@ Band Protocol

Band Protocol Documentation

Introduction

Core Concepts
Products

Develop

Nodes & Validators

Staking

1) Band Protocol Documentation

Band Protocol Documentation

Introduction

Band Protocol is a cross-chain data oracle platform with the aspiration to build high-quality suites of web3 development products. We

provides reliable, secure, and real-time data to smart contracts on various blockchain networks. It was designed to address the

growing demand for accurate and timely data for blockchain-based applications.

This documentation provides a comprehensive guide to the BandChain protocol, including its architecture, functionalities, client

libraries, and tools. It also covers the best practices and use cases for integrating BandChain into your blockchain applications.

Getting Started

Get familiar with BandChain and explore its main concepts.

9

Introduction to BandChain

High-level overview of the BandChain

=

Developer Guides

Learn how to use Band's integration tools to
integrate Band's oracle data into your

applications.

Development Stack

¢

Core Concepts

Learn about the core concepts of
BandChain, including tokenomics, gas and

fees, and more.

&8
Node & Validators

Learn how to run a BandChain node and

become a validator to earn rewards.

Check out the docs for the various parts of BandChain's core technical stack.

o0
OOOOO

Cosmos SDK

The blockchain framework powering
BandChain

Help & Support

WebAssembly

The standard underpinning BandChain's data

oracle script

Get in touch with Band Protocol devs and our community.

Devloper Discord

Chat with Band Protocol Developers on

Discord.

Q

Telegram Group

Join our Telegram group to get support from

our team.

<

Products

Learn about the products that BandChain
offers, including the Standard Dataset and

,VRF, and more.

ReScript

The core language of our CosmoScan block

explorer

()

Found an Issue?

Help us improve this page by suggesting
edits on GitHub.

Q Search [om)[¥

https://docs.bandchain.org/
https://docs.bandchain.org/introduction/overview
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/products/band-standard-dataset/introduction
https://docs.bandchain.org/develop/developer-guides/how-to-use-bandchain
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/getting-started
http://docs.cosmos.network/
https://webassembly.org/
https://rescript-lang.org/
https://100x.band/discord
https://100x.band/tg
https://github.com/bandprotocol/bandchain-docs/edit/master/docs/README.md
https://docs.bandchain.org/introduction/overview
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

@ Band Protocol

Band Protocol Documentation
Introduction
High-Level Overview
The Need for Oracles
The BandChain Oracle
How BandChain Works?

Example Use Cases
Core Concepts
Products
Develop
Nodes & Validators

Staking

f Introduction High-Level Overview

High-Level Overview

Band Protocol is a cross-chain data oracle aggregating and connecting real-world data and APIs to smart contracts.

The protocol is built on top of BandChain, a Cosmos-SDK-based blockchain designed to be compatible with most smart contract and

blockchain development frameworks.

The network is designed to modularize and offload the heavy and resource-intensive tasks (i.e., fetching data from external sources
aggregating them) from the smart contract platforms onto itself. This not only prevents such tasks from congesting or causing high
transaction fees on the destination network, but the same data points can be packaged, used, and verified efficiently across multiple
blockchains.

Its flexible design allows developers to query any range of data types, including both on-chain data (token balances, transaction
data, etc.), real-world events (sports scores, flight status, weather, etc.), and any data that is available through the web or any other

mediums (stocks/token prices, random numbers, etc.)

Since the launch of our GuanYu mainnet back in October 2020, we have seen an exponential increase in adoption in a diverse array
of use cases. From applications in lending, money markets, gambling, asset, and tokenization, to both on-chain and real-world

insurance.

With the Phase 2 (Laozi) upgrade, we aim to expand further the scope of what is possible with our oracle through multiple ways.
Two, in particular, includes the option for data providers to receive payment directly on-chain from developers using their services on
BandChain, and allowing for cross-chain oracle requests through the Inter-Blockchain Communication (IBC) standard.

The new feature also enables a new cohort of products and services that Band oracle can provide to developers. Some examples of

these are a more decentralized price oracle, verifiable randomness, and facilitating cross-chain communication.

https://docs.bandchain.org/
https://bandprotocol.com/
https://github.com/bandprotocol/chain
https://medium.com/bandprotocol/bandchain-phase-1-successful-mainnet-upgrade-and-guanyu-launch-ac2d0334da77
https://ibc.cosmos.network/
https://docs.bandchain.org/
https://docs.bandchain.org/introduction/oracle
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/introduction/overview
https://docs.bandchain.org/introduction/oracle
https://docs.bandchain.org/introduction/oracle-and-bandchain
https://docs.bandchain.org/introduction/how-bandchain-works
https://docs.bandchain.org/introduction/example-use-cases
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

@ Band Protocol

Band Protocol Documentation
Introduction
High-Level Overview
The Need for Oracles
The BandChain Oracle
How BandChain Works?

Example Use Cases
Core Concepts
Products
Develop
Nodes & Validators

Staking

1) Introduction The Need for Oracles

The Need for Oracles

Smart contracts are significant at immutable storage and verifiable transaction, but their use cases have previously been restricted
due to their access to outside data. Most blockchains are neither aware of anything going on in the real world, nor can they access
any data not native to the chain itself.

- - ~ - & ~

~
@ Q ‘ Q) - @

Bloomberg

Smart Contract Platforms Web 2.0 APIs

The data that they could not previously access includes any data available on the traditional web, as well as those accessible
through APIs. When you start to consider just how many of the products and tools we use today rely on these data, the problem

becomes apparent.

While there has been a multitude of efforts to solve this issue, most of the solutions have come to meet at least one of three main

limitations.

a A
e \ Current solutions have

High-Quality Market Data multiple limitations

Push data
every 10 mins Reference Data
______________________ > Smart Contract

© centralized

M S AAVE | @2 0O A B

Real-World Events

\ / Q Fails on network congestion

Decentralized applications built on <e> w FA< I SI- I © Expensive to maintain

Smart Contract platforms

Enterprise Services

1. Centralization Existing data solutions such as API feeds and some other oracle solutions are centralized by design. This not
only goes against the ideology of decentralization and trustlessness but also represents a severe potential security flaw. Relying
on a central authority to report data means that you are exposing yourself to the possibility of data manipulation and outages,
both of which can have catastrophic implications on any services that depend on it, not to mention on the end users themselves.

