairness throughout the network.

Privasea empowers organizations and individuals to unlock the potential of
their data without compromising privacy. By combining the power of Fully Ho-
momorphic Encryption, the simplicity of the FHE Infrastructure, the accessibil-
ity of the Privasea API, the computational capabilities of Privanetix, and the
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fairness of the blockchain-based incentive mechanism, Privasea paves the way
for privacy-preserving Al applications in various domains.

4.3 Components of Privasea AI Network

The Privasea Al network comprises four core components that work synergisti-
cally to deliver secure and private Al capabilities:

— FHE Infrastructure: This component enables secure computations on en-
crypted data. By utilizing homomorphic encryption techniques, it ensures
that data privacy and security are maintained throughout AI tasks.

— Privasea API: Serving as the gateway to the Privasea Al network, the Pri-
vasea API provides developers with an application programming interface to
integrate privacy-preserving Al capabilities into their applications. It offers
a range of tools and functionalities for seamless interaction with the network.

— Privanetix: Privanetix empowers secure computation by utilizing high-
performance nodes. It leverages advanced techniques such as secure multi-
party computation and federated learning to enable collaborative Al training
while preserving data privacy and confidentiality.

— Privasea Smart contract kit: This component promotes fairness and ac-
tive participation within the Privasea Al network. It utilizes smart contracts,
integrated with blockchain technology, to ensure transparency, immutability,
and trust in the execution of Al tasks.

Together, these core components form the foundation of the Privasea Al
network, enabling secure, private, and efficient Al operations while prioritizing
the protection of sensitive data.

4.3.1 FHE Infrastructure

Privasea’s Fully Homomorphic Encryption (FHE) infrastructure is a power-
ful crypto component purposefully designed to facilitate secure computations. It
now integrates TFHE-1s[44] and ConcreteML ? libraries, by leveraging state-of-
the-art cryptographic techniques and optimized for high performance, Privasea’
FHE Infrastructure equips developers with a versatile, user-friendly, and pow-
erful toolkit suitable for a wide array of use cases. Furthermore, Privasea will
develop and integrate more FHE libraries to support various FHE schemes, in-
cluding TFHE, CKKS, BGV, BFV, and more, in order to handle different types
of Al tasks. This infrastructure enable computations to be performed directly on
encrypted data, eliminating the need for decryption. This guarantees the secu-
rity and privacy of sensitive information, effectively safeguarding against privacy
breaches and security threats.

3 https://docs.zama.ai/concrete-ml



20

Within Privasea’ FHE Infrastructure, users have access to a diverse set of
functions for executing various operations. These include fundamental primi-
tives such as Boolean gates, algebraic addition, and multiplication, as well as
arithmetic operations like ReLU and Sigmoid, and logical operations including
sorting, comparison, and extraction. We will also introduce advanced techniques
like ciphertext packing and batching in the near future, to optimize the process-
ing of large datasets, minimizing the number of operations required and thereby
enhancing efficiency and performance.

FHE Infrastructure boasts a simple and intuitive API based on underlying
libraries (such us TFHE-rs, ConcreteML) that caters to users of all levels, from
beginners to experts. It can integrate Zama’s FHE algorithms into Privasea’s dis-
tributed computing resources and Al models to enhance the privacy and security
of AI operations. Furthermore, it also extends their capabilities:

— Basic Function Development: When integrating the underlying FHE
libraries to meet the requirements of the Privasea network, we must cre-
ate essential functions. For example, to address the need for data trans-
fer permissions from Alice to Bob within the network, we can extend the
TFHE-rs FHE library by implementing a new key management system and
the re-encryption functionality. While the original key switching function-
ality allowed switching operations only between different ciphertext types
(LEW/RLWE) or parameter sets, the new function enables the conversion
of ciphertext encrypted by Alice’s public key to ciphertext encrypted by
Bob’s key. These basic function developments enhance the Privasea network
by ensuring secure data transmission and privacy protection.

— AI Application Development: In the context of AI application devel-
opment, Privasea’s FHE infrastructure integrates simple statistical models
and Al models that are already implemented in the underlying libraries.
For instance, we develop and integrate ConcreteML’s existing linear models,
tree-based models, nearest neighbor models, and neural networks into the
FHE infrastructure. Based on this foundation, we create the Privasea API.
Our goal is to ensure data security and privacy protection throughout the Al
analysis process in fields such as biometric recognition, medical image identi-
fication, and financial data analysis. For example, Privasea has successfully
implemented a facial recognition application based on statistical distance
models. Privasea API enables users to train and deploy models while main-
taining the privacy of their data. By using its functions, users can perform
predictions and evaluations without compromising the confidentiality of the
underlying information, thus unleashing the potential of privacy-preserving
machine learning.

— Technological Progression: FHE infrastructure is set to evolve through
a series of technological enhancements, propelled by Privasea’s innovations
and the collaborative efforts with our partners. Currently, we are in active
discussions with ZAMA to explore the incorporation of their compressed key
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function, Global Key model and Key Management System, along with other
emerging functionalities. This partnership is strategically designed to keep
pace with the development and ensure the timely implementation of these
cutting-edge innovations.

