
Band Protocol Documentation

Band Protocol Documentation
Introduction
Band Protocol is a cross-chain data oracle platform with the aspiration to build high-quality suites of web3 development products. We
provides reliable, secure, and real-time data to smart contracts on various blockchain networks. It was designed to address the
growing demand for accurate and timely data for blockchain-based applications.

This documentation provides a comprehensive guide to the BandChain protocol, including its architecture, functionalities, client
libraries, and tools. It also covers the best practices and use cases for integrating BandChain into your blockchain applications.

Getting Started
Get familiar with BandChain and explore its main concepts.

Introduction to BandChain

High-level overview of the BandChain

Core Concepts

Learn about the core concepts of
BandChain, including tokenomics, gas and
fees, and more.

Products

Learn about the products that BandChain
offers, including the Standard Dataset and
,VRF, and more.

Developer Guides

Learn how to use Band's integration tools to
integrate Band's oracle data into your
applications.

Node & Validators

Learn how to run a BandChain node and
become a validator to earn rewards.

Development Stack
Check out the docs for the various parts of BandChain's core technical stack.

Cosmos SDK

The blockchain framework powering
BandChain

WebAssembly

The standard underpinning BandChain's data
oracle script

ReScript

The core language of our CosmoScan block
explorer

Help & Support
Get in touch with Band Protocol devs and our community.

Devloper Discord

Chat with Band Protocol Developers on
Discord.

Telegram Group

Join our Telegram group to get support from
our team.

Found an Issue?

Help us improve this page by suggesting
edits on GitHub.

Next
High-Level Overview »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/introduction/overview
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/products/band-standard-dataset/introduction
https://docs.bandchain.org/develop/developer-guides/how-to-use-bandchain
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/getting-started
http://docs.cosmos.network/
https://webassembly.org/
https://rescript-lang.org/
https://100x.band/discord
https://100x.band/tg
https://github.com/bandprotocol/bandchain-docs/edit/master/docs/README.md
https://docs.bandchain.org/introduction/overview
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Introduction High-Level Overview

High-Level Overview
Band Protocol is a cross-chain data oracle aggregating and connecting real-world data and APIs to smart contracts.

The protocol is built on top of BandChain, a Cosmos-SDK-based blockchain designed to be compatible with most smart contract and
blockchain development frameworks.

The network is designed to modularize and offload the heavy and resource-intensive tasks (i.e., fetching data from external sources
aggregating them) from the smart contract platforms onto itself. This not only prevents such tasks from congesting or causing high
transaction fees on the destination network, but the same data points can be packaged, used, and verified efficiently across multiple
blockchains.

Its flexible design allows developers to query any range of data types, including both on-chain data (token balances, transaction
data, etc.), real-world events (sports scores, flight status, weather, etc.), and any data that is available through the web or any other
mediums (stocks/token prices, random numbers, etc.)

Since the launch of our GuanYu mainnet back in October 2020, we have seen an exponential increase in adoption in a diverse array
of use cases. From applications in lending, money markets, gambling, asset, and tokenization, to both on-chain and real-world
insurance.

With the Phase 2 (Laozi) upgrade, we aim to expand further the scope of what is possible with our oracle through multiple ways.
Two, in particular, includes the option for data providers to receive payment directly on-chain from developers using their services on
BandChain, and allowing for cross-chain oracle requests through the Inter-Blockchain Communication (IBC) standard.

The new feature also enables a new cohort of products and services that Band oracle can provide to developers. Some examples of
these are a more decentralized price oracle, verifiable randomness, and facilitating cross-chain communication.

Previous
« Band Protocol Documentation

Next
The Need for Oracles »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

High-Level Overview

The Need for Oracles

The BandChain Oracle

How BandChain Works?

Example Use Cases

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://bandprotocol.com/
https://github.com/bandprotocol/chain
https://medium.com/bandprotocol/bandchain-phase-1-successful-mainnet-upgrade-and-guanyu-launch-ac2d0334da77
https://ibc.cosmos.network/
https://docs.bandchain.org/
https://docs.bandchain.org/introduction/oracle
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/introduction/overview
https://docs.bandchain.org/introduction/oracle
https://docs.bandchain.org/introduction/oracle-and-bandchain
https://docs.bandchain.org/introduction/how-bandchain-works
https://docs.bandchain.org/introduction/example-use-cases
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Introduction The Need for Oracles

The Need for Oracles
Smart contracts are significant at immutable storage and verifiable transaction, but their use cases have previously been restricted
due to their access to outside data. Most blockchains are neither aware of anything going on in the real world, nor can they access
any data not native to the chain itself.

The data that they could not previously access includes any data available on the traditional web, as well as those accessible
through APIs. When you start to consider just how many of the products and tools we use today rely on these data, the problem
becomes apparent.

While there has been a multitude of efforts to solve this issue, most of the solutions have come to meet at least one of three main
limitations.

1. Centralization Existing data solutions such as API feeds and some other oracle solutions are centralized by design. This not
only goes against the ideology of decentralization and trustlessness but also represents a severe potential security flaw. Relying
on a central authority to report data means that you are exposing yourself to the possibility of data manipulation and outages,
both of which can have catastrophic implications on any services that depend on it, not to mention on the end users themselves.

2. Network Congestion Most of the existing oracle solution of them are constrained by network congestion. This is mostly the result
of the solution being on the same blockchain as the application itself -- competing for block order. Thus, if the blockchain’s
network were to become full with pending transactions, the data request transaction themselves would also be delayed.

3. High Cost they are expensive. This comes from both the cost to research, develop, and deploy the solution, as well as the
various costs associated with operating and maintaining it in the long run.

Previous
« High-Level Overview

Next
The BandChain Oracle »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

High-Level Overview

The Need for Oracles

The BandChain Oracle

How BandChain Works?

Example Use Cases

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/introduction/overview
https://docs.bandchain.org/introduction/oracle-and-bandchain
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/introduction/overview
https://docs.bandchain.org/introduction/oracle
https://docs.bandchain.org/introduction/oracle-and-bandchain
https://docs.bandchain.org/introduction/how-bandchain-works
https://docs.bandchain.org/introduction/example-use-cases
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Introduction The BandChain Oracle

The BandChain Oracle
The BandChain Oracle solution serves as an intermediary layer that operates between smart contract platforms or decentralized
applications and various data providers.

The primary function of the oracles is as follows:

1. Responding to data requests from dApps

2. Querying data from the corresponding providers, and

3. Reporting results back to the application.

4.

BandChain Oracle stands out from other oracle solutions in four key areas:

1. Decentralization: Our solution is built on a decentralized network of validators, ensuring that data is secure and transparent.

2. Flexibility: BandChain Oracle supports a wide range of data sources and formats, making it easy to integrate with existing
systems.

3. Scalability: Our solution is designed to handle high volumes of data requests, ensuring that your business can grow and scale
without interruption.

4. Cost: Users can request data only when they need to and pay the associated fees on a per-request basis, making it significantly
more cost-effective than updating the price of an entire set of assets when only the latest price of one is needed

Decentralization
BandChain Oracle is designed with maximum redundancy in its infrastructure to ensure decentralization at both the consensus and
data source level.

To achieve this, BandChain is operated by a globally distributed pool of validators whose actions can be easily monitored and
verified by anyone. When a data request is made, validators are responsible for fetching the results.

To provide an additional layer of redundancy, the results are taken from multiple data sources. BandChain's delegated proof of stake
design also ensures that validators have monetary incentives to properly and accurately report data, or risk losing capital and
reputation.

Moreover, the entire data request flow is publicly available for viewing, verification, and auditing by anyone.

Flexibility
BandChain offers maximum customization and flexibility to its users through its data source and oracle scripts. These scripts allow
users to query and compute their desired data feed with ease.

Data source scripts are custom scripts that allow users to query data from their desired sources. This data can then be fed into
oracle scripts, which report back with the desired data feed.

Oracle scripts are pieces of code that define the logic of the data request. These scripts specify two things:

the set of data sources that validators query data from

the method to aggregate the result from those data sources into the final result.

These scripts can be programmed in multiple programming languages and function similarly to smart contracts.

Scalability
BandChain is designed specifically for oracle data requests and computations, which sets it apart from general-purpose blockchains.

This design results in several benefits, such as an average block time of just 3 seconds, compared to Ethereum's 10-15 seconds
and Bitcoin's 10 minutes. As a result, data request transactions are received and resolved quickly.

Furthermore, BandChain is optimized for heavy oracle computations, allowing it to offload these computations from the requester's
chain.

This optimization, coupled with the design of BandChain, means that an average data request to BandChain's oracle can be
expected to resolve in under six seconds. This allows BandChain Oracle to continuously enhance its throughput capacity with the
same base-level infrastructure.

With its own chain, the oracle core logic and operations do not need to be duplicated onto a new chain or App for each integration,
making integration with DApps streamlined and scalable.

Cost
In addition to its scalability, Band's oracle offers an economical approach to data requests. Users can request data only when they
need to and pay the associated fees on a per-request basis, making it significantly more cost-effective than updating the price of an
entire set of assets when only the latest price of one is needed.

Previous
« The Need for Oracles

Next
How BandChain Works? »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

High-Level Overview

The Need for Oracles

The BandChain Oracle

How BandChain Works?

Example Use Cases

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/introduction/oracle
https://docs.bandchain.org/introduction/how-bandchain-works
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/introduction/overview
https://docs.bandchain.org/introduction/oracle
https://docs.bandchain.org/introduction/oracle-and-bandchain
https://docs.bandchain.org/introduction/how-bandchain-works
https://docs.bandchain.org/introduction/example-use-cases
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Introduction How BandChain Works?

How BandChain Works?
BandChain is a high-performance public blockchain that allows anyone to make a request for APIs and services available on the
traditional web. It is built on top of the Cosmos SDK, and utilizes Tendermint's Byzantine Fault Tolerance consensus algorithm to
reach immediate finality. This finality is specifically reached upon getting confirmations from a sufficient number of block validators.

Goals
While the majority of existing smart contract platforms support trustless executions of arbitrary programs, they lack access to real-
world data. This limitation hinders the potential of the applications that are developed on those platforms.

BandChain solves this important issue by connecting public blockchains to real-world, off-chain information. The project was created
with the following design goals:

1. Speed and Scalability: The system must be able to serve a large quantity of data to multiple public blockchains with minimal
latency, while maintaining a high throughput. The expected response time must be in the order of seconds.

2. Cross-Chain Compatibility: The system must be blockchain-agnostic and able to serve data to most publicly available
blockchains. Verification of data authenticity on the target blockchains must be efficient and trustless by nature.

3. Data Flexibility: The system must be generic and able to support different methods of retrieiving and aggregating data, including
both permissionless, publicly available data as well as information guarded by centralized parties.

BandChain achieves the aforementioned goals with a blockchain specifically built for off-chain data curation. The blockchain supports
generic data requests and on-chain aggregation with WebAssembly-powered oracle scripts. Oracle results on BandChain blockchain
can be sent across to other blockchains via the Inter-Blockchain Communication protocol (IBC) or through customized one-way
bridges with minimal latency.

Terminology

Data Sources

A data source is the most fundamental unit in BandChain's oracle system. It defines the procedure to retrieve raw data from a
source and the fee associated with the data query.

On BandChain, a data source can be registered into the system by anyone. This is done through the registrant sending a
MsgCreateDataSource message to the chain. In this message, they specify various parameters the data source they wish to
register, including

the sender who wish to create the data source

the owner of the data source, if specified

the name of the data source

the per-query fee that someone looking to use that data source needs to pay

the executable to be run by validators upon receiving a data request for this data source

Examples

The following two examples illustrate what a data source executable might look like. Both examples are written in bash.

Retrieve Cryptocurrency Price from CoinGecko

The data source requires that cURL and jq are installed on the executable runner's machine and expects one argument; the
currency ticker symbol.

Resolve Hostname to IP Addresses

Again, this script assumes that getent and awk are available on the host and the host is connected to the DNS network.

Oracle Scripts

When someone wants to request data from BandChain, however, it is not the data sources that they interact with. Instead, they do
so by calling one of the available oracle scripts.

An oracle script is an executable program that encodes:

the set of raw data requests to the data sources it needs

the way to aggregate raw data reports into the final result

Oracle scripts are also Turing-complete and can be programmed in multiple languages. This composability and Turing-completeness
makes oracle scripts very similar to smart contracts.

To create an oracle script, the creator must broadcast a MsgCreateOracleScript to BandChain. The contents of the message is
simlar to MsgCreateDataSource , and includes:

the sender who wishes to create the oracle script

the owner of the oracle script, if specified

the name of the oracle script

the OWasm compiled binary attached to this oracle script

the schema detailing the inputs and outputs of this oracle script, as well as the corresponding types

the URL for the source code of this oracle script

Similar to data sources, the sender who wishes to create the oracle script does not have to be the same as the owner of the oracle
script specified in the message.

The execution flow of an oracle script can then be broken down into two phases.

In the first phase, the script outlines the data sources that are required for its execution. It then sends out a request to the chain's
validators to retrieve the result from the required data sources. The content of this consists of the data sources' execution steps and
the associated parameters.

The second phase then aggregates all of the data reports returned by the validators, with each report containing the values the
validator received from the required data sources. The script then proceeds to combine those values into a single final result.

Note that the specifics of the aggregation process is entirely up to the design of the oracle script. BandChain does not enforce any
regulations when it comes to the aggregation method used, and entirely leaves that design decision to the creator of the script or
any subsequent editors.

Example

The pseudocode below shows an example of an oracle script that returns the current price of a cryptocurrency. The script begins by
emitting requests to validators to query the price from three data sources (i.e. the request function calls to CoinGecko,
CryptoCompare, CoinMarketCap inside prepare). Once a sufficient number of validators have reported the prices, the script then
aggregates and averages out the reported values results into a single final result (the aggregate function).

In this particular oracle script, the aggregation process starts by summing all of the price values returned by the validators across all
data sources, as well as the total number of reports returned. It then simply divides the summed price value with the number of data
reports returned to arrive at the final average value.

Raw Data Reports

Raw data reports are the results that BandChain's validators return when they have successfully responded to a data request and
subsequently retrieved results from the required data sources. In these reports, the validators list out the result they got from each
data source, using the data source's external ID as the reference key. The external ID is the identifier used to reference a data
source within an oracle script, and each data source's external ID is unique within the context of that script.

Oracle Request Proof

When the final data request result is successfully stored onto BandChain, an oracle data proof is produced. This proof is a Merkle
proof that shows the existence of the final result of the data request on BandChain. In addition to the actual result value of the
request, the proof contains information on the request parameters (oracle script hash, the parameters, the time of execution, etc) as
well as as well as those of the associated response (e.g. number of validators that responded to the request). This proof can then be
used by smart contracts on other blockchain to verify the existence of the data as well as to decode and retrieve the result stored.
Both of these can be done by interacting with our lite client.

Network Participants
BandChain's network consists of a number of network participants, each owning BAND tokens. In the Laozi mainnet, these
participants can be broken down into three main groups; validators, delegators, and data providers.

Validators

MORE INFO

How validator be choosing

Validators are responsible for performing two main functions on the network. First, they are responsible for proposing and committing
new blocks to the blockchain. They participate in the block consensus protocol by broadcasting votes which contain cryptographic
signatures signed by each validator's private key. This is similar to most other Cosmos-based delegated proof-of-stake blockchains.

Each validator will have a certain amount of BAND tokens bonded to them. The source of these tokens can either be their own
holdings, or the tokens delegated to them by other token owners. In most cases, there will be a large number of parties with tokens
staked to them. In that case, the top 100 validator candidates with the most token staked to them will become BandChain’s
validators.

The role the validators described above is similar to those of validators on many other Cosmos-based blockchains. In addition, most
transactions supported by BandChain (asset transfer, staking, slashing, etc.) are also derived from Cosmos-SDK.

What makes BandChain unique, and the origin of the validators' second duty, is the chain's capability to natively support external
data query. This role will be further explore in the Oracle Data Request Flow section.

Delegators

The second main group of participants are then the individual BAND token holders. On BandChain, BAND holders do not stake their
tokens directly, but delegate holdings to a validator. This allows token holders who don't want to set up a validator node to participate
in staking rewards.

Data Providers

Finally, the Laozi upgrade introduces a new third kind of participant in the BandChain network: data providers.

With the introduction of on-chain payments, API or data providers can now monetize their data and services directly on BandChain.
This new flexibility benefits the network in multiple ways.

Data providers now have a new medium to collect revenue from. As the fees are collected per-query, the revenue that they stand to
collect will scale alongside the adoption and usage of BandChain and our oracle as a whole.

The option for data providers to monetize their services directly on-chain will also bring official support for premium and paid data
sources onto BandChain. This will allow any developer building on BandChain to access a much wider array of providers and data
types they can choose from, enabling BandChain oracle infrastructure to power a much wider range of applications and services.

Oracle Data Request Flow
The flow of requesting data from BandChain can be broken down into four main steps:

1. Publishing the necessary data sources and oracle scripts to the network

2. Sending the oracle data request transaction

3. Fetching the necessary data

4. Aggregating and storing the request result onto BandChain

1. Publishing Data Sources and Oracle Scripts

Before any data requests can be made, two conditions must be met:

1. The oracle script that describes the data request must also have been published to Bandchain via Msg

2. The data sources related to the aforementioned oracle script must be published to BandChain

2. Oracle Data Request Initialization

Once the required data sources and oracle scripts are published, the user can initiate data request to Band's oracle by broadcasting
MsgRequestData . The contents of the message includes the ID of the oracle script that the requester wants to invoke and other
query and security parameters.

Once the data transaction is confirmed on BandChain, the requested oracle script will begin its execution. The script's execution
process can be split into two phases.

3. Fetching the Data

First, the oracle script's preparation function will emit the set of raw data requests necessary to continue the script's execution. The
chain's validators, who are chosen at random for security reasons, will then inspect the raw data requests and execute the
associated data sources' procedures as instructed by the request. Specifically, each of the chosen validator will attempt to retrieve
information from all of the data sources specified in the executed oracle script.

The validators that successfully retrieved data from all the sources will then submit a raw data report to BandChain, containing the
results they got from each of the data sources, by broadcasting MsgReportData . Once a sufficient number of validators, specified
in the data request’s security parameters, have reported the their results, BandChain will begin executing the oracle script’s second
part of aggregating request result.

Note that for data from permissioned sources (e.g. under paywall), the data sources are expected to verify that payment has
occurred on BandChain and supply data to requested validators accordingly. That way, BandChain allows API providers to monetize
data with BandChain's on-chain payment settlement without needing to trust a middleman party.

4. Aggregating and Request Result Storage

This phase begins by aggregating all of the validators' reports (which contains the data each received from the data sources) into a
final single result. This final result is then permanently stored in BandChain's application state. Once stored, the result becomes
available on the chain's state tree and can be sent to other blockchain.

When the final result is successfully stored, an oracle data proof is also produced. This proof is a Merkle proof that shows the
existence of the final result of the data request as well as other related information (oracle script hash, the parameters, the time of
execution, etc) on BandChain. This proof can then be used by smart contracts on other blockchain to verify the existence of the data
as well as to decode and retrieve the result stored. Both of these can be done by interacting with our lite client.

Previous
« The BandChain Oracle

Next
Example Use Cases »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

High-Level Overview

The Need for Oracles

The BandChain Oracle

How BandChain Works?

Example Use Cases

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

#!/bin/sh

Cryptocurrency price endpoint: https://www.coingecko.com/api/documentations/v3

URL="https://api.coingecko.com/api/v3/simple/price?ids=$1&vs_currencies=usd"

KEY=".$1.usd"

Performs data fetching and parses the result

curl -s -X GET $URL -H "accept: application/json" | jq -r ".[\"$1\"].usd"

#!/bin/sh

getent hosts $1 | awk '{ print $1 }'

1st Phase. Emits raw data requests that the oracle script needs.

def prepare(symbol):

 request(get_px_from_coin_gecko, symbol)

 request(get_px_from_crypto_compare, symbol)

 request(get_px_from_coin_market_cap, symbol)

2nd Phase. Aggregates raw data reports into the final result.

def aggregate(symbol, number_of_reporters):

 data_report_count = 0

 price_sum = 0.0

 for reporter_index in range(number_of_reporters):

 for data_source in (

 get_px_from_coin_gecko,

 get_px_from_crypto_compare,

 get_px_from_coin_market_cap,

):

 price_sum = receive(reporter_index, data_source, symbol)

 data_report_count += 1

 return price_sum / data_report_count

Band Protocol Search K

https://docs.bandchain.org/
http://cosmos.network/
https://tendermint.com/
https://en.wikipedia.org/wiki/Byzantine_fault
https://docs.bandchain.org/core-concepts/protocol-messages#msgcreatedatasource
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://en.wikipedia.org/wiki/CURL
https://github.com/stedolan/jq
https://en.wikipedia.org/wiki/Getent
https://en.wikipedia.org/wiki/AWK
https://en.wikipedia.org/wiki/Smart_contract
https://docs.bandchain.org/core-concepts/protocol-messages#msgcreateoraclescript
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://github.com/bandprotocol/bandchain/wiki/Lite-Client-Protocol
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/protocol-messages#msgreportdata
https://docs.bandchain.org/introduction/oracle-and-bandchain
https://docs.bandchain.org/introduction/example-use-cases
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/introduction/overview
https://docs.bandchain.org/introduction/oracle
https://docs.bandchain.org/introduction/oracle-and-bandchain
https://docs.bandchain.org/introduction/how-bandchain-works
https://docs.bandchain.org/introduction/example-use-cases
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Introduction Example Use Cases

Example Use Cases
Decentralized Standard Price Reference
Since the initial launch of the Standrd Dataset back in October 2020, we have seen an exponential increase in adoption and usage
of Band's price oracles across numerous chains and sectors.

As this trend continues to propagate, the need for stronger decentralization and robustness of our price feed becomes ever more
crucial.

With the next major upgrade of our Standard Dataset, we will be adding a new mechanism that will allow anyone to send price
update transactions to our oracle contract themselves, all secured and verified by our lite client verification architecture and a
challenge mechanism.

Verifiable Random Number Generators
Aside from our Standard Dataset price oracle, the flexibility offered by Band's oracle design also allow it to support countless other
use cases and data types.

One of these this is our upcoming Verifiable Random Function (VRF) functionality. This aims to provide a provable and verifiable
source of randomness to smart contracts on any network supported by Band's oracle.

By providing a tamper-proof method of generating unpredictable yet verifiably random values, this upcoming addition to Band's
oracle functionality will greatly extend the range of applications and use cases that Band can support. Examples of such areas are:

NFTs

gambling

randomized selection

This feature is currently in active development and we will have much more to share on this soon.

Cross Chain Communication
BandChain's infrastructure design decision to be cross-chain compatible and operate on independent blockchain prepares its role as
a key player in the ever-growing cross-chain and multi-chain narratives.

We believe that oracles such as Band will not only be useful wihtin the context of a single destination chain, but also will a core
infrastructure in relaying information and faciliating communication between two independent chain.

This can be in the form of verifying token transfer transactions when bridging assets across chain, relaying transaction between
chain, or any other arbitrary number of data or actions that needed to be tranasferred across networks.

Previous
« How BandChain Works?

Next
BAND Token »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

High-Level Overview

The Need for Oracles

The BandChain Oracle

How BandChain Works?

Example Use Cases

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/introduction/how-bandchain-works
https://docs.bandchain.org/core-concepts/token-economics
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/introduction/overview
https://docs.bandchain.org/introduction/oracle
https://docs.bandchain.org/introduction/oracle-and-bandchain
https://docs.bandchain.org/introduction/how-bandchain-works
https://docs.bandchain.org/introduction/example-use-cases
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Core Concepts BAND Token

BAND
BAND is BandChain's native staking token. Staked holders can govern and decide the future of the protocol.

BandChain Tokenomics

Inflation

BandChain applies an inflationary model to the BAND token, which incentivizes network participation by token holders. The aim is to
encourage token holders to stake their coins on the network, rather than focusing solely on trading or leaving their coins idle.

The specific inflation parameters currently mirror those of the Cosmos network. The annual inflation rate ranges from 7% to 20% and
is adjusted to target having 66% of the total supply of BAND tokens staked.

To illustrate how inflation incentivizes staking, consider a network participant with a certain amount of holdings. With inflation, if the
participant chooses not to use their coins to participate in the network's activities, they will find that the percentage of their holdings
with respect to the total supply decreases over time. However, if they decide to stake their coins, they will receive a share of coins
proportional to the inflation, meaning their total token holding ratio will remain relatively unchanged.

Validators and Stakers

Similar to other Cosmos-based blockchains, one of the responsibilities of BandChain validators is to provision new blocks and
process transactions. By performing these tasks, they earn BAND tokens as a reward. In the case of block provisioning, the reward
comes from newly minted tokens on that block. Conversely, the reward for processing transactions comes from the fees that each
validator chooses to set. Note that a percentage of the total block reward is diverted to the community fund pool.

Those who do not wish to become validators can still earn a portion of the validator rewards by becoming delegators. This is done
by staking their holdings on the network's validators. By doing so, they will share the revenue earned by those validators.

The amount of reward each validator receives is based on the total amount of tokens staked to them. Before this revenue is
distributed to their delegators, a validator can apply a commission. In other words, delegators pay a commission to their validators
on the revenue they earn.

However, while delegators share the revenue of their validators, they also share the risks. Therefore, it is imperative for potential
delegators to understand those risks, and that being a delegator is not a passive task.

Some actions that a delegator should perform are:

Perform due diligence on the validators you wish to stake on before committing: If a validator you staked on misbehaves, a
portion of the validator's stake, including those of their delegators, are slashed. Therefore, it is advisable for delegators to
carefully consider their staking choices.

Actively monitor the validators you've committed to: Delegators should ensure that the validators they delegate to behave
correctly, meaning that they have good uptime, do not double sign or get compromised, and participate in governance.

Participate in network governance: Delegators are expected to participate in network governance activities. A delegator’s voting
power is proportional to the size of their bonded stake. If a delegator does not cast their vote, they will inherit the vote of the
validators they staked on. If they do vote, they instead override the vote of those validators. Delegators, therefore, act as an
important counterbalance to their validators.

Community Fund Pool

Two percent of the total block rewards are diverted to the community fund pool. The funds are intended to promote the long-term
sustainability of the ecosystem. These funds can be distributed in accordance with the decisions made by the governance system.

Slashing

If a validator misbehaves, their delegated stake will be partially slashed.

There are three reasons why a validator may be slashed:

Excessive downtime

Double signing, and

Unresponsiveness.

The first two are derived from the Cosmos SDK, while the third is specific to BandChain.

Excessive Downtime

One of the validators' primary functions is to propose and subsequently commit new blocks onto the chain. Thus, if a validator has
not participated in more than [MIN_SIGNED_PER_WINDOW] of the last [SIGNED_BLOCK_WINDOW] block proposals and commits, we
will consider that they are not performing their function properly. Consequently, we will slash the total value staked to them by
[SLASH_FRACTION_DOWNTIME] .

Double Signing

During a double signing, the block proposer in the consensus round attempts to create two conflicting blocks and broadcast them to
the network. If there are any other validators who stand to profit from this double block-proposal, they will vote for both blocks.

If the votes pass, nodes on the network will see two different blocks at the same height, each with different contents and hashes.
From this point on, the network has “forked”. The consequence of this is that there will now be two versions of the “truth”.

To prevent such attempts at double signing, Cosmos, and by extension BandChain, is implemented so that any validator that double-
signs is slashed, with the slashed amount being [SLASH_FRACTION_DOUBlESIGNING] of all tokens bonded to them.

Unresponsiveness

Finally, we also slash validators if they consistently fail to respond to data requests. If a validator fails to respond to
[CONSECUTIVE_UNRESPONSIVE_REQUESTS] consecutive requests, they will be slashed an amount equal to
[SLASH_FRACTION_UNRESPONSIVENESS] .

Previous
« Example Use Cases

Next
Gas and Fees »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

BAND Token

Gas and Fees

Accounts and Wallets

Protocol Messages

Protobuf Documentation

Cosmos IBC Integration

Decentralized Validator Sampling

Lite Client Protocol

On-chain Payment

Oracle WebAssembly (Owasm)

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/introduction/example-use-cases
https://docs.bandchain.org/core-concepts/gas-and-fee
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/core-concepts/gas-and-fee
https://docs.bandchain.org/core-concepts/accounts-and-wallets
https://docs.bandchain.org/core-concepts/protocol-messages
https://docs.bandchain.org/core-concepts/oracle-modules
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/lite-client-protocol
https://docs.bandchain.org/core-concepts/on-chain-payment-protocol
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Core Concepts Gas and Fees

Gas and Fees
PRE-REQUISITE READINGS

Cosmos SDK Gas

Introduction to Gas and Network Fees
In the Cosmos SDK, gas is a unit that is used to track the consumption of resources during process execution. It is typically
consumed during read/write operations, or whenever a computationally expensive operation is performed.

The purpose of gas is twofold:

1. To prevent blocks from consuming excessive resources, thus ensuring that the block will be finalized

2. To prevent abuse from a malicious actor on the user side

Gas consumed during message execution is typically priced, resulting in a fee

Fees generally have to be paid by the sender of the message.

Meanwhile, each block validator can subjectively establish the minimum gas fee that must be reached for them to process the
transaction and choose whatever transactions it wants to include in the block that it is proposing, as long as the total gas limit is not
exceeded.

Gas Estimation
This section we will compare gas usage on each message type to compare how many fee that user need to pay to do these actions.

Message Estimated fee

MsgSend ~70k

MsgDelegate ~120k

MsgWithdrawReward ~100k

MsgTransfer(IBC) ~85k

MsgUpdateClient + MsgReceivePacket (Transfer packet) ~350k

MsgRequestData* >500k upto 5m

MsgUpdateClient + MsgReceivePacket (Oracle request packet)* >560k upto 5m

MsgCreateDataSource / MsgEditDataSource** 30k - 100k

MsgCreateOracleScript / MsgEditOracleScript** 500k - 2m

(*) The gas is used on MsgRequestData or process oracle request packet based on complexity of oracle script and how many
validator need to query data on this request.

(**) Based on size of data source and oracle script mostly data source should be smaller than oracle script.

Previous
« BAND Token

Next
Accounts and Wallets »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

BAND Token

Gas and Fees

Accounts and Wallets

Protocol Messages

Protobuf Documentation

Cosmos IBC Integration

Decentralized Validator Sampling

Lite Client Protocol

On-chain Payment

Oracle WebAssembly (Owasm)

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

fee = gas * gasPrice

Band Protocol Search K

https://docs.bandchain.org/
https://docs.cosmos.network/main/basics/gas-fees
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/core-concepts/accounts-and-wallets
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/core-concepts/gas-and-fee
https://docs.bandchain.org/core-concepts/accounts-and-wallets
https://docs.bandchain.org/core-concepts/protocol-messages
https://docs.bandchain.org/core-concepts/oracle-modules
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/lite-client-protocol
https://docs.bandchain.org/core-concepts/on-chain-payment-protocol
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Core Concepts Accounts and Wallets

Accounts and Wallets
RECOMMENDED READINGS

Cosmos SDK Accounts

Band Accounts
BandChain is a Cosmos SDK-based blockchain, which means it is compatible with the Cosmos SDK account system. However,
BandChain has its own custom Account type to implement in Hierarchical Deterministic (HD) wallets.

The BandChain coin type HD path is m/44'/494'/0'/0/0 . This path is used to derive BandChain addresses from a BIP44
standard HD wallet.

The first part of the path, m/44' , specifies the derivation path is based on BIP44 standard. The second part of the path, 494' ,
indicates the BandChain is the coin type for this address. The third part of the path, 0' , specifies that this is a hardened derivation
path, which means that the child keys can only be derived by someone who has the parent key. The fourth part of the path, 0 ,
specifies the account index which is used to generate multiple accounts from the same master key. The last path, 0 , specifies the
address index, which is used to generate multiple addresses for a single account.

Addresses and Public Keys
BandChain supports Bech32 (band...). The Bech32 format is the default format for Cosmos-SDK queries and transactions through
CLI and REST clients.

For example, a BandChain address might look like this: band18p27yl962l8283ct7srr5l3g7ydazj07dqrwph . This address can
be used to receive and send BandChain tokens and interact with smart contracts and dApps on the BandChain network.

Addresses and PubKeys are both public information that identifies actors in the application. Each account is identified using
Address which is a sequence of bytes derived from a public key.

In the BandChain, we define 3 types of addresses that specify a context where an account is used:

Types Address bech32 Prefix Pubkey bech32 Prefix Address byte length Pubkey byte length

Accounts band bandpub 20 33

Validators bandvaloper bandvaloperpub 20 33

Consensus Nodes bandvalcons bandvalconspub 20 33

Mnemonic and Address Generation
To create an account you can either create a private key, a keystore file (a file that contains your encrypted private key), or a
mnemonic phrase (a string of words that can access multiple private keys).

Mnemonic phrases also known as hierarchical deterministic key generation (HD keys). This allows the user to create accounts on
multiple blockchains without having to manage multiple secrets. We can think of the derived accounts as child accounts of the root
account created using the original mnemonic seed phrase.

A mnemonic phrase typically consists of 12, 24, or sometimes 16 words that are randomly generated from a pre-determined word
list. Each word in the list corresponds to a unique sequence of numbers, which are used to generate the private key for your wallet.
By writing down and securely storing your mnemonic phrase, you can always recover your BandChain account in case of loss or
damage to your device.

PROTECT YOUR SEED PHRASE

If the mnemonic phrase leaks, accounts cannot be derived without the initial password. If someone knows the mnemonic
phrase and the derivation path, they will have access to your account. To protect your seed phrase, consider the following tips.

Never share your mnemonic phrase with anyone.

Always write down your seed phrase with a pen and paper.

Store the paper with your seed phrase on it somewhere safe.

Never give your seed phrase to anyone, not even support staff.

At BandChain, we offer a simple method for generating a mnemonic phrase to create a BandChain account using either PyBand or
BandChain.js.

Querying an Account
You can query an account address using the Band CLI or REST clients:

Query account address using REST client

Wallets
As mentioned earlier, building on the CosmosSDK allows us to enable our users to interact with BandChain using Cosmos native
wallets. The most popular Cosmos and IBC-enabled wallets are supported on BandChain. These include:

1. Cosmostation

2. Ledger

Previous
« Gas and Fees

Next
Protocol Messages »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

BAND Token

Gas and Fees

Accounts and Wallets

Protocol Messages

Protobuf Documentation

Cosmos IBC Integration

Decentralized Validator Sampling

Lite Client Protocol

On-chain Payment

Oracle WebAssembly (Owasm)

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Example of mnemonic phrases used in BandChain

hedgehog pact leave raccoon empty various item profit uncover dune someone ball chat repair acquire midd

import { Wallet } from "@bandprotocol/bandchain.js";

const { PrivateKey } = Wallet

const [mnemonic, privateKey] = PrivateKey.generate("m/44'/494'/0'/0/0")

const address = PrivateKey.fromMnemonic(mnemonic).toPubkey().toAccBech32() // band1ycw2277nurr5zymw7exqf

Query account address using bandd

bandd keys show <key-name> -a

GET /cosmos/auth/v1beta1/accounts/{address}

curl -X GET "https://laozi1.bandchain.org/api/cosmos/auth/v1beta1/accounts/band1ycs4g7xu8wmf7n4vwwtfsvht

Band Protocol Search K

https://docs.bandchain.org/
https://docs.cosmos.network/main/basics/accounts.html
https://github.com/satoshilabs/slips/blob/master/slip-0044.md
https://en.bitcoin.it/wiki/Bech32
https://github.com/confio/cosmos-hd-key-derivation-spec
https://docs.bandchain.org/develop/developer-tools/pyband/wallet#from_mnemonicword-path
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet#frommnemonicword-path
https://www.cosmostation.io/
https://www.ledger.com/
https://docs.bandchain.org/core-concepts/gas-and-fee
https://docs.bandchain.org/core-concepts/protocol-messages
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/core-concepts/gas-and-fee
https://docs.bandchain.org/core-concepts/accounts-and-wallets
https://docs.bandchain.org/core-concepts/protocol-messages
https://docs.bandchain.org/core-concepts/oracle-modules
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/lite-client-protocol
https://docs.bandchain.org/core-concepts/on-chain-payment-protocol
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Core Concepts Protocol Messages

Protocol Messages
PRE-REQUISITE READINGS

Cosmos SDK Messages

Native Cosmos SDK Messages
Stemming from its Cosmos SDK foundation, BandChain supports all types of messages that are native to the SDK.

BandChain Specific Messages
Apart from the messages that stems from the Cosmos SDK, BandChain also supports a number of messages native to its data
oracle system. These messages' specification is presented below.

MsgCreateDataSource

Deploys and registers a new data source to BandChain. Once registered, the data source is assigned a unique int64 identifier
which can be used to refer to it forever.

Parameters

Parameter Type Description

Sender sdk.AccAddress
The address of the message's sender. Note that the sender does not need to be the same as
the owner

Owner sdk.AccAddress The address of the entity who will be responsible for maintaining the data source

Name string The human-readable string name for this data source

Description string The description of this data source

Executable []byte
The content of executable to be run by block upon receiving a data request for this data
source. The executable can be in any format, as long as it is accepted by the general public.

Treasury sdk.AccAddress Treasury is the account address who receive data source fee from requester.

Fee sdk.Coins Fee is the data source fee per AskCount that data provider will receive from requester.

MsgEditDataSource

Edits an existing data source given the unique int64 identifier (i.e. dataSourceID). The sender must be the owner of the data
source for the transaction to succeed.

Parameters

Parameter Type Description

DataSourceID int64 The unique identifier number assigned to the data source when it was first registered

Sender sdk.AccAddress
The address of the message's sender. Note that the sender does not need to be the same
as the owner

Owner sdk.AccAddress The address of the entity who will be responsible for maintaining the data source

Name string The human-readable string name for this data source

Description string The description of this data source

Executable []byte
The content of executable to be run by block validators upon receiving a data request for
this data source. The executable can be in any format, as long as it is accepted by the
general public.

Treasury sdk.AccAddress Treasury is the account address who receive data source fee from requester.

Fee sdk.Coins Fee is the data source fee per AskCount that data provider will receive from requester.

MsgCreateOracleScript

Deploys a new oracle script to BandChain's network. Once registered, the script is assigned a unique int64 identifier which can be
used to refer to it forever.

Parameters

Parameter Type Description

Sender sdk.AccAddress
The address of the message's sender. Note that the sender does not need to be the
same as the owner

Owner sdk.AccAddress The address of the entity who will be responsible for maintaining the oracle script

Name string The human-readable string name for this oracle script

Description string The description of this oracle script

Code []byte The Owasm-compiled binary attached to this oracle script

Schema string
The schema detailing the inputs and outputs of this oracle script, as well as the
corresponding types

Source Code
URL

string The URL for the source code of this oracle script

MsgEditOracleScript

Edits an existing oracle script given the unique int64 identifier (i.e. oracleScriptID). The sender must be the owner of the
oracle script for the transaction to succeed.

Parameters

Parameter Type Description

OracleScriptID int64
The unique identifier number assigned to the oracle script when it was first registered on
Bandchain

Sender sdk.AccAddress
The address of the message's sender. Note that the sender does not need to be the
same as the owner

Owner sdk.AccAddress The address of the entity who will be responsible for maintaining the oracle script

Name string The human-readable string name for this oracle script

Description string The description of this oracle script

Code []byte The Owasm-compiled binary attached to this oracle script

Schema string
The schema detailing the inputs and outputs of this oracle script, as well as the
corresponding types

Source Code
URL

string The URL for the source code of this oracle script

MsgRequestData

Requests a new data based on an existing oracle script. A data request will be assigned a unique identifier once the transaction is
confirmed. After sufficient validators report the raw data points. The results of the data requests will be written and stored
permanently on BandChain for future uses.

Parameters

Parameter Type Description

OracleScriptID int64
The unique identifier number assigned to the oracle script when it was first registered on
Bandchain

Sender sdk.AccAddress The address of the message's sender.

Calldata string The data passed over to the oracle script for the script to use during its execution

AskCount int64 The number of validators that are requested to respond to this request

MinCount int64
The minimum number of validators necessary for the request to proceed to the execution
phase

ClientID string
the unique identifier of this oracle request, as specified by the client. This same unique ID
will be sent back to the requester with the oracle response.

MsgReportData

Reports raw data points for the given data request. Each data point corresponds to a data source query issued during the data
request script's execution of prepare function.

Parameters

Parameter Type Description

RequestID int64 The unique identifier number of the particular request

Validator sdk.ValAddress The reporting validator's actual validator address

Reporter sdk.AccAddress
The address the reporting validator uses to sign when submitting the
report

Data
[]struct'{ externalDataId: int64, data:
[]byte }'

The array of raw data points. Each item corresponds to a data source
query.

MsgAddReporter

Registers an address to the list of addresses available to a validator when signing and submitting a report.

Parameters

Parameter Type Description

ValidatorAddress sdk.ValAddress The address of the validator wishing to add the reporter address to their list

ReporterAddress sdk.AccAddress The address to add to the validator's available addresses

MsgRemoveReporter

Remove a previously registered address from the list of addresses available to a validator when signing and submitting a report.

Parameters

Parameter Type Description

ValidatorAddress sdk.ValAddress The address of the validator wishing to add the reporter address to their list

ReporterAddress sdk.AccAddress The address to remove from the validator's available addresses

Previous
« Accounts and Wallets

Next
Protobuf Documentation »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

BAND Token

Gas and Fees

Accounts and Wallets

Protocol Messages

Protobuf Documentation

Cosmos IBC Integration

Decentralized Validator Sampling

Lite Client Protocol

On-chain Payment

Oracle WebAssembly (Owasm)

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.cosmos.network/main/building-modules/messages-and-queries#messages
https://docs.bandchain.org/core-concepts/accounts-and-wallets
https://docs.bandchain.org/core-concepts/oracle-modules
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/core-concepts/gas-and-fee
https://docs.bandchain.org/core-concepts/accounts-and-wallets
https://docs.bandchain.org/core-concepts/protocol-messages
https://docs.bandchain.org/core-concepts/oracle-modules
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/lite-client-protocol
https://docs.bandchain.org/core-concepts/on-chain-payment-protocol
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Core Concepts Protobuf Documentation

Protobuf Documentation
oracle/v1/oracle.proto

ActiveValidator

ActiveValidator is information of currently active validator

Field Type Label Description

address string Address is a validator address

power uint64 Power is an amount of token that the validator is holding

DataSource

DataSource is the data structure for storing data sources in the storage.

Field Type Label Description

owner string Owner is an address of the account who own the data source

name string Name is data source name used for display

description string Description is data source description used for display

filename string
Filename is string of file name used as reference for locating data
source file stored in bandchain nodes

treasury string
Treasury is the account address who receive data source fee from
requester.

fee cosmos.base.v1beta1.Coin repeated
Fee is the data source fee per ask_count that data provider will receive
from requester.

IBCChannel

IBCChannel is information of IBC protocol to allow communicating with other chain

Field Type Label Description

port_id string PortID is port ID used for sending response packet when request is resolved.

channel_id string ChannelID is channel ID used for sending response packet when request is resolved.

OracleRequestPacketAcknowledgement

OracleRequestPacketAcknowledgement encodes an oracle request acknowledgement send back to requester chain.

Field Type Label Description

request_id int64 RequestID is BandChain's unique identifier for this oracle request.

OracleRequestPacketData

OracleRequestPacketData encodes an oracle request sent from other blockchains to BandChain.

Field Type Label Description

client_id string
ClientID is the unique identifier of this oracle request, as specified
by the client. This same unique ID will be sent back to the
requester with the oracle response.

oracle_script_id int64
OracleScriptID is the unique identifier of the oracle script to be
executed.

calldata bytes
Calldata is the OBI-encoded calldata bytes available for oracle
executor to read.

ask_count uint64
AskCount is the number of validators that are requested to respond
to this oracle request. Higher value means more security, at a
higher gas cost.

min_count uint64
MinCount is the minimum number of validators necessary for the
request to proceed to the execution phase. Higher value means
more security, at the cost of liveness.

fee_limit cosmos.base.v1beta1.Coin repeated
FeeLimit is the maximum tokens that will be paid to all data source
providers.

request_key string
RequestKey is the key from request chain to match data source fee
payer on Bandchain

prepare_gas uint64 PrepareGas is amount of gas to pay to prepare raw requests

execute_gas uint64 ExecuteGas is amount of gas to reserve for executing

OracleResponsePacketData

OracleResponsePacketData encodes an oracle response from BandChain to the requester.

Field Type Label Description

client_id string ClientID is the unique identifier matched with that of the oracle request packet.

request_id int64 RequestID is BandChain's unique identifier for this oracle request.

ans_count uint64
AnsCount is the number of validators among to the asked validators that actually
responded to this oracle request prior to this oracle request being resolved.

request_time int64 RequestTime is the UNIX epoch time at which the request was sent to BandChain.

resolve_time int64
ResolveTime is the UNIX epoch time at which the request was resolved to the final
result.

resolve_status ResolveStatus
ResolveStatus is the status of this oracle request, which can be OK, FAILURE, or
EXPIRED.

result bytes
Result is the final aggregated value encoded in OBI format. Only available if status if
OK.

OracleScript

OracleScript is the data structure for storing oracle scripts in the storage.

Field Type Label Description

owner string Owner is an address of the account who own the oracle script

name string Name is oracle script name used for display

description string Description is oracle script description used for display

filename string
Filename is string of file name used as reference for locating compiled oracle script WASM
file stored in bandchain nodes

schema string
Schema is the schema of the oracle script input/output which is formatted in OBI format
e.g. "{symbol:string,multiplier:u64}/{px:u64}"

source_code_url string
SourceCodeURL is the URL of oracle script's source code. It is recommendded to store
source code on IPFS and get its URL to preserve decentralization.