2. Network Congestion Most of the existing oracle solution of them are constrained by network congestion. This is mostly the result
of the solution being on the same blockchain as the application itself -- competing for block order. Thus, if the blockchain’s

network were to become full with pending transactions, the data request transaction themselves would also be delayed.

3. High Cost they are expensive. This comes from both the cost to research, develop, and deploy the solution, as well as the

various costs associated with operating and maintaining it in the long run.

https://docs.bandchain.org/
https://docs.bandchain.org/introduction/overview
https://docs.bandchain.org/introduction/oracle-and-bandchain
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/introduction/overview
https://docs.bandchain.org/introduction/oracle
https://docs.bandchain.org/introduction/oracle-and-bandchain
https://docs.bandchain.org/introduction/how-bandchain-works
https://docs.bandchain.org/introduction/example-use-cases
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

@ Band Protocol

Band Protocol Documentation a Introduction The BandChain Oracle

The BandChain Oracle

The Need for Oracles The BandChain Oracle solution serves as an intermediary layer that operates between smart contract platforms or decentralized

Introduction v

High-Level Overview

applications and various data providers.
The BandChain Oracle

The primary function of the oracles is as follows:
How BandChain Works?

1. Responding to data requests from dApps
Example Use Cases
2. Querying data from the corresponding providers, and

Core Concepts 3. Reporting results back to the application.

Products

Develop > @ > @ B s |
<2y .. aums
A\ /4

Nodes & Validators - N / L \ High-Quality Market Data
Staking 4 DApp 4 DApp 4 DpApp & DApp | g > W B e

........ (7 I L A

< ‘ CNBC

Q DApp Q DApp Q DApp Q DApp Real-World Events
---------------- > T F =
Old Smart Contract Enhanced Smart Contract D S @ --------- d rACrSU |
(Simple Token Transfer) with Band Protocol Data Oracle

Enterprise Services

4.

BandChain Oracle stands out from other oracle solutions in four key areas:

1. Decentralization: Our solution is built on a decentralized network of validators, ensuring that data is secure and transparent.

2. Flexibility: BandChain Oracle supports a wide range of data sources and formats, making it easy to integrate with existing
systems.

3. Scalability: Our solution is designed to handle high volumes of data requests, ensuring that your business can grow and scale

without interruption.

4. Cost: Users can request data only when they need to and pay the associated fees on a per-request basis, making it significantly

more cost-effective than updating the price of an entire set of assets when only the latest price of one is needed

Decentralization

BandChain Oracle is designed with maximum redundancy in its infrastructure to ensure decentralization at both the consensus and
data source level.

7 BANDCHAIN

XD stake-fish CSD InfStones COinbase
(> cosmostation F Bloomberg
@ stakewithus B [+
i)Crypto
¥ CASTLENODE G Cryp
#FORBOLE
Global Pool of 100+ Nodes Redundant Data Sources On-chain Performance

Publicly Verifiable

To achieve this, BandChain is operated by a globally distributed pool of validators whose actions can be easily monitored and

verified by anyone. When a data request is made, validators are responsible for fetching the results.

To provide an additional layer of redundancy, the results are taken from multiple data sources. BandChain's delegated proof of stake
design also ensures that validators have monetary incentives to properly and accurately report data, or risk losing capital and
reputation.

Moreover, the entire data request flow is publicly available for viewing, verification, and auditing by anyone.

Flexibility

BandChain offers maximum customization and flexibility to its users through its data source and oracle scripts. These scripts allow
users to query and compute their desired data feed with ease.

Target Platform ®

G ety N
[) oracle Script Schema L Copy Code

{symbols: [string] ,multiplier:u64}/{rates: [u64]}

R,
<) Compound [} Decoderssol

& fantom

Integrate into DApps on Any Blockchain

Data source scripts are custom scripts that allow users to query data from their desired sources. This data can then be fed into
oracle scripts, which report back with the desired data feed.

Oracle scripts are pieces of code that define the logic of the data request. These scripts specify two things:

¢ the set of data sources that validators query data from

¢ the method to aggregate the result from those data sources into the final result.

These scripts can be programmed in multiple programming languages and function similarly to smart contracts.

Scalability

BandChain is designed specifically for oracle data requests and computations, which sets it apart from general-purpose blockchains.

This design results in several benefits, such as an average block time of just 3 seconds, compared to Ethereum's 10-15 seconds
and Bitcoin's 10 minutes. As a result, data request transactions are received and resolved quickly.

. @ BANDPROTOCOL
Request to BandChain
1-2 sec . (o
R XD stake-fish - B Q E ,b

h(l $ AAVE -! ey [1& Convarircep | @) stakeWith.Us N
—@— o -

ksl CASTLENODE

- Aggregation methods CSMOSTATION 0 ¢ lZsec T e
Data Sources

Get BandChain state

DeFi Applications Instantly . Data sources required

@ Batched Transaction . R‘~\
1 native block time - Number of validators %FORBOLE Y
needed for data queries Con

€. CHORUS)
. Cost per query Aggregate ¢
Results e
@ Q 0 1-2 sec ® InfStones Crmmmmmmmmmemne e Qég
Data Oracle Script \'4
Layer-1 Blockchains Trusted Data
BandChain Sources

Furthermore, BandChain is optimized for heavy oracle computations, allowing it to offload these computations from the requester's

chain.

This optimization, coupled with the design of BandChain, means that an average data request to BandChain's oracle can be
expected to resolve in under six seconds. This allows BandChain Oracle to continuously enhance its throughput capacity with the
same base-level infrastructure.