In conclusion, FHE Infrastructure serves as a vital tool for developers and
researchers working with secure computations. Its comprehensive set of func-
tions and tools empower users to perform a wide range of computations on en-
crypted data, allowing for privacy-preserved analytics, secure machine learning,
and confidential data processing. By providing a solid foundation for FHE-based
operations, FHE Infrastructure revolutionizes the way secure computations are
conducted, paving the way for a future where privacy and data security are
seamlessly integrated.

4.3.2 Privasea API

At the forefront of the Privasea AI network lies the Application API, a vi-
tal interface that empowers developers to interact effortlessly with the system.
This API offers an extensive range of functions and endpoints, streamlining
essential operations such as data submission, model training, and predictions.
With a strong emphasis on security, the API ensures encrypted communication
and seamlessly manages encryption/decryption processes using the cutting-edge
HESea library.

The Privasea API acts as a seamless bridge between developers and the
Privasea AI network, providing a user-friendly platform for efficiently manag-
ing data and machine learning tasks. Through carefully crafted functions and
endpoints, developers can securely submit their data, initiate model training
processes, and request accurate predictions. By simplifying the interaction pro-
cess, the API reduces complexities and allows developers to focus on extracting
valuable insights from their data.

Security is paramount, and the Application API ensures the utmost protec-
tion by leveraging the power of the HESea library to handle encryption and
decryption processes. This guarantees that sensitive data remains encrypted
throughout transmission and processing, effectively preserving privacy at ev-
ery stage. By seamlessly integrating HESea into the API, data remains shielded
without compromising operational efficiency or the accuracy of predictions.

The Application API serves as a robust and secure channel for developers to
leverage the capabilities of the Privasea Al network. By offering a comprehensive
suite of functions and endpoints, it empowers developers to efficiently manage
their data, leverage advanced machine learning techniques, and derive valuable
insights. With secure communication and encryption management at its core, the
APT acts as a trusted gateway, enabling developers to confidently and effortlessly
unlock the full potential of the Privasea Al network.

4.3.3 Privanetix
Privanetix stands as a decentralized computation network, harnessing the
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power of numerous computation nodes to facilitate secure and efficient processing
of encrypted data. This network is composed of a collection of high-performance
computation nodes, working together to execute essential machine learning al-
gorithms in a secure manner. Each node within Privanetix is equipped with the
cutting-edge HESea library, enabling them to carry out operations on encrypted
data with remarkable efficiency.

The primary objective of Privanetix is to preserve data privacy while achiev-
ing optimal computational performance. By utilizing encryption techniques, data
remains safeguarded throughout the computation process. The computation
nodes, armed with the HESea library, possess the capability to seamlessly process
encrypted data, providing a secure environment for executing machine learning
algorithms.

These high-performance nodes, united under the Privanetix network, play
a critical role in safeguarding the privacy and security of the overall system.
Leveraging their collective computational power and the advanced capabilities
of the HESea library, they work in unison to handle the complexities of encrypted
data processing. This ensures that operations on sensitive information are carried
out with utmost efficiency, without compromising the privacy of the underlying
data.

Privanetix represents a pioneering solution that combines decentralized com-
putation with the power of HESea. By leveraging this network of computation
nodes equipped with the HESea library, users can confidently engage in secure
computations on encrypted data, unlocking the potential of privacy-preserving
machine learning. With Privanetix, data privacy and computational efficiency
go hand in hand, revolutionizing the way secure computations are performed in
the realm of Al and data analytics.

4.3.4 Privasea Smart Contract Kit

At the core of the privacy Al network resides a robust incentive mechanism
based on blockchain technology, serving as a catalyst for collaboration and fair-
ness. Powered by the Privasea Smart Contract Kit, this mechanism effectively
tracks the registration and contributions of Privanetix nodes, validates their
computations, and distributes rewards accordingly. By leveraging smart con-
tracts, the mechanism ensures transparency, fairness, and actively incentivizes
participation within the network.

Operating as a trusted intermediary, the blockchain-based incentive mech-
anism capitalizes on the immutability and transparency of the blockchain to
monitor and reward the contributions of Privanetix nodes. Through the imple-
mentation of smart contracts, a reliable framework is established for interactions
among participants, guaranteeing accurate evaluation of computations and eq-
uitable allocation of rewards.

Within this mechanism, Privanetix nodes are motivated to actively engage in
the network and contribute their computational resources. By efficiently tracking
and validating the computations performed by each node, the incentive mecha-
nism ensures that rewards are distributed proportionally to their contributions.
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This approach fosters active participation, cultivating a collaborative ecosystem
where all participants are motivated to share their expertise and resources.

The Privasea Smart Contract Kit, serving as the backbone of the incen-
tive mechanism, facilitates transparent and automated interactions. It handles
various aspects such as initializing registration, tracking contributions, validat-
ing computations, and distributing rewards, eliminating the need for centralized
control. By leveraging the decentralized nature of the blockchain, the smart con-
tracts establish an environment of trust, fairness, and accountability.

Through the blockchain-based incentive mechanism, the privacy Al network
fosters an ecosystem where participants are encouraged to actively contribute,
knowing that their efforts will be acknowledged and rewarded. By transparently
tracking contributions, validating computations, and distributing rewards fairly,
this mechanism promotes fairness, motivates collaboration, and drives continu-
ous growth and development within the network.