Params

Params is the data structure that keeps the parameters of the oracle module.

Field Type Label Description

max_raw_request_count uint64
MaxRawRequestCount is the maximum number of data source raw requests a
request can make.

max_ask_count uint64 MaxAskCount is the maximum number of validators a request can target.

expiration_block_count uint64
ExpirationBlockCount is the number of blocks a request stays valid before it gets
expired due to insufficient reports.

base_owasm_gas uint64
BaseOwasmGas is the base amount of Cosmos-SDK gas charged for owasm
execution.

per_validator_request_gas uint64
PerValidatorRequestGas is the amount of Cosmos-SDK gas charged per
requested validator.

sampling_try_count uint64
SamplingTryCount the number of validator sampling tries to pick the highest
voting power subset of validators to perform an oracle task.

oracle_reward_percentage uint64
OracleRewardPercentage is the percentage of block rewards allocated to active
oracle validators.

inactive_penalty_duration uint64
InactivePenaltyDuration is the duration period where a validator cannot activate
back after missing an oracle report.

ibc_request_enabled bool
IBCRequestEnabled is a flag indicating whether sending oracle request via IBC
is allowed

PendingResolveList

PendingResolveList is a list of requests that are waiting to be resolved

Field Type Label Description

request_ids int64 repeated RequestIDs is a list of request IDs that are waiting to be resolved

PriceResult

PriceResult is a result from standard price reference

Field Type Label Description

symbol string Symbol is unit of data indicating what the data is. It is price currencies for this case.

multiplier uint64 Multiplier is a number used for left-shifting value to eliminate decimal digits

px uint64 Px is the actual data, which is rate number multiplied by the multiplier.

request_id int64 RequestID is oracle request ID that contains this price

resolve_time int64 ResolveTime is epoch timestamp indicating the time when the request had been resolved

RawReport

RawRequest is the data structure for storing raw reporter in the storage.

Field Type Label Description

external_id int64 ExternalID is an ID of the raw request

exit_code uint32
ExitCode is status code provided by validators to specify error, if any. Exit code is usually filled
by the exit code returned from execution of specified data source script. With code 0 means
there is no error.

data bytes
Data is raw result provided by validators. It is usually filled by the result from execution of
specified data source script.

RawRequest

RawRequest is the data structure for storing raw requests in the storage.

Field Type Label Description

external_id int64 ExternalID is an ID of the raw request

data_source_id int64 DataSourceID is an ID of data source script that relates to the raw request

calldata bytes Calldata is the data used as argument params for executing data source script

Report

Report is the data structure for storing reports in the storage.

Field Type Label Description

validator string Validator is a validator address who submit the report

in_before_resolve bool
InBeforeResolve indicates whether the report is submitted before the request
resolved

raw_reports RawReport repeated
RawReports is list of raw reports provided by the validator. Each raw report has
different external ID

ReportersPerValidator

ReportersPerValidator is list of reporters that is associated with a validator

Field Type Label Description

validator string Validator a validator address

reporters string repeated Reporters is a list of reporter account addresses associated with the validator

Request

Request is the data structure for storing requests in the storage.

Field Type Label Description

oracle_script_id int64 OracleScriptID is ID of an oracle script

calldata bytes Calldata is the data used as argument params for the oracle script

requested_validators string repeated
RequestedValidators is a list of validator addresses that are assigned for
fulfilling the request

min_count uint64 MinCount is minimum number of validators required for fulfilling the request

request_height int64 RequestHeight is block height that the request has been created

request_time uint64 RequestTime is timestamp of the chain's block which contains the request

client_id string
ClientID is arbitrary id provided by requester. It is used by client-side for
referencing the request

raw_requests RawRequest repeated RawRequests is a list of raw requests specified by execution of oracle script

ibc_channel IBCChannel
IBCChannel is an IBC channel info of the other chain, which contains a
channel and a port to allow bandchain connect to that chain. This field
allows other chain be able to request data from bandchain via IBC.

execute_gas uint64 ExecuteGas is amount of gas to reserve for executing

RequestVerification

RequestVerification is a message that is constructed and signed by a reporter to be used as a part of verification of oracle request.

Field Type Label Description

chain_id string ChainID is the ID of targeted chain

validator string Validator is an validator address

request_id int64 RequestID is the targeted request ID

external_id int64 ExternalID is the oracle's external ID of data source

Result

Result encodes a result of request and store in chain

Field Type Label Description

client_id string
ClientID is the unique identifier of this oracle request, as specified by the client.
This same unique ID will be sent back to the requester with the oracle response.

oracle_script_id int64 OracleScriptID is the unique identifier of the oracle script to be executed.

calldata bytes Calldata is the calldata bytes available for oracle executor to read.

ask_count uint64
AskCount is the number of validators that are requested to respond to this oracle
request. Higher value means more security, at a higher gas cost.

min_count uint64
MinCount is the minimum number of validators necessary for the request to
proceed to the execution phase. Higher value means more security, at the cost of
liveness.

request_id int64 RequestID is BandChain's unique identifier for this oracle request.

ans_count uint64
AnsCount is the number of validators among to the asked validators that actually
responded to this oracle request prior to this oracle request being resolved.

request_time int64 RequestTime is the UNIX epoch time at which the request was sent to BandChain.

resolve_time int64
ResolveTime is the UNIX epoch time at which the request was resolved to the final
result.

resolve_status ResolveStatus
ResolveStatus is the status of this oracle request, which can be OK, FAILURE, or
EXPIRED.

result bytes Result is the final aggregated value only available if status if OK.

ValidatorStatus

ValidatorStatus maintains whether a validator is an active oracle provider.

Field Type Label Description

is_active bool
IsActive is a boolean indicating active status of validator. The validator will be
deactivated when they are unable to send reports to fulfill oracle request
before the request expired.

since google.protobuf.Timestamp Since is a block timestamp when validator has been activated/deactivated

ResolveStatus

ResolveStatus encodes the status of an oracle request.

Name Number Description

RESOLVE_STATUS_OPEN_UNSPECIFIED 0 Open - the request is not yet resolved.

RESOLVE_STATUS_SUCCESS 1 Success - the request has been resolved successfully with no errors.

RESOLVE_STATUS_FAILURE 2 Failure - an error occured during the request's resolve call.

RESOLVE_STATUS_EXPIRED 3
Expired - the request does not get enough reports from validator within
the timeframe.

Top

oracle/v1/query.proto

QueryActiveValidatorsRequest

QueryActiveValidatorsRequest is request type for the Query/ActiveValidators RPC method.

QueryActiveValidatorsResponse

QueryActiveValidatorsResponse is response type for the Query/ActiveValidators RPC method.

Field Type Label Description

validators ActiveValidator repeated Validators is a list of active validators

QueryCountsRequest

QueryCountsRequest is request type for the Query/Count RPC method.

QueryCountsResponse

QueryCountsResponse is response type for the Query/Count RPC method.

Field Type Label Description

data_source_count int64 DataSourceCount is total number of data sources available on the chain

oracle_script_count int64 OracleScriptCount is total number of oracle scripts available on the chain

request_count int64 RequestCount is total number of requests submitted to the chain

QueryDataRequest

QueryDataRequest is request type for the Query/Data RPC method.

Field Type Label Description

data_hash string DataHash is SHA256 hash of the file's content, which can be data source or oracle script

QueryDataResponse

QueryDataResponse is response type for the Query/Data RPC method.

Field Type Label Description

data bytes Data is file's content, which can be data source or oracle script

QueryDataSourceRequest

QueryDataSourceRequest is request type for the Query/DataSource RPC method.

Field Type Label Description

data_source_id int64 DataSourceID is ID of a data source script

QueryDataSourceResponse

QueryDataSourceResponse is response type for the Query/DataSource RPC method.

Field Type Label Description

data_source DataSource DataSource is summary information of a data source

QueryOracleScriptRequest

QueryOracleScriptRequest is request type for the Query/OracleScript RPC method.

Field Type Label Description

oracle_script_id int64 OracleScriptID is ID of an oracle script

QueryOracleScriptResponse

QueryOracleScriptResponse is response type for the Query/OracleScript RPC method.

Field Type Label Description

oracle_script OracleScript OracleScript is summary information of an oracle script

QueryParamsRequest

QueryParamsRequest is request type for the Query/Params RPC method.

QueryParamsResponse

QueryParamsResponse is response type for the Query/Params RPC method.

Field Type Label Description

params Params pagination defines an optional pagination for the request.

QueryPendingRequestsRequest

QueryPendingRequestRequest is request type for the Query/PendingRequests RPC method.

Field Type Label Description

validator_address string ValidatorAddress is address of a validator

QueryPendingRequestsResponse

QueryPendingRequestResponse is response type for the Query/PendingRequests RPC method.

Field Type Label Description

request_ids int64 repeated RequestIDs is a list of pending request IDs assigned to the given validator

QueryReportersRequest

QueryReportersRequest is request type for the Query/Reporters RPC method.

Field Type Label Description

validator_address string ValidatorAddress is a validator address

QueryReportersResponse

QueryReportersResponse is response type for the Query/Reporters RPC method.

Field Type Label Description

reporter string repeated Reporter is a list of account addresses of reporters

QueryRequestPoolRequest

QueryRequestPoolRequest is request type for the Query/RequestPool RPC method.

Field Type Label Description

request_key string RequestKey is a user-generated key for each request pool

port_id string PortID is the corresponding port to the request pool

channel_id string ChannelID is the corresponding channel to the request pool

QueryRequestPoolResponse

QueryRequestPoolResponse is response type for the Query/RequestPool RPC method.

Field Type Label Description

request_pool_address string RequestPoolAddress is an address of a request pool

balance cosmos.base.v1beta1.Coin repeated

QueryRequestPriceRequest

QueryRequestPriceRequest is request type for the Query/RequestPrice RPC method.

Field Type Label Description

symbols string repeated Symbol is unit of data indicating what the data is

ask_count int64 AskCount is number of validators allowed for fulfilling the request

min_count int64 MinCount is number of validators required for fulfilling the request

QueryRequestPriceResponse

QueryRequestPriceResponse is response type for the Query/RequestPrice RPC method.

Field Type Label Description

price_results PriceResult repeated PriceResult is a list of price results for given symbols

QueryRequestRequest

QueryRequestRequest is request type for the Query/Request RPC method.

Field Type Label Description

request_id int64 RequestID is ID of an oracle request

QueryRequestResponse

QueryRequestResponse is response type for the Query/Request RPC method.

Field Type Label Description

request Request Request is an oracle request

reports Report repeated Reports is list of result data as raw reports that are fulfilled by assigned validators

result Result Result is a final form of result data

QueryRequestSearchRequest

QueryRequestSearchRequest is request type for the Query/RequestSearch RPC method.

Field Type Label Description

oracle_script_id int64 OracleScriptID is ID of an oracle script

calldata string Calldata is OBI-encoded data in hex format as argument params for the oracle script

ask_count uint64 AskCount is number of validators allowed for fulfilling the request

min_count uint64 MinCount is number of validators required for fulfilling the request

QueryRequestSearchResponse

QueryRequestSearchResponse is response type for the Query/RequestSearch RPC method.

Field Type Label Description

request QueryRequestResponse Request is details of an oracle request

QueryRequestVerificationRequest

QueryRequestVerificationRequest is request type for the Query/RequestVerification RPC

Field Type Label Description

chain_id string ChainID is the chain ID to identify which chain ID is used for the verification

validator string Validator is a validator address

request_id int64 RequestID is oracle request ID

external_id int64 ExternalID is an oracle's external ID

reporter string Reporter is an bech32-encoded public key of the reporter authorized by the validator

signature bytes Signature is a signature signed by the reporter using reporter's private key

QueryRequestVerificationResponse

QueryRequestVerificationResponse is response type for the Query/RequestVerification RPC

Field Type Label Description

chain_id string ChainID is the targeted chain ID

validator string Validator is the targeted validator address

request_id int64 RequestID is the ID of targeted request

external_id int64 ExternalID is the ID of targeted oracle's external data source

data_source_id int64 DataSourceID is the ID of a data source that relates to the targeted external ID

QueryValidatorRequest

QueryValidatorRequest is request type for the Query/Validator RPC method.

Field Type Label Description

validator_address string ValidatorAddress is address of a validator

QueryValidatorResponse

QueryValidatorResponse is response type for the Query/Validator RPC method.

Field Type Label Description

status ValidatorStatus Status is status of a validator e.g. active/inactive

Query

Query defines the gRPC querier service.

Method Name Request Type Response Type Description

Counts QueryCountsRequest QueryCountsResponse
Counts queries the number of
existing data sources, oracle
scripts, and requests.

Data QueryDataRequest QueryDataResponse
Data queries content of the
data source or oracle script for
given SHA256 file hash.

DataSource QueryDataSourceRequest QueryDataSourceResponse
DataSource queries data
source summary info for given
data source id.

OracleScript QueryOracleScriptRequest QueryOracleScriptResponse
OracleScript queries oracle
script summary info for given
oracle script id.

Request QueryRequestRequest QueryRequestResponse
Request queries request info
for given request id.

PendingRequests QueryPendingRequestsRequest QueryPendingRequestsResponse
PendingRequests queries list
of pending request IDs
assigned to given validator.

Validator QueryValidatorRequest QueryValidatorResponse
Validator queries properties of
given validator address.

Reporters QueryReportersRequest QueryReportersResponse
Reporters queries all reporters
associated with given validator
address.

ActiveValidators QueryActiveValidatorsRequest QueryActiveValidatorsResponse
ActiveValidators queries all
active oracle validators.

Params QueryParamsRequest QueryParamsResponse
Params queries parameters
used for runnning bandchain
network.

RequestSearch QueryRequestSearchRequest QueryRequestSearchResponse
RequestSearch queries the
latest request that match
search criteria.

RequestPrice QueryRequestPriceRequest QueryRequestPriceResponse
RequestPrice queries the latest
price on standard price
reference oracle script.

RequestVerification QueryRequestVerificationRequest QueryRequestVerificationResponse

RequestVerification verifies a
request to make sure that all
information that will be used to
report the data is valid

RequestPool QueryRequestPoolRequest QueryRequestPoolResponse

RequestPool queries the
request pool information
corresponding to the given
port, channel, and request key.

Top

oracle/v1/tx.proto

MsgActivate

MsgEditOracleScript is a message for activating a validator to become an oracle provider. However, the activation can be revoked
once the validator is unable to provide data to fulfill requests

Field Type Label Description

validator string Validator is the validator address who sign this message and request to be activated.

MsgActivateResponse

MsgActivateResponse is response data for MsgActivate message

MsgAddReporter

MsgAddReporter is a message for adding a new reporter for a validator.

Field Type Label Description

validator string Validator is the validator address who requested to add a new reporter. Note that this is the signer.

reporter string Reporter is the account address to be added as a reporter to the validator.

MsgAddReporterResponse

MsgAddReporterResponse is response data for MsgAddReporter message

MsgCreateDataSource

MsgCreateDataSource is a message for creating a new data source.

Field Type Label Description

name string Name is the name of this data source used for display (optional).

description string
Description is the description of this data source used for display
(optional).

executable bytes
Executable is the content of executable script or binary file to be run by
validators upon execution.

fee cosmos.base.v1beta1.Coin repeated
Fee is the data source fee per ask_count that data provider will receive
from requester.

treasury string
Treasury is the account address who receive data source fee from
requester.

owner string
Owner is the account address who is allowed to make further changes
to the data source.

sender string Sender is the signer of this message.

MsgCreateDataSourceResponse

MsgCreateDataSourceResponse is response data for MsgCreateDataSource message

MsgCreateOracleScript

MsgCreateOracleScript is a message for creating an oracle script.

Field Type Label Description

name string Name is the name of this oracle script used for display (optional).

description string Description is the description of this oracle script used for display (optional).

schema string Schema is the OBI schema of this oracle script (optional).

source_code_url string SourceCodeURL is the absolute URI to the script's source code (optional).

code bytes Code is the oracle WebAssembly binary code. Can be raw of gzip compressed.

owner string Owner is the address who is allowed to make further changes to the oracle script.

sender string Sender is the signer of this message.

MsgCreateOracleScriptResponse

MsgCreateOracleScriptResponse is response data for MsgCreateOracleScript message

MsgEditDataSource

MsgEditDataSource is a message for editing an existing data source.

Field Type Label Description

data_source_id int64
DataSourceID is the unique identifier of the data source to be
edited.

name string Name is the name of this data source used for display (optional).

description string
Description is the description of this data source used for display
(optional).

executable bytes
Executable is the executable script or binary to be run by validators
upon execution.

fee cosmos.base.v1beta1.Coin repeated
Fee is the data source fee per ask_count that data provider will
receive from requester.

treasury string
Treasury is the address who receive data source fee from
requester.

owner string
Owner is the address who is allowed to make further changes to
the data source.

sender string
Sender is the signer of this message. Must be the current data
source's owner.

MsgEditDataSourceResponse

MsgEditDataSourceResponse is response data for MsgEditDataSource message

MsgEditOracleScript

MsgEditOracleScript is a message for editing an existing oracle script.

Field Type Label Description

oracle_script_id int64 OracleScriptID is the unique identifier of the oracle script to be edited.

name string Name is the name of this oracle script used for display (optional).

description string Description is the description of this oracle script used for display (optional).

schema string Schema is the OBI schema of this oracle script (optional).

source_code_url string SourceCodeURL is the absolute URI to the script's source code (optional).

code bytes Code is the oracle WebAssembly binary code. Can be raw of gzip compressed.

owner string Owner is an account address who is allowed to make further changes to the oracle script.

sender string
Sender is an account address who sign this message. Must be the current oracle script's
owner.

MsgEditOracleScriptResponse

MsgEditOracleScriptResponse is response data for MsgEditOracleScript message

MsgRemoveReporter

MsgAddReporter is a message for removing an existing reporter from a validator.

Field Type Label Description

validator string
Validator is the validator address who requested to remove an existing reporter. Note that this is the
signer.

reporter string Reporter is the account address to be removed from being the validator's reporter.

MsgRemoveReporterResponse

MsgRemoveReporterResponse is response data for MsgRemoveReporter message

MsgReportData

MsgReportData is a message for reporting to a data request by a validator.

Field Type Label Description

request_id int64 RequestID is the identifier of the request to be reported to.

raw_reports RawReport repeated
RawReports is the list of report information provided by data sources identified by
external ID

validator string Validator is the address of the validator that owns this report.

reporter string Reporter is the message signer who submits this report transaction for the validator.

MsgReportDataResponse

MsgReportDataResponse is response data for MsgReportData message

MsgRequestData

MsgRequestData is a message for sending a data oracle request.

Field Type Label Description

oracle_script_id int64 OracleScriptID is the identifier of the oracle script to be called.

calldata bytes Calldata is the OBI-encoded call parameters for the oracle script.

ask_count uint64 AskCount is the number of validators to perform the oracle task.

min_count uint64
MinCount is the minimum number of validators sufficient to resolve
the oracle tasks.

client_id string ClientID is the client-provided unique identifier to track the request.

fee_limit cosmos.base.v1beta1.Coin repeated
FeeLimit is the maximum tokens that will be paid to all data source
providers.

prepare_gas uint64 PrepareGas is amount of gas to pay to prepare raw requests

execute_gas uint64 ExecuteGas is amount of gas to reserve for executing

sender string Sender is an account address of message sender.

MsgRequestDataResponse

MsgRequestDataResponse is response data for MsgRequestData message

Msg

Msg defines the oracle Msg service.

Method Name Request Type Response Type Description

RequestData MsgRequestData MsgRequestDataResponse
RequestData defines a method for
submitting a new request.

ReportData MsgReportData MsgReportDataResponse
ReportData defines a method for reporting
a data to resolve the request.

CreateDataSource MsgCreateDataSource MsgCreateDataSourceResponse
CreateDataSource defines a method for
creating a new data source.

EditDataSource MsgEditDataSource MsgEditDataSourceResponse
EditDataSource defines a method for
editing an existing data source.

CreateOracleScript MsgCreateOracleScript MsgCreateOracleScriptResponse
CreateOracleScript defines a method for
creating a new oracle script.

EditOracleScript MsgEditOracleScript MsgEditOracleScriptResponse
EditOracleScript defines a method for
editing an existing oracle script.

Activate MsgActivate MsgActivateResponse
Activate defines a method for applying to
be an oracle validator.

AddReporter MsgAddReporter MsgAddReporterResponse
AddReporter defines a method for adding a
new reporter for a validator.

RemoveReporter MsgRemoveReporter MsgRemoveReporterResponse
RemoveReporter defines a method for
removing an reporter from a validator

Top

oracle/v1/genesis.proto

GenesisState

GenesisState defines the oracle module's genesis state.

Field Type Label Description

params Params Params defines all the paramaters of the module.

data_sources DataSource repeated DataSources are data sources to be installed during genesis phase

oracle_scripts OracleScript repeated OracleScripts are list of oracle scripts to be installed during genesis phase

reporters ReportersPerValidator repeated
Reporters are mapping between reporter's account address (key) and
validator's validator address (value)

Scalar Value Types

.proto
Type

Notes C++ Java Python Go C# PHP Ruby

double double double float float64 double float Float

float float float float float32 float float Float

int32

Uses
variable-
length
encoding.
Inefficient for
encoding
negative
numbers – if
your field is
likely to have
negative
values, use
sint32
instead.

int32 int int int32 int integer
Bignum or Fixnum
(as required)

int64

Uses
variable-
length
encoding.
Inefficient for
encoding
negative
numbers – if
your field is
likely to have
negative
values, use
sint64
instead.

int64 long int/long int64 long integer/string Bignum

uint32

Uses
variable-
length
encoding.

uint32 int int/long uint32 uint integer
Bignum or Fixnum
(as required)

uint64

Uses
variable-
length
encoding.

uint64 long int/long uint64 ulong integer/string
Bignum or Fixnum
(as required)

sint32

Uses
variable-
length
encoding.
Signed int
value. These
more
efficiently
encode
negative
numbers
than regular
int32s.

int32 int int int32 int integer
Bignum or Fixnum
(as required)

sint64

Uses
variable-
length
encoding.
Signed int
value. These
more
efficiently
encode
negative
numbers
than regular
int64s.

int64 long int/long int64 long integer/string Bignum

fixed32

Always four
bytes. More
efficient than
uint32 if
values are
often greater
than 2^28.

uint32 int int uint32 uint integer
Bignum or Fixnum
(as required)

fixed64

Always eight
bytes. More
efficient than
uint64 if
values are
often greater
than 2^56.

uint64 long int/long uint64 ulong integer/string Bignum

sfixed32
Always four
bytes.

int32 int int int32 int integer
Bignum or Fixnum
(as required)

sfixed64
Always eight
bytes.

int64 long int/long int64 long integer/string Bignum

bool bool boolean boolean bool bool boolean TrueClass/FalseClass

string

A string must
always
contain UTF-
8 encoded or
7-bit ASCII
text.

string String str/unicode string string string String (UTF-8)

bytes

May contain
any arbitrary
sequence of
bytes.

string ByteString str []byte ByteString string String (ASCII-8BIT)

Previous
« Protocol Messages

Next
Cosmos IBC Integration »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

BAND Token

Gas and Fees

Accounts and Wallets

Protocol Messages

Protobuf Documentation

Cosmos IBC Integration

Decentralized Validator Sampling

Lite Client Protocol

On-chain Payment

Oracle WebAssembly (Owasm)

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/protocol-messages
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/core-concepts/gas-and-fee
https://docs.bandchain.org/core-concepts/accounts-and-wallets
https://docs.bandchain.org/core-concepts/protocol-messages
https://docs.bandchain.org/core-concepts/oracle-modules
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/lite-client-protocol
https://docs.bandchain.org/core-concepts/on-chain-payment-protocol
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Core Concepts Cosmos IBC Integration

Cosmos IBC Integration
NOTE

This section presented an overview of how IBC can be used to make an oracle data request on BandChain.

For more information on IBC itself, its architecture, and other related topics, please see Cosmos' Interchain Standards
documentation.

IBC Overview
In addition to our own lite client protocol, we also allow interaction with our data oracle through Cosmos' Inter-Blockchain-
Communication, or IBC, protocol. This protocol allows other IBC-compatible blockchains to request data from BandChain.

BandChain-Specific IBC Data Packet

OracleRequestPacketData

OracleRequestPacketData is a data packet sent by a blockchain to BandChain's oracle to request data. It contains the following
parameters:

Parameter Type Description

ClientID string
The unique identifier of this oracle request, as specified by the client. This same unique ID will be
sent back to the requester with the oracle response

OracleScriptID int64
The unique identifier number assigned to the oracle script when it was first registered on
Bandchain

Calldata string
The data that was passed over to the oracle script to use during its execution eg. list of requested
symbols and multiplier

AskCount uint64 The number of validators that are requested to respond to this request

MinCount uint64 The minimum number of validators necessary for the request to proceed to the execution phase

FeeLimit sdk.Coins The maximum tokens that will be paid to all data source providers

PrepareGas uint64 The amount of gas to pay to prepare raw requests

ExecuteGas uint64 The amount of gas reserved for executing the oracle script during execution phase

OracleResponsePacketData

Subsequently, this is the packet that will be relayed from BandChain back to the requester's chain. It contains information on the
response parameters as well as the requested data itself.

Parameter Type Description

ClientID string
The unique identifier of this oracle request, as specified by the client. This matches the ID stated in
the corresponding OracleRequestPacketData

RequestID int64 The unique identifier number of the particular request

AnsCount uint64 The number of validators that answers the request, retrieved the data, and submitted a report

RequestTime int64 The timestamp of when the request was made

ResolveTime int64 The timestamp of when the last validator submitted the report and the request is resolved

ResolveStatus int32 The resolve status of the request. See here for the full list of possible values

Result []byte The aggregated value of the results returned by the validators

Requesting Data Through IBC
To make a request to BandChain's oracle using IBC, the module on another IBC-compatible blockchain must first initialize a
communication tunnel with the oracle module on BandChain. Once the connection has been established, a pair of channel identifiers
is generated -- one for the counterparty chain and one for BandChain.

The channel identifier is an important piece for the counterparty IBC module to route outgoing oracle request packets to the targeted
oracle module on BandChain.

Similarly, BandChain's oracle module uses the channel identifier when sending back the oracle response. This means these channel
identifiers have to be unique within each module, and the right channel identifier needs to be specified when making an oracle
request from the counterparty chain.

IBC Workflow

Once a relayer has been set up, the module on another IBC-compatible blockchain looking to make the request must generate an
OracleRequestPacketData data packet to be relayed. Using their chain's IBC module, they must then relay the message through
to BandChain's own IBC module, which will proceed to further send it to the chain's oracle module. Once the request packet is
successfully received, the subsequent flow is the almost the same as how BandChain handles a native MsgRequestData message
type with a few additional steps. To summarize, the data request flow consists of the following steps:

First, requesters create a request from their chain which are then relayed to BandChain.

Once the request is submitted to BandChain, the oracle module fetches the corresponding oracle script and starts the oracle
script's preparation phase returning information of all related data sources.

Then BandChain performs various checks such as preparation phase smaller than the provided prepare gas (This is actually
done in the oracle's script preparation phase) and the total fee for the request does not exceed the provided fee limit (More
details can be found in the next section).

(IBC Process Only) Then an acknowledgement is sent back to the requester's chain which either contains the error from the
checks or the request identifier created by BandChain.

If there is no error, the request is then broadcasted. Each validator selected for the particular request will then proceeed to
retrieve data from each of the data source

If a validator's retrieval is successful, they will submit back a report to BandChain containing the result they received from each
of the data source.

If the number of validators that managed to successfully submit the report exceeds the minCount specified in the
OracleRequestPacketData , BandChain then computes and stores an aggregate final value.

(IBC Process Only) The final result is also directly relayed back to the requesting chain and module in the form of a
OracleResponsePacketData data packet.

As a slight aside, a data request to BandChain generally takes roughly 5 seconds from submitting the initial request until the
requester received back the requested result. This is because BandChain's blocktime is set at approximately 3 seconds

Previous
« Protobuf Documentation

Next
Decentralized Validator Sampling »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

BAND Token

Gas and Fees

Accounts and Wallets

Protocol Messages

Protobuf Documentation

Cosmos IBC Integration

Decentralized Validator Sampling

Lite Client Protocol

On-chain Payment

Oracle WebAssembly (Owasm)

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://github.com/cosmos/ics
https://docs.bandchain.org/core-concepts/lite-client-protocol
https://ibcprotocol.org/
https://github.com/bandprotocol/chain/blob/master/x/oracle/types/oracle.pb.go#L34
https://docs.bandchain.org/core-concepts/protocol-messages#msgrequestdata
https://docs.bandchain.org/core-concepts/on-chain-payment-protocol
https://docs.bandchain.org/core-concepts/oracle-modules
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/core-concepts/gas-and-fee
https://docs.bandchain.org/core-concepts/accounts-and-wallets
https://docs.bandchain.org/core-concepts/protocol-messages
https://docs.bandchain.org/core-concepts/oracle-modules
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/lite-client-protocol
https://docs.bandchain.org/core-concepts/on-chain-payment-protocol
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Core Concepts Decentralized Validator Sampling

Decentralized Validator Sampling
Motivation
All BandChain validators have an additional responsibility other than voting and proposing new blocks. That is submitting reports for
incoming oracle requests. However, asking all validators to retrieve results and waiting for their reports for every request is time
inefficient, since this would become a single queue for requests bottlenecking the whole system of BandChain. Since there are many
validators on BandChain, we can process multiple requests simultaneously and mitigate the bottleneck effect by distributing each
oracle request to a random subset of the validators.

The randomized selection is based on the voting power of validators. The underlying reason is the same as that of Proof-of-Stake
concept. Validators with higher voting powers are those that have staked more BAND token. Due to the higher commitment to risks,
they are incentivized to be good actors and to deliver the correct oracle results within the expected time interval.

Those with lower voting power have less risk exposure and thus are generally less incentivized to be a good actor as they do not
have much to lose. Nevertheless, we still want every validator to have a chance in participating in the oracle retrieving result task.
Otherwise, the platform would be centralized around few validators with high voting powers, undermining the very goal of any
blockchain -- decentralization.

Therefore, when determining which algorithm to use in selecting the validators to respond to an oracle data request, there are two
main characteristics that we have incorporated:

1. A validator with a higher voting power should have a higher chance of being chosen than one with a lower voting power

2. Every validator should still have a chance to be selected

Validators
From the pool of all validators, we have to select a specific set of validators from that pool. To do this, we make use of a random
number generator.

Random Number and Seed Generation

As with most random number generator, our number generation proces require the use of a seed. In this specific case, our seed
comprises of:

A list of blockHashes

The requestID of the request the validators are being chosen for

chainID of BandChain

In the case of the list of blockHashes , we will use the blockHashes of the previous n blocks (currently we use 32). We then take
$\frac{32}{n}$ bytes from each of the hashes and concatenate them. The purpose of this is to prevent any potentially malicious
validators from influencing the entire seed in the turn they have to propose the block. Even if they attempt to intentionally construct
certain blockHashes in their proposed block, they can only control $\frac{n}{32}$ of the seed. Finally, we concatenate the result
from blockHashes with requestID and chainID to create the seed.

Manipulation Resistant Seed Generation
After we have used our concatenated seed to generate a random number, we then use that value to select the validator for that
round.

To do so, we again assume that the validators in the selection space is sorted in descending order of voting power (as shown below
from validator with 100 voting power, to 85, then to 70 and so on.)

Then, we imagine that we have a cumulative scale running across that list, with the values being the validator's voting power. For
example:

where $k > l > m$

${1, k}$ $\hspace{90pt}$ is assigned to the first validator in line with k voting power
${k+1, k+l}$ $\hspace{57pt}$ to the second in line with l power
${(k+l)+1, (k+l)+m}$ $\hspace{8pt}$to the third in line with m power
$. . .$
and so forth.

With that, the specific range in which our random number falls in along that cumulative scale determine which validator is ultimately
chosen for that round. A visual representation of this method is shown below.

Setup

Selection using a Random Number

Previous
« Cosmos IBC Integration

Next
Lite Client Protocol »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

BAND Token

Gas and Fees

Accounts and Wallets

Protocol Messages

Protobuf Documentation

Cosmos IBC Integration

Decentralized Validator Sampling

Lite Client Protocol

On-chain Payment

Oracle WebAssembly (Owasm)

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://docs.bandchain.org/core-concepts/lite-client-protocol
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/core-concepts/gas-and-fee
https://docs.bandchain.org/core-concepts/accounts-and-wallets
https://docs.bandchain.org/core-concepts/protocol-messages
https://docs.bandchain.org/core-concepts/oracle-modules
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/lite-client-protocol
https://docs.bandchain.org/core-concepts/on-chain-payment-protocol
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Core Concepts Lite Client Protocol

Lite Client Protocol
In addition to the native IBC connections, we also provide a lite client for anyone who requested data from our oracle to verify the
validity of the result they received. An instance of this client exists on each of the blockchains to which Band has integrated.

When someone submits a verification request to our lite client, they must also send in the encoded result they got from BandChain
oracle. This is because the result is not just the data they requested, but also contains information on the request itself as well as
the associated response. The lite client use these information to prove that the data the user requested exists on BandChain, thus
verifying the oracle result’s validity.

The lite client's verification process checks for 3 conditions:

1. that the proof received in the request can be used to construct a valid block header

2. that using the constructed block header, it can recover a valid set of validator addresses who signed on the block

3. that those validators have sufficient total voting power relative to the system total

The diagram below illustrates the above steps.

Lite Client Request Flow

Constructing the Block Header from the Oracle Data Proof
The proof that BandChain's oracle returns is a packet called result which encodes the information from both the oracle request
sent to BandChain and the oracle response aggregated from reports submitted by validators assigned to this request. Some of the
information includes

The identifier of the oracle script requested,

The number of validators that are requested to respond to this request,

The number of validators that actually responded to the request,

The timestamp of when the request was sent and when it was resolved to a final result

The actual final result itself if the request was successful.

For a full detailed breakdown of the packet's contents, please see our GitHub repository.

The task of the lite client is then to use this packet to eventually arrive at the block header. The steps that make up this process are
as follows:

Use the proof sent to construct the oracle store’s root hash

Combine the oracle store hash with the hashes of the other stores in our application to compute the appHash

Finally, use the appHash, in combination with other block information hashes, to compute the blockHash

Constructing the Oracle Store's Root Hash

Oracle Store Tree Contents

BandChain's oracle system resides in an oracle Cosmos module, also known as the oracle store. Each of these stores can then
be represented as an iAVL tree, where the bottom or leaves of these store trees contains the byte representation of the data in that
module. In our case of the oracle store root, the only piece of data that we will be looking at is the result packet.

As mentioned previously, the result packet contains information related to both the request that the user made to our oracle, such
as the oracle script identifier and the number of requested validators, and the corresponding oracle response composed from
validators' reports, such as the actual number of validators that responded to the request as well as the actual result value itself.

This result packet is what the lite client essentially returns to the requester upon successful validation. By also returning
contextual information on the request and response, in addition to the actual result value itself, we aim to give as much information
as possible for the user to use in their application or for any further validation they might want to perform.

Constructing the oracle store leaf node

Using the result , we can create an intermediary hash value called the dataHash by encoding then hashing the result . If we
then append this dataHash by other information such as the version (i.e., the latest block height that the data node was updated),
and the request ID of the request, we arrive at the leaf node of the oracle store tree, also known as the resultHash .

After we have the leaf node, we then need to use that node to gradually climb up the tree to reach the store's root node. To help us
do so, we use an additional piece of information in the proof; the merklePaths .

Computing the oracle store root hash

Shown in the figure above, the left node of the result we want to verify is represented by the black node. The merklePaths we
mentioned is a Merkle proof that shows how the dataHash leaf node we just computed is part of the larger oracle tree. The proof's
content is the list of "Merkle paths" from the leaf to the root of the tree. Each merkle path contains the sibling hash for each step
represented by the gray nodes. With a node hash and a corresponding merkle path, we can get the parent hash of the node hash
and the sibling hash in the merkle path. Hence, we can the use these Merkle paths to compute the parent hash of our dataHash . If
we then repeat this process, we can gradually climb up the store tree, finally getting the oracle store root hash we want. In the
above figure, all parent hashes computed along the tree climbing process starting from the black node are represented by blue
nodes.

Computing the appHash and the blockHash

After we have the oracle store root hash, we can begin to iteratively combine it with the hashes of the other stores in our application
to compute the appHash . Since all the stores are stored in a form of tree, we can use the same climbing process to reach the root
of this tree or the appHash . Note that the starting point now is the oracle store hash which is the only black node as depicted in the
figure above.

We can then use that appHash to finally compute the blockHash using the very same method.

Recovering Signer Addresses
After we have constructed a blockHash , we can move on to prove its validity by attempting to use it to recover the addresses of
the validators who signed on this block using Ethereum’s ecrecover opcode. To ensure that the addresses we extracted are valid, we
verify that each address we extract is unique.

As we recover each signer, we also add each extracted validator’s voting power to a counting tally, which we will use in the next
step.

Checking Total Voting Power
Once we have extracted all of the validators and ensure that the extracted order is correct, we proceed to check if the tallied voting
power is sufficient. Specifically, we check that the tallied value is at least two-thirds of the system’s total voting power. This threshold
check is to ensure that we reach consensus.

If the tallied voting power exceeds the two-third threshold, we have successfully proven that the proof is valid. Our lite client can then
decode the result and return it to the requester to either use or further validate themselves.

Previous
« Decentralized Validator Sampling

Next
On-chain Payment »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

BAND Token

Gas and Fees

Accounts and Wallets

Protocol Messages

Protobuf Documentation

Cosmos IBC Integration

Decentralized Validator Sampling

Lite Client Protocol

On-chain Payment

Oracle WebAssembly (Owasm)

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://github.com/bandprotocol/chain/blob/master/x/oracle/types/result.go
https://github.com/cosmos/cosmos-sdk/tree/master/x
https://github.com/cosmos/iavl
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol#L16
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/on-chain-payment-protocol
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/core-concepts/gas-and-fee
https://docs.bandchain.org/core-concepts/accounts-and-wallets
https://docs.bandchain.org/core-concepts/protocol-messages
https://docs.bandchain.org/core-concepts/oracle-modules
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/lite-client-protocol
https://docs.bandchain.org/core-concepts/on-chain-payment-protocol
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Core Concepts On-chain Payment

On-chain Payment
Overview
When oracle scripts make inquiries from premium data sources, parties that request data from these oracle scripts must pay
additional fees that are proportional to the fees charged by the premium data sources. These data sources collect fees every time a
validator requests oracle data. Thus, the final fee charged for a single oracle request is the sum of all data source fees
corresponding to the requested oracle script, multiplied by the number of requested validators.

Since each data source sets its own fees, which can vary, users must specify a feeLimit for each request, to prevent any
unexpectedly high fees when requesting oracle data. The fee limit defines the amount of tokens allowed to be paid for the total data
source fees corresponding to the request. If the fee limit is less than the total fees, then the request becomes invalid, and the
associated transaction fails.

The party responsible for paying the fees depends on the origin of the request, whether it is a direct on-chain request or an IBC
request from a counterparty chain. The fees are paid directly to treasury accounts owned by each data source.

Direct Request

Direct Request Payment Flow

The following is an example of the on-chain payment flow when requesting oracle data directly on BandChain.

A user begins by making an oracle request, providing a specific oracle script ID and a desired fee limit. Once BandChain receives
the request, it fetches the oracle script and calls the preparation step of the oracle script.

onchain-direct

After the preparation step is complete, BandChain obtains all the data sources required for this oracle script. The provided fee limit is
used to ensure that the total fee does not exceed the expected price. If the fee limit is insufficient, the transaction is reverted.
Otherwise, the balance of the user account is deducted by the total fee, and the treasury accounts of the data sources receive funds
according to their specified fee times the number of requested validators.

IBC request
To make an oracle request via IBC, a communication channel must be created between a counterparty chain and BandChain, as
stated in IBC. The main challenge when requesting from another chain is that the requester is an address on the other chain that
cannot pay the data source fees on BandChain. Therefore, the fees are instead paid by the account of a relayer that the
counterparty chain uses to send packets.

The relayer account is an address account owned by an entity from another chain, as the chain has to manage the relayer. Note that
the method by which users fund the relayer account will depend entirely on the protocol of the counterparty chains.

IBC Request Payment Flow

onchain-ibc

Once the relayer account is funded, the payment flow for IBC requests is very similar to that of the direct request. The additional
layer is that the flow begins with a user on the counterparty chain. The request is then relayed from the counterparty chain to
BandChain via a relayer through a specific port and channel.

After BandChain receives the request via a relayer, the payment flow is almost identical to the payment flow of a direct request,
except that the account used for paying all the fees is now the relayer account.

Previous
« Lite Client Protocol

Next
Oracle WebAssembly (Owasm) »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

BAND Token

Gas and Fees

Accounts and Wallets

Protocol Messages

Protobuf Documentation

Cosmos IBC Integration

Decentralized Validator Sampling

Lite Client Protocol

On-chain Payment

Oracle WebAssembly (Owasm)

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://docs.bandchain.org/core-concepts/lite-client-protocol
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/core-concepts/gas-and-fee
https://docs.bandchain.org/core-concepts/accounts-and-wallets
https://docs.bandchain.org/core-concepts/protocol-messages
https://docs.bandchain.org/core-concepts/oracle-modules
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/lite-client-protocol
https://docs.bandchain.org/core-concepts/on-chain-payment-protocol
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Core Concepts Oracle WebAssembly (Owasm)

Oracle WebAssembly (Owasm)
Oracle WebAssembly, or Owasm for short, is Band Protocol's Domain Specific Language (DSL) on top of the Rust programing
language for writing oracle scripts to be used in the BandChain ecosystem. The Owasm library consists of two primary modules:
owasm/oei and owasm/ext .

Owasm/OEI - The OEI modules defines a set of functions that are part of the Owasm Oracle Environment Interface. These
functions are then accessible to an oracle script during its execution. The complete list of functions and implementation can be
found here.

Owasm/Ext - The Owasm extension module provides a convenient way to write oracle scripts that connect to various public
APIs. Examples of these are functions to calculate the mean, median, and majority values from the validator's reported results,
which can be used during the aggregation phase of an oracle script. The full list of functions and its implementation can be
found here.

Usage
To illustrate an example usage of the Owasm library, we will be using the example below. The code is based off an oracle script for
retrieving the price of a stock.

The script starts off by defining the input and output structs. In this case, the input comprises of the stock ticker/symbol (string)
and the multiplier we want to multiply the stock's price by (u64). On the other hand, the output is simply the price of the stock
multiplied by the multiplier, returned as a u64 value.

Once the structs and types of both input and output have been determined, we move on to defining the preparation and execution
phases of the oracle script, defined by prepare_impl and execute_impl , respectively.

In order to call these functions, we need to pass appriopriate input values and make the function calls. To do so, oracle script writer
can use our macros defined in macros.rs , also shown below. The aim of these macros is to reduce the load of the script writer by
handling the work of retrieving the calldata, deserializing it, and using it to construct the appropriate input struct for them.

The last two lines of the oracle script above shows the macros in action.

Preparation phase

The prepare_impl function takes the previously-defined input struct as an argument. The function then has only one main task;
calling the ask_external_data function in oei module.

In case extra information from relating oracle request is needed for implementing some logic before calling ask_external_data ,
here are functions and their details fromoei module which can be used in prepare_impl .

get_ask_count() returns i64
Returns the number of validators to asked to report for this oracle request.

get_min_count() returns i64
Returns the minimum number of data reports as specified by the oracle request.

get_calldata() returns Vec<u8>
Returns the raw calldata as specified when the oracle request is submitted.

Note: This function is already called in macros when preparing the input.

ask_external_data(eid: i64, did: i64, calldata: &[u8])

Takes in external id, data source id, and data in bytes.

Issues a new raw request to the host environment using the specified data source ID and calldata, and assigns it to the
given external ID.

Execution phase

The execute_impl function takes in the input type as an argument as well, but also returns the output struct type. It then starts by
computing the final value of the request through calling load_average function from the ext module and proceed to use the
computed average to construct and return the appropriate output struct.

Below is the list of functions from oei that can be called in execute_impl .

get_ask_count() returns i64
Returns the number of validators to asked to report for this oracle request.

get_min_count() returns i64
Returns the minimum number of data reports as specified by the oracle request.

get_ans_count() returns i64
Returns the number of validators that report data to this oracle request. Must only be called during execution phase.

get_calldata() returns Vec<u8>
Returns the raw calldata as specified when the oracle request is submitted.

Note: This function is already called in macros when preparing the input.

save_return_data(data: &[u8])

Saves the given data as the result of the oracle execution. Must only be called during execution phase and must be called
exactly once.

get_external_data(eid: i64, vid: i64) returns Result<String, i64>
Returns the data reported from the given validator index for the given external data ID. Result is OK if the validator reports
data with zero return status, and Err otherwise.