With its own chain, the oracle core logic and operations do not need to be duplicated onto a new chain or App for each integration,

making integration with DApps streamlined and scalable.

Cost

In addition to its scalability, Band's oracle offers an economical approach to data requests. Users can request data only when they
need to and pay the associated fees on a per-request basis, making it significantly more cost-effective than updating the price of an

entire set of assets when only the latest price of one is needed.

4 N 4 |
: u ° @ BAND PROTOCOL
. $1-$50 | o On-demand Marginal Cost
F;?.%.% Every10 Mins ,,,,!,,,,,,,,,,,,> Q ef h SARSCAR I : F/J Data Request o>
[
| XD stake-fish CS) InfStones
I i (]
. 3) $1-$50 ¢] On-demand .
9@% Every 10 Mins > Reference Data ' (@E’J Data Request ¢ {3 cosmostation F
Smart Contract DU
@stakewithus B3
I I _ o
9@@ Every 10 Mins $1-$50 i (2) On-demand Marginal Cost i CASTLENODE
9 D g) ! ®FORBOLE
\ '
[
[
[
Volatile large cost is paid to Miners charge a large fee ! Pay per request model, Validators incentivized through
update reference data especially in network congestion ! Marginal Fee inflation Revenue + Request Fees

https://docs.bandchain.org/
https://docs.bandchain.org/introduction/oracle
https://docs.bandchain.org/introduction/how-bandchain-works
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/introduction/overview
https://docs.bandchain.org/introduction/oracle
https://docs.bandchain.org/introduction/oracle-and-bandchain
https://docs.bandchain.org/introduction/how-bandchain-works
https://docs.bandchain.org/introduction/example-use-cases
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

@ Band Protocol

Band Protocol Documentation
Introduction
High-Level Overview
The Need for Oracles
The BandChain Oracle
How BandChain Works?

Example Use Cases
Core Concepts
Products
Develop
Nodes & Validators

Staking

1) Introduction How BandChain Works?

How BandChain Works?

BandChain is a high-performance public blockchain that allows anyone to make a request for APIs and services available on the
traditional web. It is built on top of the Cosmos SDK, and utilizes Tendermint's Byzantine Fault Tolerance consensus algorithm to
reach immediate finality. This finality is specifically reached upon getting confirmations from a sufficient number of block validators.

Goals

While the majority of existing smart contract platforms support trustless executions of arbitrary programs, they lack access to real-

world data. This limitation hinders the potential of the applications that are developed on those platforms.

BandChain solves this important issue by connecting public blockchains to real-world, off-chain information. The project was created
with the following design goals:

1. Speed and Scalability: The system must be able to serve a large quantity of data to multiple public blockchains with minimal
latency, while maintaining a high throughput. The expected response time must be in the order of seconds.

2. Cross-Chain Compatibility: The system must be blockchain-agnostic and able to serve data to most publicly available
blockchains. Verification of data authenticity on the target blockchains must be efficient and trustless by nature.

3. Data Flexibility: The system must be generic and able to support different methods of retrieiving and aggregating data, including

both permissionless, publicly available data as well as information guarded by centralized parties.

BandChain achieves the aforementioned goals with a blockchain specifically built for off-chain data curation. The blockchain supports
generic data requests and on-chain aggregation with WebAssembly-powered oracle scripts. Oracle results on BandChain blockchain
can be sent across to other blockchains via the Inter-Blockchain Communication protocol (IBC) or through customized one-way
bridges with minimal latency.

Terminology

Data Sources

A data source is the most fundamental unit in BandChain's oracle system. It defines the procedure to retrieve raw data from a

source and the fee associated with the data query.

On BandChain, a data source can be registered into the system by anyone. This is done through the registrant sending a
MsgCreateDataSource message to the chain. In this message, they specify various parameters the data source they wish to
register, including

* the sender who wish to create the data source

¢ the owner of the data source, if specified

¢ the name of the data source

e the per-query fee that someone looking to use that data source needs to pay

¢ the executable to be run by validators upon receiving a data request for this data source

Examples

The following two examples illustrate what a data source executable might look like. Both examples are written in bash.

Retrieve Cryptocurrency Price from CoinGecko

The data source requires that cURL and jq are installed on the executable runner's machine and expects one argument; the
currency ticker symbol.

#!/bin/sh

URL="https://api.coingecko.com/api/v3/simple/price?ids=$1&vs_currencies=usd"
KEY=".%$1.usd"

curl -s -X GET $URL -H "accept: application/json" | jq -r ".[\"$1\"].usd"

Resolve Hosthame to IP Addresses

Again, this script assumes that getent and awk are available on the host and the host is connected to the DNS network.

#!/bin/sh

getent hosts $1 | awk '{ print $1 }'

Oracle Scripts

When someone wants to request data from BandChain, however, it is not the data sources that they interact with. Instead, they do
so by calling one of the available oracle scripts.

An oracle script is an executable program that encodes:

¢ the set of raw data requests to the data sources it needs

¢ the way to aggregate raw data reports into the final result

Oracle scripts are also Turing-complete and can be programmed in multiple languages. This composability and Turing-completeness

makes oracle scripts very similar to smart contracts.

To create an oracle script, the creator must broadcast a MsgCreateOracleScript to BandChain. The contents of the message is

simlar to MsgCreateDataSource, and includes:

¢ the sender who wishes to create the oracle script

¢ the owner of the oracle script, if specified

¢ the name of the oracle script

¢ the OWasm compiled binary attached to this oracle script

¢ the schema detailing the inputs and outputs of this oracle script, as well as the corresponding types

¢ the URL for the source code of this oracle script

Similar to data sources, the sender who wishes to create the oracle script does not have to be the same as the owner of the oracle

script specified in the message.
The execution flow of an oracle script can then be broken down into two phases.