4.4 Roles in Privasea AI Network

In the Privasea AI Network, three distinct roles play vital roles in ensuring the
smooth functioning and collaborative nature of the ecosystem: Data Owners,
Privanetix Nodes, Decryptors, and Result Receivers.

o 7 -2

Data Owner Privanetix Nodes Decryptor Result Receiver

Fig. 15. Roles in Privasea AI Network

— Data Owners: Data Owners are individuals or entities who possess and
control the valuable datasets within the network. As the custodians of data,
they have the authority to determine how their data is shared and utilized
within the network. Data Owners play a crucial role in preserving privacy
and determining the level of access granted to Privanetix Nodes and Decryp-
tors. They have the power to define data sharing agreements, set permissions,
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and specify the terms under which their data can be accessed and utilized.

— Privanetix Nodes: Privanetix Nodes are the computational powerhouses
within the Privasea Al Network. These nodes contribute their processing
resources to perform complex computations on encrypted data. Equipped
with the advanced HESea library and integrated with the blockchain-based
incentive mechanism, Privanetix Nodes execute secure and efficient compu-
tations while preserving the privacy of the underlying data. They actively
participate in the network by processing encrypted data, training machine
learning models, and contributing to collaborative tasks. Privanetix Nodes
ensure the integrity and confidentiality of computations and are an essential
component in achieving the network’s objectives.

— Decryptors: Decryptors serve as the result retrievers in the final computa-
tion process. Their role involves retrieving encrypted results from Privanetix
Nodes and decrypting them using the appropriate keys through the Pri-
vasea API. The primary responsibility of Decryptors is to securely obtain
the computation results and ensure the confidentiality and integrity of the
data during the retrieval process.

— Result Receivers: Result Receivers act as the final recipients of the de-
crypted computation results. Result Receivers may perform additional op-
erations on the decrypted results, such as further analysis, processing, or in-
tegration with other systems or applications. This allows for the utilization
of the computation results in a broader context, enabling informed decision-
making and deriving valuable insights.

Together, these roles create a collaborative ecosystem within the Privasea
AT Network, where Data Owners control data access, Privanetix Nodes provide
secure computations, Decryptors decrypt the computation results, and Result
Receivers securely handle and utilize the decrypted data. This comprehensive
approach ensures the smooth functioning of the network while maintaining pri-
vacy and security throughout the process. This multi-faceted approach fosters
privacy-focused machine learning and secure computations, driving the network’s
advancement while maintaining data privacy and security.

4.5 Workflow of Privasea AI Network

The Privasea Al network follows a well-coordinated workflow comprising inter-
connected steps, all aimed at ensuring secure and private Al operations. The
overall process begins with the data owner submitting a private Al task to the
Privasea Al network. The Privanetix nodes then securely handle this task, and
subsequently transmit the encrypted result to the decryptor. The decryptor, in
turn, decrypts the result and shares it with the designated Result Receivers.
Below are the detailed procedures involved:
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Fig. 16. Workflow for Privasea AI Network

User Registration: Data Owners initiate their registration process on the
privacy Al network by providing the necessary authentication and autho-
rization credentials. This step ensures that only authorized users can access
the system and participate in the network’s activities.

Task Submission: Data Owners submit their computation tasks along with
the required input data through the Privasea API. To prioritize security and
privacy, the data is encrypted using the powerful HESea library before trans-
mission. This encryption safeguards the data from unauthorized access, while
Data Owners also specify the authorized Decryptors and Result Receivers
who can access the final results.

Task Assignment: The blockchain-based smart contract, deployed on the
network, assigns the computation tasks to suitable Privanetix nodes based
on their availability and capabilities. This dynamic assignment process en-
sures efficient resource allocation and distribution of computational tasks.

Encrypted Computation: The designated Privanetix nodes receive en-
crypted data and conduct computations utilizing the HESea library. They
execute machine learning algorithms securely on the encrypted data, guar-
anteeing the preservation of privacy during the entire process. Importantly,
these computations are performed without the need to decrypt the sensitive
data, thus maintaining its confidentiality. Additionally, to further verify the
integrity of the computation, the Privanetix nodes generate zero-knowledge
proofs for these steps. These proofs serve as evidence that the computa-
tions were carried out correctly, without revealing any specific details about
the encrypted data. These zero-knowledge proofs are essential for later ver-
ification and provide assurance regarding the validity and accuracy of the
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computations performed.

Re-encryption: After completing the computations, the assigned Privanetix
nodes employ re-encryption function to ensure that the final result is autho-
rized and accessible only to the designated Decryptors. This additional se-
curity measure enhances control over the computation results, ensuring that
they are accessible only to authorized parties.

Result Verification: After completing the computations, the Privanetix
nodes transmit both the encrypted result and the corresponding zero-knowledge
proof back to the blockchain-based smart contract for future verification.
The utilization of techniques like zero-knowledge proofs (ZKP) allows for
the validation of the computed results’ integrity and authenticity, all while
safeguarding the confidentiality of the raw data. This crucial verification
process guarantees the reliability of the results and upholds trust within the
network by providing a transparent and trustworthy mechanism for validat-
ing the computations.