Previous
« On-chain Payment

Next
Introduction »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

BAND Token

Gas and Fees

Accounts and Wallets

Protocol Messages

Protobuf Documentation

Cosmos IBC Integration

Decentralized Validator Sampling

Lite Client Protocol

On-chain Payment

Oracle WebAssembly (Owasm)

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

use {OBIDeserialize, OBISchema, OBISerialize};

use {execute_entry_point, ext, oei, prepare_entry_point};

#[derive(OBIDeserialize, OBISchema)]

struct Input {

 symbol: String,

 multiplier: u64,

}

#[derive(OBISerialize, OBISchema)]

struct Output {

 px: u64,

}

#[no_mangle]

fn prepare_impl(input: Input) {

 // Asking data source #14 for asset price

 ask_external_data(14, 1, &input.symbol.as_bytes());

}

#[no_mangle]

fn execute_impl(input: Input) -> Output {

 let avg: f64 = load_average(1);

 Output { px: (avg * input.multiplier as f64) as u64 }

}

prepare_entry_point!(prepare_impl);

execute_entry_point!(execute_impl);

obi::

owasm::

oei::

ext::

#[macro_export]

macro_rules! prepare_entry_point {

 ($name:ident) => {

 #[no_mangle]

 pub fn prepare() {

 $name(OBIDeserialize::try_from_slice(& get_calldata()).unwrap());

 }

 };

}

#[macro_export]

macro_rules! execute_entry_point {

 ($name:ident) => {

 #[no_mangle]

 pub fn execute() {

 save_return_data(

 &$name(OBIDeserialize::try_from_slice(& get_calldata()).unwrap())

 .try_to_vec()

 .unwrap(),

);

 }

 };

}

oei::

oei::

oei::

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/develop/custom-scripts/oracle-script/introduction
https://github.com/bandprotocol/owasm/blob/master/packages/kit/src/oei/mod.rs
https://github.com/bandprotocol/owasm/blob/master/packages/kit/src/ext/mod.rs
https://github.com/bandprotocol/owasm/blob/master/packages/kit/src/macros.rs
https://github.com/bandprotocol/owasm/blob/master/src/oei/mod.rs#L35
https://github.com/bandprotocol/owasm/blob/master/src/ext/mod.rs#L21
https://docs.bandchain.org/core-concepts/on-chain-payment-protocol
https://docs.bandchain.org/products/band-standard-dataset/introduction
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/token-economics
https://docs.bandchain.org/core-concepts/gas-and-fee
https://docs.bandchain.org/core-concepts/accounts-and-wallets
https://docs.bandchain.org/core-concepts/protocol-messages
https://docs.bandchain.org/core-concepts/oracle-modules
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://docs.bandchain.org/core-concepts/lite-client-protocol
https://docs.bandchain.org/core-concepts/on-chain-payment-protocol
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Products Band Standard Dataset Introduction

Introduction

Overview
Band Standard Dataset, an exhaustive reference price dataset with frequent updates and comprehensive, customizable feeds. With
Band Standard Dataset is will help to connect your smart contracts to the real-world data with expansive support for crypto assets,
commodities and foreign exchange rates.

The Band Standard Dataset provides aggregated data from various data sources through a decentralized network of independent
node operators. The Decentralized Data Model provides a detailed description of this process.

These Standard Dataset use cryptocurrencies price data aggregated from a number of premium data sources, including:

CoinGecko

CryptoCompare

CoinMarketCap

Binance

Huobi Pro

Coinbase Pro

Bibox

Bitfinex

Bittrex

HitBTC

Kraken

OKX

For the FX and commodity prices, we also aggregate data from premium sources:

Fixer

Open Exchange Rates

XE

AlphaVantage.

Data from these sources are retrieved by a subset of BandChain’s 71+ reputable validators and medianized on two layers, the
validator and data provider level, which is then aggregated on BandChain into a single final result to be stored on the blockchain
state. The data retrieval, aggregation, and storage process is transparent, publicly viewable, auditable, and verifiable through our
Cosmoscan, our official block explorer for BandChain.

Why Use Band Standard Dataset
Optimized for Efficiency and Cost-Effectiveness

Our Standard Dataset solutions are heavily optimized for gas usage, allowing developers to query multiple price pairs at once and
retrieve accurate and reliable price updates for many feeds in the same block.

End-to-End Flexibility

In addition, developers can query any price pair, not just the standard <TOKEN>/USD , <TOKEN>/BTC , and <TOKEN>/ETH pairs.
Price feeds can be paired against any of the 100+ feeds supported on the Band Standard Dataset, including pairs such as
BTC/USD , BTC/ETH , ETH/CNY , EUR/BTC , and DOT/ATOM . This flexibility, combined with the ability to query multiple price pairs
simultaneously, significantly reduces the engineering resources required for our feed users and ensures that the resulting code is
simpler and less error-prone.

Constantly Increasing Diversity

BandChain's infrastructure is designed with full customizability, allowing for streamlined and faster support for new tokens or price
data. This greatly benefits developers and protocols looking to support new or less-known tokens.

Over 100+ Secure Price Feeds Available for Developers

The Standard Dataset currently offers over 100 asset price feeds, ranging from various cryptocurrency tokens to various foreign
exchanges and commodities.

Symbol Listing Criteria
Symbols listed on the Band Standard Dataset are those that have been verified and passed several criteria including, but not limited
to:

1. Listed on at least 4 sources which are either aggregators or exchanges that are listed above.

2. For each centralized exchange source, the pair must be a reputable stablecoin pairing and maintain an average daily trading
volume of $1,000,000 within the last 90 days.

3. For tokens listed and traded on DEXes, they must have a minimum liquidity of $10Mn.

The first criteria guarantees the robustness of our feed in the event that one of the sources is down and/or reports incorrect prices.
We can rest assured that Band Oracle would still be able to provide accurate price feeds in a timely manner. The second criteria
serves to minimise the possibility of prices being easily manipulated.

As of today, the Band Standard Dataset is composed of 88 cryptocurrencies, 25 foreign exchange rates, and 2 commodities. The
Band Standard Dataset is our first-step in entrusting the Band Standard with our partners, be it data users developers, data
providers as well as our validators.

By listing your symbol on the Band Standard dataset, you gain instant credibility and recognition within the blockchain community.
Imagine the opportunities that await as your project becomes discoverable by thousands of users searching for reliable, verified data
sources.

🔥 Don't miss out on the chance to amplify your project's visibility and reach 🔥

👉 Join us today at Band Standard Dataset and take advantage of Band Protocol's Data Marketplace.

💪 Let's revolutionize the blockchain space together and unlock new possibilities for your symbol's success!

Previous
« Oracle WebAssembly (Owasm)

Next
With Solidity »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Introduction

Core Concepts

Products

Band Standard Dataset

Using Band Standard
Dataset

Band VRF

Pricefeed Module

cw-band

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://data.bandprotocol.com/
https://docs.bandchain.org/core-concepts/decentralized-validator-sampling
https://coingecko.com/
https://cryptocompare.com/
https://coinmarketcap.com/
https://binance.com/
https://www.huobi.com/
https://pro.coinbase.com/
https://www.bibox.com/en
https://www.bitfinex.com/
https://global.bittrex.com/
https://hitbtc.com/
https://www.kraken.com/
https://www.okx.com/
https://fixer.io/
https://openexchangerates.org/
https://xe.com/
https://www.alphavantage.co/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://data.bandprotocol.com/
https://docs.bandchain.org/core-concepts/oracle-webassembly
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/contract
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/products/band-standard-dataset/introduction
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Products Band Standard Dataset Using Band Standard Dataset With Solidity

With Solidity
We have implemented a new StdReference interface contract to allow anyone to query data from our Standard Dataset.

To query prices from Band Protocol's oracle, a smart contract should reference Band's StdReference contract, specifically the
getReferenceData and getReferenceDatabulk methods.

getReferenceData
getReferenceData takes two strings (the base and quote symbol) as the inputs, respectively. It then queries the
StdReference contract for the latest rates for those two tokens, and returns a ReferenceData struct, shown below.

Input

The base symbol as type string

The quote symbol as type string

Output

The base quote pair result as type ReferenceData

The ReferenceData struct has the following elements:

Rate: the exchange rate in terms of base/quote . The value returned is multiplied by 1e18

Last updated base: the last time when the base price was updated (since UNIX epoch)

Last updated quote: the last time when the quoted price was updated (since UNIX epoch)

Example

For example, if we wanted to query the price of BTC/USD , the demo contract below shows how this can be done.

The result from Demo() would yield:

Where the results can be interpreted as:

getReferenceDatabulk
The second function, getReferenceDataBulk , takes information as data arrays. For example, if you pass in
['BTC','BTC','ETH'] as base and ['USD','ETH','EUR'] as quote, the ReferenceDatareturned array contains the
information regarding the following pairs:

BTC/USD

BTC/ETH

ETH/EUR

Input

An array of base symbols as type string[]

An array of quote symbol as type string[]

Output

An array of the base quote pair results as type ReferenceData[]

Example Contract
The following smart contract code provides some simple examples of the StdReference contract and the getReferenceData
function - these are not meant for production. The IStdReference.sol interface defines ReferenceData structure and the
functions available to make the queries.

Available Reference Data Contracts
You can access the StdReference data aggregator contract on the following supported networks

Previous
« Introduction

Next
With CosmWasm »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

With Solidity

With CosmWasm

On Client Libraries

Through a REST API
Endpoint

Introduction

Core Concepts

Products

Band Standard Dataset

Using Band Standard
Dataset

Band VRF

Pricefeed Module

cw-band

Develop

Nodes & Validators

Staking

struct ReferenceData {

 uint256 rate;

 uint256 lastUpdatedBase;

 uint256 lastUpdatedQuote;

}

import interfaces/IStdReference.sol

contract Demo {

 IStdReference public ref;

 constructor(IStdReference _ref) public {

 ref = _ref;

 }

 function demo() external view returns (IStdReference.ReferenceData memory) {

 return ref.getReferenceData("BTC", "USD");

 }

}

ReferenceData(23131270000000000000000, 1659588229, 1659589497)

{

 rate: 23131270000000000000000, // 23131.27 of BTC/USD

 lastUpdatedBase: 1659588229, // 2022-08-04 04:43:49

 lastUpdatedQuote: 1659589497 // 2022-08-04 05:04:57

}

pragma solidity 0.6.11;

pragma experimental ABIEncoderV2;

interface IStdReference {

 /// A structure returned whenever someone requests for standard reference data.

 struct ReferenceData {

 uint256 rate; // base/quote exchange rate, multiplied by 1e18.

 uint256 lastUpdatedBase; // UNIX epoch of the last time when base price gets updated.

 uint256 lastUpdatedQuote; // UNIX epoch of the last time when quote price gets updated.

 }

 /// Returns the price data for the given base/quote pair. Revert if not available.

 function getReferenceData(string memory _base, string memory _quote)

 external

 view

 returns (ReferenceData memory);

 /// Similar to getReferenceData, but with multiple base/quote pairs at once.

 function getReferenceDataBulk(string[] memory _bases, string[] memory _quotes)

 external

 view

 returns (ReferenceData[] memory);

}

contract DemoOracle {

 IStdReference ref;

 uint256 public price;

 constructor(IStdReference _ref) public {

 ref = _ref;

 }

 function getPrice() external view returns (uint256){

 IStdReference.ReferenceData memory data = ref.getReferenceData("BTC","USD");

 return data.rate;

 }

 function getMultiPrices() external view returns (uint256[] memory){

 string[] memory baseSymbols = new string[](2);

 baseSymbols[0] = "BTC";

 baseSymbols[1] = "BTC";

 string[] memory quoteSymbols = new string[](2);

 quoteSymbols[0] = "USD";

 quoteSymbols[1] = "ETH";

 IStdReference.ReferenceData[] memory data = ref.getReferenceDataBulk(baseSymbols,quoteSymbols);

 uint256[] memory prices = new uint256[](2);

 prices[0] = data[0].rate;

 prices[1] = data[1].rate;

 return prices;

 }

 function savePrice(string memory base, string memory quote) external {

 IStdReference.ReferenceData memory data = ref.getReferenceData(base,quote);

 price = data.rate;

 }

}

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/products/band-standard-dataset/introduction
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/cosmwasm
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/products/band-standard-dataset/introduction
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/contract
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/cosmwasm
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/client
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/cli
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Products Band Standard Dataset Using Band Standard Dataset With CosmWasm

With CosmWasm
CosmWasm is an advanced smart contracting platform built for the Cosmos ecosystem. Cosm refers to “Cosmos” while Wasm
refers to WebAssembly. CosmWasm uniquely enables developers to build multi-chain smart contracts, making use of the
InterBlockchain Communication (IBC) Protocol.

CosmWasm contract can update and fetch the prices from Band Standard Dataset using Band's CosmWasm contract, deployed on
their network.

The deployed contract addresses can be found in Supported Blockchains Section.

Build

Contract

To compile all contracts, run the following script in the repo root: /scripts/build_artifacts.sh or the command below: The
optimized wasm code and its checksums can be found in the /artifacts directory

Schema

To generate the JSON schema files for the contract call, queries and query responses, run the following script in the repo root:
/scripts/build_schemas.sh or run cargo schema in the smart contract directory.

Usage
To query the prices from Band Protocol's StdReference contracts, the contract looking to use the price values should query Band
Protocol's std_reference contract.

QueryMsg

The query messages used to retrieve price data for price data are as follows:

ReferenceData

ReferenceData is the struct that is returned when querying with GetReferenceData or GetReferenceDataBulk where the bulk
variant returns Vec<ReferenceData>

ReferenceData is defined as:

Examples

Single Query

For example, if we wanted to query the price of BTC/USD , the demo function below shows how this can be done.

Where the result from demo(std_ref_addr, ("BTC", "USD")) would yield:

and the results can be interpreted as:

BTC/USD
rate = 23131.27 BTC/USD

lastUpdatedBase = 1659588229

lastUpdatedQuote = 1659589497

Bulk Query

Where the result from demo(std_ref_addr, [("BTC", "USD"), ("ETH", "BTC")]) would yield:

and the results can be interpreted as:

BTC/USD
rate = 23131.27 BTC/USD

lastUpdatedBase = 1659588229

lastUpdatedQuote = 1659589497

ETH/BTC
rate = 0.07160177543213148 ETH/BTC

lastUpdatedBase = 1659588229

lastUpdatedQuote = 1659588229

Previous
« With Solidity

Next
On Client Libraries »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

With Solidity

With CosmWasm

On Client Libraries

Through a REST API
Endpoint

Introduction

Core Concepts

Products

Band Standard Dataset

Using Band Standard
Dataset

Band VRF

Pricefeed Module

cw-band

Develop

Nodes & Validators

Staking

docker run --rm -v "$(pwd)":/code \

 --mount type=volume,source="$(basename "$(pwd)")_cache",target=/code/target \

 --mount type=volume,source=registry_cache,target=/usr/local/cargo/registry \

 cosmwasm/workspace-optimizer:0.12.7

pub enum QueryMsg {

 GetReferenceData {

 // Symbol pair to query where:

 // symbol_pair := (base_symbol, quote_symbol)

 // e.g. BTC/USD ≡ ("BTC", "USD")

 symbol_pair: (String, String),

 },

 GetReferenceDataBulk {

 // Vector of Symbol pair to query

 // e.g. <BTC/USD ETH/USD, BAND/BTC> ≡ <("BTC", "USD"), ("ETH", "USD"), ("BAND", "BTC")>

 symbol_pairs: Vec<(String, String)>,

 },

}

pub struct ReferenceData {

 // Pair rate e.g. rate of BTC/USD

 pub rate: Uint256,

 // Unix time of when the base asset was last updated. e.g. Last update time of BTC in Unix time

 pub last_updated_base: Uint64,

 // Unix time of when the quote asset was last updated. e.g. Last update time of USD in Unix time

 pub last_updated_quote: Uint64,

}

fn demo(

 std_ref_addr: Addr,

 symbol_pair: (String, String),

) -> StdResult<ReferenceData> {

 deps.querier.query_wasm_smart(

 &std_ref_addr,

 &QueryMsg::GetReferenceData {

 symbol_pair,

 },

)

}

ReferenceData(23131270000000000000000, 1659588229, 1659589497)

fn demo(

 std_ref_addr: Addr,

 symbol_pairs: Vec<String>,

) -> StdResult<ReferenceData> {

 deps.querier.query_wasm_smart(

 &std_ref_addr,

 &QueryMsg::GetReferenceDataBulk {

 symbol_pairs,

 },

)

}

[

 ReferenceData(23131270000000000000000, 1659588229, 1659589497),

 ReferenceData(71601775432131482, 1659588229, 1659588229)

]

Band Protocol Search K

https://docs.bandchain.org/
https://cosmwasm.com/
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/contract
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/client
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/products/band-standard-dataset/introduction
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/contract
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/cosmwasm
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/client
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/cli
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Products Band Standard Dataset Using Band Standard Dataset On Client Libraries

On Client Libraries
BandChain.js
Along with the Standard Dataset, we have also released a new version of our BandChain.js 🪄 JavaScript client library. This new
version comes with a new getReferenceData function that allows developers to query data from the Dataset.

To get started, the library needs to be installed:

Then, the library can be imported and used as follows:

For a full tutorial and more usage on BandChain.js, please refer to the Getting Started section.

PyBand

And running the code above should return a result that looks like this.

For a full tutorial and more usage on PyBand, please refer to the Getting Started section.

Previous
« With CosmWasm

Next
Through a REST API Endpoint »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

With Solidity

With CosmWasm

On Client Libraries

Through a REST API
Endpoint

Introduction

Core Concepts

Products

Band Standard Dataset

Using Band Standard
Dataset

Band VRF

Pricefeed Module

cw-band

Develop

Nodes & Validators

Staking

npm install @bandprotocol/bandchain.js

const { Client } = require('@bandprotocol/bandchain.js')

// BandChain's Proof-of-Authority REST endpoint

const endpoint = 'https://laozi-testnet6.bandchain.org/grpc-web'

const client = new Client(endpoint)

const minCount = 3

const askCount = 4

// This example demonstrates how to query price data from

// Band's standard dataset

async function exampleGetReferenceData() {

 const rate = await client.getReferenceData(

 ['BTC/USD', 'BTC/ETH', 'EUR/USD', 'EUR/ETH'],

 minCount,

 askCount

)

 return rate

}

;(async () => {

 console.log(await exampleGetReferenceData())

})()

from pyband.client import Client

def main():

 # Step 1

 grpc_url = "<GRPC>" # ex.laozi-testnet6.bandchain.org(without https://)

 c = Client(grpc_url)

 # Step 2

 print(c.get_reference_data(["BTC/USD", "ETH/USD"], 3, 4))

if __name__ == "__main__":

 main()

[

 ReferencePrice(

 (pair = "BTC/USD"),

 (rate = 34614.1),

 (updated_at = ReferencePriceUpdated((base = 1625655764), (quote = 1625715134)))

),

 ReferencePrice(

 (pair = "ETH/USD"),

 (rate = 2372.53),

 (updated_at = ReferencePriceUpdated((base = 1625655764), (quote = 1625715134)))

)

]

Band Protocol Search K

https://docs.bandchain.org/
https://github.com/bandprotocol/bandchain.js
https://docs.bandchain.org/develop/developer-tools/bandchain.js/getting-started
https://docs.bandchain.org/develop/developer-tools/pyband/getting-started
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/cosmwasm
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/cli
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/products/band-standard-dataset/introduction
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/contract
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/cosmwasm
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/client
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/cli
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Products Band Standard Dataset Using Band Standard Dataset Through a REST API Endpoint

Through a REST API Endpoint
The service allows users to easily query for recent price updates via a REST API.

Our REST Endpoints can be found in this Section.

Get Latest Price on Standard Price Reference
Method: GET

Path: /oracle/v1/request_prices

Parameters: ?ask_count={askCount}&min_count={minCount}&symbols={symbol-1}&symbols={symbol-2}&...&symbols=
{symbols-n}

For more usage example of our REST API, can be found in Band CLI and REST Endpoints Section.

Previous
« On Client Libraries

Next
Introduction »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

With Solidity

With CosmWasm

On Client Libraries

Through a REST API
Endpoint

Introduction

Core Concepts

Products

Band Standard Dataset

Using Band Standard
Dataset

Band VRF

Pricefeed Module

cw-band

Develop

Nodes & Validators

Staking

$ curl -X GET "${REST_API}/oracle/v1/request_prices?symbols=BTC&symbols=ETH&ask_count=4&min_count=3"

{

 "price_results": [

 {

 "symbol": "BTC",

 "multiplier": "100",

 "px": "4822795",

 "request_id": "235866",

 "resolve_time": "1631766659"

 },

 {

 "symbol": "ETH",

 "multiplier": "100",

 "px": "303321",

 "request_id": "245820",

 "resolve_time": "1632163802"

 }

]

}

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/client
https://docs.bandchain.org/products/vrf/introduction
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/products/band-standard-dataset/introduction
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/contract
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/cosmwasm
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/client
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/cli
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Products Band VRF Introduction

Introduction
Band Verifiable Random Function (VRF)
The foundation of the randomness matters for security reasons. Modern distributed applications (dApps) often rely on "good"
randomness, generated freshly and independently of the application's state. In addition, the random result should have integrity,
which means it should be verifiable, tamper-proof and unpredictable. For example, consider an online lottery in which participants
place their bids, a random result comes up, and winnings are awarded according to the bid placement. Similarly, consider a
leadership election (often used in committee-based blockchain platforms) that proceeds in rounds to randomly elect a leader among
a set of participants. For such applications, it is crucial to guarantee that the randomness is sampled uniformly and independently of
the application’s state, therefore making it hard to predict as well as ensuring that there are no malicious actors who can affect the
outcome of such lottery winnings and leadership elections.

Verifiable Random Function (VRF)

A commonly used technique for applications that require ”good” random values to be produced rely on cryptography to produce
values that are pseudorandom, i.e., impossible to distinguish from uniformly randomized values. A verifiable random function (VRF)
is a mathematical operation that takes some input and produces a pseudorandom output along with the proof of authenticity of the
output generation process. Challengers can verify the proof to ensure the pseudorandom result is valid and does not come out of
thin air.

In general, the core of the VRF system will have a set of secret keys used to generate verifiable results and a set of corresponding
public keys used to verify the results produced. For example, given a secret key generated in private and a cryptographic function
that maps a seed to an output value with its proof. The crucial property is that someone that does not have access to the secret key
cannot distinguish in polynomial time the output from a value that is sampled uniformly at random from the range of all possible
outcomes.

VRF security properties

Unpredictability: This ensures that the computed outputs are distributed in a way that is, for all practical purposes, uniformly
random. It is a fundamental property of a VRF, as it says that the VRF behaves like a random oracle. In practice, this implies
that anyone not knowing the secret key has no way to predict the outcome that is better than “randomly guessing” even when
knowing the seed. So, if the input seeds are chosen with sufficiently high entropy, it is practically impossible to predict the
output.

Uniqueness: This ensures that, after the VRF providers publish their secret key, they can only produce proof that will convince
others of the correct VRF output value for every seed. In other words, for a given (secret key, seed), it is incredibly hard to find
two different VRF values, both of which pass the verification. This property is crucial to protect against a cheating actor that tries
to claim a specific output other than the correct one for their purposes.

Collision-Resistance: This ensures that it is computationally hard to find two different inputs, "seed1" and "seed2", with the same
secret key to obtain the identical output value —much like the classic property of cryptographic hash functions. The difference is
that for VRFs, this holds even against an adversary that knows the secret key. Note that this offers a different type of protection
than the unique property. For example, it protects against a party that tries to claim an output computed from one input seed as
if it was computed from a different "seed2".

Band VRF

Our solution for verifiably (pseudo-)randomness is based on the BandChain blockchain. Our protocol uses a verifiable random
function (VRF) to cryptographically secure that produced results have not been tampered with. We will present in detail how our
protocol operates in this document.

Band VRF extends from the general form of the VRF system to serve randomness requests for dApps, which is based on the
distributed BandChain oracle network. BandChain is a public blockchain that provides APIs for data and services stored “off-chain”
on the traditional web or from third-party providers. It supports generic data requests from other public blockchains and performs on-
chain aggregation via the BandChain oracle scripts. The aggregation process works like a smart contract on the EVM platform,
which executes data on-chain to produce the oracle results. The oracle results are also stored on-chain. After that, the results are
returned to the calling dApp on the main blockchain (e.g., Ethereum), accompanied by a proof of authenticity via customized one-
way bridges (or via an Inter-Blockchain Communication protocol). To guarantee verifiably “good” randomness suitable for security-
critical applications, we deploy the cryptographic primitive of verifiable random functions. At a high level, a VRF provides values that
are indistinguishable from uniformly random ones and can be verified for their authenticity concerning a pre-published public key.

We chose the VRF of this paper, which has already been adopted in various other protocols. The construction is based on a well-
studied cryptographic hardness assumption over prime-order elliptic curve groups. For our instantiation, we chose the widely-used
Ed25519 curve that achieves very good performance and has a transparent choice of parameters, as well as the Elligator, for our
hash-to-curve installation. Our implementation is fully compliant with the VRF draft standard. Moreover, we implemented all the
necessary techniques to achieve full security. For completeness, we include the pseudo-code description of our VRF below.

Protocol Flow

At a high level, our protocol works as follows. First, the VRFProvider contract and the Bridge contract are deployed on the main-
chain. The VRFProvider contract is in charge of receiving randomness requests from dApps and contains code that pre-processes
the request in order to be ready for submission to the Band side-chain. It also works as the receiving end of the request’s result.
The Bridge contract, as the name denotes, works as the connecting “bridge” between the two chains in order to validate the latest
state of the side-chain and verify that the received results for VRF requests are indeed the ones computed and stored on the
BandChain.

A third-party dApp that wishes to request a random value submits its request to the VRFProvider contract, which then prepares the
actual VRF input by expanding it into a VRF seed. This is picked up by incentivized actors and/or the Band foundation and is
submitted as a VRF request to the BandChain. In particular, a VRF Oracle Script collects this request, maps it to the set of VRF
Data Sources that is available to the chain, as well as a number of BandChain Validators. The VRF Oracle Script then randomly
assigns it to a VRF Data Source, which in turn passes the request to a corresponding VRF Provider API. The assigned VRF
Provider API evaluates the VRF based on the prescribed input using its VRF secret key, and broadcasts the result to the Band
network. All chosen validators run the VRF verification algorithm using this provider’s public key and, if the verification is successful,
the result will be transmitted to the VRF Oracle Script. Finally, after collecting the necessary number of results from the validators,
the oracle script accepts the majority as the final result which then becomes part of the BandChain state, which gets included in the
next block’s computation.

The final result is transmitted back to the main-chain’s VRFProvider contract together with a Merkle tree proof for its inclusion on the
BandChain’s state. This proof is then checked with the Bridge contract. Upon successful checking, the result is returned to the
original calling dApp.

Band VRF on EVM

From the protocol flow, we can catagorize the EVM contracts into two parts: the Band-operated contracts and the consumer (third-
party) contract. We provide detailed explanations regarding the consumer contract in the VRF Intergration section. In this section, we
will focus on the two Band-operated contracts: Bridge and VRFProvider.

Bridge

Conceptually, you can think of the Bridge contract as a generic logic that helps verify the availability of any data stored on the
BandChain. In this case, the VRFProvider acts as a Bridge's user who wants to verify the data. In order to verify the data's
availability, the Bridge contract contains a set of validators of the BandChain, which is used for signature verification when any
external actors relay a BandChain's block. After the block relaying is successful (accumulated power of more than 2/3), the rest is
the verification of the actual data (leaf) against the root hash. Finally, the result/leaf is extracted and returned to the caller if the data
is successfully verified.

State

Functions

The two key functions of the Bridge contract are updateValidatorPowers and relayAndVerify .

The updateValidatorPowers function can only be called by the owner of the Bridge contract. The function is used for updating
the Bridge contract's validator set in order for the contract's state to be consistent with the actual validator set on the BandChain.

The relayAndVerify function is a public function for anyone who wants to relay request data from the BandChain into the Bridge
contract. As a result, the relayed and verified data can be used safely by those who wish to consume data from Band oracle.

VRFProvider

The VRFProvider contract is a contract that is used for tracking all VRF requests and their status. It is also the gateway for the
users/consumers to interact with the protocol.

State

Functions

There are two main functions in the VRFProvider contract: requestRandomData and relayProof .

The requestRandomData function is a function that is called by VRF users/consumers. This function is used for registering a new
task. It also performs a few checks, such as checking that the users/consumers are not using an already used seed, and that the
fee meets the minimum requirement.

The relayProof function is a function that is called by the VRF resolvers (worker bots, relayers, etc.). This function receives the
Band's Merkle proof and then passes it to the Bridge contract for verification. After the verification has succeeded, the extracted
result is sent back from the Bridge contract to the VRFProvider contract. The VRFProvider contract then verifies the parameters in
the result's struct to check if they pass all conditions. After the result's parameters have been checked, the VRFProvider contract
calls back to the consumer contract via the callback function on the consumer side with the final VRF result as one of the
parameters.

Learn more

To learn more about the VRFProvider and Bridge, please visit this 👉 repository

Band VRF on BandChain

There are two main components on the BandChain which involve in the VRF random data delivery process: oracle script and
data source .

The oracle script on the BandChain is similar to a smart contract on EVM chains or CosmWasm chains; it is the on-chain calculation
part. VRF oracle script is an oracle script that has been designed specifically for the VRF protocol. It contains a list of VRF data
sources to be chosen from during the preparation stage. After the preparation stage, the chosen validators run the VRF data sources
to create the VRF random result, and then report the raw result to the BandChain's state. Finally, at the execution/aggregation stage,
the oracle script is run automatically to summarize the raw results into a single result, which is then stored on the BandChain's state.
When the final result is stored on the BandChain, anyone can retrieve its Merkle proof of availability from the BandChain. This proof
is used together with the relay function of the Bridge contract on the client chain.

The data source is an off-chain execution script that is used to call external APIs. VRF data sources are linked to external VRF
providers that provide the verifiable randomness service. After calling the provider, the data source verifies the returned result and
proof against the predefined public key. The data source only returns the result if the verification is successful.

Learn more

Band VRF Whitepaper

Band oracle script docs

Band data source docs

Previous
« Through a REST API Endpoint

Next
Getting Started »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Getting Started

VRF integration

Example Use Cases

VRF Supported Blockchains

Introduction

Core Concepts

Products

Band Standard Dataset

Band VRF

Pricefeed Module

cw-band

Develop

Nodes & Validators

Staking

 // The encoded chain's ID of Band.

 // This value is only set at the deployment time

 bytes public encodedChainID;

 //== Set by the owner ==================================

 struct ValidatorWithPower {

 address addr;

 uint256 power;

 }

 // Mapping from an address to its voting power.

 EnumerableMap.AddressToUintMap private validatorPowers;

 // The total voting power of active validators currently on duty.

 uint256 public totalValidatorPower;

 //== Set by the owner ==================================

 //== Public ==================================

 struct BlockDetail {

 bytes32 oracleState;

 uint64 timeSecond;

 uint32 timeNanoSecondFraction; // between 0 to 10^9

 }

 // Mapping from block height to the struct that contains block time and hash of "oracle" iAVL Merkle

 mapping(uint256 => BlockDetail) public blockDetails;

 //== Public ==================================

 //== Set by the owner ==================================

 // A reference to the Bridge contract

 IBridge public bridge;

 // An id of the VRF oracle script on Bandchain

 uint64 public oracleScriptID;

 // A minimum number of validators needed to resolve requests.

 uint8 public minCount;

 // A limited number of validators needed to resolve requests.

 uint8 public askCount;

 // A global counter for all tasks known to the VRFProvider

 // As a new request is made, a new task will be created, and this number will keep increasing.

 uint64 public taskNonce;

 // An amount of minimum fee required to pay the VRF worker(resolver, relayer, etc.).

 uint256 public minimumFee;

 //== Set by the owner ==================================

 //== Public ==================================

 // Mapping that enforces the client to provide a unique seed for each request

 mapping(address => mapping(string => bool)) public hasClientSeed;

 // The struct of a task

 struct Task {

 bool isResolved;

 uint64 time;

 address caller;

 uint256 taskFee;

 bytes32 seed;

 string clientSeed;

 bytes proof;

 bytes result;

 }

 // Mapping from nonce => task

 // External entities can query a task via this mapping by specifying the task id.

 // The task id is the taskNonce at the time the task was created.

 mapping(uint64 => Task) public tasks;

 //== Public ==================================

Band Protocol Search K

https://docs.bandchain.org/
https://eprint.iacr.org/2017/099
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-09
https://github.com/bandprotocol/vrf-and-bridge-contracts/tree/master/contracts
https://bandprotocol.com/static/Band-VRF-Whitepaper.pdf
https://docs.bandchain.org/develop/custom-scripts/oracle-script/introduction
https://docs.bandchain.org/develop/custom-scripts/data-source/introduction
https://docs.bandchain.org/products/band-standard-dataset/using-band-standard-dataset/cli
https://docs.bandchain.org/products/vrf/getting-started
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/products/vrf/introduction
https://docs.bandchain.org/products/vrf/getting-started
https://docs.bandchain.org/products/vrf/vrf-integration
https://docs.bandchain.org/products/vrf/example
https://docs.bandchain.org/products/vrf/supported-blockchains
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Products Band VRF Getting Started

Getting Started with Band VRF
This guide serves as a quick reference on how to request random data from the Band VRF. For a detailed reference with examples,
please refer to the VRF Integration section.

Step 1: Prepare a VRF consumer contract

1. Create a VRF consumer contract that can call the requestRandomData function on the VRFProvider contract.

2. Implement a callback function on the VRF consumer contract, which allows the VRFProvider contract to call back and execute
some logic against the returned result.

Step 2: Choose a resolving method

There are currently 3 methods for relaying and resolving the VRF request:

Band's VRF worker solution - We provide both standard and customized solutions for all clients. Please Email Us for more
details.

Manually resolve on CosmoScan - This is an ideal and low cost solution for one-off Band VRF requests. Please refer to this
guide for how to resolve manually.

Implement your own resolver bot - Anyone can implement their own version of resolver bot. An open-source version of Band's
VRF worker bot is available at VRFWorkerV1 repository.

Step 3: Request a random value

You are now ready to request a random value from the Band VRF.

A summary of the Band VRF process is outlined below:

1. Simply call the request function on you VRF consumer contract that implements the requestRandomData function in Step 1,
providing a seed and an optional msg.value .

2. Depending on the resolving method chosen in Step 2, the request is sent to the BandChain.

3. The VRF oracle script on the BandChain forwards the request to a randomly chosen data source, and then retrieves the
returned result and the corresponding proof of authenticity.

4. Depending on the resolving method chosen in Step 2, the proof is relayed to the Bridge contract for verification on the client
chain via the VRFProvider contract.

5. If the verification succeeds, the result (random value) is returned to the VRF consumer contract via the callback function
mentioned in Step 1.

Previous
« Introduction

Next
VRF integration »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Getting Started

VRF integration

Example Use Cases

VRF Supported Blockchains

Introduction

Core Concepts

Products

Band Standard Dataset

Band VRF

Pricefeed Module

cw-band

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/products/vrf/vrf-integration
mailto:bd@bandprotolcol.com?subject=Request%20for%20Band%27s%20VRF%20worker%20solution
https://docs.bandchain.org/products/vrf/vrf-integration#manually-request-and-resolve
https://github.com/bandprotocol/vrf-worker-v1
https://docs.bandchain.org/products/vrf/introduction
https://docs.bandchain.org/products/vrf/vrf-integration
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/products/vrf/introduction
https://docs.bandchain.org/products/vrf/getting-started
https://docs.bandchain.org/products/vrf/vrf-integration
https://docs.bandchain.org/products/vrf/example
https://docs.bandchain.org/products/vrf/supported-blockchains
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Products Band VRF VRF integration

VRF integration
In this section, we will discuss how to integrate your smart contracts with the Band VRF. This section is separated into two sub-
sections: Requesting and Resolving.

Typically, when building on-chain applications that rely on an unpredictable outcome, such as lottery apps or games, the system
requires a reliable source of randomness, and that is when the Band VRF comes into play.

VRF Flow

As shown in the VRF workflow, a request and callback model is used to obtain new random data. We will summarize the steps
shown in the figure above into 3 main steps to make it easier to understand; steps 1 and 3 are on the EVM side, and step 2 is on
the Bandchain side.

1. The process begins with a transaction that contains a consumer's request for random data from Band's VRFProvider contract.

2. After the transaction in step 1 is confirmed, an off-chain entity will grab parameters from its log to make a request transaction on
Bandchain, producing the VRF result.

3. The last step is grabbing the result in step 2 with the proof of availability on Bandchain for making a relay transaction on the
EVM side to resolve the request in the first step.

Contracts integration

Requesting

Assume that you are building an on-chain application that uses the Band VRF as a reliable source of randomness. Your contract(s)
should contain a reference to Band's VRFProvider contract to be able to request random values.

First, let's define an interface for the VRFProvider contract.

Then, the consumer only needs to call requestRandomData with a string parameter called seed .

CAUTION

Please note that the seed is a generated string on the consumer side. Any two different consumers may be using the same
seed. However, every consumer must use a unique seed for all their requests, as the VRFProvider has a mapping to check this
condition.

After including the IVRFProvider , the consumer can now make a request-call to the VRFProvider contract, as shown in the
example implementation below.

When calling requestRandomData(seed) , the consumer can specify msg.value to incentivize others to resolve the random data
request. However, consumers can choose not to provide any incentive and resolve the request themselves.

After the consumer knows how to request from the VRFProvider , the consumer must also implement a callback function for the
VRFProvider contract to call after the corresponding VRF result has been relayed.

The implementation below takes the previous step's code and adds the consume function.

As shown above, the consume function implements a logic that verifies whether the caller is the VRFProvider contract or not. This is
to ensure that no one can call this function except the VRFProvider contract. With regards to the remaining logic in the example, the
callback function only saves the callback data from the VRFProvider contract to its state.

Finally, we got our complete MockVRFConsumer contract that can make a request called the VRFProvider and then consume the
VRF result once that request is resolved from the VRFProvider side.

Resolving

Anyone can get any existing requests in the VRFProvider contract by tracking the mapping called tasks. A task(VRF request) was
designed to be resolved in a decentralized way. Therefore, there is no permission to resolve any task. The only thing that needs to
resolve any unresolved tasks is the Merkle proof of the VRF result available on Bandchain.

The code below shows what a task looks like and the data structure(mapping) that helps track the tasks.

When a resolver(a self-implemented worker, a bot, a bounty hunter, etc.) finds an unresolved request, the resolver can resolve it by
requesting the VRF randomness on the BandChain. After the VRF result is finalized on the BandChain, the resolver can retrieve the
Merkle proof of availability of the result and then relay the proof via a relayProof function on the VRFProvider contract. The
resolver also needs to specify the nonce of the task it wants to resolve.

The next step will demonstrate how to manually request and resolve the VRF randomness using the user interfaces of
Cosmoscan(Band) and Etherscan(EVM).

Manually request and resolve

This section will demonstrate how to request random data from the VRFProvider and then resolve the request manually using
Goerli and Laozi-Testnet6 UI.

Firstly, go to the VRFProvider contract on Goerli to view some of its global variables.

To request the VRF randomness on Bandchain, we need to know the oracleScriptID . The VRF oracle script is the ID 335 on the
laozi-Testnet6.

Now, let's move to the MockVRFConsumer contract to begin the VRF flow started by calling a function
requestRandomDataFromProvider .

The video below shows the flow of the MockConsumer that requests the VRF random value from the VRFProvider .

Watch on

VRF Integration VideoVRF Integration Video
Copy linkCopy link

Recommended Oracle Script Request Settings

Parameter Value

Prepare Gas 100000

Execute Gas 400000

Gas Limit (Leave Blank)

Ask Count 4

Min Count 3

Implement your own resolver

An alternative to manually resolve the request is to use a resolver bot. Anyone can implement their own version of resolver bot to
automate the resolving process. We provide an open-source version of Band's VRF worker bot, which is available at VRFWorkerV1
repository.

Previous
« Getting Started

Next
Example Use Cases »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Getting Started

VRF integration

Example Use Cases

VRF Supported Blockchains

Introduction

Core Concepts

Products

Band Standard Dataset

Band VRF

Pricefeed Module

cw-band

Develop

Nodes & Validators

Staking

interface IVRFProvider {

 /// @dev The function for consumers who want random data.

 /// Consumers can simply make requests to get random data back later.

 /// @param seed Any string that used to initialize the randomizer.

 function requestRandomData(string calldata seed) external payable;

}

contract VRFProvider {

 ...

 // Mapping that enforces the client to provide a unique seed for each request

 mapping(address => mapping(string => bool)) public hasClientSeed;

 ...

}

contract MockVRFConsumer {

 IVRFProvider public provider;

 constructor(IVRFProvider _provider) {

 provider = _provider;

 }

 function requestRandomDataFromProvider(string calldata seed) external payable {

 provider.requestRandomData{value: msg.value}(seed);

 }

}

contract MockVRFConsumer {

 IVRFProvider public provider;

 constructor(IVRFProvider _provider) {

 provider = _provider;

 }

 function requestRandomDataFromProvider(string calldata seed) external payable {

 provider.requestRandomData{value: msg.value}(seed);

 }

 // ===

 string public latestSeed;

 uint64 public latestTime;

 bytes32 public latestResult;

 function consume(string calldata seed, uint64 time, bytes32 result) external override {

 require(msg.sender == address(provider), "Caller is not the provider");

 latestSeed = seed;

 latestTime = time;

 latestResult = result;

 }

}

contract VRFProvider {

 ...

 struct Task {

 bool isResolved;

 uint64 time;

 address caller;

 uint256 taskFee;

 bytes32 seed;

 bytes32 result;

 string clientSeed;

 }

 // A global variable representing the number of all tasks in this contract

 uint64 public taskNonce;

 // Mapping from nonce => task

 mapping(uint64 => Task) public tasks;

 ...

 function relayProof(bytes calldata _proof, uint64 _taskNonce) external nonReentrant {

 ...

 }

 ...

}

Band Protocol Search K

https://docs.bandchain.org/
https://goerli.etherscan.io/
https://laozi-testnet6.cosmoscan.io/
https://goerli.etherscan.io/address/0xBCA1F17f6c01FA81f214F0e11e76e85C2261188c#readContract
https://laozi-testnet6.cosmoscan.io/oracle-script/335
https://goerli.etherscan.io/address/0x6aFCBD05f4718B994a290cfF03547DDFFcd74E08#readContract
https://www.youtube.com/watch?v=Mhmr4tS9z5Q&embeds_referring_euri=https%3A%2F%2Fdocs.bandchain.org%2F&feature=emb_imp_woyt
https://www.youtube.com/watch?v=Mhmr4tS9z5Q
https://github.com/bandprotocol/vrf-worker-v1
https://docs.bandchain.org/products/vrf/getting-started
https://docs.bandchain.org/products/vrf/example
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/products/vrf/introduction
https://docs.bandchain.org/products/vrf/getting-started
https://docs.bandchain.org/products/vrf/vrf-integration
https://docs.bandchain.org/products/vrf/example
https://docs.bandchain.org/products/vrf/supported-blockchains
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Products Band VRF Example Use Cases

Example Use Cases
Band VRF provides deterministic pre-commitments for low entropy inputs, which must resist brute-force pre-image attacks. In
addition, the VRF can be used as defense against offline enumeration attacks (such as dictionary attacks) on data stored in hash-
based data structures. Therefore, it can be used as a secure source of on-chain randomness. The Band VRF use cases are outlined
below.

Use cases

We separate the use cases into four categories based on the behaviors of the VRF users/consumers.

1. One-time-use: Consumers only request random data once in their product lifetime, typically when they initiate their contracts.

NFT minting - in the case where a single random seed is used to generate the entire collection.

2. Batch-use: Consumers request random data multiple times but with a countable number of requests for the entire life of their
product.

NFT minting - in the case where every single ID will be minted one by one. Therefore, whenever the end-user tries to mint
an NFT, the VRF request is created to resolve the minting. This process will continue until the entire collection is minted.

3. Interval-use: Consumers set their specific intervals to request random data from our VRF protocol. This process will continue
indefinitely since some parts of their products rely on a trusted source of randomness.

Lottery dApps (predetermined start-end, calculatable start-end)

NFT minting with a specific minting interval

4. Continuous-use: Consumers use randomness as parts of their product with no specific interval. Therefore, they can request
random data at any time based on the internal logic of their contracts/system.

Lottery dApps (no predetermined interval, unable to calculate future start-end)

On-chain games

NFT on-demand minting

Lottery Example (Continuous-use)

This on-chain lottery dApp is an example of a continuous-use VRF, and it satisfies the requirements below.

Requirements:

Only the owner can set the minimum price and the round's duration.

Only the owner can start a new round.

The owner determined the seed of the started round.

Anyone can buy lotteries during a started round.

Anyone can request to resolve the current round if it has ended.

Only the VRFProvider contract can resolve the resolving round.

We have deployed the reference contracts to the Goerli testnet here.

Contract Address

Bridge 0xD291A502e3ca4Bb13E09892e57d8Ff0271Bd198A

VRFProvider 0xF1F3554b6f46D8f172c89836FBeD1ea8551eabad

VRFLens 0x6e876b4Ed458af275Eb049a3f89BF0909618d154

SimpleLottery 0xCD3528283aA330003E50350134a48d1920BA70A0

NFT Minting Example (Batch-use)

This NFT is an example of a batch-use VRF, and it satisfies the requirements below.

Requirements:

The max supply is set once at the time the contract is deployed.

Anyone can call mintWithVRF to start minting an NFT for themself.

An actual minting is done when the VRFprovider resolves the token id for the minter/receiver.

We have deployed the reference contracts to the Goerli testnet here.

Contract Address

Bridge 0xD291A502e3ca4Bb13E09892e57d8Ff0271Bd198A

VRFProvider 0xF1F3554b6f46D8f172c89836FBeD1ea8551eabad

VRFLens 0x6e876b4Ed458af275Eb049a3f89BF0909618d154

NFTBatchMinting 0x0b590C537608d121F8e46c2b366f5d22EC942c0f

Previous
« VRF integration

Next
VRF Supported Blockchains »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Getting Started

VRF integration

Example Use Cases

VRF Supported Blockchains

Introduction

Core Concepts

Products

Band Standard Dataset

Band VRF

Pricefeed Module

cw-band

Develop

Nodes & Validators

Staking

pragma solidity ^0.8.17;

interface IVRFConsumer {

 /// @dev The function is called by the VRF provider in order to deliver results to the consumer.

 /// @param seed Any string that used to initialize the randomizer.