In the first phase, the script outlines the data sources that are required for its execution. It then sends out a request to the chain's
validators to retrieve the result from the required data sources. The content of this consists of the data sources' execution steps and

the associated parameters.

The second phase then aggregates all of the data reports returned by the validators, with each report containing the values the

validator received from the required data sources. The script then proceeds to combine those values into a single final result.

Note that the specifics of the aggregation process is entirely up to the design of the oracle script. BandChain does not enforce any
regulations when it comes to the aggregation method used, and entirely leaves that design decision to the creator of the script or
any subsequent editors.

Example

The pseudocode below shows an example of an oracle script that returns the current price of a cryptocurrency. The script begins by
emitting requests to validators to query the price from three data sources (i.e. the request function calls to CoinGecko,
CryptoCompare, CoinMarketCap inside prepare). Once a sufficient number of validators have reported the prices, the script then

aggregates and averages out the reported values results into a single final result (the aggregate function).

In this particular oracle script, the aggregation process starts by summing all of the price values returned by the validators across all
data sources, as well as the total number of reports returned. It then simply divides the summed price value with the number of data

reports returned to arrive at the final average value.

def prepare(symbol):
request(get_px_from_coin_gecko, symbol)
request(get_px_from_crypto_compare, symbol)
request(get_px_from_coin_market_cap, symbol)

def aggregate(symbol, number_of_reporters):

data_report_count = 0

price_sum = 0.0

for reporter_index in range(number_of_reporters):

for data_source in (

get_px_from_coin_gecko,
get_px_from_crypto_compare,
get_px_from_coin_market_cap,

price_sum = recelive(reporter_index, data_source, symbol)
data_report_count += 1
return price_sum / data_report_count

Raw Data Reports

Raw data reports are the results that BandChain's validators return when they have successfully responded to a data request and
subsequently retrieved results from the required data sources. In these reports, the validators list out the result they got from each
data source, using the data source's external ID as the reference key. The external ID is the identifier used to reference a data

source within an oracle script, and each data source's external ID is unique within the context of that script.

Oracle Request Proof

When the final data request result is successfully stored onto BandChain, an oracle data proof is produced. This proof is a Merkle
proof that shows the existence of the final result of the data request on BandChain. In addition to the actual result value of the
request, the proof contains information on the request parameters (oracle script hash, the parameters, the time of execution, etc) as
well as as well as those of the associated response (e.g. number of validators that responded to the request). This proof can then be
used by smart contracts on other blockchain to verify the existence of the data as well as to decode and retrieve the result stored.

Both of these can be done by interacting with our lite client.

Network Participants

BandChain's network consists of a number of network participants, each owning BAND tokens. In the Laozi mainnet, these

participants can be broken down into three main groups; validators, delegators, and data providers.

Validators

(® MORE INFO

e How validator be choosing

Validators are responsible for performing two main functions on the network. First, they are responsible for proposing and committing
new blocks to the blockchain. They participate in the block consensus protocol by broadcasting votes which contain cryptographic
signatures signed by each validator's private key. This is similar to most other Cosmos-based delegated proof-of-stake blockchains.

Each validator will have a certain amount of BAND tokens bonded to them. The source of these tokens can either be their own
holdings, or the tokens delegated to them by other token owners. In most cases, there will be a large number of parties with tokens
staked to them. In that case, the top 100 validator candidates with the most token staked to them will become BandChain’s

validators.

The role the validators described above is similar to those of validators on many other Cosmos-based blockchains. In addition, most
transactions supported by BandChain (asset transfer, staking, slashing, etc.) are also derived from Cosmos-SDK.

What makes BandChain unique, and the origin of the validators' second duty, is the chain's capability to natively support external
data query. This role will be further explore in the Oracle Data Request Flow section.

Delegators

The second main group of participants are then the individual BAND token holders. On BandChain, BAND holders do not stake their
tokens directly, but delegate holdings to a validator. This allows token holders who don't want to set up a validator node to participate
in staking rewards.

Data Providers
Finally, the Laozi upgrade introduces a new third kind of participant in the BandChain network: data providers.

With the introduction of on-chain payments, API or data providers can now monetize their data and services directly on BandChain.

This new flexibility benefits the network in multiple ways.

Data providers now have a new medium to collect revenue from. As the fees are collected per-query, the revenue that they stand to

collect will scale alongside the adoption and usage of BandChain and our oracle as a whole.

The option for data providers to monetize their services directly on-chain will also bring official support for premium and paid data
sources onto BandChain. This will allow any developer building on BandChain to access a much wider array of providers and data

types they can choose from, enabling BandChain oracle infrastructure to power a much wider range of applications and services.

Oracle Data Request Flow

The flow of requesting data from BandChain can be broken down into four main steps:

1. Publishing the necessary data sources and oracle scripts to the network
2. Sending the oracle data request transaction
3. Fetching the necessary data

4. Aggregating and storing the request result onto BandChain

1. Publishing Data Sources and Oracle Scripts
Before any data requests can be made, two conditions must be met:

1. The oracle script that describes the data request must also have been published to Bandchain via Msg

2. The data sources related to the aforementioned oracle script must be published to BandChain

2. Oracle Data Request Initialization

Once the required data sources and oracle scripts are published, the user can initiate data request to Band's oracle by broadcasting
MsgRequestData. The contents of the message includes the ID of the oracle script that the requester wants to invoke and other

query and security parameters.

Once the data transaction is confirmed on BandChain, the requested oracle script will begin its execution. The script's execution

process can be split into two phases.

3. Fetching the Data

First, the oracle script's preparation function will emit the set of raw data requests necessary to continue the script's execution. The
chain's validators, who are chosen at random for security reasons, will then inspect the raw data requests and execute the
associated data sources' procedures as instructed by the request. Specifically, each of the chosen validator will attempt to retrieve
information from all of the data sources specified in the executed oracle script.