Incentive Mechanism: The blockchain-based incentive mechanism, gov-
erned by the smart contract, plays a crucial role in tracking the contribu-
tions of Privanetix nodes, validating their computations, and distributing
rewards accordingly. By enforcing predefined rules and incentives encoded
in the contract, this mechanism promotes fairness and actively encourages
participation from the Privanetix nodes, ultimately driving the network’s
growth and development.

Result Retrieval: Decryptors utilize the Privasea API to access encrypted
results. Their first task is to verify the integrity of the computation, ensur-
ing that the Privanetix nodes have performed the computation as intended
by the data owner. In the event of a failed verification, the decryptor will
submit a proof transaction to the Privasea Smart Contract, reporting the
misconduct of the Privanetix nodes. As a consequence, the assigned Pri-
vanetix nodes will face penalties (slashing). On the other hand, if the veri-
fication process is successful, the decryptors proceed to decrypt the results
using the appropriate decryption keys. This crucial step maintains the con-
fidentiality of the data while delivering the desired output to the users. By
implementing these measures, the Privasea Al network ensures the accuracy
and trustworthiness of the computation results, fostering a secure and reli-
able environment for data processing.

Result delivery: The decrypted result is shared with the designated Re-
sult Receiver predetermined by the Data Owner using Proxy Re-encryption
technology. This additional step ensures secure delivery of the result to the
intended recipient while preserving data privacy.
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Throughout the entire workflow, from data submission to result delivery, the
user’s data remains encrypted and secure. The encryption techniques employed,
along with the use of HESea, preserve the privacy and confidentiality of the
data, minimizing the risk of unauthorized access or data breaches.By following
this comprehensive workflow, the privacy Al network ensures that sensitive data
is protected, computations are performed securely, and participants are fairly
incentivized, fostering a collaborative and privacy-preserving environment for
Al-driven tasks and applications.

5 Case Study

5.1 Proof of Human(ImHuman APP)

In today’s increasingly digital world, distinguishing real human users from au-
tomated bots and fraudulent entities is crucial for the integrity and security of
online platforms. The ”Proof of Human” verification system serves this essential
purpose by ensuring that interactions and transactions are conducted by gen-
uine individuals. This verification process is particularly vital in scenarios such
as financial services, e-commerce, social media, and online communities where
user authenticity and trust are paramount.

Our system leverages advanced Fully Homomorphic Encryption (FHE) tech-
niques, to safeguard the privacy of users’ biometric information during verifica-
tion. By using FHE, we ensure that sensitive data, such as facial feature vectors,
remains encrypted throughout the entire process, even during comparisons on
the server. This approach allows for secure and private verification without ex-
posing personal biometric data. By incorporating robust human verification with
strong privacy protections, platforms can enhance security, prevent fraud, main-
tain user trust, and comply with regulatory requirements, all while respecting
user privacy.

At the core of our ”Proof of Human” verification system is the homomorphic
calculation of similarity between face embedding vectors. In traditional (plain-
text) models, the similarity between face embeddings is often measured using
Euclidean distance. However, for optimization purposes, our system uses cosine
distance to measure this similarity.

Cosine similarity between two non-zero vectors is derived using their Eu-
clidean dot product. Given two d-dimensional vectors, x and y,, the cosine sim-
ilarity is expressed through their dot product and magnitudes as
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Despite its advantages, the cosine distance function is not inherently suit-
able for homomorphic evaluation due to its reliance on division and Euclidean
norm calculations, which introduce significant computational overhead. To ad-
dress this, we use a transformation method that converts these operations into
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homomorphic-friendly addition and multiplication. Specifically, we make the fol-
lowing observations::
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Therefore, we only need to convert the face embedding vector x into its nor-
malized representation x before performing homomorphic evaluations to quickly
achieve homomorphic distance calculation.

Throughout this process, the sensitive facial data, including ID photos and
selfie images, remains encrypted. The use of FHE ensures that calculations can
be performed on the encrypted data without revealing the underlying infor-
mation. By applying encryption techniques, privacy is preserved, and the face
recognition process is conducted securely and privately, safeguarding the privacy
of the individuals involved.

Your keys stored in your phone Mint an ImHuman NFT Verify your human likeness

Fig.17. Secure Proof of Human

The ImHuman app uses a secure and private system to verify human identity
through the following steps:

1. Key Generation and Storage:
(a) Generate Key Set: The app generates a set of cryptographic keys,
including a client key and a server key.
(b) Store Keys:

— The client key is securely stored using Shamir’s Secret Sharing
(SSS) scheme. In this method, the key is mathematically divided into
three parts, known as ”shares.” These shares are designed such that
the original key can be reconstructed only when at least two of the
three shares are combined. The three shares are stored separately
across different locations: one on the local device, one in a secure
cloud service, and one on the ImHuman server.
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— The server key is uploaded to Privanetix nodes, which will be used
later for Fully Homomorphic Encryption (FHE) evaluations.
2. Initial Face Scan and NFT Creation:

(a) Face Scan: The user scans their face using the app to capture biometric
data.

(b) Extract Embedding Vectors: The app processes the scan to extract
numerical embedding vectors that represent the user’s facial features.