 /// @param time Timestamp where the random data was created.

 /// @param result A random bytes for given seed anfd time.

 function consume(

 string calldata seed,

 uint64 time,

 bytes32 result

) external;

}

interface IVRFProvider {

 /// @dev The function for consumers who want random data.

 /// Consumers can simply make requests to get random data back later.

 /// @param seed Any string that used to initialize the randomizer.

 function requestRandomData(string calldata seed) external payable;

}

contract SimpleLottery is IVRFConsumer {

 event Buy(address buyer, uint256 buyerIndex, uint256 roundNumber, uint256 buyPrice);

 event StartRound(uint256 roundNumber, string seed);

 event ResolvingRound(uint256 roundNumber, string seed);

 event RoundResolved(uint256 roundNumber, string seed, bytes32 result);

 address public owner;

 uint256 public minLotteryPrice;

 uint256 public roundDuration;

 uint256 public roundCount;

 bool public isResolvingCurrentRound;

 IVRFProvider public provider;

 struct Round {

 uint256 startBlock;

 uint256 endBlock;

 string seedOfRound;

 address[] buyers;

 }

 mapping(uint256 => Round) public rounds;

 constructor(IVRFProvider _provider, uint256 _minLotteryPrice, uint256 _roundDuration) {

 provider = _provider;

 minLotteryPrice = _minLotteryPrice;

 roundDuration = _roundDuration;

 owner = msg.sender;

 }

 function isCurrentRoundStart() public view returns(bool) {

 return rounds[roundCount].startBlock > 0;

 }

 function currentRoundBlocksRemaining() public view returns(uint256) {

 Round memory currentRound = rounds[roundCount];

 if (block.number > currentRound.endBlock) {

 return 0;

 }

 return currentRound.endBlock - block.number;

 }

 function setMinLotteryPrice(uint256 _minLotteryPrice) external {

 require(msg.sender == owner, "SimpleLottery: not the owner");

 require(!isCurrentRoundStart(), "SimpleLottery: this round is in progress");

 minLotteryPrice = _minLotteryPrice;

 }

 function setRoundDuration(uint256 _roundDuration) external {

 require(msg.sender == owner, "SimpleLottery: not the owner");

 require(!isCurrentRoundStart(), "SimpleLottery: this round is in progress");

 roundDuration = _roundDuration;

 }

 function startANewRound(string memory roundSeed) external {

 require(msg.sender == owner, "SimpleLottery: not the owner");

 require(!isCurrentRoundStart(), "SimpleLottery: this round is in progress");

 Round memory currentRound = rounds[roundCount];

 currentRound.seedOfRound = roundSeed;

 currentRound.startBlock = block.number;

 currentRound.endBlock = currentRound.startBlock + roundDuration;

 rounds[roundCount] = currentRound;

 emit StartRound(roundCount, roundSeed);

 }

 function buy() external payable {

 require(currentRoundBlocksRemaining() > 0, "SimpleLottery: this round is not in progress");

 require(msg.value >= minLotteryPrice, "SimpleLottery: given price is too low");

 uint256 currentBuyerIndex = rounds[roundCount].buyers.length;

 emit Buy(msg.sender, currentBuyerIndex, roundCount, msg.value);

 rounds[roundCount].buyers.push(msg.sender);

 }

 function resolveCurrentRound() external {

 require(isCurrentRoundStart(), "SimpleLottery: this round is not started yet");

 require(currentRoundBlocksRemaining() == 0, "SimpleLottery: this round has not ended yet");

 require(!isResolvingCurrentRound, "SimpleLottery: round is resolving");

 Round memory currentRound = rounds[roundCount];

 if (currentRound.buyers.length > 0) {

 isResolvingCurrentRound = true;

 provider.requestRandomData{value: 0}(currentRound.seedOfRound);

 emit ResolvingRound(roundCount, currentRound.seedOfRound);

 } else {

 emit RoundResolved(roundCount, currentRound.seedOfRound, bytes32(0));

 roundCount += 1;

 isResolvingCurrentRound = false;

 }

 }

 function consume(string calldata seed, uint64 time, bytes32 result) external override {

 require(msg.sender == address(provider), "Caller is not the provider");

 require(isResolvingCurrentRound, "SimpleLottery: round is not resolving");

 Round memory currentRound = rounds[roundCount];

 address winner = currentRound.buyers[uint256(result) % currentRound.buyers.length];

 emit RoundResolved(roundCount, seed, result);

 roundCount += 1;

 isResolvingCurrentRound = false;

 winner.call{value: address(this).balance}("");

 }

}

pragma solidity ^0.8.17;

import {ERC721Enumerable} from "@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol";

/**

 * @dev String operations.

 */

library Strings {

 bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";

 /**

 * @dev Converts a `uint256` to its ASCII `string` decimal representation.

 */

 function toString(uint256 value) internal pure returns (string memory) {

 // Inspired by OraclizeAPI's implementation - MIT licence

 // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oracli

 if (value == 0) {

 return "0";

 }

 uint256 temp = value;

 uint256 digits;

 while (temp != 0) {

 digits++;

 temp /= 10;

 }

 bytes memory buffer = new bytes(digits);

 while (value != 0) {

 digits -= 1;

 buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));

 value /= 10;

 }

 return string(buffer);

 }

}

interface IVRFConsumer {

 /// @dev The function is called by the VRF provider in order to deliver results to the consumer.

 /// @param seed Any string that used to initialize the randomizer.

 /// @param time Timestamp where the random data was created.

 /// @param result A random bytes for given seed anfd time.

 function consume(

 string calldata seed,

 uint64 time,

 bytes32 result

) external;

}

interface IVRFProvider {

 /// @dev The function for consumers who want random data.

 /// Consumers can simply make requests to get random data back later.

 /// @param seed Any string that used to initialize the randomizer.

 function requestRandomData(string calldata seed) external payable;

}

contract ExampleNFT is ERC721Enumerable, IVRFConsumer {

 using Strings for uint256;

 IVRFProvider public immutable provider;

 uint256 public immutable maxSupply;

 uint256 public mintRequestCount = 0;

 uint256 public mintResolveCount = 0;

 mapping(uint256 => uint256) public tokenMintingLogs;

 mapping(string => address) public tokenSeedToMinter;

 constructor(IVRFProvider _provider, uint256 _maxSupply) ERC721("ExampleNFT", "ENFT") {

 provider = _provider;

 maxSupply = _maxSupply;

 }

 function mintWithVRF() external {

 require(mintRequestCount < maxSupply, "Reach max supply");

 string memory clientSeed = string(abi.encodePacked("ExampleNFT-", mintRequestCount.toString()));

 tokenSeedToMinter[clientSeed] = msg.sender;

 mintRequestCount++;

 provider.requestRandomData{value: 0}(clientSeed);

 }

 function consume(string calldata seed, uint64 time, bytes32 result) external override {

 require(msg.sender == address(provider), "Caller is not the provider");

 address _receiver = tokenSeedToMinter[seed];

 uint256 index = uint256(result) % (maxSupply - mintResolveCount);

 uint256 tokenID = tokenMintingLogs[index];

 if (tokenID == 0) {

 tokenID = index;

 }

 mintResolveCount++;

 tokenMintingLogs[index] = maxSupply - mintResolveCount;

 _safeMint(_receiver, tokenID);

 }

}

Band Protocol Search K

https://docs.bandchain.org/
https://goerli.etherscan.io/
https://goerli.etherscan.io/address/0xD291A502e3ca4Bb13E09892e57d8Ff0271Bd198A
https://goerli.etherscan.io/address/0xF1F3554b6f46D8f172c89836FBeD1ea8551eabad
https://goerli.etherscan.io/address/0x6e876b4Ed458af275Eb049a3f89BF0909618d154
https://goerli.etherscan.io/address/0xCD3528283aA330003E50350134a48d1920BA70A0
https://goerli.etherscan.io/
https://goerli.etherscan.io/address/0xD291A502e3ca4Bb13E09892e57d8Ff0271Bd198A
https://goerli.etherscan.io/address/0xF1F3554b6f46D8f172c89836FBeD1ea8551eabad
https://goerli.etherscan.io/address/0x6e876b4Ed458af275Eb049a3f89BF0909618d154
https://goerli.etherscan.io/address/0x0b590C537608d121F8e46c2b366f5d22EC942c0f#code
https://docs.bandchain.org/products/vrf/vrf-integration
https://docs.bandchain.org/products/vrf/supported-blockchains
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/products/vrf/introduction
https://docs.bandchain.org/products/vrf/getting-started
https://docs.bandchain.org/products/vrf/vrf-integration
https://docs.bandchain.org/products/vrf/example
https://docs.bandchain.org/products/vrf/supported-blockchains
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Supported Blockchains

Supported Blockchains
CAUTION

We recommend experimenting with using our solution on a test network first before proceeding to mainnet.

Please ONLY use the proxy contract as in the case that the base contract is updated, the proxy contract will always point
to the correct base contract and show the most updated price feeds.

Currently, our StdReferenceProxy smart contracts are available on the following networks:

Testnets

Blockchain StdReferenceProxy Contract Address Explorer

Astar (Shibuya) 0x2Bf9a731f9A56C59DeB4DF1369286A3E69F5b418 link

Avalanche (Fuji) 0xD0b2234eB9431e850a814bCdcBCB18C1093F986B link

Bitgert 0x8c064bCf7C0DA3B3b090BAbFE8f3323534D84d68 link

BitTorrent Chain 0x8c064bCf7C0DA3B3b090BAbFE8f3323534D84d68 link

Boba 0xe8e974b6b294AC1f5031AC54B968E8afFb7306Cb link

Celo (Alfajores) 0x660cBc25F0cFD31F0Bdcaa43525f0bACC6DB2ABc link

CLV 0xD0b2234eB9431e850a814bCdcBCB18C1093F986B link

Cronos 0xD0b2234eB9431e850a814bCdcBCB18C1093F986B link

Findora 0x8c064bCf7C0DA3B3b090BAbFE8f3323534D84d68 link

Godwoken 0x0c2362c9a0586dd7295549c65a4a5e3afe10a88a link

Harmony 0xD0b2234eB9431e850a814bCdcBCB18C1093F986B link

Icon (Berlin) cxd2bac764a0277efb9a6861fa991be4e5a46f16a2 link

Icon (Lisbon) cx734512ad03efdcedb69e0526415a7ce21340e0db link

Meter 0xe1bCC505f2Bdd02C9480C924856f5080834A3897 link

Oasis (Emerald) 0x61704EFB8b8120c03C210cAC5f5193BF8c80852a link

Oasis (Sapphire) 0x0c2362c9A0586Dd7295549C65a4A5e3aFE10a88A link

OKC 0xb6256DCb23CEE06eDa2408E73945963606fdddd7 link

Osmosis osmo1j8jnej8k5he7h27qzr4v999xgsd0q43n9ny8phtx9aj6w82ruwgslcp77p link

PlatON 0xb6256DCb23CEE06eDa2408E73945963606fdddd7 link

Secret (Pulsar-2) secret14swdnnllsfvtnvwmtvnvcj2zu0njsl9cdkk5xp link

Mainnets

Blockchain StdReferenceProxy Contract Address Explorer

Astar (Astar) 0xDA7a001b254CD22e46d3eAB04d937489c93174C3 link

Astar (Shiden) 0xDA7a001b254CD22e46d3eAB04d937489c93174C3 link

Avalanche 0x75B01902D9297fD381bcF3B155a8cEAC78F5A35E link

BitTorrent Chain 0xDA7a001b254CD22e46d3eAB04d937489c93174C3 link

BNB 0xDA7a001b254CD22e46d3eAB04d937489c93174C3 link

Celo 0xDA7a001b254CD22e46d3eAB04d937489c93174C3 link

CLV 0xDA7a001b254CD22e46d3eAB04d937489c93174C3 link

Cronos 0xDA7a001b254CD22e46d3eAB04d937489c93174C3 link

Ethereum 0xDA7a001b254CD22e46d3eAB04d937489c93174C3 link

Fantom 0xDA7a001b254CD22e46d3eAB04d937489c93174C3 link

Godwoken 0xDA7a001b254CD22e46d3eAB04d937489c93174C3 link

Icon (Java) cxe647e0af68a4661566f5e9861ad4ac854de808a2 link

Meter 0x861C20f77f194EEa4f86e0d39069D789265A3A82 link

Moonriver 0x75B01902D9297fD381bcF3B155a8cEAC78F5A35E link

Oasis (Emerald) 0xDA7a001b254CD22e46d3eAB04d937489c93174C3 link

OKC 0xDA7a001b254CD22e46d3eAB04d937489c93174C3 link

Optimism 0xDA7a001b254CD22e46d3eAB04d937489c93174C3 link

PlatON 0xDA7a001b254CD22e46d3eAB04d937489c93174C3 link

Secret 4 secret1ezamax2vrhjpy92fnujlpwfj2dpredaafss47k link

Previous
« Deployment

Next
API Endpoints »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

Building on BandChain

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://blockscout.com/shibuya/address/0x2Bf9a731f9A56C59DeB4DF1369286A3E69F5b418
https://testnet.snowtrace.io/address/0xD0b2234eB9431e850a814bCdcBCB18C1093F986B
https://testnet-explorer.brisescan.com/address/0x8c064bCf7C0DA3B3b090BAbFE8f3323534D84d68
https://testnet.bttcscan.com/address/0x8c064bCf7C0DA3B3b090BAbFE8f3323534D84d68
https://blockexplorer.rinkeby.boba.network/address/0xe8e974b6b294AC1f5031AC54B968E8afFb7306Cb
https://alfajores-blockscout.celo-testnet.org/address/0x660cBc25F0cFD31F0Bdcaa43525f0bACC6DB2ABc
https://clover-testnet.subscan.io/account/0xD0b2234eB9431e850a814bCdcBCB18C1093F986B
https://testnet.cronoscan.com/address/0xD0b2234eB9431e850a814bCdcBCB18C1093F986B
https://testnet-anvil.evm.findorascan.io/address/0x8c064bCf7C0DA3B3b090BAbFE8f3323534D84d68
https://v1.betanet.gwscan.com/address/0x0c2362c9a0586dd7295549c65a4a5e3afe10a88a
https://explorer.pops.one/address/0xd0b2234eb9431e850a814bcdcbcb18c1093f986b
https://berlin.tracker.solidwallet.io/contract/cxd2bac764a0277efb9a6861fa991be4e5a46f16a2
https://lisbon.tracker.solidwallet.io/contract/cx734512ad03efdcedb69e0526415a7ce21340e0db
https://scan-warringstakes.meter.io/address/0xe1bCC505f2Bdd02C9480C924856f5080834A3897
https://testnet.explorer.emerald.oasis.dev/address/0x61704EFB8b8120c03C210cAC5f5193BF8c80852a
https://testnet.explorer.sapphire.oasis.dev/address/0x0c2362c9A0586Dd7295549C65a4A5e3aFE10a88A
https://www.oklink.com/en/okc-test/address/0xb6256DCb23CEE06eDa2408E73945963606fdddd7
https://testnet.mintscan.io/osmosis-testnet/account/osmo1j8jnej8k5he7h27qzr4v999xgsd0q43n9ny8phtx9aj6w82ruwgslcp77p
https://devnet2scan.platon.network/address/0xb6256DCb23CEE06eDa2408E73945963606fdddd7
https://secretnodes.com/secret/chains/pulsar-2/accounts/secret14swdnnllsfvtnvwmtvnvcj2zu0njsl9cdkk5xp
https://blockscout.com/astar/address/0xDA7a001b254CD22e46d3eAB04d937489c93174C3
https://shiden.subscan.io/address/0xDA7a001b254CD22e46d3eAB04d937489c93174C3
https://snowtrace.io/address/0x75B01902D9297fD381bcF3B155a8cEAC78F5A35E
https://bttcscan.com/address/0xDA7a001b254CD22e46d3eAB04d937489c93174C3
https://bscscan.com/address/0xDA7a001b254CD22e46d3eAB04d937489c93174C3
https://explorer.celo.org/address/0xDA7a001b254CD22e46d3eAB04d937489c93174C3
https://clvscan.com/address/0xDA7a001b254CD22e46d3eAB04d937489c93174C3
https://cronoscan.com/address/0xDA7a001b254CD22e46d3eAB04d937489c93174C3
https://etherscan.io/address/0xDA7a001b254CD22e46d3eAB04d937489c93174C3
https://ftmscan.com/address/0xDA7a001b254CD22e46d3eAB04d937489c93174C3
https://v1.gwscan.com/account/0xda7a001b254cd22e46d3eab04d937489c93174c3
https://tracker.icon.community/contract/cxe647e0af68a4661566f5e9861ad4ac854de808a2
https://scan.meter.io/address/0x861C20f77f194EEa4f86e0d39069D789265A3A82
https://moonriver.moonscan.io/address/0x75B01902D9297fD381bcF3B155a8cEAC78F5A35E
https://explorer.emerald.oasis.dev/address/0xDA7a001b254CD22e46d3eAB04d937489c93174C3
https://www.oklink.com/oec/address/0xDA7a001b254CD22e46d3eAB04d937489c93174C3
https://optimistic.etherscan.io/address/0xDA7a001b254CD22e46d3eAB04d937489c93174C3
https://scan.platon.network/address/0xda7a001b254cd22e46d3eab04d937489c93174c3
https://secretnodes.com/secret/chains/secret-4/accounts/secret1ezamax2vrhjpy92fnujlpwfj2dpredaafss47k
https://docs.bandchain.org/develop/custom-scripts/oracle-script/deployment
https://docs.bandchain.org/develop/api-endpoints
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Products Pricefeed Module Introduction

Introduction
The Cosmos SDK is presently the most widely utilized framework for developing blockchain applications. A crucial necessity for such
apps is an oracle. As decentralized applications (dApps) rely heavily on real-world data, ensuring the accuracy of this data holds
significant importance.

It would be advantageous for your Cosmos SDK app to possess a built-in Oracle that obtains data from BandChain via IBC. By
importing the pricefeed module implemented by Band Protocol.

Proposal
The initial step for the pricefeed module is to obtain information about the symbols that require price data from BandChain on every
n block. This is accomplished by submitting the UpdateSymbolRequest Proposal.

The Proposal submitted to update tasks for the pricefeed module consists of three components - the name of the symbol, the Oracle
script ID required to obtain the price, and the block interval for requesting the data every n blocks.

Upon the proposal's approval, the pricefeed module will request price data from BandChain based on the SymbolRequest that was
updated through the proposal.

Workflow

Request

At a high level, the workflow will be as follows. First, the pricefeed module creates an IBC packet to request data from BandChain.
Then, relayers will pick up the IBC packet and relay it on BandChain.

After BandChain processes the request, it will send an acknowledgement message along with request_id back. And, when the
result of the request is finalized, BandChain will send a new IBC packet that contains the final data back. Relayers will listen and
pick up those packets and relay them to your Cosmos SDK app.

After this stage, the Cosmos SDK app can safely use the data obtained from BandChain in its application at every n blocks interval.
If the Cosmos SDK app requires additional data, it can submit an update symbols request proposal at any time.

pricefeed

The pricefeed module obtains price data from BandChain through IBC and stores the most recent prices on your Cosmos SDK
applications.

An example of the usage of this module is provided on the Oracle Consumer Chain.

Params
The pricefeed module stores its params in the state, it can be updated with governance. The information contained in these
parameters is utilized to request data from BandChain.

proto/consumer/pricefeed/params.proto

Proposal
The pricefeed module includes the UpdateSymbolRequestProposal for updating symbols to request price data on BandChain
based on block_interval configuration by submitting the proposal on your Cosmos SDK application.

proto/consumer/pricefeed/pricefeed.proto

The example of submitting and voting on the proposal is demonstrated in the CLI section.

CLI
A user can query and interact with the pricefeed module using the CLI.

Note: This example use oracle-consumerd as a command-line interface (CLI) from oracle consumer chain. Please replace it
with your own cosmos app.

Query

The query commands allow users to query pricefeed state.

Symbol Requests

The symbol-requests command enables users to retrieve information about all symbol requests that are saved in this Cosmos
SDK application.

Price

The price command allows users to query price data by the symbol.

Example:

Example Output:

Proposal

The tx gov submit-legacy-proposal commands allow users to submit a proposal on your Cosmos SDK app.

Source Channel param change proposal

To acquire BandChain data through the IBC, it is imperative to update the source-channel parameter by submitting a proposal for
the change that reflects your source channel.

Example:

1. create param_change.json file

2. submit the proposal

Update symbol request proposal

The update-symbol-request command allows users to update symbol requests to specify which symbols they desire to obtain
price data from BandChain.

Example:

1. create update_symbol_requests.json file

Note: You can also delete symbol request by set "block_interval": "0" on this proposal.

2. submit the proposal

Another way to initiate source channel and symbol requests

To utilize the Ignite feature to replace the genesis state, insert the code shown below into the config.yml file. and restart the chain
by using ignite chain serve -r -v command.

Learn more

Cosmos SDK
building-modules

ibc-app-packets

BandChain
oracle-script

Previous
« VRF Supported Blockchains

Next
Getting started »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Getting started

Example Use Cases

Introduction

Core Concepts

Products

Band Standard Dataset

Band VRF

Pricefeed Module

cw-band

Develop

Nodes & Validators

Staking

message Params {

 option (gogoproto.goproto_stringer) = false;

 uint64 ask_count = 1;

 uint64 min_count = 2;

 uint64 min_ds_count = 3;

 uint64 prepare_gas_base = 4;

 uint64 prepare_gas_each = 5;

 uint64 execute_gas_base = 6;

 uint64 execute_gas_each = 7;

 string source_channel = 8;

 repeated cosmos.base.v1beta1.Coin fee_limit = 9 [

 (gogoproto.nullable) = false,

 (gogoproto.castrepeated) = "github.com/cosmos/Cosmos SDK/types.Coins"

];

}

message UpdateSymbolRequestProposal {

 option (gogoproto.goproto_getters) = false;

 string title = 1;

 string description = 2;

 repeated SymbolRequest symbol_requests = 3 [(gogoproto.nullable) = false];

}

message SymbolRequest {

 string symbol = 1;

 uint64 oracle_script_id = 2;

 uint64 block_interval = 3;

}

oracle-consumerd query pricefeed --help

oracle-consumerd query pricefeed symbol-requests

oracle-consumerd query pricefeed price [symbol]

oracle-consumerd query pricefeed price BTC

price:

 price: "22702955000000"

 resolve_time: "1675935544"

 symbol: BTC

oracle-consumerd tx gov submit-legacy-proposal -h

oracle-consumerd tx gov submit-legacy-proposal param-change [proposal-file]

{

 "title": "Param change for SourceChannel",

 "description": "Proposal for change SourceChannel param in pricefeed module",

 "changes": [

 {

 "subspace": "pricefeed",

 "key": "SourceChannel",

 "value": "channel-0"

 }

],

 "deposit": "10000000stake"

}

oracle-consumerd tx gov submit-legacy-proposal param-change param_change.json --from alice

oracle-consumerd tx gov submit-legacy-proposal update-symbol-request [proposal-file]

{

 "title": "Update Symbol requests",

 "description": "Update symbol that request price from BandChain",

 "symbol_requests": [

 {

 "symbol": "BTC",

 "oracle_script_id": "396",

 "block_interval": "40"

 },

 {

 "symbol": "ETH",

 "oracle_script_id": "396",

 "block_interval": "40"

 }

],

 "deposit": "10000000stake"

}

oracle-consumerd tx gov submit-legacy-proposal update-symbol-request update_symbol_requests.json --f

genesis:

 app_state:

 pricefeed:

 params:

 source_channel: 'channel-0'

 symbol_requests: [{ 'symbol': 'BAND', 'oracle_script_id': 396, 'block_interval': 40 }]

Band Protocol Search K

https://docs.bandchain.org/
https://docs.cosmos.network/main/intro/overview
https://github.com/bandprotocol/oracle-consumer
https://github.com/bandprotocol/oracle-consumer
https://docs.cosmos.network/v0.46/building-modules/intro.html
https://tutorials.cosmos.network/hands-on-exercise/5-ibc-adv/5-ibc-app-packets.html
https://docs.bandchain.org/develop/custom-scripts/oracle-script/introduction
https://docs.bandchain.org/products/vrf/supported-blockchains
https://docs.bandchain.org/products/pricefeed-module/getting-started
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/products/pricefeed-module/introduction
https://docs.bandchain.org/products/pricefeed-module/getting-started
https://docs.bandchain.org/products/pricefeed-module/example
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Products Pricefeed Module Getting started

Getting started
This guide serves as a brief guide on how to utilize the pricefeed module in your Cosmos SDK app.

Prerequisites
Be sure you have met the prerequisites before you follow this guide.

Operating systems

Ubuntu 22.04

Go (for ignite and consumer chain)

1.19.5 or higher

Ignite CLI

0.26.1 or higher

Rust (for Hermes Relayer)

1.65.0 or higher

Installation

Installing build-essential package in Ubuntu

Creating a new blockchain
To create a new blockchain project with Ignite, you will need to run the following command:

The ignite scaffold chain command will create a new blockchain in a new directory example.

Step 1: Replace the genesis state

Config proposal voting period by Ignite

To expedite the testing of the pricefeed module, modify the default voting period to 40 seconds using Ignite feature to replace the
genesis state by incorporating this code in config.yml .

Initiate source channel and symbol requests by Ignite

To utilize the Ignite feature to replace the genesis state without open update-symbol-requests proposal, insert the code shown
below into the config.yml file.

Step 2: Import pricefeed module to your cosmos app

Edit Cosmos SDK and IBC-go version

To ensure compatibility with the pricefeed module, kindly update the Cosmos SDK version to v0.46.12 .

Additionally, modify the ibc-go dependency in both the go.mod and app.go files, replacing the version v6.1.0 from the repository
github.com/cosmos/ibc-go/v6 with version v5.2.0 from the repository github.com/cosmos/ibc-go/v5.

Replace Tendermint with CometBFT

The pricefeed module now uses the version implemented by CometBFT. Therefore, to replace the Tendermint version, kindly add this
line in go.mod .

Then run go mod tidy to update all module packages.

Add pricefeed keeper in app/app.go

Add pricefeed proposal

Add pricefeed module basic

Add pricefeed keeper type

Add pricefeed store key

Create a new pricefeed keeper

Create a new pricefeed module

Add pricefeed module in IBC router

Add pricefeed module in governance Handler router

Add pricefeed module in the module manager

Set pricefeed order in begin block, end block and init genesis

Set pricefeed order for deterministic simulations

Add pricefeed subspace in params Keeper

Once you have completed the addition of the pricefeed module in the app.go file, execute the command go mod tidy to import
and update the necessary modules.

Now have completed importing the pricefeed module and can now execute the chain by running this command 🎉

Step 3: Setup a relayer
The second step is to set up a relayer to listen and relay IBC packets between your chain and BandChain.

Here are the simple guides for setting up a relayer.

Setup Hermes relayer (Recommend)

Setup Go relayer

Step 4 (optional): Open proposal for change params and update
symbol requests
Since you have already configured the symbol requests and source channel in the config.yml file during the step 1 , you may skip
this particular step.

Step 4.1 Open source channel param change proposal and vote

The current default value for the source channel is [not_set] . If you wish to obtain BandChain data through IBC, you will need to
open the proposal to change the source channel param to your own source channel. An example of how to open a parameter
change proposal is provided below.

create param-change-proposal.json

Submit proposal

Vote the proposal

Step 4.2: Open update symbol request proposal and vote

The purpose of this proposal is to request price data from BandChain at block_interval specified in the proposal. If the proposal
is approved, the pricefeed module will retrieve the data and store the response on the consumer chain.

create update-symbol-requests-proposal.json

Note: You can also delete symbol request by set "block_interval": "0" on this proposal.

Submit proposal

Vote the proposal

Check proposal status

Query the latest price that got from BandChain

Once the proposal has been approved, the pricefeed module will query BTC and ETH from BandChain every 40 blocks on your
chain, and you can view the latest price by executing this command.

Previous
« Introduction

Next
Example Use Cases »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Getting started

Example Use Cases

Introduction

Core Concepts

Products

Band Standard Dataset

Band VRF

Pricefeed Module

cw-band

Develop

Nodes & Validators

Staking

sudo apt update && sudo apt install build-essential

ignite scaffold chain example

...

genesis:

 app_state:

 gov:

 voting_params:

 voting_period: '40s'

...

genesis:

 app_state:

 ...

 pricefeed:

 params:

 source_channel: "channel-0"

 symbol_requests: [{"symbol": "BAND", "oracle_script_id": 396, "block_interval": 40}]

require (

 ...

 github.com/cosmos/Cosmos SDK v0.46.12

)

require (

 ...

 github.com/cosmos/ibc-go/v5 v5.2.0

)

replace (

 ...

 github.com/tendermint/tendermint => github.com/cometbft/cometbft v0.34.27

)

import (

 ...

 pricefeedclient "github.com/bandprotocol/oracle-consumer/x/pricefeed/client"

)

func getGovProposalHandlers() []govclient.ProposalHandler {

 var govProposalHandlers []govclient.ProposalHandler

 govProposalHandlers = append(

 ...

 pricefeedclient.ProposalHandler,

)

 return govProposalHandlers

}

import (

 ...

 pricefeed "github.com/bandprotocol/oracle-consumer/x/pricefeed"

)

ModuleBasics = module.NewBasicManager(

 ...

 pricefeed.AppModuleBasic{},

)

import (

 ...

 pricefeedkeeper "github.com/bandprotocol/oracle-consumer/x/pricefeed/keeper"

)

type App struct {

 ...

 PricefeedKeeper pricefeedkeeper.Keeper

 ...

 ScopedPricefeedKeeper capabilitykeeper.ScopedKeeper

}

import (

 ...

 pricefeedtypes "github.com/bandprotocol/oracle-consumer/x/pricefeed/types"

)

keys := sdk.NewKVStoreKeys(

 ...

 pricefeedtypes.StoreKey,

)

scopedPricefeedKeeper := app.CapabilityKeeper.ScopeToModule(pricefeedtypes.ModuleName)

app.ScopedPricefeedKeeper = scopedPricefeedKeeper

app.PricefeedKeeper = pricefeedkeeper.NewKeeper(

 appCodec,

 keys[pricefeedtypes.StoreKey],

 app.GetSubspace(pricefeedtypes.ModuleName),

 app.IBCKeeper.ChannelKeeper,

 app.IBCKeeper.ChannelKeeper,

 &app.IBCKeeper.PortKeeper,

 scopedPricefeedKeeper,

)

import (

 ...

 pricefeedmodule "github.com/bandprotocol/oracle-consumer/x/pricefeed"

)

pricefeedModule := pricefeedmodule.NewAppModule(appCodec, app.PricefeedKeeper)

pricefeedIBCModule := pricefeedmodule.NewIBCModule(app.PricefeedKeeper)

ibcRouter.

 AddRoute(...).

 AddRoute(pricefeedtypes.ModuleName, pricefeedIBCModule)

govRouter.

 AddRoute(...).

 AddRoute(pricefeedtypes.RouterKey, pricefeedmodule.NewUpdateSymbolRequestProposalHandler(app.Pricefe

app.mm = module.NewManager(

 ...,

 pricefeedModule,

)

app.mm.SetOrderBeginBlockers(

 ...,

 pricefeedtypes.ModuleName,

)

app.mm.SetOrderEndBlockers(

 ...,

 pricefeedtypes.ModuleName,

)

app.mm.SetOrderInitGenesis(

 pricefeedtypes.ModuleName,

)

app.sm = module.NewSimulationManager(

 ...

 pricefeedModule,

)

func initParamsKeeper(...) paramskeeper.Keeper {

 paramsKeeper.Subspace(...)

 paramsKeeper.Subspace(pricefeedmoduletypes.ModuleName)

}

ignite chain serve -v

{

 "title": "Param change for SourceChannel",

 "description": "Proposal for change SourceChannel param in pricefeed module",

 "changes": [

 {

 "subspace": "pricefeed",

 "key": "SourceChannel",

 "value": "channel-0"

 }

],

 "deposit": "10000000stake"

}

exampled tx gov submit-legacy-proposal param-change param-change-proposal.json --from alice

exampled tx gov vote 1 yes --from alice

exampled tx gov vote 1 yes --from bob

{

 "title": "Update Symbol requests",

 "description": "Update symbol that request price from BandChain",

 "symbol_requests": [

 {

 "symbol": "BTC",

 "oracle_script_id": "396",

 "block_interval": "40"

 },

 {

 "symbol": "ETH",

 "oracle_script_id": "396",

 "block_interval": "40"

 }

],

 "deposit": "10000000stake"

}

exampled tx gov submit-legacy-proposal update-symbol-request update-symbol-requests-proposal.json --from

exampled tx gov vote 2 yes --from alice

exampled tx gov vote 2 yes --from bob

exampled query gov proposals

exampled query pricefeed price [symbol]

Band Protocol Search K

https://docs.bandchain.org/
https://github.com/bandprotocol/oracle-consumer/blob/main/docs/setup_hermes_relayer.md
https://github.com/cosmos/relayer
https://docs.bandchain.org/products/pricefeed-module/introduction
https://docs.bandchain.org/products/pricefeed-module/example
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/products/pricefeed-module/introduction
https://docs.bandchain.org/products/pricefeed-module/getting-started
https://docs.bandchain.org/products/pricefeed-module/example
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Products Pricefeed Module Example Use Cases

Example Use Cases
By utilizing pricefeed module in your Cosmos SDK application, you can request price data from BandChain via IBC. This creates a
chance to obtain a variety of real-world data, including cryptocurrency and stock prices. Please take a look at the following example
of an oracle-consumer chain that requests data from BandChain to use in their module.

oracle-consumer

The oracle-consumer is an application of the Cosmos SDK that demonstrates the use of the pricefeed module implemented by
BandProtocol. This module allows other Cosmos SDK applications to easily obtain data from BandChain through IBC.

Requirements: oracle-consumer is built on the Cosmos SDK using the following modules:

x/consumer : Consume data from pricefeed module.

x/pricefeed : Logic of requesting data from BandChain.

You can see the full implementation of the oracle-consumer chain here

Previous
« Getting started

Next
Introduction »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Search K

https://docs.bandchain.org/
https://github.com/bandprotocol/oracle-consumer/tree/main/x/pricefeed
https://github.com/bandprotocol/oracle-consumer
https://docs.bandchain.org/products/pricefeed-module/getting-started
https://docs.bandchain.org/products/cw-band/introduction
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Products cw-band Introduction

Introduction
The correctness of the data is a crucial part of decentralized applications (dApps) that rely on data from the real world. Manipulated
data can impact the security and the objective of the applications.

The cw-band introduces a standard for anyone looking to integrate data from Band's oracle into their CosmWasm smart contract on
a Cosmos-SDK-based blockchain through Inter-Blockchain Communication (IBC). The standard itself consists of data types that
require for requesting and receiving data.

Workflow

At a high level, the workflow will be as follows. First, the smart contract creates an IBC packet to request data from BandChain.
Then, relayers will pick up the IBC packet and relay it on BandChain.

After BandChain processes the request, it will send an acknowledgement message along with request_id back. And, when the
result of the request is finalized, BandChain will send a new IBC packet that contains the final data back. Relayers will listen and
pick up those packets and relay them to the smart contract.

At this point, the smart contract can use the data from BandChain in its smart contract securely. If the smart contract wants to have
new or more data, it can always send a new IBC packet and start the process again at any time.

cw-band

Our library (cw-band) provides data types and functions that are necessary for requesting and receiving data from BandChain. It
will help developers to easily integrate their CosmWasm smart contract with BandChain.

Here are the data types and functions that the library provides for you.

Version

First, the library provides the version of the IBC channel of the Oracle module.

Packet

The library also provides the types of packets that will be sent through IBC.

Oracle script - Price

This is the example of the Input and Output of the oracle script for getting the rates of symbols.

Learn more

IBC docs

IBC tutorials

Previous
« Example Use Cases

Next
Getting started »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Getting started

Example Use Cases

Introduction

Core Concepts

Products

Band Standard Dataset

Band VRF

Pricefeed Module

cw-band

Develop

Nodes & Validators

Staking

pub const IBC_APP_VERSION: &str = "bandchain-1";

// Type of request packet data that will accept

#[cw_serde]

pub struct OracleRequestPacketData {

 pub client_id: String, // The client_id that you want to send. This will help you to identify the cl

 pub oracle_script_id: Uint64, // The oracle_script_id that you want to request data from.

 pub calldata: Binary, // The data that you want to send to your oracle script.

 pub ask_count: Uint64, // Number of validators that you want to provide you data.

 pub min_count: Uint64, // Minimum number of validators that you will accept the final result.

 pub fee_limit: Vec<Coin>, // The fee limit of the data sources that you are willing to pay for the d

 pub prepare_gas: Uint64, // Prepare gas that you will use in preparation process of the oracle scrip

 pub execute_gas: Uint64, // Execution gas that you will use in execution process of the oracle scrip

}

// Type of response packet data from BandChain

#[cw_serde]

pub struct OracleResponsePacketData {

 pub client_id: String, // The client_id that you send in the OracleRequestPacketData.

 pub request_id: Uint64, // The id of the request of this response on BandChain.

 pub ans_count: Uint64, // The number of validators that helps provide this result.

 pub request_time: Uint64, // The time that this request is accepted on BandChain.

 pub resolve_time: Uint64, // The time that this request is resolved on BandChain.

 pub resolve_status: ResolveStatus, // The status of resolving the request.

 pub result: Binary, // The result of the request.

}

// Enum of possible resolve_status that BandChain will send

#[cw_serde]

pub enum ResolveStatus {

 #[serde(rename = "RESOLVE_STATUS_OPEN_UNSPECIFIED")]

 Open, // The request is not resolved yet.

 #[serde(rename = "RESOLVE_STATUS_SUCCESS")]

 Success, // The request is resolved successfully.

 #[serde(rename = "RESOLVE_STATUS_FAILURE")]

 Failure, // The request is failed to solve.

 #[serde(rename = "RESOLVE_STATUS_EXPIRED")]

 Expired, // The request is expired before solving.

}

// IBC Acknowledgement message (either result or error)

#[cw_serde]

pub enum AcknowledgementMsg {

 Result(Binary),

 Error(String),

}

// create a serialized success message

pub fn ack_success() -> Binary {

 let res = AcknowledgementMsg::Result(b"1".into());

 to_binary(&res).unwrap()

}

// create a serialized error message

pub fn ack_fail(err: String) -> Binary {

 let res = AcknowledgementMsg::Error(err);

 to_binary(&res).unwrap()

}

// Acknowledge message that BandChain will send after receives the request.

#[cw_serde]

pub struct BandAcknowledgement {

 pub request_id: Uint64, // The request_id of your request.

}

// Input of the oracle script.

#[derive(OBIEncode)]

pub struct Input {

 pub symbols: Vec<String>, // Symbol list that you want to request.

 pub minimum_sources: u8, // Minimum sources

}

// Output of the oracle script.

#[derive(OBIDecode)]

pub struct Output {

 pub responses: Vec<Response>, // Arrary of response of each each symbol.

}

// Rate of the symbol.

#[derive(OBIDecode)]

pub struct Response {

 pub symbol: String, // symbol.

 pub response_code: u8, // response_code.

 pub rate: u64, // the price of the symbol.

}

Band Protocol Search K

https://docs.bandchain.org/
https://ibc.cosmos.network/main/ibc/overview.html
https://ibc.cosmos.network/main/ibc/overview.html
https://tutorials.cosmos.network/academy/3-ibc/
https://docs.bandchain.org/products/pricefeed-module/example
https://docs.bandchain.org/products/cw-band/getting-started
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/products/cw-band/introduction
https://docs.bandchain.org/products/cw-band/getting-started
https://docs.bandchain.org/products/cw-band/example
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Products cw-band Getting started

Getting started
This guide serves as a quick reference on how to request and receive data from BandChain. For examples of CosmWasm contracts,
please refer to the Example Use Cases section.

Step 1: Prepare an oracle script and data sources

There are two main components on the BandChain in the requesting process:

Oracle script

Data source

For requesting data from BandChain on the smart contract, you have to deploy both of them in the BandChain first so that your
smart contract can specify the oracle_script_id when sending the request.

Step 2: Prepare a CosmWasm contract

To request data from BandChain’s Oracle via a CosmWasm contract, your contract will need to implement the functions listed below:

The behavior of the functions mentioned can be separated into 2 parts of the IBC protocol communication.

1. Channel

2. Packet

Channel

A channel between your contract and our oracle module on BandChain needs to be created to relay an IBC message via a relayer.
To do that, 2 entry points need to be provided.

Note: As creating a channel can be started from either the contract or the oracle; A function that accepts messages regardless of the
initiator side needs to be provided.

IBC Channel Open

ibc_channel_open (OpenInit, OpenTry)

This function should verify the order type of the channel and the counterparty’s version and respond to its version to the
counterparty’s module.

IBC Channel Connect

ibc_channel_connect (OpenAck, OpenConfirm)

This function is called along with the channel detail so that the channel_id or other detail can be stored for any future IBC actions.

IBC Channel Close

This function is called when the channel is somehow closed. You can add your logic to handle it in this function.

Packet

Three callback functions will need to be provided to accept the three outgoing messages from Oracle: IbcPacketAckMsg ,
IbcPacketTimeoutMsg and IbcPacketReceiveMsg .

IBCPacketAckMsg

The oracle will send an acknowledgement message with the corresponding request_id on BandChain if the request can be
processed so that the sender’s side can process the data as needed.

IBCPacketReceiveMsg

After BandChain finishes your request, an OracleResponsePacketData packet will be sent to this function in your contract. The
output of the oracle script that you requested will be contained in the result field.

IBCPacketTimeoutMsg

In the case where an acknowledgement message from the destination module hasn’t been received, the relayers will call this
function. Requests that are timeout can be handled within this function. e.g. retry, marking status.

Sending request

To send an IBC message to request data from BandChain, cosmwasm_std::IbcMsg::SendPacket needs to be used with the following
three parameters:

channel_id: The channel_id that you want to send a packet to

data: The binary data of the packet that you want to send contained in an OracleRequestPacketData structure.

timeout: The timeout timestamp.

Here is the example code for sending an IBC packet.

Step 3: Setup a relayer

The last step is to set up a relayer to listen and relay IBC packets between a client chain and BandChain.

Here are the simple guides for setting up a relayer.

Hermes relayer

Go relayer

Now, you are ready to request and receive data from BandChain.

Previous
« Introduction

Next
Example Use Cases »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Getting started

Example Use Cases

Introduction

Core Concepts

Products

Band Standard Dataset

Band VRF

Pricefeed Module

cw-band

Develop

Nodes & Validators

Staking
ibc_channel_open()

ibc_channel_connect()

ibc_channel_close()

ibc_packet_ack()

ibc_packet_receive()

ibc_packet_timeout()

#[entry_point]

pub fn ibc_channel_open(

 _deps: DepsMut,

 _env: Env,

 msg: IbcChannelOpenMsg,

) -> StdResult<IbcChannelOpenResponse> {

 // logic to verify channel order and the counterparty's version

 // ...

 Ok(Some(Ibc3ChannelOpenResponse {

 version: msg.channel().version.clone(),

 }))

}

#[entry_point]

pub fn ibc_channel_connect(

 deps: DepsMut,

 _env: Env,

 msg: IbcChannelConnectMsg,

) -> Result<IbcBasicResponse, ContractError> {

 // logic to store channel_id for sending future IBC messages

 // ...

 Ok(IbcBasicResponse::default())

}

#[entry_point]

pub fn ibc_channel_close(

 _deps: DepsMut,

 _env: Env,

 _msg: IbcChannelCloseMsg,

) -> StdResult<IbcBasicResponse> {

 // logic to handle when channel is closed.

 // ...

 Ok(IbcBasicResponse::default())

}

#[entry_point]

pub fn ibc_packet_ack(

 _deps: DepsMut,

 _env: Env,

 _msg: IbcPacketAckMsg,

) -> StdResult<IbcBasicResponse> {

 // logic to process request_id

 // ...

 Ok(IbcBasicResponse::new().add_attribute("action", "ibc_packet_ack"))

}

#[entry_point]

pub fn ibc_packet_receive(

 deps: DepsMut,

 _env: Env,

 msg: IbcPacketReceiveMsg,

) -> Result<IbcReceiveResponse, Never> {

 let packet = msg.packet;

 let resp: OracleResponsePacketData = from_slice(&packet.data)?;

 // logic to use/store result from BandChain

 // ...

 Ok(IbcReceiveResponse::new()

 .set_ack(ack_success())

 .add_attribute("action", "ibc_packet_received"))

}

#[entry_point]

pub fn ibc_packet_timeout(

 _deps: DepsMut,

 _env: Env,

 _msg: IbcPacketTimeoutMsg,

) -> StdResult<IbcBasicResponse> {

 // logic to handle when the packet is timeout e.g. retry.

 // ...

 Ok(IbcBasicResponse::new().add_attribute("action", "ibc_packet_timeout"))

}

IbcMsg::SendPacket {

 channel_id: endpoint.channel_id,

 data: to_binary(&oracleRequestPacketData)?,

 // IBC timeout based on how long your contract will wait acknowkedgement until trigger timeout packe

 timeout: IbcTimeout::with_timestamp(env.block.time.plus_seconds(60)),

}

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/products/cw-band/example
https://docs.bandchain.org/develop/custom-scripts/oracle-script/introduction
https://docs.bandchain.org/develop/custom-scripts/data-source/introduction
https://github.com/bandprotocol/cw-band/blob/main/docs/setup_relayer_hermes.md
https://github.com/bandprotocol/cw-band/blob/main/docs/setup_relayer_go-relayer.md
https://docs.bandchain.org/products/cw-band/introduction
https://docs.bandchain.org/products/cw-band/example
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/products/cw-band/introduction
https://docs.bandchain.org/products/cw-band/getting-started
https://docs.bandchain.org/products/cw-band/example
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Products cw-band Example Use Cases

Example Use Cases
As you can request any oracle script in BandChain from your CosmWasm contract. it opens the opportunity for getting any data from
the real world such as crypto prices, stock prices, and weather data. Please see the examples of CosmWasm contracts that
requests data from BandChain below.