The validators that successfully retrieved data from all the sources will then submit a raw data report to BandChain, containing the
results they got from each of the data sources, by broadcasting MsgReportData. Once a sufficient number of validators, specified
in the data request’s security parameters, have reported the their results, BandChain will begin executing the oracle script’'s second

part of aggregating request result.

Note that for data from permissioned sources (e.g. under paywall), the data sources are expected to verify that payment has
occurred on BandChain and supply data to requested validators accordingly. That way, BandChain allows API providers to monetize
data with BandChain's on-chain payment settlement without needing to trust a middleman party.

4. Aggregating and Request Result Storage

This phase begins by aggregating all of the validators' reports (which contains the data each received from the data sources) into a
final single result. This final result is then permanently stored in BandChain's application state. Once stored, the result becomes
available on the chain's state tree and can be sent to other blockchain.

@ Band Protocol §8%
il

XD stake-fish
Data request ==
__________ o__________) Oracle asks validators to StakeWith.Us Validators each fetchdata [/~~~ T
i' fetch requested data from source 1 !
|) : :
! - Datasources required ~ ______ _@_ _____ N 4 CASTLENODE -—————- -@- ————— > ! @ CoinMarketCap
- Aggregation methods '
<——— (A - N f vali i R .
@ @) umeer of validators O CHSMOSTATION ! %) CoinGecko
Sufficient validator response | needed for data queries a < :
User (returns encoded proof) ~ F— —@—— - . Cost perquery S0 ——— @ ——————————— @ ______ 1
| per query
I #FORBOLE
~ o @_____J Oracle collects validator Source returns result
responses
A
Insufficient validator response CHORUS
(failed request) Q Data sources
Oracle
& InfStones

-——- Main flow

-——- Success flow Validators

-——- Fail flow

When the final result is successfully stored, an oracle data proof is also produced. This proof is a Merkle proof that shows the
existence of the final result of the data request as well as other related information (oracle script hash, the parameters, the time of
execution, etc) on BandChain. This proof can then be used by smart contracts on other blockchain to verify the existence of the data

as well as to decode and retrieve the result stored. Both of these can be done by interacting with our lite client.

https://docs.bandchain.org/
http://cosmos.network/
https://tendermint.com/
https://en.wikipedia.org/wiki/Byzantine_fault
https://docs.bandchain.org/core-concepts/protocol-messages#msgcreatedatasource
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://en.wikipedia.org/wiki/CURL
https://github.com/stedolan/jq
https://en.wikipedia.org/wiki/Getent
https://en.wikipedia.org/wiki/AWK
https://en.wikipedia.org/wiki/Smart_contract
https://docs.bandchain.org/core-concepts/protocol-messages#msgcreateoraclescript
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://github.com/bandprotocol/bandchain/wiki/Lite-Client-Protocol
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/protocol-messages#msgreportdata
https://docs.bandchain.org/introduction/oracle-and-bandchain
https://docs.bandchain.org/introduction/example-use-cases
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/introduction/overview
https://docs.bandchain.org/introduction/oracle
https://docs.bandchain.org/introduction/oracle-and-bandchain
https://docs.bandchain.org/introduction/how-bandchain-works
https://docs.bandchain.org/introduction/example-use-cases
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

@ Band Protocol

Band Protocol Documentation
Introduction
High-Level Overview
The Need for Oracles
The BandChain Oracle
How BandChain Works?

Example Use Cases
Core Concepts
Products
Develop
Nodes & Validators

Staking

A Introduction Example Use Cases

Example Use Cases

Decentralized Standard Price Reference

Since the initial launch of the Standrd Dataset back in October 2020, we have seen an exponential increase in adoption and usage

of Band's price oracles across numerous chains and sectors.

As this trend continues to propagate, the need for stronger decentralization and robustness of our price feed becomes ever more

crucial.

With the next major upgrade of our Standard Dataset, we will be adding a new mechanism that will allow anyone to send price
update transactions to our oracle contract themselves, all secured and verified by our lite client verification architecture and a

challenge mechanism.

=8

L

Verifiable Random Number Generators

Aside from our Standard Dataset price oracle, the flexibility offered by Band's oracle design also allow it to support countless other

use cases and data types.

One of these this is our upcoming Verifiable Random Function (VRF) functionality. This aims to provide a provable and verifiable
source of randomness to smart contracts on any network supported by Band's oracle.

By providing a tamper-proof method of generating unpredictable yet verifiably random values, this upcoming addition to Band's
oracle functionality will greatly extend the range of applications and use cases that Band can support. Examples of such areas are:

e NFTs
e gambling

e randomized selection

This feature is currently in active development and we will have much more to share on this soon.

| =8

L

Cross Chain Communication

BandChain's infrastructure design decision to be cross-chain compatible and operate on independent blockchain prepares its role as

a key player in the ever-growing cross-chain and multi-chain narratives.

We believe that oracles such as Band will not only be useful wihtin the context of a single destination chain, but also will a core

infrastructure in relaying information and faciliating communication between two independent chain.

This can be in the form of verifying token transfer transactions when bridging assets across chain, relaying transaction between

chain, or any other arbitrary number of data or actions that needed to be tranasferred across networks.

[=8

-

https://docs.bandchain.org/
https://docs.bandchain.org/introduction/how-bandchain-works
https://docs.bandchain.org/core-concepts/token-economics
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/introduction/overview
https://docs.bandchain.org/introduction/oracle
https://docs.bandchain.org/introduction/oracle-and-bandchain
https://docs.bandchain.org/introduction/how-bandchain-works
https://docs.bandchain.org/introduction/example-use-cases
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

@ Band Protocol

Band Protocol Documentation

Introduction

Core Concepts v
BAND Token
Gas and Fees
Accounts and Wallets
Protocol Messages
Protobuf Documentation
Cosmos IBC Integration
Decentralized Validator Sampling
Lite Client Protocol
On-chain Payment

Oracle WebAssembly (Owasm)
Products
Develop
Nodes & Validators

Staking

f Core Concepts BAND Token

BAND

BAND is BandChain's native staking token. Staked holders can govern and decide the future of the protocol.