(¢) Encrypt Embedding Vectors: These vectors are encrypted using the
client key.

(d) Mint ImHuman NFT: An ImHuman NFT (Non-Fungible Token) is
minted on the blockchain, embedding the encrypted face vectors within
it.

3. Verification Process:

(a) Repeat Face Scan: The user scans their face again to capture a fresh
set of biometric data.

(b) Extract and Encrypt New Vectors: New embedding vectors are
extracted and encrypted using the client key.

(¢) Generate Key-Switching Key: A key-switching key is created to as-
sociate the encrypted data with a decryptor.

(d) Send Verification Request: The verification request is sent to the
Privanetix nodes and includes:

— The ID of the previously minted ImHuman NFT.
— The newly encrypted embedding vectors.
— The key-switching key.

4. Homomorphic Evaluation and Result Delivery:

(a) Retrieve Stored Vectors: Privanetix nodes retrieve the stored en-
crypted embedding vectors from the ImHuman NFT.

(b) FHE Evaluation: The nodes perform a Fully Homomorphic Encryption
evaluation to compare the newly provided encrypted vectors with the
stored encrypted vectors.

(¢) Key Switching: The result of this comparison is then switched to the
decryptor’s domain using the key-switching key.

(d) Send Encrypted Result: The switched, encrypted result is sent to the
decryptor.

(e) Decrypt the Result: The decryptor uses his client key to decrypt the
result.

(f) Provide Result: The decrypted verification result is made accessible
via an API to any party that needs it for human verification.

The ImHuman ”Proof of Human” system provides several key advantages for
enhancing security, privacy, and user experience on digital platforms.

1. Enhanced Security:
— Ensures interactions are from genuine human users, reducing risks of
fraud and bot activities.
— Protects against identity theft and unauthorized access by verifying
through encrypted biometric data.
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2. Robust Privacy Protection:
— Utilizes Fully Homomorphic Encryption (FHE) to keep biometric data
encrypted throughout the verification process.
— Ensures compliance with privacy regulations such as GDPR by safe-
guarding sensitive user information.
3. User Convenience and Trust:
— Provides a seamless and user-friendly verification process that integrates
easily into existing workflows.
— Builds user trust by demonstrating a commitment to secure and private
interactions.
4. Platform Integrity and Fairness:
— Promotes authentic and meaningful interactions by verifying human par-
ticipation on social media and community platforms.
— Ensures fair access and reduces bot-driven manipulation in e-commerce
and competitive environments.
5. Scalability and Versatility:
— Adapts to a wide range of use cases, including financial services, e-
commerce, social media, online voting, and petitions.
— Provides a flexible solution that can be scaled to meet the needs of
various digital platforms.
6. Future-Proof Technology:
— Leverages cutting-edge cryptographic and biometric technologies to stay
ahead of security threats.
— Continuously evolves with updates and improvements to maintain robust
and effective digital interaction security.

In summary, the ImHuman ”Proof of Human” system offers a comprehensive
approach to secure and private user verification. By employing advanced tech-
niques like FHE, AI and Blockchain, it ensures that interactions are genuine,
data is protected, and platforms are both fair and trustworthy.

5.2 Private XGBoost Prediction

A regression tree is a type of decision tree model specifically designed for solv-
ing regression problems. The computation process of a regression tree involves
feature selection, data splitting, computation of leaf node outputs, and recursive
operations. By iteratively partitioning the feature space and generating output
values, regression trees can effectively handle nonlinear relationships, missing
values, and outliers, while still providing interpretability.

However, one common challenge with regression trees is overfitting. To miti-
gate this issue and enhance generalization, they are often combined with ensem-
ble learning methods such as XGBoost(eXtreme Gradient Boosting). During the
prediction phase, decisions are made based on feature thresholds, traversing the
tree until reaching a leaf node. The output value at the leaf node is then used
as the prediction for the corresponding sample.
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XGBoost is a gradient boosting tree algorithm that utilizes an ensemble
method of decision trees. It sequentially trains numerous weak classifiers (deci-
sion trees) and merges them to form a robust classifier. The workflow of XGBoost
can be broken down into the subsequent stages:

— 1.Initialization: First, initialize the model’s predictions to a constant value.
Typically, the initial prediction can be obtained by calculating the average
value of all samples in the training set.

— 2.Compute negative gradients of the loss function: Next, compute the
negative gradient of the loss function between the current model’s predic-
tions and the true labels. The choice of loss function depends on the problem
type, for example, squared loss can be used for regression problems, and log-
arithmic loss can be used for binary classification problems.

— 3.Train weak classifiers: Train a weak classifier (decision tree) using the
current model’s predictions as input features. In this case, the decision tree
is a special type of tree called a regression tree. A regression tree is a binary
tree where each leaf node contains a real value representing the model’s pre-
dicted output at that leaf node.

— 4.Update model predictions: Apply the trained regression tree to the
current model’s predictions and update the model’s prediction results. The
output of the regression tree can be seen as the correction to the model’s
predictions, further improving the model’s performance.

— 5.Regularization:To prevent overfitting, introduce regularization terms to
control the model’s complexity. This can be achieved by limiting the num-
ber of leaf nodes or the weights of leaf nodes in each regression tree, or by
introducing regularization parameters.