Pricefeed

This price feed contract is an example of getting crypto prices from BandChain using the push model to allow other contracts can
read the latest prices and execute actions in one transaction.

Requirements:

Can trigger function to request new crypto prices from BandChain. (Execute Request)

Able to query the price of a symbol in the USD unit. (Query GetRate)

Able to query the price of a symbol in any unit. (Query GetReferenceData)

Able to bulk query the price of symbols in any unit. (Query GetReferenceDataBulk)

You can see the full implementation of the contract here

Lottery

Lottery dApp is one of the use cases that can do with cw-band using the pull model to get the winning number when it reaches the
end of the period to find the winner.

Previous
« Getting started

Next
Oracle Binary Encoding (OBI) »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Getting started

Example Use Cases

Introduction

Core Concepts

Products

Band Standard Dataset

Band VRF

Pricefeed Module

cw-band

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://github.com/bandprotocol/cw-band/tree/main/contracts/price-feed
https://docs.bandchain.org/products/cw-band/getting-started
https://docs.bandchain.org/develop/developer-guides/obi
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/products/cw-band/introduction
https://docs.bandchain.org/products/cw-band/getting-started
https://docs.bandchain.org/products/cw-band/example
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Guides Oracle Binary Encoding (OBI)

Oracle Binary Encoding (OBI)
Oracle Binary Encoding (OBI) is a standard method for serializing and deserializing binary data in the BandChain ecosystem. Under
the concept of Ethereum's Contract ABI Specification and Google's ProtoBuf, an OBI schema explains how a data object in any
supported programming language can be encoded to and decoded from plain bytes.

OBI is designed with the following properties in mind:

Compactness: OBI schema will be stored on-chain and passed around between blockchains. Thus, it is essential to keep the
size of the schema specification tiniest.

Simplicity & Portability: As a blockchain-agnostic protocol, OBI serialization and deserialization must be easy to implement in
any environment. Consequently, complex platform-specific features are not supported.

Readability: Lastly, OBI is intended to be used as a communication tool between oracle script creators and smart contract
developers. It must be intuitive for readers to understand the OBI underlying objects from reading the schema.

Specification
An OBI schema is a non-self-describing binary serialization format of multiple objects. Some particular notes:

An OBI schema consists of one or more individual schemas. In most cases, an OBI schema will consist of two individual
schemas: the input type and the output type.

bool is supported.

6 sizes (8-bit, 16-bit, 32-bit, 64-bit, 128-bit, and 256-bit) of signed and unsigned integers are supported. There are all serialized
into big-endian bytes.

Strings, bytes, vectors are serialized with their length as u32 first, followed by their contents.

Structs are serialized field by field in the declaration order.

Backus–Naur Form (BNF) Grammar Specification

Below is the Backus–Naur form (BNF) grammar of an OBI schema.

Pseudocode Implementation

Below is an example pseudocode implementation of OBI schema declaration and the corresponding serializing function in a
somewhat broken function language :P. The deserialization function is essentially the inverse of the serialization function.

OBI Schema Examples
Below is an example OBI schema of an oracle script to fetch a cryptocurrency price, which is then multiplied by a specific multiplier.
The OBI itself schema consists of two internal schemas, one for the inputs to the oracle script and the other for the output.

The input consists with two fields: a string symbol and a u64 multiplier.

The output consists with two fields: a u64 final price and a vector of struct each has string name and u64 timestamp.

Example Object Serialization

Reference Implementations
OBI serialization libraries are being actively developed in multiple programming languages. Head over to BandChain's OBI module to
see all currently available implementations.

Previous
« Example Use Cases

Next
Oracle WebAssembly (Owasm) »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Oracle Binary Encoding (OBI)

Oracle WebAssembly (Owasm)

Remote Data Source Executor

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

Building on BandChain

Nodes & Validators

Staking

<obi_schema> ::= <obi_schema> | <obi_schema> "/" <indv_schema>

<indv_schema> ::= <int_schema> | <uint_schema> | <string_schema> |

 <bytes_schema> | <vector_schema> | <struct_schema>

<bool_schema> ::= "bool"

<int_schema> ::= "i8" | "i16" | "i32" | "i64" | "i128" | "i256"

<uint_schema> ::= "u8" | "u16" | "u32" | "i64" | "u128" | "u256"

<string_schema> ::= "string"

<bytes_schema> ::= "bytes"

<vector_schema> ::= "[" <indv_schema> "]"

<struct_schema> ::= "{" <struct_fields> "}"

<struct_fields> ::= <struct_member> | <struct_fields> "," <struct_member>

<struct_member> ::= <identifier> ":" <indv_schema>

(* An individual schema consists of 6 possible cases. *)

type indv_schema :=

| Bool(bool)

| Int(int)

| Uint(int)

| String

| Bytes

| Vector(indv_schema)

| Struct([(string, indv_schema)])

(* An OBI schema is essentially a list of individual schemas. *)

type obi_schema := [indv_schema]

(* Encode serializes the given object into bytes. *)

let encode (s : indv_schema) (o : object) :=

 match s with

 | Bool(sz) => be_unsigned_encode(o, sz)

 | Int(sz) => be_signed_encode(o, sz)

 | Uint(sz) => be_unsigned_encode(o, sz)

 | String => be_unsigned_encode(len(o), 32) ++ bytes_of_string(o)

 | Bytes => be_unsigned_encode(len(o), 32) ++ o

 | Vector(s) => be_unsigned_encode(len(o), 32) ++ concat (map o (encode s))

 | Struct(fs) => concat (map fs (fun (f, s) => encode s o[f]))

Compact OBI representation...

{symbol:string,multiplier:u64}/{price:u64,sources:[{name:string,time:u64}]}

Prettified OBI representation...

{

 symbol: string,

 multiplier: u64

} / {

 price: u64,

 sources: [{ name: string, time: u64 }]

}

{"symbol": "BTC", "multiplier": 1000000000}

0x00000003425443000000003b9aca00

 ^ ^ ^

 | | +- 64-bit be encode of 1000000000 is 0x000000003b9aca00

 | +------- "BTC" data is encoded as 0x425443

 +--------------- 32-bit be encode of length 3 is 0x00000003 #BTC is a string with a length of 3

{

 "price": 9268300000000,

 "sources": [

 {"name": "CoinGecko", "time": 1590305341},

 {"name": "CryptoCompare", "time": 1590305362}

]

}

0x0000086df1baab000000000200000009436f696e4765636b6f000000005eca223d0000000d43727970746f436f6d7061726500

 ^ ^ ^ ^ ^ ^ ^ ^

 | | | | | | | +-

 | | | | | | +- "CryptoCompare" data is e

 | | | | | +- 32-bit be encode of length 13 is

 | | | | +- 64-bit be encode of 1590305341 is 0x000000005eca2

 | | | +- "CoinGecko" data is encoded as 0x436f696e4765636b6f

 | | +- 32-bit be encode of length 9 is 0x00000009 #CoinGecko length is 9

 | +------- 32-bit be encode of length 2 is 0x00000002 #sources has a value that is an ar

 +--------------- 64-bit be encode of 9268300000000 is 0x0000086df1baab00

Band Protocol Search K

https://docs.bandchain.org/
https://solidity.readthedocs.io/en/latest/abi-spec.html
https://developers.google.com/protocol-buffers
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Pseudocode
https://github.com/bandprotocol/bandchain/tree/master/obi
https://docs.bandchain.org/products/cw-band/example
https://docs.bandchain.org/develop/developer-guides/owasm
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-guides/obi
https://docs.bandchain.org/develop/developer-guides/owasm
https://docs.bandchain.org/develop/developer-guides/remote-data-source-executor
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Guides Oracle WebAssembly (Owasm)

Oracle WebAssembly (Owasm)
Oracle WebAssembly, or Owasm for short, is Band Protocol's Domain Specific Language (DSL) for writing oracle scripts to be used
in the BandChain ecosystem.

Owasm Library Structure
The Owasm library is separated into owasm-vm and owasm-kit for different use cases.

Owasm-vm

The Owasm-vm library implements a wasmer virtual machine runtime and logic for the on-chain execution of oracle scripts.

Owasm-kit

Owasm-kit/OEI

The OEI modules defines a set of functions that are part of the Owasm Oracle Environment Interface. These functions are then
accessible to an oracle script during its execution.

OEI Module Functions

get_ask_count()

GetAskCount returns the number of validators asked to work for this oracle query.

Returns:

ask_count: i64 - The requested validator count.

get_min_count()

GetMinCount returns the minimum number of validators to move to aggregation phase.

Returns:

min_count: i64 - The sufficient validator count.

get_ans_count()

GetAnsCount returns the number of validators that submit answers. Zero during preparation.

Returns:

ans_count: i64 - The received validator count.

get_prepare_time()

GetPrepareTime returns the time of preparation phase was run.

Returns:

timestamp: i64 - The block timestamp during the preparation phase.

get_execute_time()

GetExecuteTime returns the time of aggregation phase. Zero during preparation.

Returns:

timestamp: i64 - The block timestamp during the aggregation phase.

get_calldata()

GetCalldata returns the raw calldata as specified when the oracle request is submitted.

Returns:

calldata: Vec<u8> : - The calldata in bytes.

save_return_data(&[u8])

SaveReturnData saves the given data as the result of the oracle execution. Must only be called during execution phase and must be
called exactly once.

Parameters:

data: &[u8] - The return data in bytes.

ask_external_data(i64, i64, &[u8])

AskExternalData issues a new raw request to the host environment using the specified data source id and calldata, and assigns it to
the given external id. Must only be called during preparation phase.

Parameters:

eid: i64 - The external id to be assigned for the raw data source request.

did: i64 - The data source id to be requested.

calldata: &[u8] - The calldata in bytes to be used in a did data source execution

get_external_data(i64, i64)

GetExternalData returns the data reported from the given validator index for the given external data id. Result is OK if the validator
reports data with zero return status, and Err otherwise. Must only be called during execution phase.

Parameters:

eid: i64 - The external id of the data source execution to be returned.

vid: i64 - The validator index for the given external id.

Returns:

result: Result<String, i64> - The data reported in String format from the given validator index for the given external data
id.

Owasm-kit/Ext

The Owasm Extension module provides a convenient way to write oracle scripts that connect to various public APIs. Examples of
these are functions to calculate the mean, median, and majority values from the validator's reported results , which can be used
during the aggregation phase of an oracle script.

load_input\<T>(i64)

LoadInput returns an iterator of raw data points for the given external id, parsed into the parameterized type. Skip data points with
nonzero status or cannot be parsed.

Parameters:

eid: i64 - External id.

Returns:

iterator: Iterator - Iterator of raw data points.

load_average\<T>(i64)

LoadAverage returns the average value of the given external id, ignoring unsuccessful reports.

Parameters:

eid: i64 - External id.

Returns:

result: Option<T> - Average value of valid data points.

load_median\<T>(i64)

LoadMedian returns the median value of the given external ID, ignoring unsuccessful reports.

Parameters:

eid: i64 - External id.

Returns:

result: Option<T> - Median value of valid data points.

load_majority\<T>(i64)

LoadMajority returns the majority value of the given external ID, ignoring unsuccessful reports.

Parameters:

eid: i64 - External id.

Returns:

result: Option<T> - Median value of valid data points.

The full implementation can be found here.

Usage
To illustrate an example usage of the Owasm library, we will be using the example below. The code is based off an oracle script that
retrieves the price of a stock.

The script starts off by defining the input and output structs. In this case, the input comprises of the stock ticker (string) and the
multiplier we want to multiply the stock's price by (u64). On the other hand, the output is simply the price of the stock multiplied by
the multiplier, returned as a u64 value.

Once the input and output structs and types have been defined, we move on to define the preparation and execution phases the
oracle script, defined by prepare_impl and execute_impl , respectively.

The prepare_impl function takes the previously-defined input struct as an argument. The function itself then only peforms one
task; calling the ask_external_data function in the oei module. This call to ask_external_data is then caught and ultimately
resolved by BandChain through exec_env.go .

The execute_impl function takes in the input type as an argument as well, but also returns the output struct type, as one might
expect. It then starts by computing the final value of the request through calling load_average function from the ext module. It
then proceeds to use the computed average to construct and return the appropriate output struct.

Once we have defined the functions for both stages of the oracle script's execution, we need to pass in the appriopriate input values
and actually make the function calls. To do so, oracle script writer can use our macros defined in macros.rs , also shown below.
The aim of these macros is to reduce the load of the script writer by handling the work of retrieving the calldata, deserializing it, and
using it to construct the appropriate input struct for them.

The last two lines of the oracle script above shows the macros in action.

Previous
« Oracle Binary Encoding (OBI)

Next
Remote Data Source Executor »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Oracle Binary Encoding (OBI)

Oracle WebAssembly (Owasm)

Remote Data Source Executor

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

Building on BandChain

Nodes & Validators

Staking

use {OBIDecode, OBIEncode, OBISchema};

use {execute_entry_point, ext, oei, prepare_entry_point};

#[derive(OBIDecode, OBISchema)]

struct Input {

 symbol: String,

 multiplier: u64,

}

#[derive(OBIEncode, OBISchema)]

struct Output {

 px: u64,

}

#[no_mangle]

fn prepare_impl(input: Input) {

 ask_external_data(19, 1, &input.symbol.as_bytes());

}

#[no_mangle]

fn execute_impl(input: Input) -> Output {

 let avg: f64 = load_average(1);

 Output { px: (avg * input.multiplier as f64) as u64 }

}

prepare_entry_point!(prepare_impl);

execute_entry_point!(execute_impl);

obi::

owasm_kit::

oei::

ext::

#[macro_export]

macro_rules! prepare_entry_point {

 ($name:ident) => {

 #[no_mangle]

 pub fn prepare() {

 $name(OBIDecode::try_from_slice(& get_calldata()).unwrap());

 }

 };

}

#[macro_export]

macro_rules! execute_entry_point {

 ($name:ident) => {

 #[no_mangle]

 pub fn execute() {

 save_return_data(

 &$name(OBIDecode::try_from_slice(& get_calldata()).unwrap())

 .try_to_vec()

 .unwrap(),

);

 }

 };

}

oei::

oei::

oei::

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/develop/custom-scripts/oracle-script/introduction
https://crates.io/crates/owasm-kit
https://crates.io/crates/owasm-kit
https://github.com/bandprotocol/owasm/blob/master/packages/kit/src/ext/mod.rs
https://github.com/bandprotocol/owasm/blob/a8fed03070b5262b2fb05664f3bd601a352b18cb/packages/kit/src/oei/mod.rs#L49
https://github.com/bandprotocol/chain/blob/43e33ccdd135eab985538454fe3eefd9de82e20f/x/oracle/types/exec_env.go#L89
https://github.com/bandprotocol/bandchain/blob/master/owasm/src/ext/mod.rs#L21
https://github.com/bandprotocol/owasm/blob/master/packages/kit/src/macros.rs
https://docs.bandchain.org/develop/developer-guides/obi
https://docs.bandchain.org/develop/developer-guides/remote-data-source-executor
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-guides/obi
https://docs.bandchain.org/develop/developer-guides/owasm
https://docs.bandchain.org/develop/developer-guides/remote-data-source-executor
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Guides Remote Data Source Executor

Remote Data Source Executor
The remote data source executor executes the various data sources stored on BandChain in order to retrieve data from the data
providers. The executor itself is a function-as-a-Service hosted on a cloud service provider.

The goal of this design is to separate data source execution processes from processes related to the validator node itself. This
separation of execution will be beneficial in cases where the data sources are not working correctly (infinite loop, bad code
execution, for example). In those cases, such separation can prevent validator nodes from overloading or crashing due to the error.

Also, from a validator's perspective, all they have to do to execute a data source is to send an executable file content in JSON
format (the data source script), along with the relevant calldata, to an endpoint, thus minimizing the work they have to do
themselves.

Resource

Endpoint HTTP Request Method Description

/execute POST Executes the data source

Request

Request Headers

Request Body

Field Type Description

executable string` Base64-encoded data source that the executor will execute

calldata string Bash-encoded input parameters of data source

timeout number Execution time limit (in milliseconds)

Example

Response

Response Headers

Response Body

Field Type Description

returncode number Exit code (0-255)

stdout string Data source output

stderr string Data source error output

error string "" or error message from executor

Response Codes

200 OK

Exit code Description Error Message

0 - 255 Executable errors from data source run successfully N/A

111 Execution timeout Execution time limit exceeded

112 Stdout exceed Stdout exceeded max size

113 Stderr exceed Stderr exceeded max size

126 Execution fail Execution fail

400 Bad Request

Error Error message

Missing executable value executable field is missing from JSON request

Executable value exceed executable value exceed max size

Missing calldata value calldata field is missing from JSON request

Calldata value exceed calldata exceeded max size

Missing timeout value timeout field is missing from JSON request

Invalid timeout format timeout type is invalid

Runtime value exceed Runtime exceeded max size

Previous
« Oracle WebAssembly (Owasm)

Next
Getting Started »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Oracle Binary Encoding (OBI)

Oracle WebAssembly (Owasm)

Remote Data Source Executor

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

Building on BandChain

Nodes & Validators

Staking

{

 "content-type": "application/json"

}

{

 "executable": "IyEvYmluL3NoXG5cbnN5bWJvbD0kMVxuXG4jIENyeXB0b2N1cnJlbmN5IHByaWNlIGVuZHBvaW50OiBodHRwczo

 "calldata": "bitcoin",

 "timeout": 1000

}

{

 "content-type": "application/json",

 "access-control-allow-methods": "OPTIONS, POST"

}

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/introduction/how-bandchain-works#data-sources
https://en.wikipedia.org/wiki/function_as_a_service
https://docs.bandchain.org/develop/developer-guides/owasm
https://docs.bandchain.org/develop/developer-tools/pyband/getting-started
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-guides/obi
https://docs.bandchain.org/develop/developer-guides/owasm
https://docs.bandchain.org/develop/developer-guides/remote-data-source-executor
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Tools PyBand Getting Started

Getting Started
Overview
PyBand is a library written in Python used for interacting with BandChain. The library provides classes, methods, and protobuf
classes for the ease of sending transactions, querying data, OBI encoding, and wallet management.

The library is implemented based on gRPC-web protocol which sends HTTP/1.5 or HTTP/2 requests to a gRPC proxy server, before
serving them as HTTP/2 to gRPC server.

This library is only implemented on Python.

System Requirements
Recommended Python version: 3.8.x or below

MacOS, Windows (including WSL), and Linux are supported

Installation
This library is available on PyPI

Basic Usages

Making an oracle request

This section describes the methods used to send a transaction containing an oracle request to BandChain

Step 1: Import pyband and create a parameter: grpc_url with the required <GRPC> endpoint which can be found here. Then the
client instance needs to be initialized in order to allow for the methods in client module to be used.

Step 2: As the sender's address is required for sending a transaction, we will have to initialize the address first. To do this, start by
importing PrivateKey from wallet module. In this example, we will get Mnemonic from environment variables.

After that, we will transform the private key to a public key, the public key to an address, and an address of type Address to an
address of type str .

Step 3: Before constructing a transaction, additional information is needed.

As a transaction requires:

messages

sequence

account_num

chain_id

fee

gas

memo

to be constructed, we will need to get those.

Messages

In this example, we will use MsgRequestData with the following parameters as our message.

oracle_script_id <int> : The oracle script ID.

calldata <bytes> : The calldata from a request (e.g., the hex string representing OBI-encoded value of {"symbols":
["ETH"], "multiplier": 100}).

ask_count <int> : The number of validator required to process this transaction.

min_count <int> : The minimum number of validator required to process this transaction.

client_id <str> : Name of the client (can be any name or an empty string).

fee_limit <Coin>: The fee limit.

prepare_gas <int> : The amount of gas used in the preparation stage.

execute_gas <int> : The amount of gas used in the execution stage.

sender <str> : The sender's address.

Instead from using bytes for the calldata, oracle binary encoding (obi) can also be used.

The message can be any message as listed in Oracle Modules or Cosmos Based Messages. However, please note that our
message should be imported from the generated protobuf files.

Sequence and Account Number

Sequence and account number can be retrieved by calling get_account from the client module created in step 1.

Fee

Fee can be created by using Coin from the generated protobuf file.

Step 4: Now we can construct a Transaction from the transaction module.

Step 5: Preparing the transaction before sending

Call get_sign_doc to get a signed transaction which we can use to get the signature from.

After that, we can get the raw transaction by calling get_tx_data and putting the signature and public key as the parameters.

Step 6: After getting the raw transaction, the transaction can now be sent.

While there are 3 modes for sending the transaction, Block mode will be used in this example. We can call send_tx_block_mode
with the raw transaction as parameter.

And the result should look like this.

Sending BAND token

The process of sending BAND token is similar to making an oracle request , except we will use MsgSend as our message.

The MsgSend contains the following parameters:

from_address <str> : The sender address which as a string.

to_address <str> : The receiver address which as a string.

amount <int> : The amount of BAND in Coin that you want to send. In this case, we want to send 1 BAND or 1000000
UBAND

The final code should look as shown below.

And the result should look like this.

Getting reference data

This section shows an example on how to query data from BandChain. This example queries the standard price reference based on
the given symbol pairs, min count, and ask count.

Step 1: Import pyband and create a parameter: grpc_url with the required <GRPC> endpoint which can be found here. Then the
client instance needs to be initialized in order to allow for the methods in client module to be used.

Step 2 After importing Client , the function get_reference_data can now be used to get the latest price.

The function contains the following parameters

pairs <List[str]> : list of cryptocurrency pairs

min_count <int> : integer of min count

ask_count <int> : integer of ask count

And running the code above should return a result that looks like this.

Previous
« Remote Data Source Executor

Next
Client Module »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Getting Started

Client Module

Data Module

OBI Module

Transaction Module

Wallet Module

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

PyBand

BandChain.js

Building on BandChain

Nodes & Validators

Staking

pip install pyband

from pyband.client import Client

def main():

 # Step 1

 grpc_url = "<GRPC>" # ex.laozi-testnet6.bandchain.org(without https://)

 c = Client(grpc_url)

if __name__ == "__main__":

 main()

from pyband.wallet import PrivateKey

MNEMONIC = os.getenv("MNEMONIC")

private_key = PrivateKey.from_mnemonic(MNEMONIC)

public_key = private_key.to_public_key()

sender_addr = public_key.to_address()

sender = sender_addr.to_acc_bech32()

from pyband.proto.oracle.v1.tx_pb2 import MsgRequestData

request_msg = MsgRequestData(

 oracle_script_id=37,

 calldata=bytes.fromhex("0000000200000003425443000000034554480000000000000064"),

 ask_count=4,

 min_count=3,

 client_id="BandProtocol",

 fee_limit=[Coin(amount="100", denom="uband")],

 prepare_gas=50000,

 execute_gas=200000,

 sender=sender,

)

from pyband.obi import PyObi

obi = PyObi("{symbols:[string],multiplier:u64}/{rates:[u64]}")

calldata = obi.encode({"symbols": ["ETH"], "multiplier": 100})

account = c.get_account(sender)

account_num = account.account_number

sequence = account.sequence

from pyband.proto.cosmos.base.v1beta1.coin_pb2 import Coin

fee = [Coin(amount="0", denom="uband")]

from pyband.transaction import Transaction

txn = (

 Transaction()

 .with_messages(request_msg)

 .with_sequence(sequence)

 .with_account_num(account_num)

 .with_chain_id(chain_id)

 .with_gas(2000000)

 .with_fee(fee)

 .with_memo("")

)

sign_doc = txn.get_sign_doc(public_key)

Need to serialize sign_doc of type cosmos_tx_type.SignDoc to string

signature = private_key.sign(sign_doc.SerializeToString())

tx_raw_bytes = txn.get_tx_data(signature, public_key)

import os

from pyband.client import Client

from pyband.transaction import Transaction

from pyband.wallet import PrivateKey

from pyband.proto.cosmos.base.v1beta1.coin_pb2 import Coin

from pyband.proto.oracle.v1.tx_pb2 import MsgRequestData

from google.protobuf.json_format import MessageToJson

def main():

 # Step 1

 grpc_url = "<GRPC>" # ex.laozi-testnet6.bandchain.org(without https://)

 c = Client(grpc_url)

 # Step 2

 MNEMONIC = os.getenv("MNEMONIC")

 private_key = PrivateKey.from_mnemonic(MNEMONIC)

 public_key = private_key.to_public_key()

 sender_addr = public_key.to_address()

 sender = sender_addr.to_acc_bech32()

 # Step 3

 request_msg = MsgRequestData(

 oracle_script_id=37,

 calldata=bytes.fromhex("0000000200000003425443000000034554480000000000000064"),

 ask_count=4,

 min_count=3,

 client_id="BandProtocol",

 fee_limit=[Coin(amount="100", denom="uband")],

 prepare_gas=50000,

 execute_gas=200000,

 sender=sender,

)

 account = c.get_account(sender)

 account_num = account.account_number

 sequence = account.sequence

 fee = [Coin(amount="0", denom="uband")]

 chain_id = c.get_chain_id()

 # Step 4

 txn = (

 Transaction()

 .with_messages(request_msg)

 .with_sequence(sequence)

 .with_account_num(account_num)

 .with_chain_id(chain_id)

 .with_gas(2000000)

 .with_fee(fee)

 .with_memo("")

)

 # Step 5

 sign_doc = txn.get_sign_doc(public_key)

 signature = private_key.sign(sign_doc.SerializeToString())

 tx_raw_bytes = txn.get_tx_data(signature, public_key)

 # Step 6

 tx_block = c.send_tx_block_mode(tx_raw_bytes)

 print(MessageToJson(tx_block))

if __name__ == "__main__":

 main()

{

 "height": "603247",

 "txhash": "587FF6D48E5CB8A23715389FE3CAC10262777B395E4D0C554916127461F63446",

 "data": "0A090A0772657175657374",

 "rawLog": "[{\"events\":[{\"type\":\"message\",\"attributes\":[{\"key\":\"action\",\"value\":\"request

 "logs": [

 {

 "events": [

 {

 "type": "message",

 "attributes": [{ "key": "action", "value": "request" }]

 },

 {

 "type": "raw_request",

 "attributes": [

 { "key": "data_source_id", "value": "61" },

 {

 "key": "data_source_hash",

 "value": "07be7bd61667327aae10b7a13a542c7dfba31b8f4c52b0b60bf9c7b11b1a72ef"

 },

 { "key": "external_id", "value": "6" },

 { "key": "calldata", "value": "BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "57" },

 {

 "key": "data_source_hash",

 "value": "61b369daa5c0918020a52165f6c7662d5b9c1eee915025cb3d2b9947a26e48c7"

 },

 { "key": "external_id", "value": "0" },

 { "key": "calldata", "value": "BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "62" },

 {

 "key": "data_source_hash",

 "value": "107048da9dbf7960c79fb20e0585e080bb9be07d42a1ce09c5479bbada8d0289"

 },

 { "key": "external_id", "value": "3" },

 { "key": "calldata", "value": "BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "60" },

 {

 "key": "data_source_hash",

 "value": "2e588de76a58338125022bc42b460072300aebbcc4acaf55f91755c1c1799bac"

 },

 { "key": "external_id", "value": "5" },

 { "key": "calldata", "value": "huobipro BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "59" },

 {

 "key": "data_source_hash",

 "value": "5c011454981c473af3bf6ef93c76b36bfb6cc0ce5310a70a1ba569de3fc0c15d"

 },

 { "key": "external_id", "value": "2" },

 { "key": "calldata", "value": "BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "60" },

 {

 "key": "data_source_hash",

 "value": "2e588de76a58338125022bc42b460072300aebbcc4acaf55f91755c1c1799bac"

 },

 { "key": "external_id", "value": "4" },

 { "key": "calldata", "value": "binance BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "60" },

 {

 "key": "data_source_hash",

 "value": "2e588de76a58338125022bc42b460072300aebbcc4acaf55f91755c1c1799bac"

 },

 { "key": "external_id", "value": "9" },

 { "key": "calldata", "value": "bittrex BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "60" },

 {

 "key": "data_source_hash",

 "value": "2e588de76a58338125022bc42b460072300aebbcc4acaf55f91755c1c1799bac"

 },

 { "key": "external_id", "value": "7" },

 { "key": "calldata", "value": "kraken BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "60" },

 {

 "key": "data_source_hash",

 "value": "2e588de76a58338125022bc42b460072300aebbcc4acaf55f91755c1c1799bac"

 },

 { "key": "external_id", "value": "8" },

 { "key": "calldata", "value": "bitfinex BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "58" },

 {

 "key": "data_source_hash",

 "value": "7e6759fade717a06fb643392bfde837bfc3437da2ded54feed706e6cd35de461"

 },

 { "key": "external_id", "value": "1" },

 { "key": "calldata", "value": "BTC ETH" },

 { "key": "fee" }

]

 },

 {

 "type": "request",

 "attributes": [

 { "key": "id", "value": "306633" },

 { "key": "client_id", "value": "BandProtocol" },

 { "key": "oracle_script_id", "value": "37" },

 {

 "key": "calldata",

 "value": "0000000200000003425443000000034554480000000000000064"

 },

 { "key": "ask_count", "value": "4" },

 { "key": "min_count", "value": "3" },

 { "key": "gas_used", "value": "111048" },

 { "key": "total_fees" },

 {

 "key": "validator",

 "value": "bandvaloper1zl5925n5u24njn9axpygz8lhjl5a8v4cpkzx5g"

 },

 {

 "key": "validator",

 "value": "bandvaloper17n5rmujk78nkgss7tjecg4nfzn6geg4cqtyg3u"

 },

 {

 "key": "validator",

 "value": "bandvaloper1p46uhvdk8vr829v747v85hst3mur2dzlhfemmz"

 },

 {

 "key": "validator",

 "value": "bandvaloper1ldtwjzsplhxzhrg3k5hhr8v0qterv05vpdxp9f"

 }

]

 }

]

 }

],

 "gasWanted": "2000000",

 "gasUsed": "566496"

}

from pyband.proto.cosmos.bank.v1beta1.tx_pb2 import MsgSend

msg = MsgSend(

 from_address = sender,

 to_address = "band1jrhuqrymzt4mnvgw8cvy3s9zhx3jj0dq30qpte",

 amount = [Coin(amount="100", denom="uband")]

)

import os

from pyband.client import Client

from pyband.transaction import Transaction

from pyband.wallet import PrivateKey

from pyband.proto.cosmos.base.v1beta1.coin_pb2 import Coin

from pyband.proto.cosmos.bank.v1beta1.tx_pb2 import MsgSend

from google.protobuf.json_format import MessageToJson

def main():

 # Step 1

 grpc_url = "<GRPC>" # ex.laozi-testnet6.bandchain.org(without https://)

 c = Client(grpc_url)

 # Step 2

 MNEMONIC = os.getenv("MNEMONIC")

 private_key = PrivateKey.from_mnemonic(MNEMONIC)

 public_key = private_key.to_public_key()

 sender_addr = public_key.to_address()

 sender = sender_addr.to_acc_bech32()

 # Step 3

 send_msg = MsgSend(

 from_address = sender,

 to_address = "band1jrhuqrymzt4mnvgw8cvy3s9zhx3jj0dq30qpte",

 amount = [Coin(amount="1000000", denom="uband")]

)

 account = c.get_account(sender)

 account_num = account.account_number

 sequence = account.sequence

 fee = [Coin(amount="0", denom="uband")]

 chain_id = c.get_chain_id()

 # Step 4

 txn = (

 Transaction()

 .with_messages(send_msg)

 .with_sequence(sequence)

 .with_account_num(account_num)

 .with_chain_id(chain_id)

 .with_gas(2000000)

 .with_fee(fee)

 .with_memo("")

)

 # Step 5

 sign_doc = txn.get_sign_doc(public_key)

 signature = private_key.sign(sign_doc.SerializeToString())

 tx_raw_bytes = txn.get_tx_data(signature, public_key)

 # Step 6

 tx_block = c.send_tx_block_mode(tx_raw_bytes)

 print(MessageToJson(tx_block))

if __name__ == "__main__":

 main()

{

 "height": "603302",

 "txhash": "815F488B3F05F2CBDD57C433DBEAF01FBFB06F378716A8ECDF5888095D6F7F7C",

 "data": "0A060A0473656E64",

 "rawLog": "[{\"events\":[{\"type\":\"message\",\"attributes\":[{\"key\":\"action\",\"value\":\"send\"}

 "logs": [

 {

 "events": [

 {

 "type": "message",

 "attributes": [

 { "key": "action", "value": "send" },

 {

 "key": "sender",

 "value": "band18p27yl962l8283ct7srr5l3g7ydazj07dqrwph"

 },

 { "key": "module", "value": "bank" }

]

 },

 {

 "type": "transfer",

 "attributes": [

 {

 "key": "recipient",

 "value": "band1jrhuqrymzt4mnvgw8cvy3s9zhx3jj0dq30qpte"

 },

 {

 "key": "sender",

 "value": "band18p27yl962l8283ct7srr5l3g7ydazj07dqrwph"

 },

 { "key": "amount", "value": "1000000uband" }

]

 }

]

 }

],

 "gasWanted": "2000000",

 "gasUsed": "49029"

}

from pyband.client import Client

def main():

 # Step 1

 grpc_url = "<GRPC>" # ex.laozi-testnet6.bandchain.org(without https://)

if __name__ == "__main__":

 main()

from pyband.client import Client

def main():

 # Step 1

 grpc_url = "<GRPC>" # ex.laozi-testnet6.bandchain.org(without https://)

 c = Client(grpc_url)

 # Step 2

 print(c.get_reference_data(["BTC/USD", "ETH/USD"], 3, 4))

if __name__ == "__main__":

 main()

[

 ReferencePrice(

 (pair = "BTC/USD"),

 (rate = 34614.1),

 (updated_at = ReferencePriceUpdated((base = 1625655764), (quote = 1625715134)))

),

 ReferencePrice(

 (pair = "ETH/USD"),

 (rate = 2372.53),

 (updated_at = ReferencePriceUpdated((base = 1625655764), (quote = 1625715134)))

)

]

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/oracle-modules
https://pypi.org/project/pyband/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/developer-tools/pyband/wallet#private-key
https://docs.bandchain.org/develop/developer-tools/pyband/wallet#address
https://docs.bandchain.org/core-concepts/oracle-modules#msgrequestdata
https://buf.build/cosmos/cosmos-sdk/docs/main:cosmos.base.v1beta1#cosmos.base.v1beta1.Coin
https://docs.bandchain.org/core-concepts/oracle-modules#oracle-v1-tx-proto
https://docs.cosmos.network/v0.47/core/proto-docs
https://github.com/bandprotocol/chain/tree/master/proto/oracle/v1
https://docs.bandchain.org/develop/developer-tools/pyband/client#get-account-address
https://buf.build/cosmos/cosmos-sdk/docs/main:cosmos.base.v1beta1#cosmos.base.v1beta1.Coin
https://docs.bandchain.org/develop/developer-tools/pyband/transaction
https://docs.bandchain.org/develop/developer-tools/pyband/transaction#get-sign-doc-public-key
https://docs.bandchain.org/develop/developer-tools/pyband/transaction#get-tx-data-signature-public-key
https://docs.bandchain.org/develop/developer-tools/pyband/client#send-tx-block-mode-tx-bytes
https://buf.build/cosmos/cosmos-sdk/docs/main:cosmos.bank.v1beta1#cosmos.bank.v1beta1.Msg.Send
https://buf.build/cosmos/cosmos-sdk/docs/main:cosmos.bank.v1beta1#cosmos.bank.v1beta1.Msg.Send
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/developer-tools/pyband/client
https://docs.bandchain.org/develop/developer-tools/pyband/client#get-reference-data-pairs-min-count-ask-count
https://docs.bandchain.org/develop/developer-guides/remote-data-source-executor
https://docs.bandchain.org/develop/developer-tools/pyband/client
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/pyband/getting-started
https://docs.bandchain.org/develop/developer-tools/pyband/client
https://docs.bandchain.org/develop/developer-tools/pyband/data
https://docs.bandchain.org/develop/developer-tools/pyband/obi
https://docs.bandchain.org/develop/developer-tools/pyband/transaction
https://docs.bandchain.org/develop/developer-tools/pyband/wallet
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Tools PyBand Client Module

Client Module
This module provides a function to get the data from Bandchain gRPC and send the data to Bandchain gRPC.

Note: Get the <GRPC> here

get_data_source(id)
This function returns data source details of the given ID.

Parameter

id <int> : Data source ID

Return

oracle_type.DataSource

Example

Result

get_oracle_script(id)
This function returns oracle script details of the given ID.

Parameter

id <int> : Oracle Script ID

Return

oracle_type.OracleScript

Example

Result

get_request_by_id(id)
This function returns request details of the given ID.

Parameter

id <int> : Request ID

Return

oracle_query.QueryRequestResponse

Example

Result

get_reporters(validator)
This function returns a list of reporters associated with the given validator.

Parameter

validator <str> : Validator address

Return

List<str>

Example

Result

get_latest_block
This function returns the latest block in the chain.

Return

tendermint_query.GetLatestBlockResponse

Example

Result

get_account(address)
This function returns the account details of the specified address.

Parameter

address <str>

Return

Optional[auth_type.BaseAccount]

Example

Result

get_request_id_by_tx_hash(tx_hash)
This function returns request ID of the given transaction hash.

Parameter

tx_hash <bytes> : Transaction hash

Return

List[int]

Exception

Type Description

NotFoundError Request Id is not found

Example

Result

get_chain_id
This function returns a chain ID.

Return

<str>

Example

Result

get_reference_data(pairs, min_count, ask_count)
This function returns the rates of the given cryptocurrency pairs.

Parameter

pairs List<str> List of cryptocurrency pairs.

min_count <int> Minimum number of validators necessary for the request to proceed to the execution phase.

ask_count <int> : Number of validators that are requested to response to the corresponding request.

Return

List[ReferencePrice]

Exception

Type Description

EmptyMsgError Pairs are required

Example

Result

get_latest_request(oid, calldata, min_count, ask_count)
This function returns the latest request.

Parameter

oid <int> : Oracle script ID

calldata <bytes> : Calldata of a request.

min_count <int> : Minimum number of validators necessary for the request to proceed to the execution phase.

ask_count <int> : Number of validators that are requested to response to the corresponding request.

Return

oracle_query.QueryRequestSearchResponse

Example

Result

send_tx_sync_mode(tx_bytes)
This function sends a transaction in sync mode, that is, send and wait until a transaction has passed CheckTx phase.

Parameter

tx_bytes <bytes> : Transaction raw bytes that is already signed.

Return

abci_type.TxResponse

Example

Result

send_tx_async_mode(tx_bytes)
This function sends a transaction in async mode, that is, send and return immediately without waiting for the transaction process.

Parameter

tx_bytes <bytes> : Transaction raw bytes that is already signed.

Return

abci_type.TxResponse

Example

Result

send_tx_block_mode(tx_bytes)
This function sends a transaction in block mode, that is, send and wait until the transaction has been committed to a block.

Parameter

tx_bytes <bytes> : Transaction raw bytes that is already signed.