BandChain Tokenomics

Inflation

BandChain applies an inflationary model to the BAND token, which incentivizes network participation by token holders. The aim is to

encourage token holders to stake their coins on the network, rather than focusing solely on trading or leaving their coins idle.

The specific inflation parameters currently mirror those of the Cosmos network. The annual inflation rate ranges from 7% to 20% and

is adjusted to target having 66% of the total supply of BAND tokens staked.

To illustrate how inflation incentivizes staking, consider a network participant with a certain amount of holdings. With inflation, if the
participant chooses not to use their coins to participate in the network's activities, they will find that the percentage of their holdings
with respect to the total supply decreases over time. However, if they decide to stake their coins, they will receive a share of coins
proportional to the inflation, meaning their total token holding ratio will remain relatively unchanged.

Validators and Stakers

Similar to other Cosmos-based blockchains, one of the responsibilities of BandChain validators is to provision new blocks and
process transactions. By performing these tasks, they earn BAND tokens as a reward. In the case of block provisioning, the reward
comes from newly minted tokens on that block. Conversely, the reward for processing transactions comes from the fees that each

validator chooses to set. Note that a percentage of the total block reward is diverted to the community fund pool.

Those who do not wish to become validators can still earn a portion of the validator rewards by becoming delegators. This is done

by staking their holdings on the network's validators. By doing so, they will share the revenue earned by those validators.

The amount of reward each validator receives is based on the total amount of tokens staked to them. Before this revenue is
distributed to their delegators, a validator can apply a commission. In other words, delegators pay a commission to their validators

on the revenue they earn.

However, while delegators share the revenue of their validators, they also share the risks. Therefore, it is imperative for potential

delegators to understand those risks, and that being a delegator is not a passive task.
Some actions that a delegator should perform are:

e Perform due diligence on the validators you wish to stake on before committing: If a validator you staked on misbehaves, a
portion of the validator's stake, including those of their delegators, are slashed. Therefore, it is advisable for delegators to
carefully consider their staking choices.

¢ Actively monitor the validators you've committed to: Delegators should ensure that the validators they delegate to behave

correctly, meaning that they have good uptime, do not double sign or get compromised, and participate in governance.

e Participate in network governance: Delegators are expected to participate in network governance activities. A delegator’s voting
power is proportional to the size of their bonded stake. If a delegator does not cast their vote, they will inherit the vote of the
validators they staked on. If they do vote, they instead override the vote of those validators. Delegators, therefore, act as an
important counterbalance to their validators.

Community Fund Pool

Two percent of the total block rewards are diverted to the community fund pool. The funds are intended to promote the long-term

sustainability of the ecosystem. These funds can be distributed in accordance with the decisions made by the governance system.

Slashing
If a validator misbehaves, their delegated stake will be partially slashed.
There are three reasons why a validator may be slashed:

e Excessive downtime
® Double signing, and

® Unresponsiveness.
The first two are derived from the Cosmos SDK, while the third is specific to BandChain.

Excessive Downtime

One of the validators' primary functions is to propose and subsequently commit new blocks onto the chain. Thus, if a validator has
not participated in more than [MIN_SIGNED_PER_WINDOW] of the last [SIGNED_BLOCK_WINDOW] block proposals and commits, we
will consider that they are not performing their function properly. Consequently, we will slash the total value staked to them by
[SLASH_FRACTION_DOWNTIME] .

Double Signing

During a double signing, the block proposer in the consensus round attempts to create two conflicting blocks and broadcast them to
the network. If there are any other validators who stand to profit from this double block-proposal, they will vote for both blocks.

If the votes pass, nodes on the network will see two different blocks at the same height, each with different contents and hashes.

From this point on, the network has “forked”. The consequence of this is that there will now be two versions of the “truth”.

To prevent such attempts at double signing, Cosmos, and by extension BandChain, is implemented so that any validator that double-
signs is slashed, with the slashed amount being [SLASH_FRACTION_DOUBLESIGNING] of all tokens bonded to them.

Unresponsiveness

Finally, we also slash validators if they consistently fail to respond to data requests. If a validator fails to respond to
[CONSECUTIVE_UNRESPONSIVE_REQUESTS] consecutive requests, they will be slashed an amount equal to
[SLASH_FRACTION_UNRESPONSIVENESS] .

https://docs.bandchain.org/
https://docs.bandchain.org/introduction/example-use-cases
https://docs.bandchain.org/core-concepts/gas-and-fee
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/core-concepts/gas-and-fee
https://docs.bandchain.org/core-concepts/accounts-and-wallets
https://docs.bandchain.org/core-concepts/protocol-messages
https://docs.bandchain.org/core-concepts/oracle-modules
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/lite-client-protocol
https://docs.bandchain.org/core-concepts/on-chain-payment-protocol
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

@ Band Protocol

Band Protocol Documentation

Introduction

Core Concepts v
BAND Token
Gas and Fees
Accounts and Wallets
Protocol Messages
Protobuf Documentation
Cosmos IBC Integration
Decentralized Validator Sampling
Lite Client Protocol
On-chain Payment

Oracle WebAssembly (Owasm)
Products
Develop
Nodes & Validators

Staking

f Core Concepts Gas and Fees

Gas and Fees

@ PRE-REQUISITE READINGS
e Cosmos SDK Gas

Introduction to Gas and Network Fees

In the Cosmos SDK, gas is a unit that is used to track the consumption of resources during process execution. It is typically

consumed during read/write operations, or whenever a computationally expensive operation is performed.
The purpose of gas is twofold:

1. To prevent blocks from consuming excessive resources, thus ensuring that the block will be finalized

2. To prevent abuse from a malicious actor on the user side

Gas consumed during message execution is typically priced, resulting in a fee
fee = gas * gasPrice

Fees generally have to be paid by the sender of the message.