— 6.Update the model: Merge the current trained regression tree with the
previous regression trees to obtain a new model. This can be achieved by
adding the output of the new regression tree to the previous model’s predic-
tions.

— 7.Repeat training: Repeat steps 2 to 6 until a stopping condition is met,
such as reaching the maximum number of iterations, the improvement of
the loss function is below a threshold, or the model’s performance meets the
requirements.

— 8.Combining the week classifiers:Finally, XGBoost combines the pre-
dictions of multiple weak classifiers by summing them to obtain the final
model’s predictions. During the prediction phase, input the test samples
into each regression tree one by one, get the predictions from each tree, and
then sum them to get the final prediction output.
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Fully homomorphic encryption (FHE) is a useful option when a user wants
to use a trained xgboost model but does not want to reveal the data to the
model supplier. To ensure privacy and security, we can leverage FHE to en-
able privacy-preserving computations within the XGBoost prediction process.
As previously mentioned, XGBoost combines the predictions of multiple regres-
sion trees by summing them to obtain the final prediction. Since FHE inherently
supports addition operations, the main challenge lies in performing the decision
tree computation on fully homomorphic ciphertexts.

The prediction process of a decision tree can be decomposed into two distinct
steps: comparison and selection. These steps lend themselves well to homomor-
phic evaluation using TFHE schemes. The comparison step can be represented
by an indicator function that determines the difference between two numbers.
Its output is 1 when the difference is greater than 0 and -1 otherwise. TFHE
bootstrapping enables the realization of this indicator function. On the other
hand, the selection step can be conceptualized as a gate circuit that yields the
value of the Oth position when provided with input 0, and outputs the value of
the 1st position when given input 1. This behavior aligns with that of a CMUX
(multiplexer) gate.
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Fig. 20. Private Prediction of XGboost

By encrypting the outcomes of the decision tree’s leaf nodes and employing
TFHE bootstrapping for the comparison process, as well as CMUX gates for the
selection process, we can successfully perform the computation of the decision
tree on fully homomorphic ciphertexts. Consequently, we obtain the encrypted
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output of the leaf nodes, enabling the computation of the decision tree on fully
homomorphic ciphertexts.

6

Token Economics

6.1 Overview of Token Economics

The PRAI token serves as the utility token within the Privasea AI network,
playing a crucial role in facilitating transactions, incentivizing participants and
enabling on-chain governance. It also acts as a medium of exchange, enabling
users to access privacy Al services and unlock various functionalities within the
ecosystem. The value of the PRAI token is primarily driven by the demand for
the network’s services, which encompass privacy-preserving machine learning
and other Al-based features.

Specifically, the PRAI token serves the following purposes within the ecosys-

tem:

— Transaction Facilitation: PRAI tokens act as a medium of exchange

within the network, allowing users to access and pay for privacy Al ser-
vices offered by Privasea Al. These services may include data anonymiza-
tion, privacy-preserving machine learning, secure data sharing, and other
privacy-focused Al solutions. The token streamlines transactions, making it
easier for participants to engage with the network and utilize its services.

Incentives and Rewards: PRAI tokens play a vital role in providing in-
centives to the diverse participants within the network.Various contributors,
including Privanetix nodes that offer privacy services and Decryptors that
providing decryption services, have the opportunity to earn PRAI tokens
through their contributions to the network. This can include tasks such as
supporting network operations, upkeeping the infrastructure, or delivering
valuable services.

Governance and Voting: PRAI tokens grant holders the right to par-
ticipate in the governance of the Privasea AI network. Token holders can
have voting power and influence over important network decisions. These
decisions may include protocol upgrades, or other significant aspects related
to the network’s development and operation. By involving token holders
in the governance process, Privasea Al aims to foster a decentralized and
community-driven decision-making framework.

Staking and Network Security: PRAI tokens may play a role in network
security through staking mechanisms. Token holders can lock up their PRAI
tokens as a form of collateral, contributing to the stability and security of
the network while potentially earning rewards.
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— Access to Exclusive Features: The PRAI token may provide users with
access to additional features or exclusive benefits within the Privasea Al net-
work. This can include priority access to certain services, discounts, or en-
hanced functionalities, offering token holders added value and utility within
the ecosystem.

Through these various purposes, the PRAI token enhances the functionality,
participation, and overall ecosystem of the Privasea AI network, fostering a
thriving community of users and contributors.

It’s also important to note that the specific details of tokenomics, including
token distribution percentages and minting mechanisms, may vary based on the
design and implementation of the Privasea Al project. For the most accurate and
up-to-date information, it is recommended to refer to official project resources
or documentation provided by Privasea Al.

6.2 Token Distribution Plan

The distribution of PRAIT tokens in the Privasea Al network is carefully struc-
tured to achieve a balance between attracting strategic investors, fostering com-
munity engagement, incentivizing network participation, and supporting ongoing
development.

The distribution plan consists of the following proportions and mechanisms:

1 Mining/Staking (35%):

e The largest portion of the tokens, will be allocated to staking nodes
that provide Fully Homomorphic Encryption (FHE) and other privacy
services within the project.

e These tokens will serve as incentives for the nodes, encouraging their
active participation and contribution to the network.

e Attractive staking rewards will be developed and distributed.