Return

abci_type.TxResponse

Example

Result

Previous
« Getting Started

Next
Data Module »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Getting Started

Client Module

Data Module

OBI Module

Transaction Module

Wallet Module

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

PyBand

BandChain.js

Building on BandChain

Nodes & Validators

Staking

from pyband import Client

from google.protobuf.json_format import MessageToJson

grpc_url = "<GRPC>" # without https://

id = 1

c = Client(grpc_url)

data_source = c.get_data_source(id)

print(MessageToJson(data_source))

{

 "owner": "band1jfdmjkxs3hvddsf4ef2wmsmte3s5llqhxqgcfe",

 "name": "DS1",

 "description": "TBD",

 "filename": "32ee6262d4a615f2c3ca0589c1c1af79212f24823453cb3f4cfff85b8d338045",

 "treasury": "band1jfdmjkxs3hvddsf4ef2wmsmte3s5llqhxqgcfe"

}

from pyband import Client

from google.protobuf.json_format import MessageToJson

grpc_url = "<GRPC>" # without https://

id = 1

c = Client(grpc_url)

oracle_script = c.get_oracle_script(id)

print(MessageToJson(oracle_script))

{

 "owner": "band1jfdmjkxs3hvddsf4ef2wmsmte3s5llqhxqgcfe",

 "name": "OS1",

 "description": "TBD",

 "filename": "f86b37dbe62c3b8c86ae28523bf09e9963a6b2951dd1a5be79f29f66d8236abf",

 "schema": "{gas_option:string}/{gweix10:u64}"

}

from pyband import Client

from google.protobuf.json_format import MessageToJson

grpc_url = "<GRPC>" # without https://

id = 1

c = Client(grpc_url)

request = c.get_request_by_id(id)

print(MessageToJson(request))

{

 "result": {

 "clientId": "from_bandd",

 "oracleScriptId": "37",

 "calldata": "AAAABgAAAANCVEMAAAADRVRIAAAAA01JUgAAAANBTkMAAAAERE9HRQAAAARMVU5BAAAAADuaygA=",

 "askCount": "1",

 "minCount": "1",

 "requestId": "1",

 "ansCount": "1",

 "requestTime": "1624374833",

 "resolveTime": "1624374844",

 "resolveStatus": "RESOLVE_STATUS_SUCCESS",

 "result": "AAAABgAAHBpu4YHAAAABqf4l8EAAAAABFPDhkAAAAACK0bhAAAAAAAsYHsgAAAABLZl5AA=="

 }

}

from pyband import Client

grpc_url = "<GRPC>" # without https://

validator = "bandvaloper1p46uhvdk8vr829v747v85hst3mur2dzlhfemmz"

c = Client(grpc_url)

print(c.get_reporters(validator))

[

 "band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f",

 "band1zgly2mgx7ykckfgm4dqgc58vrntdlgcemy62eq",

 "band1sfmc6995mk0d55zy2vy8dxu8s54y5e7yqquxkr",

 "band1jtjuucr5wea43up4d3d98e3xn737lry800j6tf",

 "band1jd95fjm3j43pqurc2k4suzmznhux85hsjrx0a8",

 "band1l5kxfkd7gvvtpd37gmjnpvd0suzwypgz5u9ysc"

]

from pyband import Client

from google.protobuf.json_format import MessageToJson

grpc_url = "<GRPC>" # without https://

c = Client(grpc_url)

latest_block = c.get_latest_block()

print(MessageToJson(latest_block))

{

 "blockId": {

 "hash": "FHpPvUlEF2WxXGGkrN9Lc4pI5oj/3Z5/U1UvLXsX/z0=",

 "partSetHeader": {

 "total": 1,

 "hash": "wgzw1SgKKd+uZwKSHWONJ6qNigdwOPhqW2nTq3AYKv0="

 }

 },

 "block": {

 "header": {

 "version": { "block": "11" },

 "chainId": "band-laozi-testnet2",

 "height": "603404",

 "time": "2021-07-12T08:05:22.386235207Z",

 "lastBlockId": {

 "hash": "XMfyuM/nZZcoWVCQG+SQ93zaYuVt47i/ISlgi3KJqJw=",

 "partSetHeader": {

 "total": 1,

 "hash": "u4XfI/858RuZExpK0D1mtQzC90R7fbhBAyIboqRQcoI="

 }

 },

 "lastCommitHash": "caU5MlsAHEpy29PzMDQJ0OdIGkCfIyttQLQoTrVNpfA=",

 "dataHash": "TyORhRUl3QS/stvNbHsld2uU47aOMhbHfbWbmzCgt9s=",

 "validatorsHash": "e0hw8Ieib1SLF87P75KUsV/Zh4UZDZocxtN13v+temM=",

 "nextValidatorsHash": "e0hw8Ieib1SLF87P75KUsV/Zh4UZDZocxtN13v+temM=",

 "consensusHash": "ek5k0qm1ziK3XpVuICUnTcA7aEbM13JRUqa8DQcn4z4=",

 "appHash": "VPpwYxRcdOtU5OclkZ+W1zuVCgo+P5TOkqwWXYY/Stw=",

 "lastResultsHash": "RTYNyG6gfZr3/J5OPnmv49+qR5wQmUUFypdaoZDT188=",

 "evidenceHash": "47DEQpj8HBSa+/TImW+5JCeuQeRkm5NMpJWZG3hSuFU=",

 "proposerAddress": "Mi9CIpvJaLKLAUv/2dg6nGeAZGw="

 },

 "data": {

 "txs": [

 "CuYCCrYCChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGESmQIIot0SEg8IDBoLMC4wMDA4NzM5NAoSDQgKGgkwLjAwMDg3MAo

 "CqMECvMDChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGES1gMIn90SEl8IAhABGlk0MjkgQ2xpZW50IEVycm9yOiBUb28gTWF

 "CvACCsACChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGESowIIoN0SEl8IAhABGlk0MjkgQ2xpZW50IEVycm9yOiBUb28gTWF

 "CvACCsACChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGESowIIoN0SEl8IAhABGlk0MjkgQ2xpZW50IEVycm9yOiBUb28gTWF

 "CtABCs0BChkvb3JhY2xlLnYxLk1zZ1JlcXVlc3REYXRhEq8BCCUSWAAAAAoAAAAEVVNEVAAAAANCU1YAAAADWE1SAAAABFV

 "CqcBCqQBChkvb3JhY2xlLnYxLk1zZ1JlcXVlc3REYXRhEoYBCCUSOAAAAAYAAAADQlRDAAAAA0VUSAAAAANNSVIAAAADQU5

 "CoABCn4KGS9vcmFjbGUudjEuTXNnUmVxdWVzdERhdGESYQgrEhwAAAACAAAABEJUQ0IAAAAEQkVUSAAAAAA7msoAGAYgAyo

 "CpoCCpcCChkvb3JhY2xlLnYxLk1zZ1JlcXVlc3REYXRhEvkBCCwSqgEAAAAVAAAABEFBUEwAAAAFR09PR0wAAAAEVFNMQQA

 "CsYBCsMBChkvb3JhY2xlLnYxLk1zZ1JlcXVlc3REYXRhEqUBCCUSTgAAAAkAAAADTVlCAAAABE5QWFMAAAADT1NUAAAAA1B

 "CpEECvADChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGES0wMIpN0SEkIIAho+MC45OTg2MjksMTQwLjgsMjEzLjc2LDEuMCw

 "CpAECu8DChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGES0gMIpd0SEhUIBhoRMzQyODEuMDcsMjE0NC40NAoSFhoUMzQyODQ

 "Co8ECu4DChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGES0QMIpd0SEhUIBhoRMzQyODEuMDcsMjE0NC40NAoSJggBGiIzNDI

 "CvEDCtADChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGESswMIn90SEj0IAho5OS45LDAuODE4ODY1LDEzLjA5LDQzMy45MSw

 "CoYDCsoCChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGESrQIIo90SEhcIoDgaEjkwMi4zMjM1MjgzMzM1NDU2ChIXCKM4GhI

 "CvkCCskCChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGESrAIIo90SEhcIozgaEjkwMi4zMjM1MjgzMzM1NDU2ChIXCKA4GhI

 "CsQCCpQCChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGES9wEIp90SEiMIARofMzQyNjcuMzM5OTk5OTk5IDIxNDMuMTM5OTk

 "Co0ECuwDChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGESzwMIpd0SEj0IAxo5MzQyNTcuMTE0LDIxNDMuNDA1OSwzLjY5Nzg

 "CogFCpQCChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGES9wEIp90SEiEaHzM0MjY3LjMzOTk5OTk5OSAyMTQzLjEzOTk5OTk

 "CvEDCrUDChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGESmAMIpt0SEpQBCAEajwExNDUuMDM1LDI1MDYuODg1LDY1OS4wNSw

 "CpEECvADChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGES0wMIpN0SEkIIAho+MC45OTg2MjksMTQwLjgsMjEzLjc2LDEuMCw

 "CskECo0EChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGES8AMIpN0SEjQIARowMSwxNDAuNywyMTMuNjIsMSwxLjU0NiwxMzI

]

 },

 "evidence": {},

 "lastCommit": {

 "height": "603403",

 "blockId": {

 "hash": "XMfyuM/nZZcoWVCQG+SQ93zaYuVt47i/ISlgi3KJqJw=",

 "partSetHeader": {

 "total": 1,

 "hash": "u4XfI/858RuZExpK0D1mtQzC90R7fbhBAyIboqRQcoI="

 }

 },

 "signatures": [

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "Zdyy3QL8E8XZYhDrA8fAUD4m2Jc=",

 "timestamp": "2021-07-12T08:05:22.304030411Z",

 "signature": "ISRrl36Kv2m6vOv7d2OpoOQtR6fmeodsg/rxGKXfch5IutvFw4/p8/LMDg3zUT64raHz8YW2aXid88Bd

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "xLnySmLJL6Qq4ebq+oPMs+KEerU=",

 "timestamp": "2021-07-12T08:05:22.435650954Z",

 "signature": "fxFAi9FQEe98Dm7cv8psNwWdQg1B/h6RaEIrfKuPwBhfiN80WE36+ioNKK7BIvfOx8QuBBuNQ+ic6mMF

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "D3OpjoewGqrIf2g+qADd6sKpM24=",

 "timestamp": "2021-07-12T08:05:22.395247997Z",

 "signature": "Ulku3yfZDtUxXdidUwlClrKAgns002z4suYZSef+rdkPxVxmCZayA4wwMUWVNnTfEdkLzsSkl6TVBSfK

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "KLbUBDhTpSjBO2cco4cmyhJiR7w=",

 "timestamp": "2021-07-12T08:05:22.454990956Z",

 "signature": "pf/usYgYQrfmcIqul9YxUbu8Ruajit0L2HXU0xz8ayg1SBZqfJcu3I7tO77iAw76S5PMZHBvFO+cig3Y

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "biAZveTotPyzzCPfYXiWCcKDKr8=",

 "timestamp": "2021-07-12T08:05:22.302760757Z",

 "signature": "dSf7bobDcdvvJdKKIK9CbIGGiASyBDhis1fMEivpXmozjvAAMRcBtxoekLMzNfbu7ZhXZklFH7DzoVsj

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "AFmBCh4x3+WV/oQfZTcQ4a97ms0=",

 "timestamp": "2021-07-12T08:05:22.303799803Z",

 "signature": "Nrwb1ztSW27fEqzfgJ6G4lUqecILKRGowezklOmX4l4OZNpJfihHuh7AHoPhj4SLkeNBud1vlW96zmru

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "GXmy0WdxkkwltyFvLJbIa9v5Kt8=",

 "timestamp": "2021-07-12T08:05:22.409681572Z",

 "signature": "HF5CZDNMKih/fe35Cwpqa5EIw2s1oTT87iVMRL5Fo51keUOB+Ly21SguFb6SeXusJ3W6KF+4YjtMM7OW

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "HW6680aDSSb7WNZU6GKkL1PYgiA=",

 "timestamp": "2021-07-12T08:05:22.394570566Z",

 "signature": "t1brNDe7aCu3Q13ePI8Lsp6JwI8nTjKBvnRBOtdvbcUcSIy4WbadIbnXou8bXdoKnXeEZCqf7zsULZtK

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "Mi9CIpvJaLKLAUv/2dg6nGeAZGw=",

 "timestamp": "2021-07-12T08:05:22.304367649Z",

 "signature": "w9nyw1GsE4EVViKnLuTHGHdcCUBA7EoetN6ztVHdqs4moh82yrhLxtJjoRgQy54G8S8Qzg7BS8dJuwpP

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "TO8fbCX9iAPgPb7NP60N5c+1XCw=",

 "timestamp": "2021-07-12T08:05:22.478276190Z",

 "signature": "UJ5YrJDIR55lEm9iwTtaodaKz38aTJC9ba4NoULsh0cZKWRMdXSsEo62gQd4XWZesRU9VbpwET0kr7aU

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "UX8oPBDTFGmRZsWIhGKc2EUE86Q=",

 "timestamp": "2021-07-12T08:05:22.412614197Z",

 "signature": "KfxPKErTsEtpAKtSRE9XlfekK0XSUEdka5B+/i7OXGt0P2d7T7rztBKqYSASuPaAvCicTgEvWIhyNaC2

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "aAyok6Qr/EGfdJr8DiG9Yycw4VA=",

 "timestamp": "2021-07-12T08:05:22.502941178Z",

 "signature": "Z9S74/SM6J5Hvqce4i7KlrXZwh6kG39pU5jUs8NVlFZvye+s4lnqR0vxQafLi8apyk2UdNW4KWLDUXA8

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "adhSwssyskWcBBWKzyItym8rK8U=",

 "timestamp": "2021-07-12T08:05:22.330196188Z",

 "signature": "qah8/op1dvTB8CaPW/TPy89nJkUw7NEn7ZkgkQ/r6eA8bwT/+QJz2qHlUNxIZ/7KE6LsqDiy+Ss4xsZP

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "tWg//Wbq1Rj5b0nPLi1yZE794FI=",

 "timestamp": "2021-07-12T08:05:22.386235207Z",

 "signature": "SrQW8WDsO0USkDZmRYNDzCXLj/y4AEWCLJ3JzU12LOIFBs+uIRZ5dHDx2jsBytYOmDdXsh1udKiRrkBq

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "056lMQcoc6aX+fZODSBBYOPz5DY=",

 "timestamp": "2021-07-12T08:05:22.402139725Z",

 "signature": "RF65UL0Hyd/0Z7aAPXqpOhcc0TaqZ6l4BN7IXOMNjfANXycZYgiNZvbppumWwsgI9AeAv/+6xPKXAG/g

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "2MqI5T0aGLK0h3fNWAcQEKLplio=",

 "timestamp": "2021-07-12T08:05:22.416599751Z",

 "signature": "stsHa0JHU1ipj8ahGdNNxm/FrYGyAGYh16ry8tsC0kx7ymBhj3uvmu9CQpBMdb7bTQNOuOTLRKLaln+8

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "299xvCm2ZUwTV/Tcty4zcOBT1AU=",

 "timestamp": "2021-07-12T08:05:22.356259712Z",

 "signature": "VX+TAitw0TeG25vdAyRTTqFD92QCMLyCFDfhzA8MmNQDAXLDF79I4sQGkQFnuAOYvAANKZtGdXdx+1nY

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "+nva6pxhpfHNdpnVtUg9kpTft8s=",

 "timestamp": "2021-07-12T08:05:22.400389951Z",

 "signature": "haUPT+DIwnXFU+zxwZukakxLU/Vzz3tpwel1MA9tgN4YNLsK1DOKJjjs4U5Zj4qvYXLH5tvGUXz2XhNP

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "lZEVu5kiC4YXL2FxwaAMRv282MQ=",

 "timestamp": "2021-07-12T08:05:22.393823192Z",

 "signature": "QuhuFlfGNzHzoAijw/PrFRUR7TmaaphyI/ybpFTpG8JxNGcmUZ+YtNJtzJwRhUqkhV/i5Ngv3Xx/uQX0

 },

 {

 "blockIdFlag": "BLOCK_ID_FLAG_COMMIT",

 "validatorAddress": "a0hzz+h4moaQrE64yXSjzRWM+p4=",

 "timestamp": "2021-07-12T08:05:22.389074186Z",

 "signature": "8XggPj2IR9uWseeZKtejNwrkBUWcQDdThz4CcGH+X1l2RuFlZq/xIP2v0j2tw0Et3aFzOyMdMHl9N1/K

 }

]

 }

 }

}

from pyband import Client

from google.protobuf.json_format import MessageToJson

grpc_url = "<GRPC>" # without https://

address = "band1ee656yzw6y9swqayu9v0kgu5pua2kgjq3hd6g3"

c = Client(grpc_url)

addr = c.get_account(address)

print(MessageToJson(addr))

{

 "address": "band1ee656yzw6y9swqayu9v0kgu5pua2kgjq3hd6g3",

 "pubKey": {

 "@type": "/cosmos.crypto.secp256k1.PubKey",

 "key": "AsBzzfeupPh2IM9xJ7SnhtIl7kVGX2QoY3Ro2DRKsmIF"

 },

 "accountNumber": "171",

 "sequence": "10"

}

from pyband import Client

from google.protobuf.json_format import MessageToJson

grpc_url = "<GRPC>" # without https://

tx_hash = "DCC09AD0087DFB30AD552DAFA6C52FE9676F157B24812FF4B9994B97CAC914AC"

c = Client(grpc_url)

print(c.get_request_id_by_tx_hash(tx_hash))

[37625, 37626, 37627, 37628, 37629]

from pyband import Client

grpc_url = "<GRPC>" # without https://

c = Client(grpc_url)

print(c.get_chain_id())

band-laozi-testnet2

from pyband import Client

grpc_url = "<GRPC>" # without https://

client = Client(grpc_url)

min_count = 3

ask_count = 4

pairs = ["BTC/USD", "ETH/USD"]

print(client.get_reference_data(pairs, min_count, ask_count))

[

 ReferencePrice(

 (pair = "BTC/USD"),

 (rate = 33373.93),

 (updated_at = ReferencePriceUpdated(

 (base = 1625715297),

 (quote = 1625715749)

))

),

 ReferencePrice(

 (pair = "ETH/USD"),

 (rate = 2261.97),

 (updated_at = ReferencePriceUpdated(

 (base = 1625715297),

 (quote = 1625715749)

))

)

]

from pyband import Client

from google.protobuf.json_format import MessageToJson

grpc_url = "<GRPC>" # without https://

c = Client(grpc_url)

oid = 43

calldata = "0000000200000004425443420000000442455448000000003b9aca00"

min_count = 3

ask_count = 4

latest_req = c.get_latest_request(oid, calldata, min_count, ask_count)

print(MessageToJson(latest_req))

{

 "request": {

 "request": {

 "oracleScriptId": "43",

 "calldata": "AAAAAgAAAARCVENCAAAABEJFVEgAAAAAO5rKAA==",

 "requestedValidators": [

 "bandvaloper1p46uhvdk8vr829v747v85hst3mur2dzlhfemmz",

 "bandvaloper17n5rmujk78nkgss7tjecg4nfzn6geg4cqtyg3u",

 "bandvaloper1e9sa38742tzhmandc4gkqve9zy8zc0yremaa3j",

 "bandvaloper1zl5925n5u24njn9axpygz8lhjl5a8v4cpkzx5g",

 "bandvaloper1ldtwjzsplhxzhrg3k5hhr8v0qterv05vpdxp9f",

 "bandvaloper19eu9g3gka6rxlevkjlvjq7s6c498tejnwxjwxx"

],

 "minCount": "3",

 "requestHeight": "603449",

 "requestTime": "1626077260",

 "clientId": "linear",

 "rawRequests": [

 {

 "dataSourceId": "74",

 "calldata": "aHR0cHM6Ly91cy1ycGMuYmFuZGNoYWluLm9yZy9vcmFjbGUvcmVxdWVzdF9wcmljZXMgQlRDIEVUSA=="

 },

 {

 "externalId": "1",

 "dataSourceId": "74",

 "calldata": "aHR0cHM6Ly9ldS1ycGMuYmFuZGNoYWluLm9yZy9vcmFjbGUvcmVxdWVzdF9wcmljZXMgQlRDIEVUSA=="

 },

 {

 "externalId": "2",

 "dataSourceId": "74",

 "calldata": "aHR0cHM6Ly9hc2lhLXJwYy5iYW5kY2hhaW4ub3JnL29yYWNsZS9yZXF1ZXN0X3ByaWNlcyBCVEMgRVRI"

 },

 {

 "externalId": "3",

 "dataSourceId": "74",

 "calldata": "aHR0cHM6Ly9hdXMtcnBjLmJhbmRjaGFpbi5vcmcvb3JhY2xlL3JlcXVlc3RfcHJpY2VzIEJUQyBFVEg="

 }

],

 "executeGas": "1000000"

 },

 "reports": [

 {

 "validator": "bandvaloper1p46uhvdk8vr829v747v85hst3mur2dzlhfemmz",

 "inBeforeResolve": true,

 "rawReports": [

 { "externalId": "1", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "externalId": "2", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "externalId": "3", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" }

]

 },

 {

 "validator": "bandvaloper1zl5925n5u24njn9axpygz8lhjl5a8v4cpkzx5g",

 "inBeforeResolve": true,

 "rawReports": [

 { "externalId": "2", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "externalId": "3", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "externalId": "1", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" }

]

 },

 {

 "validator": "bandvaloper19eu9g3gka6rxlevkjlvjq7s6c498tejnwxjwxx",

 "inBeforeResolve": true,

 "rawReports": [

 { "externalId": "3", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "externalId": "2", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "externalId": "1", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" }

]

 },

 {

 "validator": "bandvaloper1e9sa38742tzhmandc4gkqve9zy8zc0yremaa3j",

 "inBeforeResolve": true,

 "rawReports": [

 { "externalId": "3", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "externalId": "2", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "externalId": "1", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" }

]

 },

 {

 "validator": "bandvaloper17n5rmujk78nkgss7tjecg4nfzn6geg4cqtyg3u",

 "inBeforeResolve": true,

 "rawReports": [

 { "externalId": "2", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "externalId": "3", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "externalId": "1", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" }

]

 },

 {

 "validator": "bandvaloper1ldtwjzsplhxzhrg3k5hhr8v0qterv05vpdxp9f",

 "inBeforeResolve": true,

 "rawReports": [

 { "externalId": "3", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "externalId": "1", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "externalId": "2", "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" },

 { "data": "MzQyNzkuOTYgMjE0NC43MTk5OTk5OTkK" }

]

 }

],

 "result": {

 "clientId": "linear",

 "oracleScriptId": "43",

 "calldata": "AAAAAgAAAARCVENCAAAABEJFVEgAAAAAO5rKAA==",

 "askCount": "6",

 "minCount": "3",

 "requestId": "306920",

 "ansCount": "6",

 "requestTime": "1626077260",

 "resolveTime": "1626077266",

 "resolveStatus": "RESOLVE_STATUS_SUCCESS",

 "result": "AAAAAgAAHy1s1rYAAAAB81tGE/4="

 }

 }

}

import os

from pyband.client import Client

from pyband.transaction import Transaction

from pyband.wallet import PrivateKey

from pyband.proto.cosmos.base.v1beta1.coin_pb2 import Coin

from pyband.proto.oracle.v1.tx_pb2 import MsgRequestData

from google.protobuf.json_format import MessageToJson

grpc_url = "<GRPC>" # without https://

c = Client(grpc_url)

MNEMONIC = os.getenv("MNEMONIC")

private_key = PrivateKey.from_mnemonic(MNEMONIC)

public_key = private_key.to_public_key()

sender_addr = public_key.to_address()

sender = sender_addr.to_acc_bech32()

request_msg = MsgRequestData(

 oracle_script_id=37,

 calldata=bytes.fromhex("0000000200000003425443000000034554480000000000000064"),

 ask_count=4,

 min_count=3,

 client_id="BandProtocol",

 fee_limit=[Coin(amount="100", denom="uband")],

 prepare_gas=50000,

 execute_gas=200000,

 sender=sender,

)

account = c.get_account(sender)

account_num = account.account_number

sequence = account.sequence

fee = [Coin(amount="0", denom="uband")]

chain_id = c.get_chain_id()

txn = (

 Transaction()

 .with_messages(request_msg)

 .with_sequence(sequence)

 .with_account_num(account_num)

 .with_chain_id(chain_id)

 .with_gas(2000000)

 .with_fee(fee)

 .with_memo("")

)

sign_doc = txn.get_sign_doc(public_key)

signature = private_key.sign(sign_doc.SerializeToString())

tx_raw_bytes = txn.get_tx_data(signature, public_key)

tx_sync = c.send_tx_sync_mode(tx_raw_bytes)

print(MessageToJson(tx_sync))

{

 "txhash": "FEE8A58F7A68326A50B974C13721B55A6ABA6A1761A2D466A9940FF393F02C9E",

 "rawLog": "[]"

}

import os

from pyband.client import Client

from pyband.transaction import Transaction

from pyband.wallet import PrivateKey

from pyband.proto.cosmos.base.v1beta1.coin_pb2 import Coin

from pyband.proto.oracle.v1.tx_pb2 import MsgRequestData

from google.protobuf.json_format import MessageToJson

grpc_url = "<GRPC>" # without https://

c = Client(grpc_url)

MNEMONIC = os.getenv("MNEMONIC")

private_key = PrivateKey.from_mnemonic(MNEMONIC)

public_key = private_key.to_public_key()

sender_addr = public_key.to_address()

sender = sender_addr.to_acc_bech32()

request_msg = MsgRequestData(

 oracle_script_id=37,

 calldata=bytes.fromhex("0000000200000003425443000000034554480000000000000064"),

 ask_count=4,

 min_count=3,

 client_id="BandProtocol",

 fee_limit=[Coin(amount="100", denom="uband")],

 prepare_gas=50000,

 execute_gas=200000,

 sender=sender,

)

account = c.get_account(sender)

account_num = account.account_number

sequence = account.sequence

fee = [Coin(amount="0", denom="uband")]

chain_id = c.get_chain_id()

txn = (

 Transaction()

 .with_messages(request_msg)

 .with_sequence(sequence)

 .with_account_num(account_num)

 .with_chain_id(chain_id)

 .with_gas(2000000)

 .with_fee(fee)

 .with_memo("")

)

sign_doc = txn.get_sign_doc(public_key)

signature = private_key.sign(sign_doc.SerializeToString())

tx_raw_bytes = txn.get_tx_data(signature, public_key)

tx_async = c.send_tx_async_mode(tx_raw_bytes)

print(MessageToJson(tx_async))

{ "txhash": "C685F799E4D870353364155602C14520416FC274293DFC9EFC3575357F9A8893" }

import os

from pyband.client import Client

from pyband.transaction import Transaction

from pyband.wallet import PrivateKey

from pyband.proto.cosmos.base.v1beta1.coin_pb2 import Coin

from pyband.proto.oracle.v1.tx_pb2 import MsgRequestData

from google.protobuf.json_format import MessageToJson

grpc_url = "<GRPC>" # without https://

c = Client(grpc_url)

MNEMONIC = os.getenv("MNEMONIC")

private_key = PrivateKey.from_mnemonic(MNEMONIC)

public_key = private_key.to_public_key()

sender_addr = public_key.to_address()

sender = sender_addr.to_acc_bech32()

request_msg = MsgRequestData(

 oracle_script_id=37,

 calldata=bytes.fromhex("0000000200000003425443000000034554480000000000000064"),

 ask_count=4,

 min_count=3,

 client_id="BandProtocol",

 fee_limit=[Coin(amount="100", denom="uband")],

 prepare_gas=50000,

 execute_gas=200000,

 sender=sender,

)

account = c.get_account(sender)

account_num = account.account_number

sequence = account.sequence

fee = [Coin(amount="0", denom="uband")]

chain_id = c.get_chain_id()

txn = (

 Transaction()

 .with_messages(request_msg)

 .with_sequence(sequence)

 .with_account_num(account_num)

 .with_chain_id(chain_id)

 .with_gas(2000000)

 .with_fee(fee)

 .with_memo("")

)

sign_doc = txn.get_sign_doc(public_key)

signature = private_key.sign(sign_doc.SerializeToString())

tx_raw_bytes = txn.get_tx_data(signature, public_key)

tx_block = c.send_tx_block_mode(tx_raw_bytes)

print(MessageToJson(tx_block))

{

 "height": "603561",

 "txhash": "A50970334A74461CF045D962EEA1230B18AAAC2CEE2E96C3C348672100D46A93",

 "data": "0A090A0772657175657374",

 "rawLog": "[{\"events\":[{\"type\":\"message\",\"attributes\":[{\"key\":\"action\",\"value\":\"request

 "logs": [

 {

 "events": [

 {

 "type": "message",

 "attributes": [{ "key": "action", "value": "request" }]

 },

 {

 "type": "raw_request",

 "attributes": [

 { "key": "data_source_id", "value": "61" },

 {

 "key": "data_source_hash",

 "value": "07be7bd61667327aae10b7a13a542c7dfba31b8f4c52b0b60bf9c7b11b1a72ef"

 },

 { "key": "external_id", "value": "6" },

 { "key": "calldata", "value": "BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "57" },

 {

 "key": "data_source_hash",

 "value": "61b369daa5c0918020a52165f6c7662d5b9c1eee915025cb3d2b9947a26e48c7"

 },

 { "key": "external_id", "value": "0" },

 { "key": "calldata", "value": "BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "62" },

 {

 "key": "data_source_hash",

 "value": "107048da9dbf7960c79fb20e0585e080bb9be07d42a1ce09c5479bbada8d0289"

 },

 { "key": "external_id", "value": "3" },

 { "key": "calldata", "value": "BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "60" },

 {

 "key": "data_source_hash",

 "value": "2e588de76a58338125022bc42b460072300aebbcc4acaf55f91755c1c1799bac"

 },

 { "key": "external_id", "value": "5" },

 { "key": "calldata", "value": "huobipro BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "59" },

 {

 "key": "data_source_hash",

 "value": "5c011454981c473af3bf6ef93c76b36bfb6cc0ce5310a70a1ba569de3fc0c15d"

 },

 { "key": "external_id", "value": "2" },

 { "key": "calldata", "value": "BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "60" },

 {

 "key": "data_source_hash",

 "value": "2e588de76a58338125022bc42b460072300aebbcc4acaf55f91755c1c1799bac"

 },

 { "key": "external_id", "value": "4" },

 { "key": "calldata", "value": "binance BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "60" },

 {

 "key": "data_source_hash",

 "value": "2e588de76a58338125022bc42b460072300aebbcc4acaf55f91755c1c1799bac"

 },

 { "key": "external_id", "value": "9" },

 { "key": "calldata", "value": "bittrex BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "60" },

 {

 "key": "data_source_hash",

 "value": "2e588de76a58338125022bc42b460072300aebbcc4acaf55f91755c1c1799bac"

 },

 { "key": "external_id", "value": "7" },

 { "key": "calldata", "value": "kraken BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "60" },

 {

 "key": "data_source_hash",

 "value": "2e588de76a58338125022bc42b460072300aebbcc4acaf55f91755c1c1799bac"

 },

 { "key": "external_id", "value": "8" },

 { "key": "calldata", "value": "bitfinex BTC ETH" },

 { "key": "fee" },

 { "key": "data_source_id", "value": "58" },

 {

 "key": "data_source_hash",

 "value": "7e6759fade717a06fb643392bfde837bfc3437da2ded54feed706e6cd35de461"

 },

 { "key": "external_id", "value": "1" },

 { "key": "calldata", "value": "BTC ETH" },

 { "key": "fee" }

]

 },

 {

 "type": "request",

 "attributes": [

 { "key": "id", "value": "307081" },

 { "key": "client_id", "value": "BandProtocol" },

 { "key": "oracle_script_id", "value": "37" },

 {

 "key": "calldata",

 "value": "0000000200000003425443000000034554480000000000000064"

 },

 { "key": "ask_count", "value": "4" },

 { "key": "min_count", "value": "3" },

 { "key": "gas_used", "value": "111048" },

 { "key": "total_fees" },

 {

 "key": "validator",

 "value": "bandvaloper1l2hchtyawk9tk43zzjrzr2lcd0zyxngcjdsshe"

 },

 {

 "key": "validator",

 "value": "bandvaloper17n5rmujk78nkgss7tjecg4nfzn6geg4cqtyg3u"

 },

 {

 "key": "validator",

 "value": "bandvaloper1e9sa38742tzhmandc4gkqve9zy8zc0yremaa3j"

 },

 {

 "key": "validator",

 "value": "bandvaloper1lm2puy995yt8dh53cnazk3ge3m27t7cay4ndaq"

 }

]

 }

]

 }

],

 "gasWanted": "2000000",

 "gasUsed": "566496"

}

get_data_source(id)

get_oracle_script(id)

get_request_by_id(id)

get_reporters(validator)

get_latest_block

get_account(address)

get_request_id_by_tx_hash(tx_hash)

get_chain_id

get_reference_data(pairs, min_count,
ask_count)

get_latest_request(oid, calldata, min_count,
ask_count)

send_tx_sync_mode(tx_bytes)

send_tx_async_mode(tx_bytes)

send_tx_block_mode(tx_bytes)

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/core-concepts/oracle-modules#datasource
https://docs.bandchain.org/core-concepts/oracle-modules#oraclescript
https://docs.bandchain.org/core-concepts/oracle-modules#queryrequestresponse
https://buf.build/cosmos/cosmos-sdk/docs/main:cosmos.base.tendermint.v1beta1#cosmos.base.tendermint.v1beta1.GetLatestBlockResponse
https://buf.build/cosmos/cosmos-sdk/docs/main:cosmos.auth.v1beta1#cosmos.auth.v1beta1.BaseAccount
https://docs.bandchain.org/develop/developer-tools/pyband/data#referenceprice
https://docs.bandchain.org/core-concepts/oracle-modules#queryrequestsearchresponse
https://docs.bandchain.org/develop/developer-tools/pyband/getting-started
https://docs.bandchain.org/develop/developer-tools/pyband/data
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/pyband/getting-started
https://docs.bandchain.org/develop/developer-tools/pyband/client
https://docs.bandchain.org/develop/developer-tools/pyband/data
https://docs.bandchain.org/develop/developer-tools/pyband/obi
https://docs.bandchain.org/develop/developer-tools/pyband/transaction
https://docs.bandchain.org/develop/developer-tools/pyband/wallet
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Tools PyBand Data Module

Data Module
This module is used to construct the data in term of dataclass to make sure that all the inputs and outputs follow this data schema.

Although there are Protobuf classes, some types do not exists. Therefore, additional types of data will be declared here.

NOTE

Note that base and quote is the first and the second price symbols respectively e.g. BTC/USD price rate has a base of BTC
and a quote of USD.

The dataclasses declaration are as follows:

ReferencePriceUpdated

Attribute Type Description

base integer Base resolve time

quote integer Quote resolve time

ReferencePrice

Attribute Type Description

pair string The token pair e.g. "BTC/USDT"

rate float Price rate

updated_at ReferencePriceUpdated Price updated time

Previous
« Client Module

Next
OBI Module »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Getting Started

Client Module

Data Module

OBI Module

Transaction Module

Wallet Module

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

PyBand

BandChain.js

Building on BandChain

Nodes & Validators

Staking

from dataclasses import dataclass

@dataclass

class ReferencePriceUpdated(object):

 base: int

 quote: int

@dataclass

class ReferencePrice(object):

 pair: str

 rate: float

 updated_at: ReferencePriceUpdated

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/pyband/client
https://docs.bandchain.org/develop/developer-tools/pyband/obi
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/pyband/getting-started
https://docs.bandchain.org/develop/developer-tools/pyband/client
https://docs.bandchain.org/develop/developer-tools/pyband/data
https://docs.bandchain.org/develop/developer-tools/pyband/obi
https://docs.bandchain.org/develop/developer-tools/pyband/transaction
https://docs.bandchain.org/develop/developer-tools/pyband/wallet
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Tools PyBand OBI Module

OBI Module
Oracle Binary Encoding (OBI) is the standard way to serialized and deserialize binary data in the BandChain ecosystem. This
module provides the functionality to serialize data. More details

Constructor
schema <str> : Input and output schema.

Example

encode_input(value)
This function encodes the input value by using input schema.

Parameter

value <Any> : Value to be encoded.

Return

<bytes> : An encoded value

Example

Result

encode_output(value)
This function encodes the output value by using output schema.

Parameter

value <Any> : Value to be encoded.

Return

<bytes> : An encoded value

Example

Result

decode_input(value)
This function decode the input value by using input schema

Parameter

value <bytes> : Value to be decoded.

Return

<Any> : A decoded value

Example

Result

decode_output(value)
This function decode the output value by using output schema

Parameter

value <bytes> : Value to be decoded.

Return

<Any> : A decoded value

Example

Result

Previous
« Data Module

Next
Transaction Module »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Getting Started

Client Module

Data Module

OBI Module

Transaction Module

Wallet Module

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

PyBand

BandChain.js

Building on BandChain

Nodes & Validators

Staking

from pyband import PyObi

obi = PyObi("{symbol: string,px: u64,in: {a: u8,b: u8}, tb:bool} / string")

from pyband.obi import PyObi

obi = PyObi("{symbol: string,px: u64,in: {a: u8,b: u8}, tb:bool} / string")

test_input = {"symbol": "BTC", "px": 9000, "in": {"a": 1, "b": 2}, "tb": False}

print(obi.encode_input(test_input).hex())

000000034254430000000000002328010200

from pyband.obi import PyObi

obi = PyObi("{symbol: string,px: u64,in: {a: u8,b: u8}, tb:bool} / string")

test_output = "test"

print(obi.encode_output(test_output).hex())

0000000474657374

from pyband.obi import PyObi

obi =PyObi("{symbol: string,px: u64,in: {a: u8,b: u8}, tb:bool} / string")

print(obi.decode_input(bytearray.fromhex("000000034254430000000000002328010200")))

{"symbol": "BTC", "px": 9000, "in": {"a": 1, "b": 2}, "tb": False}

from pyband.obi import PyObi

obi = PyObi("{symbol: string,px: u64,in: {a: u8,b: u8}, tb:bool} / string")

print(obi.decode_output(bytearray.fromhex("0000000474657374")))

test

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-guides/obi
https://docs.bandchain.org/develop/developer-tools/pyband/data
https://docs.bandchain.org/develop/developer-tools/pyband/transaction
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/pyband/getting-started
https://docs.bandchain.org/develop/developer-tools/pyband/client
https://docs.bandchain.org/develop/developer-tools/pyband/data
https://docs.bandchain.org/develop/developer-tools/pyband/obi
https://docs.bandchain.org/develop/developer-tools/pyband/transaction
https://docs.bandchain.org/develop/developer-tools/pyband/wallet
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Tools PyBand Transaction Module

Transaction Module
This module provides the preparatory component that is required for sending a transaction.

with_message(msgs)
This function add one or more messages to <Transaction>

The message can be any message as listed in Oracle Modules or Cosmos Based Messages. Please note that our message should
be imported from the generated protobuf files.

Parameter

msgs <google-protobuf.message.Message> : Messages to be included into the transaction.

Return

<Transaction>

with_sender(client, sender)
This function set account_num and sequence from <Client> with the address from sender . <Transaction> must have at
least 1 message added before calling with_sender()

Parameter

client <Client> : Client used to set account_num and sequence by calling get_address() .

sender <str> : Address of the sender.

Return

<Transaction>

Exception

Type Description

EmptyMsgError Message is empty, please use with_messages at least 1 message

NotFoundError Account doesn't exist

with_account_num(account_num)
This function sets the account number in <Transaction> .

Parameter

account_num <int>

Return

<Transaction>

with_sequence(sequence)
This function sets the sequence number in <Transaction> .

Parameter

sequence <int>

Return

<Transaction>

with_chain_id(chain_id)
This function sets the chain ID in <Transaction> .

Parameter

chain_id <str>

Return

<Transaction>

with_fee(fee)
This function sets the fee by using the given fee and gas limit <Transaction> .

Parameter

fee <List[Coin]>

Return

<Transaction>

with_gas(gas)
This function sets the gas limit in <Transaction> .

Parameter

gas <int>

Return

<Transaction>

with_memo(memo)
This function sets the memo in <Transaction> .

Parameter

memo <str> : Maximum length of memo is 256.

Return

<Transaction>

Exception

Type Description

ValueTooLargeError Memo is too large

get_sign_doc(public_key)
This function returns a sign data from <Transaction> .

Parameter

public_key <PublicKey> , default = None: Public key.

Return

<cosmos_tx_type.SignDoc>

Exception

Type Description

EmptyMsgError message is empty

UndefinedError account_num should be defined

UndefinedError sequence should be defined

UndefinedError chain_id should be defined

get_tx_data(signature, public_key)
This function returns a transaction that need to be sent.

Parameter

signature <bytes> : Signature from sign from get_sign_doc

public_key <PublicKey , default = None: Public key

Return

<bytes>

Example use case

Note: Get the <GRPC> here

Result

Previous
« OBI Module

Next
Wallet Module »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Getting Started

Client Module

Data Module

OBI Module

Transaction Module

Wallet Module

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

PyBand

BandChain.js

Building on BandChain

Nodes & Validators

Staking

import os

from pyband.client import Client

from pyband.transaction import Transaction

from pyband.wallet import PrivateKey

from pyband.proto.cosmos.base.v1beta1.coin_pb2 import Coin

from pyband.proto.oracle.v1.tx_pb2 import MsgRequestData

grpc_url = "<GRPC>"

c = Client(grpc_url)

MNEMONIC = os.getenv("MNEMONIC")

private_key = PrivateKey.from_mnemonic(MNEMONIC)

public_key = private_key.to_public_key()

sender_addr = public_key.to_address()

sender = sender_addr.to_acc_bech32()

request_msg = MsgRequestData(

 oracle_script_id=37,

 calldata=bytes.fromhex("0000000200000003425443000000034554480000000000000064"),

 ask_count=4,

 min_count=3,

 client_id="BandProtocol",

 fee_limit=[Coin(amount="100", denom="uband")],

 prepare_gas=50000,

 execute_gas=200000,

 sender=sender,

)

account = c.get_account(sender)

account_num = account.account_number

sequence = account.sequence

fee = [Coin(amount="0", denom="uband")]

chain_id = c.get_chain_id()

txn = (

 Transaction()

 .with_messages(request_msg)

 .with_sequence(sequence)

 .with_account_num(account_num)

 .with_chain_id(chain_id)

 .with_gas(2000000)

 .with_fee(fee)

 .with_memo("")

)

sign_doc = txn.get_sign_doc(public_key)

signature = private_key.sign(sign_doc.SerializeToString())

tx_raw_bytes = txn.get_tx_data(signature, public_key)

print(tx_raw_bytes.hex())

0a93010a90010a192f6f7261636c652e76312e4d7367526571756573744461746112730825121a00000002000000034254430000

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/oracle-modules#oracle-v1-tx-proto
https://docs.cosmos.network/v0.47/core/proto-docs
https://github.com/bandprotocol/chain/tree/master/proto/oracle/v1
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/developer-tools/pyband/obi
https://docs.bandchain.org/develop/developer-tools/pyband/wallet
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/pyband/getting-started
https://docs.bandchain.org/develop/developer-tools/pyband/client
https://docs.bandchain.org/develop/developer-tools/pyband/data
https://docs.bandchain.org/develop/developer-tools/pyband/obi
https://docs.bandchain.org/develop/developer-tools/pyband/transaction
https://docs.bandchain.org/develop/developer-tools/pyband/wallet
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Tools PyBand Wallet Module

Wallet Module
This module provides the functionality to control the account.

Private Key
Class for wrapping SigningKey that is used for signature creation and public key derivation.

generate(path)

This function generates new private key with random mnemonic phrase.

INFO

If path is not given, default to Band's HD prefix 494 and all other indexes being zeroes.

Parameter

path <str> optional: HD path that follows the BIP32 standard.

Return

Tuple[str, <PrivateKey>] : Tuple of mnemonic phrase and PrivateKey instance.

Example

from_mnemonic(word, path)

This function creates a PrivateKey instance from a given mnemonic phrase and a HD derivation path.

INFO

If path is not given, default to Band's HD prefix 494 and all other indexes being zeroes.

Parameter

words <str> : Mnemonic phrase for recovers a private key.

path <str> (optional): HD path that follows the BIP32 standard.

Return

<PrivateKey> : PrivateKey object.

Example

from_hex(priv)

This function creates a PrivateKey instance from a given hex that represents a signing key.

Parameter

priv <str> : Hex representation of signing key.

Return

<PrivateKey> :PrivateKey object.

Example

to_hex

This function returns a hex representation of a signing key.

Return

<str> : A hex representation of signing key.

Example

Result

to_public_key

This function returns a PublicKey that is associated with this private key.

Return

<PublicKey> : A PublicKey that can be used to verify the signatures made with this PrivateKey .

Example

Result

sign(msg)

This function returns a signature of the associated private key. The message is signed by using the edcsa sign_deterministic
function.

Parameter

msg <bytes> : Message that will be hashed and signed.

Return

<bytes> : A signature of this private key over the given message.

Example

Result

Public Key
Class for wrapping VerifyKey that is used for signature verification.

from_acc_bech32(bech)

This function creates a PublicKey instance from bech32-encoded with account public key prefix bandpub .

Parameter

bech <str> : A bech32-encoded with account public key prefix.

Return

PublicKey : A PublicKey instance

Exception

Type Description

ValueError Invalid bech32 prefix

Example

from_val_bech32(bech)

This function creates a PublicKey instance from bech32-encoded with validator public key prefix bandvaloperpub .

Parameter

bech <str> : A bech32-encoded with validator public key prefix.

Return

PublicKey : A PublicKey instance

Exception

Type Description

ValueError Invalid bech32 prefix

Example

from_cons_bech32(bech)

This function creates a PublicKey instance from a bech32-encoded with validator consensus public key prefix bandvalconspub .

Parameter

bech <str> : A bech32-encoded with validator consensus public key prefix.

Return

PublicKey : A PublicKey instance

Exception

Type Description

ValueError Invalid bech32 prefix

Example

to_hex

This function returns a hex representation of the verified key.

Return

<str> : A hex representationof the verified key.

Example

Result

to_public_key_proto()

This function returns a public key in type protobuf.

Return

<PubKeyProto> : A public key of type protobuf (SECP256k1).

to_acc_bech32

This function returns bech32-encoded with account public key prefix bandpub .

Return

<str> : A bech32-encoded with account public key prefix.

Example

Result

to_val_bech32

This function returns a bech32-encoded with validator public key prefix bandvaloperpub .

Return

<str> : A bech32-encoded with validator public key prefix.

Example

Result

to_cons_bech32

This function returns a bech32-encoded with validator consensus public key prefix bandvalconspub .

Return

<str> : A bech32-encoded with validator consensus public key prefix.

Example

Result

to_address

This function returns an Address instance from this public key.

Return

<Address> : An Address instance

Example

Result

verify(msg, sig)

This function is used to verify a signature made from the given message.

Parameter

msg <bytes> : A data signed by the signature, will be hashed using sha256 function.

sig <bytes : An encoded signature

Return

<bool> : True, if the verification success.

Exception

Type Description

BadSignatureError If the signature is invalid or malformed

Example

Result

Address
Class for wrapping Address .

from_acc_bech32(bech)

This function creates an Address instance from the given bech32-encoded with account prefix band .

Parameter

bech<str> : A bech32-encoded with account prefix.

Return

<Address> : An Address instance

Exception

Type Description

ValueError Invalid bech32 prefix

Example

from_val_bech32(bech)

This function creates an Address instance from the given bech32-encoded with validator prefix bandvaloper .

Parameter

bech <str> : A bech32-encoded with validator prefix.

Return

<Address> : An Address instance

Exception

Type Description

ValueError Invalid bech32 prefix

Example

from_cons_bech32(bech)

This function creates an Address instance from the given bech32-encoded with validator consensus prefix bandvalcons .

Parameter

bech <str> : A bech32-encoded with validator consensus prefix.

Return

<Address> : An Address instance

Exception

Type Description

ValueError Invalid bech32 prefix

Example

to_hex

This function returns a hex representation of Address .

Return

<str> : A hex representation of Address .

Example

Result

to_acc_bech32

This function returns a bech32-encoded with account prefix band band .

Return

<str> : A bech32-encoded with account prefix.

Example

Result

to_val_bech32

This function returns a bech32-encoded with validator prefix bandvaloper .

Return

<str> : A bech32-encoded with account prefix.

Example

to_cons_bech32

This function returns a bech32-encoded with validator consensus prefix bandvalcons .

Return

<str> : A bech32-encoded with account prefix.

Example

Result

Previous
« Transaction Module

Next
Getting Started »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Getting Started

Client Module

Data Module

OBI Module

Transaction Module

Wallet Module

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

PyBand

BandChain.js

Building on BandChain

Nodes & Validators

Staking

from pyband.wallet import PrivateKey

mnemonic, priv = PrivateKey.generate(path="m/44'/494'/0'/0/3")

from pyband.wallet import PrivateKey

priv = PrivateKey.from_mnemonic("test mnemonic")

from pyband.wallet import PrivateKey

priv = PrivateKey.from_hex("2442b724db7189468f16accc0fc505f0609817eb129e13702e696d8b84609ea9")

from pyband.wallet import PrivateKey

priv = PrivateKey.from_mnemonic("test mnemonic")

print(priv.to_hex())

2cb2e2d3582cebf0664d9cda0b89c5d478ae12fac19a6f4ed9c10a7406a19615

from pyband.wallet import PrivateKey

priv = PrivateKey.from_mnemonic("test mnemonic")

print(priv.to_public_key().to_hex())

02b2b0d35cb1c6d3923813c64e46a82d29e12d03288f438b9d3cf232d9a22bcb83

from pyband.wallet import PrivateKey

priv = PrivateKey.from_mnemonic("test mnemonic")

print(priv.sign(b"test message").hex())

4bbc9a7ea54b47b11c67a4074e8d9bca068cb64c788f67342c4033b1b6f0553e1bc63cdf9bc2fb6e89c1e965c1e0f0712a51c250

from pyband.wallet import PublicKey

public_key = PublicKey.from_acc_bech32("bandpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05t

from pyband.wallet import PublicKey

public_key = PublicKey.from_val_bech32("bandvaloperpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlual

from pyband.wallet import PublicKey

public_key = PublicKey.from_cons_bech32("bandvalconspub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlua

from pyband.wallet import PublicKey

public_key = PublicKey.from_acc_bech32("bandpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05t

print(public_key.to_hex())

0351e98e1be097250f2ff4188c0aace0a716e69a992cd77f9dfe436b3e8b34280d

from pyband.wallet import PublicKey

public_key = PublicKey.from_acc_bech32("bandpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05t

print(public_key.to_acc_bech32())

bandpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05txs5q6mw8s9v

from pyband.wallet import PublicKey

public_key = PublicKey.from_acc_bech32("bandpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05t

print(public_key.to_val_bech32())

bandvaloperpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05txs5q69gsm29

from pyband.wallet import PublicKey

public_key = PublicKey.from_acc_bech32("bandpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05t

print(public_key.to_cons_bech32())

bandvalconspub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05txs5q6r8ytws

from pyband.wallet import PublicKey

public_key = PublicKey.from_acc_bech32("bandpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05t

print(public_key.to_address().to_hex())

8bb66ae5bb7e5ce1035557cf1c77430b987683d2

from pyband.wallet import PrivateKey

priv = PrivateKey.from_mnemonic("test mnemonic")

public_key = priv.to_public_key()

msg = b"test message"

sig = priv.sign(msg)

print(public_key.verify(msg, sig))

True

from pyband.wallet import Address

address = Address.from_acc_bech32("band13eznuehmqzd3r84fkxu8wklxl22r2qfmtlth8c")

from pyband.wallet import Address

address = Address.from_val_bech32("bandvaloper13eznuehmqzd3r84fkxu8wklxl22r2qfm8f05zn")

from pyband.wallet import Address

address = Address.from_cons_bech32("bandvalcons13eznuehmqzd3r84fkxu8wklxl22r2qfmn6ugwj")

from pyband.wallet import Address

address = Address.from_acc_bech32("band13eznuehmqzd3r84fkxu8wklxl22r2qfmtlth8c")

print(address.to_hex())

8e453e66fb009b119ea9b1b8775be6fa9435013b

from pyband.wallet import Address

address = Address.from_acc_bech32("band13eznuehmqzd3r84fkxu8wklxl22r2qfmtlth8c")

print(address.to_acc_bech32())

band13eznuehmqzd3r84fkxu8wklxl22r2qfmtlth8c

from pyband.wallet import Address

address = Address.from_acc_bech32("band13eznuehmqzd3r84fkxu8wklxl22r2qfmtlth8c")

print(address.to_val_bech32())

bandvaloper13eznuehmqzd3r84fkxu8wklxl22r2qfm8f05zn

from pyband.wallet import Address

address = Address.from_acc_bech32("band13eznuehmqzd3r84fkxu8wklxl22r2qfmtlth8c")

print(address.to_cons_bech32())

bandvalcons13eznuehmqzd3r84fkxu8wklxl22r2qfmn6ugwj

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/pyband/transaction
https://docs.bandchain.org/develop/developer-tools/bandchain.js/getting-started
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/pyband/getting-started
https://docs.bandchain.org/develop/developer-tools/pyband/client
https://docs.bandchain.org/develop/developer-tools/pyband/data
https://docs.bandchain.org/develop/developer-tools/pyband/obi
https://docs.bandchain.org/develop/developer-tools/pyband/transaction
https://docs.bandchain.org/develop/developer-tools/pyband/wallet
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Tools BandChain.js Getting Started

Getting Started
BandChain.js is a library written in TypeScript used for interacting with BandChain. The library provides classes and methods to
conveniently send transactions, query data, OBI encoding, and wallet management.