Meanwhile, each block validator can subjectively establish the minimum gas fee that must be reached for them to process the
transaction and choose whatever transactions it wants to include in the block that it is proposing, as long as the total gas limit is not
exceeded.

Gas Estimation

This section we will compare gas usage on each message type to compare how many fee that user need to pay to do these actions.

Message Estimated fee
MsgSend ~70k
MsgDelegate ~120k
MsgWithdrawReward ~100k
MsgTransfer(IBC) ~85k
MsgUpdateClient + MsgReceivePacket (Transfer packet) ~350k
MsgRequestData* >500k upto 5m

MsgUpdateClient + MsgReceivePacket (Oracle request packet)* >560k upto 5m

MsgCreateDataSource / MsgEditDataSource** 30k - 100k

MsgCreateOracleScript / MsgEditOracleScript** 500k - 2m

(*) The gas is used on MsgRequestData or process oracle request packet based on complexity of oracle script and how many
validator need to query data on this request.

(**) Based on size of data source and oracle script mostly data source should be smaller than oracle script.

https://docs.bandchain.org/
https://docs.cosmos.network/main/basics/gas-fees
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/core-concepts/accounts-and-wallets
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/core-concepts/gas-and-fee
https://docs.bandchain.org/core-concepts/accounts-and-wallets
https://docs.bandchain.org/core-concepts/protocol-messages
https://docs.bandchain.org/core-concepts/oracle-modules
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/lite-client-protocol
https://docs.bandchain.org/core-concepts/on-chain-payment-protocol
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

@ Band Protocol

Band Protocol Documentation A Core Concepts Accounts and Wallets

Introduction

Accounts and Wallets

Core Concepts v

BAND Token @ RECOMMENDED READINGS

e Cosmos SDK Accounts

Gas and Fees

Accounts and Wallets

Protocol Messages Band ACCOU ntS

Protobuf Documentation BandChain is a Cosmos SDK-based blockchain, which means it is compatible with the Cosmos SDK account system. However,

BandChain has its own custom Account type to implement in Hierarchical Deterministic (HD) wallets.
Cosmos IBC Integration

) _ _ The BandChain coin type HD path is m/44'/494'/0'/0/0. This path is used to derive BandChain addresses from a BIP44
Decentralized Validator Sampling tandard HD wallet
standar wallet.

Lite Client Protocol
The first part of the path, m/44"' | specifies the derivation path is based on BIP44 standard. The second part of the path, 494",

On-chain Payment indicates the BandChain is the coin type for this address. The third part of the path, 0", specifies that this is a hardened derivation
path, which means that the child keys can only be derived by someone who has the parent key. The fourth part of the path, 0,
Oracle WebAssembly (Owasm) specifies the account index which is used to generate multiple accounts from the same master key. The last path, 0, specifies the

address index, which is used to generate multiple addresses for a single account.
Products

Develop

Addresses and Public Keys

Nodes & Validators)]]]
BandChain supports Bech32 (band. . .). The Bech32 format is the default format for Cosmos-SDK queries and transactions through

Staking CLI and REST clients.

For example, a BandChain address might look like this: band18p27y196218283ct7srr513g7ydazjo7dqrwph. This address can

be used to receive and send BandChain tokens and interact with smart contracts and dApps on the BandChain network.

Addresses and PubKeys are both public information that identifies actors in the application. Each account is identified using

Address which is a sequence of bytes derived from a public key.

In the BandChain, we define 3 types of addresses that specify a context where an account is used:

Types Address bech32 Prefix Pubkey bech32 Prefix Address byte length Pubkey byte length
Accounts band bandpub 20 33
Validators bandvaloper bandvaloperpub 20 33
Consensus Nodes bandvalcons bandvalconspub 20 33

Mnemonic and Address Generation

To create an account you can either create a private key, a keystore file (a file that contains your encrypted private key), or a
mnemonic phrase (a string of words that can access multiple private keys).

Mnemonic phrases also known as hierarchical deterministic key generation (HD keys). This allows the user to create accounts on
multiple blockchains without having to manage multiple secrets. We can think of the derived accounts as child accounts of the root

account created using the original mnemonic seed phrase.

A mnemonic phrase typically consists of 12, 24, or sometimes 16 words that are randomly generated from a pre-determined word
list. Each word in the list corresponds to a unique sequence of numbers, which are used to generate the private key for your wallet.
By writing down and securely storing your mnemonic phrase, you can always recover your BandChain account in case of loss or

damage to your device.

Example of mnemonic phrases used in BandChain

hedgehog pact leave raccoon empty various item profit uncover dune someone ball chat repair acquire mid

" PROTECT YOUR SEED PHRASE

If the mnemonic phrase leaks, accounts cannot be derived without the initial password. If someone knows the mnemonic

phrase and the derivation path, they will have access to your account. To protect your seed phrase, consider the following tips.

* Never share your mnemonic phrase with anyone.
* Always write down your seed phrase with a pen and paper.
e Store the paper with your seed phrase on it somewhere safe.

* Never give your seed phrase to anyone, not even support staff.