2 Team Allocation (13%):

e This allocation is aimed at rewarding and supporting the team respon-
sible for the development, maintenance, and growth of the Privasea Al
network.

e The team has the longest vision of the project and the tokens are dis-
tributed depending on the performance of the team members.

e The goal is to keep our team together in the long term; continuity is one
of the keys to success.

3 Backer (22.5%):

e The tokens will be allocated to backers, including venture capi- talists
(VC) and other supporters, who don "t just provide money, but bring us
added value.

e This allocation aims to attract external investment and foster partner-
ships to accelerate the network’s development and adoption.
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e These funds will be used to expand the team and advance development
through to mainnet and launch.

4 Marketing and Community Development Allocation (15%):

e The tokens will be dedicated to marketing and community development
initiatives.

e These tokens will be utilized to raise awareness about Privasea Al, drive
user adoption, and foster a vibrant and engaged community around the
project.

e Several marketing campaigns are planned at different times. Attention
is paid to ensuring that we work with users and KOLs who believe in
Privasea’s long-term success.

5 Reserve (10.5%):

e This category primarily applies to items that cannot be planned, such
as future regulations that need to be met or licenses that need to be
applied for.

e If no unplanned problems arise, this category is released for future de-
velopment. We want to constantly improve and set new goals.

e If we notice in the course of development that we could use external sup-
port from experts in an area, parts of this can also be used for advisor
allocation.

6 Liquidity (4%):

e This liquidity is essential because it ensures that participants can en-
ter or exit their positions without causing significant price movements,
facilitating growth for the market.

o When there is a good amount of liquidity in a token pool, it means that
there is a significant amount of tokens available for trading. This allows
for larger buy and sell orders without impacting the price too easy in
either direction

e It is necessary for Market making and also can also be used for possible
new Dex/Cex Listings. allocation.

In conclusion, the token distribution plan for PRAI tokens in the Privasea
AT network is designed to strategically allocate tokens to key stakeholders, sup-
porting the development, growth, and sustainability of the ecosystem. Through
this well-thought-out distribution plan, Privasea Al aims to create value for all
participants while building a strong foundation for its network.

6.3 Token Minting Mechanism

To promote network growth, adoption, and sustainable development, the Pri-
vasea Al network will implement a minting mechanism that incorporates Static
Minting and Scaling Computation Power Minting.
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1 Static Minting:The Static Minting component of the minting mechanism
in the Privasea Al network follows a simple exponential decay model. During
the early stages of the network, block rewards are set at their highest level,
offering significant incentives for miners to participate actively. However, as
the network matures over time, the block rewards experience a rapid de-
crease. This approach aims to encourage early miner engagement and ensure
a balanced distribution of rewards throughout the network’s growth.

e Higher block rewards are provided in the initial stages of the network to
incentivize and attract early miner participation.

e Miners are encouraged to contribute their computational power and re-
sources to the network through the allocation of rewards.

e This component acts as a counter pressure mechanism, mitigating po-
tential shocks or challenges that may arise within the network.

2 Scaling Computation Power Minting:To encourage continuous and sus-
tainable investment in computational power, the Privasea Al network im-
plements Scaling Computation Power Minting. This component dynamically
adjusts block rewards according to the total privacy computation power of
the network.

e Block rewards are proportional to the growth of the network’s total com-
putation power.

e Adjusts the exponential decay model during the network’s early stages
to promote steady investment in computational resources.

e Ensures that block rewards reflect the utility and value delivered by
miners and the network to clients.

o Rewards miners based on their contributions in relation to the overall
value of the network.

The allocation of rewards between Static Minting and Scaling Computation
Power Minting may vary based on the specific design of the Privasea Al network.
Striking a balance between early participation incentives and long-term network
growth is crucial. By combining Static Minting and Scaling Computation Power
Minting, the Privasea Al network aims to incentivize early participation while
fostering sustained investment and growth. This minting mechanism encourages
miners to contribute computational power and resources, ensuring the stability
and long-term success of the network

7 Application Scenarios

7.1 Private IPFS Edge Pre-processing

The InterPlanetary File System (IPFS) is a decentralised peer-to-peer network
used for storing and sharing files. However, files shared on the IPFS network are
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publicly visible and can potentially contain sensitive information. To mitigate
this issue, IPFS Edge Pre-processing could be implemented to process data be-
fore it is stored on the network. This pre-processing could involve using privacy-
enhancing techniques such as data anonymisation, encryption, and obfuscation.
We use FHE to protect sensitive data before it is shared on the IPFS network.
The pre-processing can be carried out using the Privasea AI Network, which
offers a secure and distributed network of computing resources for processing
and analysing data.
Here’s how the proposed system would work:

— A user submits a file to the IPFS network for storage and sharing.

— Before the file is stored on the IPFS network, it is pre-processed using
IPFS Edge Pre-processing. The pre-processing involves applying privacy-
enhancing techniques to the file to protect sensitive information.

— The pre-processing is done using the computing resources of the Privasea
AT Network. The user’s data is encrypted, anonymised, or obfuscated using
distributed processing techniques, ensuring that the data remains private
and secure.