The library is implemented based on gRPC-web protocol which sends HTTP/1.5 or HTTP/2 requests to a gRPC proxy server, before
serving them as HTTP/2 to gRPC server.

The library support both Node.js and browsers.

Previous
« Wallet Module

Next
Installation »

Explore

About Us

Community

Band Partners

More

Blog

Band Protocol Documentation

Getting Started

Installation

Common Usage Example

Client Module

Data Module

Message Module

OBI Module

Transaction Module

Wallet Module

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

PyBand

BandChain.js

Building on BandChain

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://github.com/bandprotocol/bandchain.js
https://grpc.io/blog/state-of-grpc-web/
https://docs.bandchain.org/develop/developer-tools/pyband/wallet
https://docs.bandchain.org/develop/developer-tools/bandchain.js/installation
https://bandprotocol.com/
https://www.bandpartners.io/
https://blog.bandprotocol.com/
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/bandchain.js/getting-started
https://docs.bandchain.org/develop/developer-tools/bandchain.js/installation
https://docs.bandchain.org/develop/developer-tools/bandchain.js/example
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client
https://docs.bandchain.org/develop/developer-tools/bandchain.js/data
https://docs.bandchain.org/develop/developer-tools/bandchain.js/message
https://docs.bandchain.org/develop/developer-tools/bandchain.js/obi
https://docs.bandchain.org/develop/developer-tools/bandchain.js/transaction
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Tools BandChain.js Installation

Installation
System Requirements

Node.js 12.22.0 or later

MacOS, Windows (including WSL), and Linux are supported

Browser Support
The default build targets browsers that support both native ESM via script tags and native ESM dynamic import.

Installation
NPM

Yarn

Previous
« Getting Started

Next
Common Usage Example »

Explore

About Us

Cosmoscan

Community

Band Partners

Twitter

More

Blog

CoinMarketCap

Band Protocol Documentation

Getting Started

Installation

Common Usage Example

Client Module

Data Module

Message Module

OBI Module

Transaction Module

Wallet Module

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

PyBand

BandChain.js

Building on BandChain

Nodes & Validators

Staking

npm install --save @bandprotocol/bandchain.js

yarn add @bandprotocol/bandchain.js

Band Protocol Search K

https://docs.bandchain.org/
https://caniuse.com/es6-module
https://caniuse.com/es6-module-dynamic-import
https://docs.bandchain.org/develop/developer-tools/bandchain.js/getting-started
https://docs.bandchain.org/develop/developer-tools/bandchain.js/example
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/bandchain.js/getting-started
https://docs.bandchain.org/develop/developer-tools/bandchain.js/installation
https://docs.bandchain.org/develop/developer-tools/bandchain.js/example
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client
https://docs.bandchain.org/develop/developer-tools/bandchain.js/data
https://docs.bandchain.org/develop/developer-tools/bandchain.js/message
https://docs.bandchain.org/develop/developer-tools/bandchain.js/obi
https://docs.bandchain.org/develop/developer-tools/bandchain.js/transaction
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Tools BandChain.js Common Usage Example

Common Usage Example
Make an oracle request

This section describes methods to send a transaction of oracle request to BandChain

Step 1: Import Client from @bandprotocol/bandchain.js and creates a new instance of grpcUrl as a parameter and you
can get <GRPC_WEB> endpoint from here. Then initialize the client instance. Every method in client module can now be used.

Step 2: Specify an account wallet for sending the transaction. This can be done by import PrivateKey from Wallet module and
input a 24-words mnemonic string as a seed. For this example, we will use following mnemonic for demonstration.

Here is the example on how to get a private key as an account.

Then, we will use the private key to generate public key and a BAND address, as shown below

Step 3: As we have both an Client instance and an account wallet, we can now construct a transaction by importing Transaction
and MsgRequestData .

As the transaction object requires following attributes,

a list of messages

account number

sequence number

chain ID

fee

with following optional fields

memo (default is empty string)

We will firstly construct a MsgRequestData to be included in a list of messages of the transaction. The message requires 9 fields
as shown in the example below.

Within MsgRequestData

After constructed MsgRequestData , we can get other required fields by following methods to constructs a transaction

Account and Sequence number are automatically gathered from Transaction's withSender method.

Chain ID can be gathered from Client's getChainId method.

Step 4: Sign and send the transaction

Now, we had an instance of constructed transaction. In order to sign the transaction, getSignDoc method in Transaction
instance can be used to get serialzed data of the transaction to be used for signing. Then, use PrivateKey 's sign to sign
transaction. Finally, use getTxData to include signature and public key to the transaction to get a complete signed transaction.

Step 5: Send the signed transaction to Bandchain be using following method of choices

sendTxBlockMode Send the transaction and wait until committed

sendTxSyncMode Send the transaction and wait until CheckTx phase is done

sendTxAsyncMode Send the transaction and immediately returned

For our example, we will use sendTxBlockMode to send the transaction.

The final code should now look like the code below.

After, we run the script above, the result should look like this. The following log contains logs, which have events related to sent
request.

Send BAND token

Sending BAND token has code pattern similar to the previous section, except that different type of message is used.

The message used for this section is MsgSend which can be used as shown below

Therefore, final result is as shown follow

The response should be similar to as shown below

Get reference data

This section shows an example on how to query data from BandChain. This example query standard price references based on
given symbol pairs, min count, and ask count.

Step 1: Import bandchain.js and put grpc_url_web as a parameter and you can get <GRPC_WEB> endpoint from here. Then
initialize the client instance. Every method in client module can now be used.

Step 2: After we import the Client already, then we call the Client 's getReferenceData function to get the latest price

There are 3 parameters

minCount: Integer of min count

askCount: Integer of ask count

pairs: The list of cryprocurrency pairs

The final code should look like the code below.

And the result should look like this.

Send BAND token via IBC Transfer

With BandChain built based on the Cosmos-SDK, we also allow interaction with our data oracle through Cosmos Inter-Blockchain-
Communication protocol, IBC , which connects other compatible blockchains to request data from BandChain.

To send BAND tokens through IBC Protocol, we will use [MsgTransfer] as a method to represents a message to send coins from
one account to another between ICS20 enabled chains. See ICS spec here.

Step 1: First, you need to create a MsgTransfer instance from the Message module. The following code shows you how to create
the instance.

Step 2: Now we can construct the MsgTransfer method, this method requires 5 fields to interact with:

Field Type Description

sourcePort string The port on which the packet will be sent

sourceChannel string The channel by which the packet will be sent

sender string The sender address

receiver string The recipient address on the destination chain

token Coin The tokens to be transferred

timeoutTimestamp number Timeout timestamp (in nanoseconds) relative to the current block timestamp.

Your code should look like this.

Your final code should look something like this:

Connect to your app with Ledger

This tutorial guides you through how to set up and use the Bandchain.js library with your Ledger device to access your Ledger
Cosmos (BAND) account(s).

Supported Browsers

Chrome

Edge (89.0 and later)

Opera (76.0 and later)

we strongly recommend using Chrome.

To connect your app you will need to install:

1. Ledger Live

2. The Cosmos Nano App

3. At least one account for Band

Accessing your Ledger

Sending Band Token using Ledger

To send BAND token using Ledger device, the final code should look something like this:

Getting Testnet BAND from Faucet

And these are examples of Bandchain.js usages, for more information, feel free to dive into specifications in each module.

Previous
« Installation

Next
Client Module »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Getting Started

Installation

Common Usage Example

Client Module

Data Module

Message Module

OBI Module

Transaction Module

Wallet Module

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

PyBand

BandChain.js

Building on BandChain

Nodes & Validators

Staking

import { Client } from '@bandprotocol/bandchain.js'

const grpcUrl = '<GRPC_WEB>' // ex.https://laozi-testnet6.bandchain.org/grpc-web

const client = new Client(grpcUrl)

subject economy equal whisper turn boil guard giraffe stick retreat wealth card only buddy joy leave gen

import { Wallet } from '@bandprotocol/bandchain.js'

const { PrivateKey } = Wallet

// Step 2.1

const privkey = PrivateKey.fromMnemonic(

 'subject economy equal whisper turn boil guard giraffe stick retreat wealth card only buddy joy leave

)

const pubkey = privkey.toPubkey()

const sender = pubkey.toAddress().toAccBech32()

import { Obi, Message, Coin } from '@bandprotocol/bandchain.js'

const obi = new Obi('{symbols:[string],multiplier:u64}/{rates:[u64]}')

const calldata = obi.encodeInput({ symbols: ['ETH'], multiplier: 100 })

const oracleScriptId = 37

const askCount = 4

const minCount = 3

const clientId = 'from_bandchain.js'

let feeLimit = new Coin()

feeLimit.setDenom('uband')

feeLimit.setAmount('100000')

const prepareGas = 100000

const executeGas = 200000

const requestMessage = new Message.MsgRequestData(

 oracleScriptId,

 calldata,

 askCount,

 minCount,

 clientId,

 sender,

 [feeLimit],

 prepareGas,

 executeGas

)

import { Coin, Fee, Transaction } from '@bandprotocol/bandchain.js'

let feeCoin = new Coin()

feeCoin.setDenom('uband')

feeCoin.setAmount('50000')

const fee = new Fee()

fee.setAmountList([feeCoin])

fee.setGasLimit(1000000)

const chainId = await client.getChainId()

const txn = new Transaction()

txn.withMessages(requestMessage)

await txn.withSender(client, sender)

txn.withChainId(chainId)

txn.withFee(fee)

txn.withMemo('')

const signDoc = txn.getSignDoc(pubkey)

const signature = privateKey.sign(signDoc)

import { Client, Wallet, Obi, Message, Coin, Transaction, Fee } from '@bandprotocol/bandchain.js'

const grpcUrl = '<GRPC_WEB>' // ex.https://laozi-testnet6.bandchain.org/grpc-web

const client = new Client(grpcUrl)

async function makeRequest() {

 // Step 1: Import a private key for signing transaction

 const { PrivateKey } = Wallet

 const mnemonic = 'test'

 const privateKey = PrivateKey.fromMnemonic(mnemonic)

 const pubkey = privateKey.toPubkey()

 const sender = pubkey.toAddress().toAccBech32()

 // Step 2.1: Prepare oracle request's properties

 const obi = new Obi('{symbols:[string],multiplier:u64}/{rates:[u64]}')

 const calldata = obi.encodeInput({ symbols: ['ETH'], multiplier: 100 })

 const oracleScriptId = 37

 const askCount = 4

 const minCount = 3

 const clientId = 'from_bandchain.js'

 let feeLimit = new Coin()

 feeLimit.setDenom('uband')

 feeLimit.setAmount('100000')

 const prepareGas = 100000

 const executeGas = 200000

 // Step 2.2: Create an oracle request message

 const requestMessage = new Message.MsgRequestData(

 oracleScriptId,

 calldata,

 askCount,

 minCount,

 clientId,

 sender,

 [feeLimit],

 prepareGas,

 executeGas

)

 let feeCoin = new Coin()

 feeCoin.setDenom('uband')

 feeCoin.setAmount('50000')

 // Step 3.1: Construct a transaction

 const fee = new Fee()

 fee.setAmountList([feeCoin])

 fee.setGasLimit(1000000)

 const chainId = await client.getChainId()

 const txn = new Transaction()

 txn.withMessages(requestMessage)

 await txn.withSender(client, sender)

 txn.withChainId(chainId)

 txn.withFee(fee)

 txn.withMemo('')

 // Step 3.2: Sign the transaction using the private key

 const signDoc = txn.getSignDoc(pubkey)

 const signature = privateKey.sign(signDoc)

 const txRawBytes = txn.getTxData(signature, pubkey)

 // Step 4: Broadcast the transaction

 const sendTx = await client.sendTxBlockMode(txRawBytes)

 console.log(sendTx)

}

;(async () => {

 await makeRequest()

})()

{

 "height":438884,

 "txhash":"313DBAD237E3E672B432D7F9A422EF953EA42E1029F3562C9EE2AEFB70E7D5A3",

 "codespace":"",

 "code":0,

 "data":"0A090A0772657175657374",

 "rawLog":"[{\"events\":[{\"type\":\"message\",\"attributes\":[{\"key\":\"action\",\"value\":\"request\

 "logsList":[{

 "msgIndex":0,

 "log":"",

 "eventsList": [

 {"type":"message","attributesList":[{"key":"action","value":"request"}]},

 {"type":"raw_request","attributesList":[{"key":"data_source_id","value":"61"},

 {"key":"data_source_hash","value":"07be7bd61667327aae10b7a13a542c7dfba31b8f4c52b0b60bf9c7b11b1a72e

 {"key":"external_id","value":"6"},

 {"key":"calldata","value":"BTC ETH"},

 {"key":"fee","value":""},

 {"key":"data_source_id","value":"57"},

 {"key":"data_source_hash","value":"61b369daa5c0918020a52165f6c7662d5b9c1eee915025cb3d2b9947a26e48c

 {"key":"external_id","value":"0"},

 {"key":"calldata","value":"BTC ETH"},

 {"key":"fee","value":""},

 {"key":"data_source_id","value":"62"},

 {"key":"data_source_hash","value":"107048da9dbf7960c79fb20e0585e080bb9be07d42a1ce09c5479bbada8d028

 {"key":"external_id","value":"3"},

 {"key":"calldata","value":"BTC ETH"},

 {"key":"fee","value":""},

 {"key":"data_source_id","value":"60"},

 ...,

 {"key":"calldata","value":"BTC ETH"},

 {"key":"fee","value":""}]},

 {"type":"request","attributesList":[{"key":"id","value":"74473"},

 {"key":"client_id","value":"from_bandchain.js"},

 {"key":"oracle_script_id","value":"37"},

 {"key":"calldata","value":"0000000200000003425443000000034554480000000000000064"},

 {"key":"ask_count","value":"4"},

 {"key":"min_count","value":"3"},

 {"key":"gas_used","value":"111048"},

 {"key":"total_fees","value":""},

 {"key":"validator","value":"bandvaloper1p46uhvdk8vr829v747v85hst3mur2dzlhfemmz"},

 {"key":"validator","value":"bandvaloper1v0u0tsptnkcdrju4qlj0hswqhnqcn47d20prfy"},

 {"key":"validator","value":"bandvaloper17n5rmujk78nkgss7tjecg4nfzn6geg4cqtyg3u"},

 {"key":"validator","value":"bandvaloper19eu9g3gka6rxlevkjlvjq7s6c498tejnwxjwxx"}

]}]}],

 "info":"",

 "gasWanted":1500000,

 "gasUsed":660549,

 "timestamp":""

}

const receiver = 'band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f'

const sendAmount = new Coin()

sendAmount.setDenom('uband')

sendAmount.setAmount('10')

const msg = new MsgSend(sender, receiver, [sendAmount])

import { Client, Wallet, Transaction, Message, Coin, Fee } from '@bandprotocol/bandchain.js'

const { PrivateKey } = Wallet

const client = new Client('<GRPC_WEB>') // ex.https://laozi-testnet6.bandchain.org/grpc-web

// Step 2.1 import private key based on given mnemonic string

const privkey = PrivateKey.fromMnemonic(

 'subject economy equal whisper turn boil guard giraffe stick retreat wealth card only buddy joy leave

)

// Step 2.2 prepare public key and its address

const pubkey = privkey.toPubkey()

const sender = pubkey.toAddress().toAccBech32()

const sendCoin = async () => {

 // Step 3.1 constructs MsgSend message

 const { MsgSend } = Message

 // Here we use different message type, which is MsgSend

 const receiver = 'band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f'

 const sendAmount = new Coin()

 sendAmount.setDenom('uband')

 sendAmount.setAmount('10')

 const msg = new MsgSend(sender, receiver, [sendAmount])

 // Step 3.2 constructs a transaction

 const account = await client.getAccount(sender)

 const chainId = 'band-laozi-testnet6'

 let feeCoin = new Coin()

 feeCoin.setDenom('uband')

 feeCoin.setAmount('1000')

 const fee = new Fee()

 fee.setAmountList([feeCoin])

 fee.setGasLimit(1000000)

 const tx = new Transaction()

 .withMessages(msg)

 .withAccountNum(account.accountNumber)

 .withSequence(account.sequence)

 .withChainId(chainId)

 .withFee(fee)

 // Step 4 sign the transaction

 const txSignData = tx.getSignDoc(pubkey)

 const signature = privkey.sign(txSignData)

 const signedTx = tx.getTxData(signature, pubkey)

 // Step 5 send the transaction

 const response = await client.sendTxBlockMode(signedTx)

 console.log(response)

}

;(async () => {

 await sendCoin()

})()

{

 "height": 443301,

 "txhash": "026760F78665C03DD4A8786304E01848A4747F0B62F7DB4B31F93C792B2D3D52",

 "codespace": "",

 "code": 0,

 "data": "0A060A0473656E64",

 "rawLog": "[{\"events\":[{\"type\":\"message\",\"attributes\":[{\"key\":\"action\",\"value\":\"send\"}

 "logsList": [

 {

 "msgIndex": 0,

 "log": "",

 "eventsList": [

 {

 "type": "message",

 "attributesList": [

 { "key": "action", "value": "send" },

 {

 "key": "sender",

 "value": "band168ukdplr7nrljaleef8ehpyvfhe4n78hz0shsy"

 },

 { "key": "module", "value": "bank" }

]

 },

 {

 "type": "transfer",

 "attributesList": [

 {

 "key": "recipient",

 "value": "band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f"

 },

 {

 "key": "sender",

 "value": "band168ukdplr7nrljaleef8ehpyvfhe4n78hz0shsy"

 },

 { "key": "amount", "value": "10uband" }

]

 }

]

 }

],

 "info": "",

 "gasWanted": 1500000,

 "gasUsed": 49013,

 "timestamp": ""

}

import { Client } from '@bandprotocol/bandchain.js'

// Step 1

const grpcUrl = '<GRPC_WEB>' // ex.https://laozi-testnet6.bandchain.org/grpc-web

const client = new Client(grpcUrl)

import { Client } from '@bandprotocol/bandchain.js'

// Step 1

const grpcUrl = '<GRPC_WEB>' // ex.https://laozi-testnet6.bandchain.org/grpc-web

const client = new Client(grpcUrl)

// Step 2

const minCount = 3

const askCount = 4

const pairs = ['BTC/USD', 'ETH/USD']

;(async () => {

 console.log(JSON.stringify(await client.getReferenceData(pairs, minCount, askCount)))

})()

[

 {

 "pair": "BTC/USD",

 "rate": 34078.0954,

 "updatedAt": {

 "base": 1625579610,

 "quote": 1625579627

 },

 "requestId": {

 "base": 79538,

 "quote": 0

 }

 },

 {

 "pair": "ETH/BTC",

 "rate": 0.06759872648278929,

 "updatedAt": {

 "base": 1625579610,

 "quote": 1625579610

 },

 "requestId": {

 "base": 79538,

 "quote": 79538

 }

 }

]

import { Message } from '@bandprotocol/bandchain.js'

const { MsgTransfer } = Message

const receiver = 'band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f'

const sourcePort = 'transfer'

const sourceChannel = 'channel-25'

const sendAmount = new Coin()

sendAmount.setDenom('uband')

sendAmount.setAmount('10')

const timeoutTimestamp = moment().unix() + 600 * 1e9 // timeout in 10 mins

const msg = new MsgTransfer(

 sourcePort,

 sourceChannel,

 sendAmount,

 sender,

 receiver,

 timeout_timestamp

)

import { Client, Wallet, Transaction, Message, Coin, Fee } from '@bandprotocol/bandchain.js'

const { PrivateKey } = Wallet

const client = new Client('<GRPC_WEB>') // ex.https://laozi-testnet6.bandchain.org/grpc-web

const privkey = PrivateKey.fromMnemonic(

 'subject economy equal whisper turn boil guard giraffe stick retreat wealth card only buddy joy leave

)

const pubkey = privkey.toPubkey()

const sender = pubkey.toAddress().toAccBech32()

const sendCoinIbc = async () => {

 // Step 1 constructs MsgTransfer message

 const { MsgTransfer } = Message

 const receiver = 'band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f'

 const sourcePort = 'transfer'

 const sourceChannel = 'channel-25'

 const sendAmount = new Coin()

 sendAmount.setDenom('uband')

 sendAmount.setAmount('10')

 const timeoutTimestamp = moment().unix() + 600 * 1e9 // timeout in 10 mins

 const msg = new MsgTransfer(

 sourcePort,

 sourceChannel,

 sendAmount,

 sender,

 receiver,

 timeout_timestamp

)

 // Step 2 constructs a transaction

 const account = await client.getAccount(sender)

 const chainId = 'band-laozi-testnet6'

 let feeCoin = new Coin()

 feeCoin.setDenom('uband')

 feeCoin.setAmount('1000')

 const fee = new Fee()

 fee.setAmountList([feeCoin])

 fee.setGasLimit(1000000)

 const tx = new Transaction()

 .withMessages(msg)

 .withAccountNum(account.accountNumber)

 .withSequence(account.sequence)

 .withChainId(chainId)

 .withFee(fee)

 // Step 3 sign the transaction

 const txSignData = tx.getSignDoc(pubkey)

 const signature = privkey.sign(txSignData)

 const signedTx = tx.getTxData(signature, pubkey)

 // Step 4 send the transaction

 const response = await client.sendTxBlockMode(signedTx)

 console.log(response)

}

;(async () => {

 await sendCoinIbc()

})()

import { Wallet } from '@bandprotocol/bandchain.js'

const { Ledger } = Wallet

const connectLedger = async () => {

 const ledger = await Ledger.connectLedgerWeb()

 console.log(ledger)

}

;(async () => {

 await connectLedger()

})()

import { Wallet, Client, Transaction, Message, Coin, Fee } from '@bandprotocol/bandchain.js'

const sendCoinWithLedger = async () => {

 const ledger = await Ledger.connectLedgerWeb()

 const { MsgSend } = Message

 const receiver = 'band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f'

 const sendAmount = new Coin()

 sendAmount.setDenom('uband')

 sendAmount.setAmount('10')

 const msg = new MsgSend(sender, receiver, [sendAmount])

 const account = await client.getAccount(sender)

 const chainId = 'band-laozi-testnet6'

 let feeCoin = new Coin()

 feeCoin.setDenom('uband')

 feeCoin.setAmount('1000')

 const fee = new Fee()

 fee.setAmountList([feeCoin])

 fee.setGasLimit(1000000)

 const tx = new Transaction().withMessages(msg).withChainId(chainId).withFee(fee).withMemo('')

 await tx.withSender(client, bech32_address)

 // Sign a message with Ledger device

 const signature = await ledger.sign(tx)

 const signedTx = tx.getTxData(signature, pubKey, 127)

 // Create a transaction

 const response = await client.sendTxBlockMode(signedTx)

 console.log(response)

}

;(async () => {

 await sendCoinWithLedger()

})()

async function getFaucet() {

 const body = {

 address: 'band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f',

 amount: '10',

 }

 let options = {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json;charset=utf-8',

 },

 body: JSON.stringify(body),

 }

 // See https://docs.bandchain.org/develop/api-endpoints#laozi-testnet-5

 let response = await fetch(`${BAND_FAUCET_ENDPOINT}`, options)

 console.log(response)

}

getFaucet()

// {"txHash": "07EA6C439A72DE3A3FEBD6FC952EBEF54B802CC0A9C00C9A1265561AFE9169A7"}

Make an oracle request

Send BAND token

Get reference data

Send BAND token via IBC Transfer

Connect to your app with Ledger

Sending Band Token using Ledger

Getting Testnet BAND from Faucet

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet#privatekey
https://docs.bandchain.org/develop/developer-tools/bandchain.js/transaction#transaction-module
https://docs.bandchain.org/core-concepts/oracle-modules#msgrequestdata
https://docs.bandchain.org/core-concepts/oracle-modules#msgrequestdata
https://docs.bandchain.org/core-concepts/oracle-modules#msgrequestdata
https://docs.bandchain.org/core-concepts/oracle-modules#msgrequestdata
https://docs.bandchain.org/develop/developer-tools/bandchain.js/transaction#withsender-client-sender
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client#getchainid
https://docs.bandchain.org/develop/developer-tools/bandchain.js/transaction#getsigndoc
https://docs.bandchain.org/develop/developer-tools/bandchain.js/transaction#transaction-module
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet#privatekey
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet#sign-msg
https://docs.bandchain.org/develop/developer-tools/bandchain.js/transaction#gettxdata-signature-publickey
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client#sendtxblockmode-txbytes
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client#sendtxsyncmode-txbytes
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client#sendtxasyncmode-data
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client#sendtxblockmode-txbytes
https://docs.cosmos.network/v0.45/modules/bank/03_messages.html
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client#client-module
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client#client-module
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client#getreferencedata-pairs-mincount-askcount
https://docs.bandchain.org/core-concepts/cosmos-ibc
https://github.com/cosmos/ibc/tree/master/spec/app/ics-020-fungible-token-transfer
https://docs.bandchain.org/develop/developer-tools/bandchain.js/installation
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/bandchain.js/getting-started
https://docs.bandchain.org/develop/developer-tools/bandchain.js/installation
https://docs.bandchain.org/develop/developer-tools/bandchain.js/example
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client
https://docs.bandchain.org/develop/developer-tools/bandchain.js/data
https://docs.bandchain.org/develop/developer-tools/bandchain.js/message
https://docs.bandchain.org/develop/developer-tools/bandchain.js/obi
https://docs.bandchain.org/develop/developer-tools/bandchain.js/transaction
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Tools BandChain.js Client Module

Client Module
This module provides functionalities to query data from BandChain and broadcast transactions to BandChain. It uses gRPC-web
behind the scene which interact with gRPC-web proxy server.

Note: The <GRPC_WEB> can be found in API Endpoints

gRPC Errors
When there are gRPC related errors, that is, gRPC status code is not OK , the Promise result will be rejected with an
ServiceError object with following fields.

Fields Type Description

message string error message

code number gRPC status code

metadata BrowserHeaders gRPC trailer metadata

getChainId
Get BandChain's Chain ID

Return

Promise<string> - Chain ID

Example

Result

getLatestBlock
Get BandChain's latest block detail

Return

Block - BandChain's latest block

Example

Result

getAccount(address)
Get BandChain's account information

Parameter

address string - A bech32-encoded account address

Return

BaseAccount - An object containing account information

Example

Result

getAllBalances(address)
Returns all the account balances for the given account address.

Parameter

address string - A bech32-encoded account address

Return

Coin[] - A list of Coin that the account have

Example

Result

getDataSource(id)
Get data source metadata by given ID

Parameter

id number - Data source ID

Return

DataSource - An object containing data source metadata

Example

Result

getOracleScript(id)
Get oracle script metadata by given ID

Parameter

id number - Oracle Script ID

Return

OracleScript - Oracle Script metadata

Example

Result

getRequestByID(id)
Get an oracle request by given request ID

Parameter

id number - Request ID

Return

Request - Information of the oracle request

Example

Result

getReporters(validator)
Get a list of reporter account addresses associated with given validator

Parameter

validator string - a bech32-encoded validator address

Return

string[] - a list of reporter's bech32-encoded account address

Example

Result

getLatestRequest(oid, calldata, minCount, askCount)
Search for latest request that match given oracle script ID, calldata, min count, and ask count.

Parameter

oid number - Oracle script ID

calldata string - OBI-encoded calldata of the oracle request in hex format

minCount number - The minimum number of validators necessary for the request to proceed to the execution phase

askCount number - The number of validators that are requested to respond to this request

Return

QueryRequestResponse - An object containing oracle request information, reports of the request, and final result

Example

Result

sendTxBlockMode(txBytes)
Send a transaction using block mode, that is, send and wait until the transaction has been committed to a block.

Parameter

txBytes Uint8Array | string - an byte array of serialized signed transaction

Return

TxResponse - An object of transaction response

Example

Result

sendTxSyncMode(txBytes)
Send a transaction in sync mode, that is, send and wait until transaction has passed CheckTx phase.

Parameter

txBytes Uint8Array - a byte array of serialized signed transaction

Return

TxResponse - An object of transaction response

Example

Result

sendTxAsyncMode(data)
Send a transaction in async mode, that is, send and returned immediantly without waiting for the transaction processes.

Parameter

txBytes Uint8Array - a byte array of serialized signed transaction

Return

TxResponse - An object of transaction response

Example

Result

getReferenceData(pairs, minCount, askCount)
Get current prices from standard price references oracle script based on given symbol pairs, min count, and ask count.

Parameter

pairs string[] - a list of symbol pairs e.g. BTC/USD, ETH/BTC, etc.

minCount number - The minimum number of validators necessary for the request to proceed to the execution phase

askCount number - The number of validators that are requested to respond to this request

Return

[ReferenceData[]] - A list of prices for given pairs

Example

Result

Previous
« Common Usage Example

Next
Data Module »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Getting Started

Installation

Common Usage Example

Client Module

Data Module

Message Module

OBI Module

Transaction Module

Wallet Module

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

PyBand

BandChain.js

Building on BandChain

Nodes & Validators

Staking

import { Client } from '@bandprotocol/bandchain.js'

const client = new Client('<GRPC_WEB>')

;(async () => {

 console.log(await client.getChainId())

})()

band-laozi-testnet6

import { Client } from '@bandprotocol/bandchain.js'

const client = new Client('<GRPC_WEB>')

;(async () => {

 console.log(await client.getLatestBlock())

})()

{

 "blockId": {

 "hash": "Di1p0sWqEz/l4aVxlJX0fgVrX5eJYAb5t8cmar45fcg=",

 "partSetHeader": {

 "total": 1,

 "hash": "bqKyTzMQd9fnDfS9IdBjf+0FOfynv96YqsalsSQ1f0g="

 }

 },

 "block": {

 "header": {

 "version": {

 "block": 11,

 "app": 0

 },

 "chainId": "band-laozi-testnet2",

 "height": 488306,

 "time": {

 "seconds": 1625718430,

 "nanos": 770011739

 },

 "lastBlockId": {

 "hash": "s65ZLJIfoZau9ETSMyqYWTjTCsgB8zFgOMuwOUHhKkU=",

 "partSetHeader": {

 "total": 1,

 "hash": "4w05KvzYXCVH84P2uZ6jXduvwo+r/Bc+xhh/454T/Gs="

 }

 },

 "lastCommitHash": "9nqVW5rgPve3VGg9R8s49DjmsK5/xmG0d6gmGhcWxBQ=",

 "dataHash": "4ViOMq7cJxVBSCgclZfUqg0k0SbvVM6tj75rhNOfO3Q=",

 "validatorsHash": "rYFx2BfEhW8duRLFgJ4GZqjXKLH/r95+2Wu3Nn+J1zE=",

 "nextValidatorsHash": "rYFx2BfEhW8duRLFgJ4GZqjXKLH/r95+2Wu3Nn+J1zE=",

 "consensusHash": "ek5k0qm1ziK3XpVuICUnTcA7aEbM13JRUqa8DQcn4z4=",

 "appHash": "00/PMV2HlF+Ih69p+q5AHwRt6hqlvo5dtm/blBddWP4=",

 "lastResultsHash": "VMIWdcTC6ZLJ1gW/VGyZ4yv/X2nis75e2PWnT+fmFoo=",

 "evidenceHash": "47DEQpj8HBSa+/TImW+5JCeuQeRkm5NMpJWZG3hSuFU=",

 "proposerAddress": "2MqI5T0aGLK0h3fNWAcQEKLplio="

 },

 "data": {

 "txsList": [

 "CoYECuUDChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGESyAMIheAIEiQIAhABGh5TTFVHX0FORF9TWU1CT0xfTEVOX05PVF9

 "Cu8DCs4DChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGESsQMIhuAIEiQIAhABGh5TTFVHX0FORF9TWU1CT0xfTEVOX05PVF9

 "CpIDCvECChgvb3JhY2xlLnYxLk1zZ1JlcG9ydERhdGES1AIIh+AIEiQIAhABGh5TTFVHX0FORF9TWU1CT0xfTEVOX05PVF9

 ...,

]

 },

 "evidence": {

 "evidenceList": []

 },

 "lastCommit": {

 "height": 488305,

 "round": 0,

 "blockId": {

 "hash": "s65ZLJIfoZau9ETSMyqYWTjTCsgB8zFgOMuwOUHhKkU=",

 "partSetHeader": {

 "total": 1,

 "hash": "4w05KvzYXCVH84P2uZ6jXduvwo+r/Bc+xhh/454T/Gs="

 }

 },

 "signaturesList": [

 {

 "blockIdFlag": 2,

 "validatorAddress": "Zdyy3QL8E8XZYhDrA8fAUD4m2Jc=",

 "timestamp": {

 "seconds": 1625718430,

 "nanos": 770011739

 },

 "signature": "mOOkCLg3uHBOUauypHAnWnBmoVlTXYrPE/i/AsAMOY4ptpHWdwXD4ZtC8XwOZJ5X1zG3yU3usk2gdvwr

 },

 {

 "blockIdFlag": 2,

 "validatorAddress": "xLnySmLJL6Qq4ebq+oPMs+KEerU=",

 "timestamp": {

 "seconds": 1625718430,

 "nanos": 732447931

 },

 "signature": "Atb6fJN5e2gLThE5gPl+9r9wVdmNhYlyTWXYsgwgs8wb4shgRIdGIMNg4hla/0udzStcvOEy7cO4npYU

 },

 {

 "blockIdFlag": 2,

 "validatorAddress": "D3OpjoewGqrIf2g+qADd6sKpM24=",

 "timestamp": {

 "seconds": 1625718430,

 "nanos": 825672211

 },

 "signature": "vMp3Q8xo9xLEs+PqyyN+t+rgIHzt4jMTQ0jOpFu1ISFbLBy0VDhIgb2QGaiCR1uyFPVgVVWzJ/hW7Nqo

 },

 ...,

]

 }

 }

}

import { Client } from '@bandprotocol/bandchain.js'

const client = new Client('<GRPC_WEB>')

;(async () => {

 console.log(

 JSON.stringify(await client.getAccount('band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f'))

)

})()

{

 "address": "band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f",

 "accountNumber": 242,

 "sequence": 0

}

import { Client } from '@bandprotocol/bandchain.js'

const client = new Client('<GRPC_WEB>')

;(async () => {

 console.log(

 JSON.stringify(await client.getAllBalances('band1mrdmxkhtr3rgfzfgrkxy5pvjtvnm5qq0my5m0x'))

)

})()

[

 {

 "amount": "10000000",

 "denom": "uband"

 }

]

import { Client } from '@bandprotocol/bandchain.js'

const client = new Client('<GRPC_WEB>')

const id = 1

;(async () => {

 console.log(JSON.stringify(await client.getDataSource(id)))

})()

{

 "owner": "band1jfdmjkxs3hvddsf4ef2wmsmte3s5llqhxqgcfe",

 "name": "DS1",

 "description": "TBD",

 "filename": "32ee6262d4a615f2c3ca0589c1c1af79212f24823453cb3f4cfff85b8d338045",

 "treasury": "band1jfdmjkxs3hvddsf4ef2wmsmte3s5llqhxqgcfe",

 "feeList": []

}

import { Client } from '@bandprotocol/bandchain.js'

const client = new Client('<GRPC_WEB>')

const id = 1

;(async () => {

 console.log(JSON.stringify(await client.getOracleScript(id)))

})()

{

 "owner": "band1jfdmjkxs3hvddsf4ef2wmsmte3s5llqhxqgcfe",

 "name": "OS1",

 "description": "TBD",

 "filename": "f86b37dbe62c3b8c86ae28523bf09e9963a6b2951dd1a5be79f29f66d8236abf",

 "schema": "{gas_option:string}/{gweix10:u64}",

 "sourceCodeUrl": ""

}

import { Client } from '@bandprotocol/bandchain.js'

const client = new Client('<GRPC_WEB>')

const id = 143959

;(async () => {

 console.log(JSON.stringify(await client.getRequestById(id)))

})()

{

 "request": {

 "oracleScriptId": 37,

 "calldata": "AAAADwAAAANVTkkAAAAFU1VTSEkAAAAEVVNEQwAAAARVU0RUAAAAA0RBSQAAAANZRkkAAAADU05YAAAABFNVU0Q

 "requestedValidatorsList": [

 "bandvaloper17n5rmujk78nkgss7tjecg4nfzn6geg4cqtyg3u",

 "bandvaloper1p46uhvdk8vr829v747v85hst3mur2dzlhfemmz",

 "bandvaloper1274qgg28xkz6f3upx05ftr9zepgmtfgts392dy",

 "bandvaloper1lm2puy995yt8dh53cnazk3ge3m27t7cay4ndaq",

 "bandvaloper1v0u0tsptnkcdrju4qlj0hswqhnqcn47d20prfy",

 "bandvaloper1a570h9e3rtvfhm030ta5hvel7e7e4lh4pgv8wj"

],

 "minCount": 3,

 "requestHeight": 488761,

 "requestTime": 1625719798,

 "clientId": "alpha",

 "rawRequestsList": [

 {

 "externalId": 6,

 "dataSourceId": 61,

 "calldata": "REFJIExJTksgQ09NUA=="

 },

 {

 "externalId": 3,

 "dataSourceId": 62,

 "calldata": "VU5JIFNVU0hJIFVTREMgVVNEVCBEQUkgWUZJIFNOWCBTVVNEIE1LUiBDUlYgUkVOQlRDIFdCVEMgTElOSyB

 },

 {

 "externalId": 0,

 "dataSourceId": 57,

 "calldata": "VVNEVCBCQU5E"

 },

 ...,

],

 "executeGas": 1000000

 },

 "reportsList": [

 {

 "validator": "bandvaloper1p46uhvdk8vr829v747v85hst3mur2dzlhfemmz",

 "inBeforeResolve": true,

 "rawReportsList": [

 {

 "externalId": 2,

 "exitCode": 1,

 "data": "NDI5IENsaWVudCBFcnJvcjogVG9vIE1hbnkgUmVxdWVzdHMgZm9yIHVybDogaHR0cHM6Ly9hcGkuY29pbmdlY

 },

 {

 "externalId": 0,

 "exitCode": 0,

 "data": "MS4wMDExODUsNi40NjU4MzcK"

 },

 {

 "externalId": 1,

 "exitCode": 0,

 "data": "MjEuMDksOC4zNjksMC45OTk4LDEsMS4wMDEsMzQzMTYuNzMsMTAuMjEsMS4wMDUsMjcxOS41NCwxLjg2OCwzM

 },

 ...,

]

 },

 {

 "validator": "bandvaloper1274qgg28xkz6f3upx05ftr9zepgmtfgts392dy",

 "inBeforeResolve": true,

 "rawReportsList": [

 {

 "externalId": 0,

 "exitCode": 0,

 "data": "MS4wMDExODUsNi40NjU4MzcK"

 },

 {

 "externalId": 6,

 "exitCode": 0,

 "data": "MS4wMDA4NTMsMTkuMTY0NjIsNDI2LjYK"

 },

 {

 "externalId": 1,

 "exitCode": 0,

 "data": "MjEuMDksOC4zNjksMC45OTk4LDEsMS4wMDEsMzQzMTYuNzMsMTAuMjEsMS4wMDUsMjcxOS41NCwxLjg2OCwzM

 },

 ...,

]

 },

 {

 "validator": "bandvaloper1v0u0tsptnkcdrju4qlj0hswqhnqcn47d20prfy",

 "inBeforeResolve": true,

 "rawReportsList": [

 {

 "externalId": 0,

 "exitCode": 0,

 "data": "MS4wMDExODUsNi40NjU4MzcK"

 },

 {

 "externalId": 1,

 "exitCode": 0,

 "data": "MjEuMDksOC4zNjksMC45OTk4LDEsMS4wMDEsMzQzMTYuNzMsMTAuMjEsMS4wMDUsMjcxOS41NCwxLjg2OCwzM

 },

 {

 "externalId": 3,

 "exitCode": 0,

 "data": "MjEuMjUyMSw4LjQ0MjY4OSwxLjAwMDkxMSwxLjAwMTA0MSwxLjAwMDgzLDM0NTQ4LjUxOTEsMTAuMTMwNSwxL

 },

 ...,

]

 },

],

 "result": {

 "clientId": "alpha",

 "oracleScriptId": 37,

 "calldata": "AAAADwAAAANVTkkAAAAFU1VTSEkAAAAEVVNEQwAAAARVU0RUAAAAA0RBSQAAAANZRkkAAAADU05YAAAABFNVU0Q

 "askCount": 6,

 "minCount": 3,

 "requestId": 143959,

 "ansCount": 6,

 "requestTime": 1625719798,

 "resolveTime": 1625719807,

 "resolveStatus": 1,

 "result": "AAAADwAAAATt3DGgAAAAAfZv9mAAAAAAO5oGsAAAAAA7msoAAAAAADumO7AAAB9s/0p6AAAAAAJckF8gAAAAADvnF

 }

}

import { Client } from '@bandprotocol/bandchain.js'

const client = new Client('<GRPC_WEB>')

;(async () => {

 console.log(

 JSON.stringify(await client.getReporters('bandvaloper17n5rmujk78nkgss7tjecg4nfzn6geg4cqtyg3u'))

)

})()

[

 "band17n5rmujk78nkgss7tjecg4nfzn6geg4cvaqt5h",

 "band1wc6r20m8qg7p3lze55kzen5uwssdvwr7wl5w4q",

 "band1wm0lw8wzt094xdyxx4ukx432q9vcwdl9zmwa4x",

 "band10ptt5622ezszsvrcum07ehng3merea9x5jetv2",

 "band10lyra24wxsme03pe47du6xfurtsqzs99mn5r94",

 "band1ek7hfydf3xgz3k6nnsy2zrg0xxuzkvhzrykrn5"

]

import { Client } from '@bandprotocol/bandchain.js'

const client = new Client('<GRPC_WEB>')

const oid = 37

const calldata =

 '000000060000000342544300000003455448000000034d495200000003414e4300000004444f4745000000044c554e4100000

const minCount = 3

const askCount = 4

;(async () => {

 console.log(JSON.stringify(await client.getLatestRequest(oid, calldata, minCount, askCount)))

})()

{

 "request": {

 "oracleScriptId": 37,

 "calldata": "AAAABgAAAANCVEMAAAADRVRIAAAAA01JUgAAAANBTkMAAAAERE9HRQAAAARMVU5BAAAAADuaygA=",

 "requestedValidatorsList": [

 "bandvaloper1lm2puy995yt8dh53cnazk3ge3m27t7cay4ndaq",

 "bandvaloper17n5rmujk78nkgss7tjecg4nfzn6geg4cqtyg3u",

 "bandvaloper1a570h9e3rtvfhm030ta5hvel7e7e4lh4pgv8wj",

 ...,

],

 "minCount": 3,

 "requestHeight": 493003,

 "requestTime": 1625732656,

 "clientId": "mirror-protocol",

 "rawRequestsList": [

 {

 "externalId": 6,

 "dataSourceId": 61,

 "calldata": "QlRDIEVUSA=="

 },

 {

 "externalId": 0,

 "dataSourceId": 57,

 "calldata": "QlRDIEVUSA=="

 },

 {

 "externalId": 3,

 "dataSourceId": 62,

 "calldata": "QlRDIEVUSCBNSVIgQU5DIERPR0UgTFVOQQ=="

 },

 ...,

],

 "executeGas": 1000000

 },

 "reportsList": [

 {

 "validator": "bandvaloper1t9vedyzsxewe6lhpf9vm47em2hly23xm6uqtec",

 "inBeforeResolve": true,

 "rawReportsList": [

 {

 "externalId": 6,

 "exitCode": 0,

 "data": "MzI0NDQuMzMsMjE3Mi4yNAo="

 },

 {

 "externalId": 2,

 "exitCode": 0,

 "data": "MzI1MzQsMjE4MS42MSwzLjc2LDIuMTcsMC4yMTMzMDUsNi41OAo="

 },

 {

 "externalId": 1,

 "exitCode": 0,

 "data": "MzI0NDAuMDIsMjE3Ni44MywyLjE2MSwwLjIxMjMsNi41NzEK"

 },

 ...,

]

 },

 {

 "validator": "bandvaloper1a570h9e3rtvfhm030ta5hvel7e7e4lh4pgv8wj",

 "inBeforeResolve": true,

 "rawReportsList": [

 {

 "externalId": 6,

 "exitCode": 0,

 "data": "MzI0NDQuMzQsMjE3Mi4yNAo="