At BandChain, we offer a simple method for generating a mnemonic phrase to create a BandChain account using either PyBand or
BandChain.js.

import { wWallet } from "@bandprotocol/bandchain.js";
const { PrivateKey } = Wallet

const [mnemonic, privateKey] = PrivateKey.generate('"m/44'/494'/0'/0/0")
const address = PrivateKey.fromMnemonic(mnemonic).toPubkey().toAccBech32() // bandlycw2277nurr5zymw7exq:

Querying an Account

You can query an account address using the Band CLI or REST clients:

Query account address using bandd
bandd keys show <key-name> -a

Query account address using REST client

GET /cosmos/auth/vibetal/accounts/{address}
curl -X GET "https://laozil.bandchain.org/api/cosmos/auth/vlbetal/accounts/bandlycs4g7xu8wmf7n4vwwtfsvh1

Wallets

As mentioned earlier, building on the CosmosSDK allows us to enable our users to interact with BandChain using Cosmos native
wallets. The most popular Cosmos and IBC-enabled wallets are supported on BandChain. These include:

1. Cosmostation

2. Ledger

https://docs.bandchain.org/
https://docs.cosmos.network/main/basics/accounts.html
https://github.com/satoshilabs/slips/blob/master/slip-0044.md
https://en.bitcoin.it/wiki/Bech32
https://github.com/confio/cosmos-hd-key-derivation-spec
https://docs.bandchain.org/develop/developer-tools/pyband/wallet#from_mnemonicword-path
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet#frommnemonicword-path
https://www.cosmostation.io/
https://www.ledger.com/
https://docs.bandchain.org/core-concepts/gas-and-fee
https://docs.bandchain.org/core-concepts/protocol-messages
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/core-concepts/gas-and-fee
https://docs.bandchain.org/core-concepts/accounts-and-wallets
https://docs.bandchain.org/core-concepts/protocol-messages
https://docs.bandchain.org/core-concepts/oracle-modules
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/lite-client-protocol
https://docs.bandchain.org/core-concepts/on-chain-payment-protocol
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

@ Band Protocol

Band Protocol Documentation

Introduction

Core Concepts v
BAND Token
Gas and Fees
Accounts and Wallets
Protocol Messages
Protobuf Documentation
Cosmos IBC Integration
Decentralized Validator Sampling
Lite Client Protocol
On-chain Payment

Oracle WebAssembly (Owasm)
Products
Develop
Nodes & Validators

Staking

111 Core Concepts

Protocol Messages

Protocol Messages

@ PRE-REQUISITE READINGS

e Cosmos SDK Messages

Native Cosmos SDK Messages

Stemming from its Cosmos SDK foundation, BandChain supports all types of messages that are native to the SDK.

BandChain Specific Messages

Apart from the messages that stems from the Cosmos SDK, BandChain also supports a number of messages native to its data

oracle system. These messages' specification is presented below.

MsgCreateDataSource

Deploys and registers a new data source to BandChain. Once registered, the data source is assigned a unique int64 identifier

which can be used to refer to it forever.

Parameters
Parameter Type
Sender sdk.AccAddress
Owner sdk.AccAddress
Name string
Description string
Executable []byte
Treasury sdk.AccAddress
Fee sdk.Coins
MsgEditDataSource

The

Description

address of the message's sender. Note that the sender does not need to be the same as

the owner

The address of the entity who will be responsible for maintaining the data source

The human-readable string name for this data source

The description of this data source

The content of executable to be run by block upon receiving a data request for this data

source. The executable can be in any format, as long as it is accepted by the general public.

Treasury is the account address who receive data source fee from requester.

Fee is the data source fee per AskCount that data provider will receive from requester.

Edits an existing data source given the unique int64 identifier (i.e. dataSourcelID). The sender must be the owner of the data

source for the transaction to succeed.

Description

The unique identifier number assigned to the data source when it was first registered

The address of the message's sender. Note that the sender does not need to be the same

as the owner

The address of the entity who will be responsible for maintaining the data source

The human-readable string name for this data source

The description of this data source

The content of executable to be run by block validators upon receiving a data request for

this data source. The executable can be in any format, as long as it is accepted by the

general public.

Treasury is the account address who receive data source fee from requester.

Fee is the data source fee per AskCount that data provider will receive from requester.

Parameters
Parameter Type
DataSourcelD int64
Sender sdk.AccAddress
Owner sdk.AccAddress
Name string
Description string
Executable [Jbyte
Treasury sdk.AccAddress
Fee sdk.Coins
MsgCreateOracleScript

Deploys a new oracle script to BandChain's network. Once registered, the script is assigned a unique int64 identifier which can be

used to refer to it forever.
Parameters
Parameter Type
Sender sdk.AccAddress
Owner sdk.AccAddress
Name string
Description string
Code [byte
Schema string
Source Code
string
URL
MsgEditOracleScript

Description

The address of the message's sender. Note that the sender does not need to be the

same as the owner

The address of the entity who will be responsible for maintaining the oracle script

The human-readable string name for this oracle script

The description of this oracle script

The Owasm-compiled binary attached to this oracle script

The schema detailing the inputs and outputs of this oracle script, as well as the
corresponding types

The URL for the source code of this oracle script

Edits an existing oracle script given the unique int64 identifier (i.e. oracleScriptID). The sender must be the owner of the

oracle script for the transaction to succeed.

Parameters
Parameter Type
OracleScriptID int64
Sender sdk.AccAddress
Owner sdk.AccAddress
Name string
Description string
Code [byte
Schema string
Source Code .
string

URL

MsgRequestData

Description

The unique identifier number assigned to the oracle script when it was first registered on

Bandchain

The address of the message's sender. Note that the sender does not need to be the

same as the owner

The address of the entity who will be responsible for maintaining the oracle script

The human-readable string name for this oracle script

The description of this oracle script

The Owasm-compiled binary attached to this oracle script

The schema detailing the inputs and outputs of this oracle script, as well as the

corresponding types

The URL for the source code of this oracle script

Requests a new data based on an existing oracle script. A data request will be assigned a unique identifier once the transaction is

confirmed. After sufficient validators report the raw data points. The results of the data requests will be written and stored

permanently on BandChain for future uses.

Parameters

Parameter

Type

OracleScriptID int64

Sender sdk.AccAddress

Calldata string

AskCount int64

MinCount int64

ClientID string
MsgReportData

Description

The unique identifier number assigned to the oracle script when it was first registered on
Bandchain

The address of the message's sender.

The data passed over to the oracle script for the script to use during its execution

The number of validators that are requested to respond to this request

The minimum number of validators necessary for the request to proceed to the execution

phase

the unique identifier of this oracle request, as specified by the client. This same unique ID

will be sent back to the requester with the oracle response.

Reports raw data points for the