— Once the pre-processing is complete, the file is stored on the IPFS network.
Other users on the network can access and share the file, but the sensitive
information in the file remains protected.

By combining IPFS Edge Pre-processing and Privasea Al Network, users
can store and share files on the IPFS network without compromising the pri-
vacy and security of sensitive information. The system provides a scalable and
efficient solution for protecting sensitive data on a decentralised network and
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fully complies with data protection regulations such as FEurope’s GDPR and the
California Consumer Privacy Act.

7.2 Al Modeling

Artificial intelligence development requires access to significant amounts of data
and computing power to train and optimise AI models. Privasea Al Network
offers a distributed network of computing resources to accelerate this training
process. Additionally, the network ensures privacy and security of sensitive data
throughout the training and processing stages. For example, a developer could
leverage Privasea Al Network to train a natural natural language processing
model on a massive dataset without jeopardising the privacy of the data. By
encrypting and processing the data across multiple nodes, the results could be
combined to improve the model’s accuracy.
Here’s how the proposed system would work:

— An organisation develops an Al model for a specific task, such as image
recognition or natural language processing.

— The organisation uses Privasea Al Network to train and optimise the model.
The data used for training is encrypted and processed using distributed com-
puting techniques, ensuring that sensitive data remains private and secure.

— The Privasea Al Network provides a secure and distributed network of com-
puting resources for training and optimising the model, reducing the time
and cost required for AI modeling.

— Once the model is trained and optimised, it can be deployed to perform the
specific task, such as recognising images or processing natural language.

By combining Al modeling with Privasea AT Network, organisations can train
and optimise Al models efficiently and cost-effectively, while also protecting sen-
sitive data. The system provides a scalable and secure solution for developing
AT models for various applications.

7.3 Secured KYC

KYC (Know Your Customer) is a process that financial institutions and other
organisations use to verify the identity of their customers. KYC is an important
process for preventing fraud and complying with regulations. However, KYC
also involves collecting sensitive personal information from customers, such as ID
cards, passports, and financial statements. To protect the privacy of customers’
personal information, KYC data must be processed securely.

Secured KYC is a privacy-focused KYC solution that uses encryption and
other privacy-enhancing techniques to protect sensitive customer data. Privasea
AT Network could be used to provide the computing resources needed to securely
process KYC data in real-time.

Here’s how the proposed system would work:
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A customer submits their KYC data by FHE encryption first to a financial

institution or other organisation for verification.

The organisation uses Secured KYC to process the data, ensuring that it

is encrypted and processed using privacy-enhancing techniques to protect

sensitive information. Here, FHE can be used for the verifying function.

— The processing is done using Privasea Al Network, which provides a secure
and distributed network of computing resources for processing and analysing
data without decrypting it.

— Once the processing is complete, the organisation can verify the customer’s

identity and comply with KYC regulations, while also protecting the cus-

tomer’s privacy.

By combining Secured KYC and Privasea Al Network, organisations can
process KYC data securely and efficiently, while also protecting the privacy of
their customers. The system provides a scalable and cost-effective solution for
ensuring KYC compliance while minimising the risk of fraud and data breaches.

7.4 Medical Image Processing

Medical image processing requires high-performance computing resources to
analyse and diagnose images. With Privasea Al Network, medical profession-
als and researchers could use a distributed network of computing resources to
process medical images while maintaining the privacy and security of patient
data. For example, a radiologist could use Privasea AI Network to process a
large dataset of medical images for a research study. The network could be used
to distribute the processing workload across multiple nodes, with the results
combined to improve the accuracy of the analysis. The patient data would be
encrypted and secured throughout the processing and analysis stages to protect
patient privacy.
Here’s how the proposed system would work:

— Medical images, such as X-rays or MRI scans, are encrypted using FHE
before being stored or transmitted.

— The encrypted medical images are then processed using Privasea AI Net-
work, which provides a distributed network of computing resources for Al
processing.

— The FHE-encrypted medical images are processed using Al models trained
on similarly encrypted data, preserving the privacy of the sensitive patient
information.

— Once the processing is complete, the encrypted medical images are decrypted
for use by medical professionals.

By using FHE encryption in conjunction with Privasea Al Network, medical
images can be processed securely and efficiently while protecting the privacy
of patient data. The system provides a scalable and cost-effective solution for
medical image processing that complies with privacy regulations and enhances
patient trust.
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7.5 Facial Recognition

Facial recognition technology involves analysing and matching facial features to
identify individuals. However, facial data is sensitive and can be used to invade
privacy if not properly secured. To address this issue, Privasea AI Network could
use encryption techniques such as FHE to secure facial data and ensure privacy.

For example, when a user submits their facial data to the network for identifi-
cation, the data would first be encrypted using FHE. The encrypted data would
then be processed by the network’s computing resources, without ever revealing
the original facial data. The output of the processing would also be encrypted,
ensuring that only the user who submitted the original facial data could decrypt
and access the results.

In this way, facial recognition technology can be utilised on the Privasea
AT Network without compromising user privacy. By leveraging encryption, fa-
cial data remains secure and confidential, while still allowing for accurate facial
recognition analysis to be performed.
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