 },

 {

 "externalId": 2,

 "exitCode": 0,

 "data": "MzI1MzIsMjE4MS42MywzLjc2LDIuMTcsMC4yMTMzNjcsNi41OAo="

 },

 {

 "externalId": 3,

 "exitCode": 0,

 "data": "MzI0NDQuMTA3NywyMTc1Ljk3MTcsMy43NDUxMTUsMi4xNjA5MTQsMC4yMTI1OTk4Miw2LjU5OTAxOAo="

 },

 ...,

]

 },

 {

 "validator": "bandvaloper1l2hchtyawk9tk43zzjrzr2lcd0zyxngcjdsshe",

 "inBeforeResolve": true,

 "rawReportsList": [

 {

 "externalId": 2,

 "exitCode": 0,

 "data": "MzI1MzIsMjE4MS42MywzLjc2LDIuMTcsMC4yMTMzNjcsNi41OAo="

 },

 {

 "externalId": 0,

 "exitCode": 0,

 "data": "MzI0NjYuNTg0OCwyMTYzLjA2NjYK"

 },

 {

 "externalId": 1,

 "exitCode": 0,

 "data": "MzI0NDAuMDIsMjE3Ni44MywyLjE2MSwwLjIxMjMsNi41NzEK"

 },

 ...,

]

 },

 ...,

],

 "result": {

 "clientId": "mirror-protocol",

 "oracleScriptId": 37,

 "calldata": "AAAABgAAAANCVEMAAAADRVRIAAAAA01JUgAAAANBTkMAAAAERE9HRQAAAARMVU5BAAAAADuaygA=",

 "askCount": 6,

 "minCount": 3,

 "requestId": 149702,

 "ansCount": 3,

 "requestTime": 1625732656,

 "resolveTime": 1625732662,

 "resolveStatus": 1,

 "result": "AAAABgAAHYGBsQoQAAAB+mFMa5AAAAAA3znreAAAAACAzj5AAAAAAAyncOAAAAABh6mAwA=="

 }

}

import { Client, Wallet, Transaction, Message, Coin, Fee } from '@bandprotocol/bandchain.js'

const { PrivateKey } = Wallet

const client = new Client('<GRPC_WEB>')

// Step 2.1 import private key based on given mnemonic string

const privkey = PrivateKey.fromMnemonic(

 'subject economy equal whisper turn boil guard giraffe stick retreat wealth card only buddy joy leave

)

// Step 2.2 prepare public key and its address

const pubkey = privkey.toPubkey()

const sender = pubkey.toAddress().toAccBech32()

const sendCoin = async () => {

 // Step 3.1 constructs MsgSend message

 const { MsgSend } = Message

 // Here we use different message type, which is MsgSend

 const receiver = 'band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f'

 const sendAmount = new Coin()

 sendAmount.setDenom('uband')

 sendAmount.setAmount('10')

 const msg = new MsgSend(sender, receiver, [sendAmount])

 // Step 3.2 constructs a transaction

 const account = await client.getAccount(sender)

 const chainId = 'band-laozi-testnet6'

 let feeCoin = new Coin()

 feeCoin.setDenom('uband')

 feeCoin.setAmount('1000')

 const fee = new Fee()

 fee.setAmountList([feeCoin])

 fee.setGasLimit(1000000)

 const tx = new Transaction()

 .withMessages(msg.toAny())

 .withAccountNum(account.accountNumber)

 .withSequence(account.sequence)

 .withChainId(chainId)

 .withFee(fee)

 // Step 4 sign the transaction

 const txSignData = tx.getSignDoc(pubkey)

 const signature = privkey.sign(txSignData)

 const signedTx = tx.getTxData(signature, pubkey)

 // Step 5 send the transaction

 const response = await client.sendTxBlockMode(signedTx)

 console.log(JSON.stringify(response))

}

;(async () => {

 await sendCoin()

})()

{

 "height": 493527,

 "txhash": "F76593C2165A42E39464FEAD998AE80970655D82B18085FD65917ACC0979279D",

 "codespace": "",

 "code": 0,

 "data": "0A060A0473656E64",

 "rawLog": "[{\"events\":[{\"type\":\"message\",\"attributes\":[{\"key\":\"action\",\"value\":\"send\"}

 "logsList": [

 {

 "msgIndex": 0,

 "log": "",

 "eventsList": [

 {

 "type": "message",

 "attributesList": [

 { "key": "action", "value": "send" },

 {

 "key": "sender",

 "value": "band168ukdplr7nrljaleef8ehpyvfhe4n78hz0shsy"

 },

 { "key": "module", "value": "bank" }

]

 },

 {

 "type": "transfer",

 "attributesList": [

 {

 "key": "recipient",

 "value": "band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f"

 },

 {

 "key": "sender",

 "value": "band168ukdplr7nrljaleef8ehpyvfhe4n78hz0shsy"

 },

 { "key": "amount", "value": "10uband" }

]

 }

]

 }

],

 "info": "",

 "gasWanted": 1500000,

 "gasUsed": 49013,

 "timestamp": ""

}

import { Client, Wallet, Transaction, Message, Coin, Fee } from '@bandprotocol/bandchain.js'

const { PrivateKey } = Wallet

const client = new Client('<GRPC_WEB>')

// Step 2.1 import private key based on given mnemonic string

const privkey = PrivateKey.fromMnemonic(

 'subject economy equal whisper turn boil guard giraffe stick retreat wealth card only buddy joy leave

)

// Step 2.2 prepare public key and its address

const pubkey = privkey.toPubkey()

const sender = pubkey.toAddress().toAccBech32()

const sendCoin = async () => {

 // Step 3.1 constructs MsgSend message

 const { MsgSend } = Message

 // Here we use different message type, which is MsgSend

 const receiver = 'band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f'

 const sendAmount = new Coin()

 sendAmount.setDenom('uband')

 sendAmount.setAmount('10')

 const msg = new MsgSend(sender, receiver, [sendAmount])

 // Step 3.2 constructs a transaction

 const account = await client.getAccount(sender)

 const chainId = 'band-laozi-testnet6'

 let feeCoin = new Coin()

 feeCoin.setDenom('uband')

 feeCoin.setAmount('1000')

 const fee = new Fee()

 fee.setAmountList([feeCoin])

 fee.setGasLimit(1000000)

 const tx = new Transaction()

 .withMessages(msg.toAny())

 .withAccountNum(account.accountNumber)

 .withSequence(account.sequence)

 .withChainId(chainId)

 .withFee(fee)

 // Step 4 sign the transaction

 const txSignData = tx.getSignDoc(pubkey)

 const signature = privkey.sign(txSignData)

 const signedTx = tx.getTxData(signature, pubkey)

 // Step 5 send the transaction

 const response = await client.sendTxSyncMode(signedTx)

 console.log(JSON.stringify(response))

}

;(async () => {

 await sendCoin()

})()

{

 "height": 0,

 "txhash": "48620C4242AFB1F18F0FA1C72ADE42C26FDCC804CB20E2BDBAE8B0097C5900B6",

 "codespace": "",

 "code": 0,

 "data": "",

 "rawLog": "[]",

 "logsList": [],

 "info": "",

 "gasWanted": 0,

 "gasUsed": 0,

 "timestamp": ""

}

import { Client, Wallet, Transaction, Message, Coin, Fee } from '@bandprotocol/bandchain.js'

const { PrivateKey } = Wallet

const client = new Client('<GRPC_WEB>')

// Step 2.1 import private key based on given mnemonic string

const privkey = PrivateKey.fromMnemonic(

 'subject economy equal whisper turn boil guard giraffe stick retreat wealth card only buddy joy leave

)

// Step 2.2 prepare public key and its address

const pubkey = privkey.toPubkey()

const sender = pubkey.toAddress().toAccBech32()

const sendCoin = async () => {

 // Step 3.1 constructs MsgSend message

 const { MsgSend } = Message

 // Here we use different message type, which is MsgSend

 const receiver = 'band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f'

 const sendAmount = new Coin()

 sendAmount.setDenom('uband')

 sendAmount.setAmount('10')

 const msg = new MsgSend(sender, receiver, [sendAmount])

 // Step 3.2 constructs a transaction

 const account = await client.getAccount(sender)

 const chainId = 'band-laozi-testnet6'

 let feeCoin = new Coin()

 feeCoin.setDenom('uband')

 feeCoin.setAmount('1000')

 const fee = new Fee()

 fee.setAmountList([feeCoin])

 fee.setGasLimit(1000000)

 const tx = new Transaction()

 .withMessages(msg.toAny())

 .withAccountNum(account.accountNumber)

 .withSequence(account.sequence)

 .withChainId(chainId)

 .withFee(fee)

 // Step 4 sign the transaction

 const txSignData = tx.getSignDoc(pubkey)

 const signature = privkey.sign(txSignData)

 const signedTx = tx.getTxData(signature, pubkey)

 // Step 5 send the transaction

 const response = await client.sendTxAsyncMode(signedTx)

 console.log(JSON.stringify(response))

}

;(async () => {

 await sendCoin()

})()

{

 "height": 0,

 "txhash": "8A3573AC59BC6CC1A7ECF18A2E1FC50E8AE73E69A68351496872F08186D6158F",

 "codespace": "",

 "code": 0,

 "data": "",

 "rawLog": "",

 "logsList": [],

 "info": "",

 "gasWanted": 0,

 "gasUsed": 0,

 "timestamp": ""

}

import { Client } from '@bandprotocol/bandchain.js'

const client = new Client('<GRPC_WEB>')

;(async () => {

 console.log(JSON.stringify(await client.getReferenceData(['BTC/USD', 'ETH/BTC'], 3, 4)))

})()

[

 {

 "pair": "BTC/USD",

 "rate": 32557.06795,

 "updatedAt": {

 "base": 1625736254,

 "quote": 1625736266

 },

 "requestId": {

 "base": 151316,

 "quote": 0

 }

 },

 {

 "pair": "ETH/BTC",

 "rate": 0.06693865225661391,

 "updatedAt": {

 "base": 1625736254,

 "quote": 1625736254

 },

 "requestId": {

 "base": 151316,

 "quote": 151316

 }

 }

]

gRPC Errors

getChainId

getLatestBlock

getAccount(address)

getAllBalances(address)

getDataSource(id)

getOracleScript(id)

getRequestByID(id)

getReporters(validator)

getLatestRequest(oid, calldata, minCount,
askCount)

sendTxBlockMode(txBytes)

sendTxSyncMode(txBytes)

sendTxAsyncMode(data)

getReferenceData(pairs, minCount, askCount)

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/develop/api-endpoints
https://docs.cosmos.network/v0.44/core/proto-docs#getlatestblockresponse
https://docs.cosmos.network/v0.44/core/proto-docs#baseaccount
https://docs.bandchain.org/core-concepts/oracle-modules#datasource
https://docs.bandchain.org/core-concepts/oracle-modules#oraclescript
https://docs.bandchain.org/core-concepts/oracle-modules#request
https://docs.bandchain.org/core-concepts/oracle-modules#queryrequestresponse
https://docs.cosmos.network/v0.44/core/proto-docs#txresponse
https://docs.cosmos.network/v0.44/core/proto-docs#txresponse
https://docs.cosmos.network/v0.44/core/proto-docs#txresponse
https://docs.bandchain.org/develop/developer-tools/bandchain.js/example
https://docs.bandchain.org/develop/developer-tools/bandchain.js/data
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/bandchain.js/getting-started
https://docs.bandchain.org/develop/developer-tools/bandchain.js/installation
https://docs.bandchain.org/develop/developer-tools/bandchain.js/example
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client
https://docs.bandchain.org/develop/developer-tools/bandchain.js/data
https://docs.bandchain.org/develop/developer-tools/bandchain.js/message
https://docs.bandchain.org/develop/developer-tools/bandchain.js/obi
https://docs.bandchain.org/develop/developer-tools/bandchain.js/transaction
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Tools BandChain.js Data Module

Data Module
This module is to construct the data in term of dataclass to make sure that all the input and output follow this data schema.

Although there are Protobuf classes, some types are not exists. Therefore, additional types of data will be declared here.

NOTE

Note that base and quote is the first and the second price symbols respectively e.g. BTC/USD price rate has a base of BTC
and a quote of USD.

ReferenceDataUpdated

Attribute Type Description

base integer Base's resolve time

quote integer Quote's resolve time

ReferenceDataRequestID

Attribute Type Description

base integer Base's request ID

quote integer Quote's request ID

ReferenceData

Attribute Type Description

pair string The token pair e.g. "BTC/USD"

rate float Price rate

updatedAt ReferenceDataUpdated Price update time

requestId ReferenceDataRequestID OracleRequest ID

Syntax

Example

Previous
« Client Module

Next
Message Module »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Getting Started

Installation

Common Usage Example

Client Module

Data Module

Message Module

OBI Module

Transaction Module

Wallet Module

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

PyBand

BandChain.js

Building on BandChain

Nodes & Validators

Staking

(method) Client.getReferenceData(pairs: string[], minCount: number, askCount: number): Promise<Data.Refe

import { Client, Data } from "@bandprotocol/bandchain.js"

async function getReferenceData() {

 const grpcEndpoint = ${GRPC_ENDPOINT}

 const client = new Client(grpcEndpoint)

 const data = await client.getReferenceData(["BTC/USD", "ETH/BTC"], 3, 4)

 console.log(typeof data) // Promise<Data.ReferenceData[]>

}

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client
https://docs.bandchain.org/develop/developer-tools/bandchain.js/message
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/bandchain.js/getting-started
https://docs.bandchain.org/develop/developer-tools/bandchain.js/installation
https://docs.bandchain.org/develop/developer-tools/bandchain.js/example
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client
https://docs.bandchain.org/develop/developer-tools/bandchain.js/data
https://docs.bandchain.org/develop/developer-tools/bandchain.js/message
https://docs.bandchain.org/develop/developer-tools/bandchain.js/obi
https://docs.bandchain.org/develop/developer-tools/bandchain.js/transaction
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Tools BandChain.js Message Module

Message Module
Messages specified by BandChain. All messages presented in this module are extended from Protobuf's messages, which are
generated from these proto files. For specification can be found here.

Here are methods that are extended from original protobuf classes.

toAny
Returns an Google Protobuf's Any instance that are used to construct transactions.

Return

Any - a Google Protobuf's Any instance containing serialized messaged and type URL

Example

Result

validate
Validates the message in a basic manner to ensure that there are no invarient values stored in the message instance. If message's
validation fails, it will throw the exception.

Example

Previous
« Data Module

Next
OBI Module »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Getting Started

Installation

Common Usage Example

Client Module

Data Module

Message Module

OBI Module

Transaction Module

Wallet Module

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

PyBand

BandChain.js

Building on BandChain

Nodes & Validators

Staking

import { Message, Coin } from '@bandprotocol/bandchain.js'

const { MsgRequestData } = Message

const sender = 'band17n5rmujk78nkgss7tjecg4nfzn6geg4cvaqt5h'

const oracleScriptId = 37

const calldata = Buffer.from('0000000200000003425443000000034554480000000000000064', 'hex')

const askCount = 4

const minCount = 3

const clientId = 'from_bandchain.js'

const msg = new MsgRequestData(oracleScriptId, calldata, askCount, minCount, clientId, sender)

const any = msg.toAny()

console.log(any.getTypeUrl())

console.log(any.getValue_asB64())

/oracle.v1.MsgRequestData

CCUSGgAAAAIAAAADQlRDAAAAA0VUSAAAAAAAAABkGAQgAyoRZnJvbV9iYW5kY2hhaW4uanM40IYDQOCnEkorYmFuZDE3bjVybXVqazc4

import { Message, Coin } from '@bandprotocol/bandchain.js'

const { MsgSend } = Message

const sender = 'band17n5rmujk78nkgss7tjecg4nfzn6geg4cvaqt5h'

const receiver = 'band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f'

const sendAmount = new Coin()

sendAmount.setDenom('uband')

sendAmount.setAmount('10')

const msg = new MsgSend(sender, receiver, [sendAmount])

msg.validate()

Band Protocol Search K

https://docs.bandchain.org/
https://github.com/bandprotocol/chain/tree/v2.0.3/proto/oracle/v1
https://docs.cosmos.network/v0.44/core/proto-docs.html
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/any.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/any.proto
https://docs.bandchain.org/develop/developer-tools/bandchain.js/data
https://docs.bandchain.org/develop/developer-tools/bandchain.js/obi
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/bandchain.js/getting-started
https://docs.bandchain.org/develop/developer-tools/bandchain.js/installation
https://docs.bandchain.org/develop/developer-tools/bandchain.js/example
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client
https://docs.bandchain.org/develop/developer-tools/bandchain.js/data
https://docs.bandchain.org/develop/developer-tools/bandchain.js/message
https://docs.bandchain.org/develop/developer-tools/bandchain.js/obi
https://docs.bandchain.org/develop/developer-tools/bandchain.js/transaction
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Tools BandChain.js OBI Module

OBI Module
Oracle Binary Encoding (OBI) is the standard way to serialized and deserialize binary data in the BandChain ecosystem. This
module provides the functionality to serialize data. More details.

Bandchain.js provide a class named Obi to help encode/decode binary data using OBI encoding. Here is the usage of the class.

Constructor
schema string - A string of OBI schema, including input and output schemas.

Example

encodeInput(value)
Encode the value based on given OBI input schema

Parameter

value any - A value to be encoded. can be any type of data.

Return

Buffer - An encoded value

Example

Result

encodeOutput(value)
Encode the value based on OBI output schema

Parameter

value any - The value to be encoded

Return

Buffer - An encoded value

Example

Result

decodeInput(buff)
Decode the value based on given OBI input schema

Parameter

value Buffer - The value to be decoded

Return

any - A decoded value

Exceptions

Type Description

DecodeError Not all data is consumed after decoding output

Example

Result

decodeOutput(buff)
Decode the output value by using output schema

Parameter

value Buffer - The value to be decoded

Return

any - A decoded value

Exceptions

Type Description

DecodeError Not all data is consumed after decoding output

Example

Result

Previous
« Message Module

Next
Transaction Module »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Getting Started

Installation

Common Usage Example

Client Module

Data Module

Message Module

OBI Module

Transaction Module

Wallet Module

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

PyBand

BandChain.js

Building on BandChain

Nodes & Validators

Staking

import { Obi } from '@bandprotocol/bandchain.js'

const obi = new Obi('{symbol:string, px: u64, w: {a: u8, b: u8}, tb: [string]} / string')

import { Obi } from '@bandprotocol/bandchain.js'

const obi = new Obi('{symbol:string, px: u64, w: {a: u8, b: u8}, tb: [string]} / string')

const testInput = {

 symbol: 'BTC',

 px: 9000,

 w: { a: 1, b: 2 },

 tb: ['a', 'b'],

}

console.log(obi.encodeInput(testInput).toString('hex'))

00000003425443000000000000232801020000000200000001610000000162

import { Obi } from '@bandprotocol/bandchain.js'

const obi = new Obi('{symbol:string, px: u64, w: {a: u8, b: u8}, tb: [string]} / string')

const testOutput = 'test'

console.log(obi.encodeOutput(testOutput).toString('hex'))

0000000474657374

import { Obi } from '@bandprotocol/bandchain.js'

const obi = new Obi('{symbol:string, px: u64, w: {a: u8, b: u8}, tb: [string]} / string')

console.log(

 obi.decodeInput(

 Buffer.from('00000003425443000000000000232801020000000200000001610000000162', 'hex')

)

)

{ "symbol": "BTC", "px": 9000n, "w": { "a": 1n, "b": 2n }, "tb": ["a", "b"] }

import { Obi } from '@bandprotocol/bandchain.js'

const obi = new Obi('{symbol:string, px: u64, w: {a: u8, b: u8}, tb: [string]} / string')

console.log(obi.decodeOutput(Buffer.from('0000000474657374', 'hex')))

test

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-guides/obi
https://docs.bandchain.org/develop/developer-tools/bandchain.js/message
https://docs.bandchain.org/develop/developer-tools/bandchain.js/transaction
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/bandchain.js/getting-started
https://docs.bandchain.org/develop/developer-tools/bandchain.js/installation
https://docs.bandchain.org/develop/developer-tools/bandchain.js/example
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client
https://docs.bandchain.org/develop/developer-tools/bandchain.js/data
https://docs.bandchain.org/develop/developer-tools/bandchain.js/message
https://docs.bandchain.org/develop/developer-tools/bandchain.js/obi
https://docs.bandchain.org/develop/developer-tools/bandchain.js/transaction
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Tools BandChain.js Transaction Module

Transaction Module
This module provides functionalities to send transactions on BandChain which requires <Msg> to be included.

Exceptions

Type Description

ValueError Invalid value

NotIntegerError The value is not an integer

EmptyMsgError No messages given to the transaction

UndefinedError The value should not be undefined

withMessages(msgs)
Add one or multiple messages as a list of Google Protobuf's Any to Transaction . There are predefined message classes that can
be used to convert to Any instance using toAny() method, but for the other type of message can be converted to Any instance
using Any.pack() as shown in the code below.

Parameter

*msgs Any Messages converted to Any to be included in the transaction

Return

Transaction - This transaction instance for function chaining

withSender(client, sender)
Set account number and sequence number to Transaction from querying the account via Client's getAccount .

Parameter

client Client - An instance of Client module

sender string - A bech32-encoded with account prefix

Return

Promise<Transaction> - This transaction instance for function chaining

Exceptions

Type Description

EmptyMsgError Message is empty, please use withMessages at least 1 message

NotFoundError Account doesn't exist.

withAccountNum(accountNum)
Set account number to Transaction .

Parameter

accountNum number - An integer of account number, which can be gathered from querying the account via Client's
getAccount .

Return

Transaction - This transaction instance for function chaining

Exceptions

Type Description

NotIntegerError accountNum is not an integer

withSequence(sequence)
Set sequence number to Transaction .

Parameter

sequence Number - An integer of account's sequence number, which can be gathered from querying the account via Client's
getAccount .

Return

Transaction - This transaction instance for function chaining

Exceptions

Type Description

NotIntegerError sequence is not an integer

withChainId(chainId)
Set chain id to Transaction .

Parameter

chainId string - a string of chain ID, which can be gathered from Client's getChainId .

Return

Transaction - This transaction instance for function chaining

withFee(fee)
Set fee to Transaction .

Parameter

fee - Set fee limit spent for gas price of the transaction.

Return

Transaction - This transaction instance for function chaining

Exceptions

Type Description

NotIntegerError fee is not an integer

withMemo(memo)
Set memo to Transaction .

Parameter

memo string - an arbitrary string to remember the transaction. Memo length is limited to 256.

Exceptions

Type Description

ValueTooLargeError memo is too large.

Return

Transaction - This transaction instance for function chaining

getSignDoc()
Get serialized data of transaction's content to be signed from Transaction by using SIGNMODE_DIRECT . See more about signing
mode.

Return

Uint8Array - A byte array of serialized transaction content data, ready for signing.

Exceptions

Type Description

EmptyMsgError message is empty

UndefinedError accountNum should be defined

UndefinedError sequence should be defined

UndefinedError chainID should be defined

getSignMessage()
Get serialized data of transaction's content to be signed from Transaction by using SIGN_MODE_LEGACY_AMINO_JSON . See more
about signing mode. When using the Ledger to sign message, you need to use this method.

Return

Uint8Array - A byte array of serialized transaction content data, ready for signing.

getTxData(signature, publicKey, signMode)
Get transaction data from Transaction .

Parameter

signature Uint8Array - signature for the transaction

pubkey PublicKey - an instance of public key to be included in the transaction

signMode SignMode - a signing mode with its own security guarantees representation. (Default: SIGN_MODE_DIRECT)

Return

Uint8Array - Serialized data of signed transaction, ready to be broadcasted to BandChain.

Exceptions

Type Description

UndefinedError accountNum should be defined

UndefinedError sequence should be defined

Example

Result

Previous
« OBI Module

Next
Wallet Module »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Getting Started

Installation

Common Usage Example

Client Module

Data Module

Message Module

OBI Module

Transaction Module

Wallet Module

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

PyBand

BandChain.js

Building on BandChain

Nodes & Validators

Staking

import { MsgCreateDataSource } from '@bandprotocol/bandchain.js/proto/oracle/v1/tx_pb'

import { Any } from 'google-protobuf/google/protobuf/any_pb'

import { Transaction } from '@bandprotocol/bandchain.js'

const msg = new MsgCreateDataSource()

msg.setName('dsName')

msg.setDescription('dsDescription')

// msg.set...() for every fields

const anyMsg = new Any()

const typeUrl = 'oracle.v1.MsgCreateDataSource'

anyMsg.pack(msg.serializeBinary(), typeUrl, '/')

const tx = new Transaction()

tx.withMessages(anyMsg)

import { Client, Wallet, Transaction, Message, Coin, Fee } from '@bandprotocol/bandchain.js'

const { PrivateKey } = Wallet

const client = new Client('https://laozi-testnet6.bandchain.org/grpc-web')

// Step 2.1 import private key based on given mnemonic string

const privkey = PrivateKey.fromMnemonic(

 'subject economy equal whisper turn boil guard giraffe stick retreat wealth card only buddy joy leave

)

// Step 2.2 prepare public key and its address

const pubkey = privkey.toPubkey()

const sender = pubkey.toAddress().toAccBech32()

const sendCoin = async () => {

 // Step 3.1 constructs MsgSend message

 const { MsgSend } = Message

 // Here we use different message type, which is MsgSend

 const receiver = 'band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f'

 const sendAmount = new Coin()

 sendAmount.setDenom('uband')

 sendAmount.setAmount('10')

 const msg = new MsgSend(sender, receiver, [sendAmount])

 // Step 3.2 constructs a transaction

 const account = await client.getAccount(sender)

 const chainId = 'band-laozi-testnet6'

 let feeCoin = new Coin()

 feeCoin.setDenom('uband')

 feeCoin.setAmount('1000')

 const fee = new Fee()

 fee.setAmountList([feeCoin])

 fee.setGasLimit(1000000)

 const tx = new Transaction()

 .withMessages(msg)

 .withAccountNum(account.accountNumber)

 .withSequence(account.sequence)

 .withChainId(chainId)

 .withFee(fee)

 // Step 4 sign the transaction

 const txSignData = tx.getSignDoc(pubkey)

 const signature = privkey.sign(txSignData)

 const signedTx = tx.getTxData(signature, pubkey)

 // Step 5 send the transaction

 const response = await client.sendTxBlockMode(signedTx)

 console.log(JSON.stringify(response))

}

;(async () => {

 await sendCoin()

})()

{

 "height": 144075,

 "txhash": "FB0C1B122116EC1C94EE3BC05FC86B41EC580AC5A6CC7F5A3954F61E0505C648",

 "codespace": "",

 "code": 0,

 "data": "0A1E0A1C2F636F736D6F732E62616E6B2E763162657461312E4D736753656E64",

 "rawLog": "[{\"events\":[{\"type\":\"coin_received\",\"attributes\":[{\"key\":\"receiver\",\"value\":\

 "logsList": [

 {

 "msgIndex": 0,

 "log": "",

 "eventsList": [

 {

 "type": "coin_received",

 "attributesList": [

 {

 "key": "receiver",

 "value": "band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f"

 },

 { "key": "amount", "value": "10uband" }

]

 },

 {

 "type": "coin_spent",

 "attributesList": [

 {

 "key": "spender",

 "value": "band18p27yl962l8283ct7srr5l3g7ydazj07dqrwph"

 },

 { "key": "amount", "value": "10uband" }

]

 },

 {

 "type": "message",

 "attributesList": [

 { "key": "action", "value": "/cosmos.bank.v1beta1.MsgSend" },

 {

 "key": "sender",

 "value": "band18p27yl962l8283ct7srr5l3g7ydazj07dqrwph"

 },

 { "key": "module", "value": "bank" }

]

 },

 {

 "type": "transfer",

 "attributesList": [

 {

 "key": "recipient",

 "value": "band1p46uhvdk8vr829v747v85hst3mur2dzlmlac7f"

 },

 {

 "key": "sender",

 "value": "band18p27yl962l8283ct7srr5l3g7ydazj07dqrwph"

 },

 { "key": "amount", "value": "10uband" }

]

 }

]

 }

],

 "info": "",

 "gasWanted": 200000,

 "gasUsed": 66907,

 "timestamp": ""

}

Band Protocol Search K

https://docs.bandchain.org/
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/any.proto
https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/any.proto
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client#getaccount-address
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client#getaccount-address
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client#getaccount-address
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client#getchainid
https://docs.cosmos.network/master/core/proto-docs#signmode
https://docs.cosmos.network/master/core/proto-docs#signmode
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet#publickey
https://docs.cosmos.network/master/core/proto-docs#signmode
https://docs.bandchain.org/develop/developer-tools/bandchain.js/obi
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/bandchain.js/getting-started
https://docs.bandchain.org/develop/developer-tools/bandchain.js/installation
https://docs.bandchain.org/develop/developer-tools/bandchain.js/example
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client
https://docs.bandchain.org/develop/developer-tools/bandchain.js/data
https://docs.bandchain.org/develop/developer-tools/bandchain.js/message
https://docs.bandchain.org/develop/developer-tools/bandchain.js/obi
https://docs.bandchain.org/develop/developer-tools/bandchain.js/transaction
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Developer Tools BandChain.js Wallet Module

Wallet Module
This module provides functionalities to manage BandChain account. It can be used to create a private key from mnemonic, sign and
verify signature, and account address manipulation.

PrivateKey
A class for wrapping signing key, which is a byte array of private key, used for signature creation and public key derivation.

generate(path)

A static method for generating new private key with random mnemonic phrase.

INFO

If path is not given, default to Band's HD prefix 494 and all other indexes being zeroes.

Parameter

path string - The HD path that follows the BIP32 standard (optional)

Return

[string, PrivateKey] - A tuple of mnemonic phrase and [PrivateKey] instance

Exception

Type Description

CreateError Cannot create private key

Example

fromMnemonic(word, path)

A static method for creating a [PrivateKey] instance from a given mnemonic phrase and a HD derivation path.

INFO

If path is not given, default to Band's HD prefix 494 and all other indexes being zeroes.

Parameter

words string - The mnemonic phrase for recover private key

path string - The HD path that follows the BIP32 standard (optional)

Return

[PrivateKey] - Initialized PrivateKey object

Exception

Type Description

CreateError Cannot create private key

Example

fromHex(priv)

Create a [PrivateKey] instance from a given a hex representation of signing key.

Parameter

priv string - A hex representation of signing key.

Return

[PrivateKey] - Initialized PrivateKey object

Example

toHex

Return a hex representation of signing key.

Return

string - A hex representation of signing key.

Example

Result

toPubkey

Create a [PublicKey] instance which is associated with given private key.

Return

[PublicKey] - A PublicKey that can be used to verify the signatures made with this PrivateKey.

Example

Result

sign(msg)

Sign and the given bytes array.

Parameter

msg Buffer - The message that will be hashed and signed.

Return

Buffer - A signature of this private key over the given message

Example

Result

PublicKey
Class for wraping verify Key, which is a byte array of public key, used for signature verification, and generate bech32-encoded
address.

fromAccBech32(bech)

Creates a [PublicKey] instance from a bech32-encoded public key with account-pubkey prefix.

Parameter

bech string - A bech32-encoded with account public key prefix.

Return

[PublicKey] - A PublicKey instance

Exception

Type Description

ValueError Invalid bech32 prefix

DecodeError Cannot decode bech32

Example

fromValBech32(bech)

Creates a [PublicKey] instance from a bech32-encoded public key with validator-pubkey prefix

Parameter

bech string - A bech32-encoded with validator public key prefix

Return

[PublicKey] - A PublicKey instance

Exception

Type Description

ValueError Invalid bech32 prefix

DecodeError Cannot decode bech32

Example

fromConsBech32(bech)

Creates a [PublicKey] instance from a bech32-encoded public key with validator-consensus-pubkey prefix

Parameter

bech string A bech32-encoded with validator consensus public key prefix

Return

[PublicKey] - A PublicKey instance

Exception

Type Description

ValueError Invalid bech32 prefix

DecodeError Cannot decode bech32

Example

toHex

Returns a hex representation of verifying key.

Return

string - A hex representation of verifying key.

Example

Result

toPubkeyProto

Returns an instance of Cosmos SDK Protobuf's [PubKey], which can be used for constructing transactions.

Return

[PubKey] - An instance of Cosmos SDK Protobuf's PubKey

Example

Result

toAccBech32

Returns bech32-encoded public key with account-pubkey prefix

Return

string - A bech32-encoded with account public key prefix.

Example

Result

toValBech32

Returns bech32-encoded public key with validator-pubkey prefix

Return

string - A bech32-encoded with validator public key prefix.

Exceptions

Type Description

UnsuccessfulCallError Unsuccessful bech32.toWords call

Example

Result

toConsBech32

Returns bech32-encoded public key with validator-consensus-pubkey prefix

Return

string - A bech32-encoded with validator consensus public key prefix.

Exceptions

Type Description

UnsuccessfulCallError Unsuccessful bech32.toWords call

Example

Result

toAddress

Returns an [Address] instance from given public key

Return

[Address] - An Address instance.

Example

Result

verify(msg, sig)

Verify a signature made over provided data.

Parameter

msg Buffer A data signed by the signature , will be hashed using sha256 function

sig Buffer A encoding of the signature

Return

boolean True if the verification was successful

Exception

Type Description

BadSignatureError if the signature is invalid or malformed

Example

Result

Address
Class for wraping Address. Adding method to encode/decode to Bech32 format.

fromAccBech32(bech)

Create an [Address] instance from a bech32-encoded with account prefix.

Parameter

bech string - A bech32-encoded with account prefix.

Return

[Address] - A Address instance

Exception

Type Description

ValueError Invalid bech32 prefix

DecodeError Cannot decode bech32

Example

fromValBech32(bech)

Create an [Address] instance from a bech32-encoded with validator prefix

Parameter

bech string - A bech32-encoded with validator prefix

Return

[Address] - A Address instance

Exception

Type Description

ValueError Invalid bech32 prefix

DecodeError Cannot decode bech32

Example

fromConsBech32(bech)

Create an [Address] instance from a bech32-encoded with validator consensus prefix

Parameter

bech string - A bech32-encoded with validator consensus prefix

Return

[Address] - A Address instance

Exception

Type Description

ValueError Invalid bech32 prefix

DecodeError Cannot decode bech32

Example

toHex

Return a hex representation of Address .

Return

string - A hex representation of Address.

Example

Result

toAccBech32

Return bech32-encoded with account prefix

Return

string - A bech32-encoded with account prefix.

Exceptions

Type Description

UnsuccessfulCallError Unsuccessful bech32.toWords call

Example

Result

toValBech32

Return bech32-encoded with validator prefix

Return

string A bech32-encoded with validator prefix.

Exceptions

Type Description

UnsuccessfulCallError Unsuccessful bech32.toWords call

Example

Result

toConsBech32

Return bech32-encoded with validator consensus prefix

Return

string - A bech32-encoded with validator consensus prefix.

Exceptions

Type Description

UnsuccessfulCallError Unsuccessful bech32.toWords call

Example

Result

Ledger
Ledger is a fundamental class that allows you to interact and perform actions with your Ledger devices; signing, and obtaining the
account address.

connectLedgerNode(hdPath)

A static method used to connect Ledger with Node HID implementation.

Parameter

hdPath <string> - The HD path that follows the BIP32 standard (optional). Defaults to m/44'/118'/0'/0/0 if not provided.

Return

<Ledger> : Ledger object.

Example

connectLedgerWeb(hdPath)

A static method used to connect Ledger with WebUSB/WebHID protocol implementation.

Parameter

hdPath <string> - The HD path that follows the BIP32 standard (optional). Defaults to m/44'/118'/0'/0/0 if not provided.

Return

<Ledger> : Ledger object.

getPubKeyAndBech32Address

This function returns public key and bech32 address with band prefix of the associated Ledger.

Return

An object containing public key and bech32 address with the following keys

bech32_address <string>

pubKey <PublicKey>

Example

Return

sign(transaction)

This function returns the signature of the associated Ledger. The message is signed by using the Nano App signTransaction
function.

Parameter

transaction <Transaction> : Sign message will be extracted from Transaction class and signed.

Return

<Buffer> : A signature of the connected ledger over the given Transaction message.

Example in Bandchain.js Basic Usage

disconnect

As its namesake dictates, this function will disconnect the Ledger device.

Example

Previous
« Transaction Module

Next
Introduction »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Getting Started

Installation

Common Usage Example

Client Module

Data Module

Message Module

OBI Module

Transaction Module

Wallet Module

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

PyBand

BandChain.js

Building on BandChain

Nodes & Validators

Staking

import { Wallet } from '@bandprotocol/bandchain.js'

const { PrivateKey } = Wallet

const [mnemonic, priv] = PrivateKey.generate("m/44'/494'/0'/0/3")

import { Wallet } from '@bandprotocol/bandchain.js'

const { PrivateKey } = Wallet

const priv = PrivateKey.fromMnemonic('test mnemonic')

import { Wallet } from '@bandprotocol/bandchain.js'

const { PrivateKey } = Wallet

const priv = PrivateKey.fromHex('2442b724db7189468f16accc0fc505f0609817eb129e13702e696d8b84609ea9')

import { Wallet } from '@bandprotocol/bandchain.js'

const { PrivateKey } = Wallet

const priv = PrivateKey.fromMnemonic('test mnemonic')

console.log(priv.toHex())

2cb2e2d3582cebf0664d9cda0b89c5d478ae12fac19a6f4ed9c10a7406a19615

import { Wallet } from '@bandprotocol/bandchain.js'

const { PrivateKey } = Wallet

const priv = PrivateKey.fromMnemonic('test mnemonic')

console.log(priv.toPubkey().toHex())

02b2b0d35cb1c6d3923813c64e46a82d29e12d03288f438b9d3cf232d9a22bcb83

import { Wallet } from '@bandprotocol/bandchain.js'

const { PrivateKey } = Wallet

const priv = PrivateKey.fromMnemonic('test mnemonic')

console.log(priv.sign(Buffer.from('test message')).toString('hex'))

4bbc9a7ea54b47b11c67a4074e8d9bca068cb64c788f67342c4033b1b6f0553e1bc63cdf9bc2fb6e89c1e965c1e0f0712a51c250

import { Wallet } from '@bandprotocol/bandchain.js'

const { PublicKey } = Wallet

const publickey = PublicKey.fromAccBech32(

 'bandpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05txs5q6mw8s9v'

)

import { Wallet } from '@bandprotocol/bandchain.js'

const { PublicKey } = Wallet

const publickey = PublicKey.fromValBech32(

 'bandvaloperpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05txs5q69gsm29'

)

import { Wallet } from '@bandprotocol/bandchain.js'

const { PublicKey } = Wallet

const publickey = PublicKey.fromConsBech32(

 'bandvalconspub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05txs5q6r8ytws'

)

import { Wallet } from '@bandprotocol/bandchain.js'

const { PublicKey } = Wallet

const publickey = PublicKey.fromAccBech32(

 'bandpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05txs5q6mw8s9v'

)

console.log(publickey.toHex())

0351e98e1be097250f2ff4188c0aace0a716e69a992cd77f9dfe436b3e8b34280d

import { Wallet } from '@bandprotocol/bandchain.js'

const { PublicKey } = Wallet

const publickey = PublicKey.fromAccBech32(

 'bandpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05txs5q6mw8s9v'

)

// Converting to base64 is for displaying only

console.log(publickey.toPubkeyProto().getKey_asB64())

A1HpjhvglyUPL/QYjAqs4KcW5pqZLNd/nf5Daz6LNCgN

import { Wallet } from '@bandprotocol/bandchain.js'

const { PublicKey } = Wallet

const publickey = PublicKey.fromAccBech32(

 'bandpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05txs5q6mw8s9v'

)

console.log(publickey.toAccBech32())

bandpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05txs5q6mw8s9v

import { Wallet } from '@bandprotocol/bandchain.js'

const { PublicKey } = Wallet

const publickey = PublicKey.fromAccBech32(

 'bandpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05txs5q6mw8s9v'

)

console.log(publickey.toValBech32())

bandvaloperpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05txs5q69gsm29

import { Wallet } from '@bandprotocol/bandchain.js'

const { PublicKey } = Wallet

const publickey = PublicKey.fromAccBech32(

 'bandpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05txs5q6mw8s9v'

)

console.log(publickey.toConsBech32())

bandvalconspub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05txs5q6r8ytws

import { Wallet } from '@bandprotocol/bandchain.js'

const { PublicKey } = Wallet

const publickey = PublicKey.fromAccBech32(

 'bandpub1addwnpepqdg7nrsmuztj2re07svgcz4vuzn3de56nykdwlualepkk05txs5q6mw8s9v'

)

console.log(publickey.toAddress().toHex())

8e453e66fb009b119ea9b1b8775be6fa9435013b

import { Wallet } from '@bandprotocol/bandchain.js'

const { PrivateKey } = Wallet

const priv = PrivateKey.fromMnemonic('test mnemonic')

const pubkey = priv.toPubkey()

const msg = Buffer.from('test message')

const sig = priv.sign(msg)

console.log(pubkey.verify(msg, sig))

true

import { Wallet } from '@bandprotocol/bandchain.js'

const { Address } = Wallet

const address = Address.fromAccBech32('band13eznuehmqzd3r84fkxu8wklxl22r2qfmtlth8c')

import { Wallet } from '@bandprotocol/bandchain.js'

const { Address } = Wallet

const address = Address.fromValBech32('bandvaloper13eznuehmqzd3r84fkxu8wklxl22r2qfm8f05zn')

import { Wallet } from '@bandprotocol/bandchain.js'

const { Address } = Wallet

const address = Address.fromConsBech32('bandvalcons13eznuehmqzd3r84fkxu8wklxl22r2qfmn6ugwj')

import { Wallet } from '@bandprotocol/bandchain.js'

const { Address } = Wallet

const address = Address.fromAccBech32('band13eznuehmqzd3r84fkxu8wklxl22r2qfmtlth8c')

console.log(address.toHex())

8e453e66fb009b119ea9b1b8775be6fa9435013b

import { Wallet } from '@bandprotocol/bandchain.js'

const { Address } = Wallet

const address = Address.fromAccBech32('band13eznuehmqzd3r84fkxu8wklxl22r2qfmtlth8c')

console.log(address.toAccBech32())

band13eznuehmqzd3r84fkxu8wklxl22r2qfmtlth8c

import { Wallet } from '@bandprotocol/bandchain.js'

const { Address } = Wallet

const address = Address.fromAccBech32('band13eznuehmqzd3r84fkxu8wklxl22r2qfmtlth8c')

console.log(address.toValBech32())

bandvaloper13eznuehmqzd3r84fkxu8wklxl22r2qfm8f05zn

import { Wallet } from '@bandprotocol/bandchain.js'

const { Address } = Wallet

const address = Address.fromAccBech32('band13eznuehmqzd3r84fkxu8wklxl22r2qfmtlth8c')

console.log(address.toConsBech32())

bandvalcons13eznuehmqzd3r84fkxu8wklxl22r2qfmn6ugwj

import { Wallet } from '@bandprotocol/bandchain.js'

const { Ledger } = Wallet

const connectLedger = async () => {

 const ledger = await Ledger.connectLedgerNode("m/44'/118'/0'/0/0")

 console.log(ledger)

}

;(async () => {

 await connectLedger()

})()

import { Wallet } from '@bandprotocol/bandchain.js'

const { Ledger } = Wallet

const connectLedger = async () => {

 const ledger = await Ledger.connectLedgerWeb("m/44'/118'/0'/0/0")

 console.log(ledger)

}

;(async () => {

 await connectLedger()

})()

import { Wallet } from '@bandprotocol/bandchain.js'

const { Ledger } = Wallet

;(async () => {

 const ledger = await Ledger.connectLedgerWeb("m/44'/118'/0'/0/0")

 const addressObject = await ledger.getPubKeyAndBech32Address()

 console.log(addressObject)

})()

{

 bech32_address: "band1pxzqj53rg87e2n0swh8h7a6m2umjlja6uwffp9",

 pubKey: PublicKey {verifyKey: Uint8Array(33)}

}

import { Wallet } from '@bandprotocol/bandchain.js'

const { Ledger } = Wallet

;(async () => {

 const ledger = await Ledger.connectLedgerWeb("m/44'/118'/0'/0/0")

 await ledger.disconnect()

})()

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/bandchain.js/example
https://docs.bandchain.org/develop/developer-tools/bandchain.js/transaction
https://docs.bandchain.org/develop/custom-scripts/data-source/introduction
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/bandchain.js/getting-started
https://docs.bandchain.org/develop/developer-tools/bandchain.js/installation
https://docs.bandchain.org/develop/developer-tools/bandchain.js/example
https://docs.bandchain.org/develop/developer-tools/bandchain.js/client
https://docs.bandchain.org/develop/developer-tools/bandchain.js/data
https://docs.bandchain.org/develop/developer-tools/bandchain.js/message
https://docs.bandchain.org/develop/developer-tools/bandchain.js/obi
https://docs.bandchain.org/develop/developer-tools/bandchain.js/transaction
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Building on BandChain Data Source Introduction

Introduction
A data source is the most fundamental unit in BandChain's oracle system. At the simplest level, it is an executable that describes the
procedure to retrieve some type of data.

A data source is executed off-chain in order to reduce on-chain workloads as some tasks cannot be performed on the chain due to
the heavy computation require and/or the network latency associated with running the data source which can decrease performance
of the chain.

The sources a data source can use can either be a traditional API or any other method that returns the desired result.

Permissionless APIs are openly available to anyone who might want to audit the data source, any subsequent oracle scripts that
depend on it, or the actual application that requests the oracle script itself. This openness helps build the trustworthiness of each of
those components, which is ultimately what we are looking to do.

Previous
« Wallet Module

Next
Creating a Data Source »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/develop/developer-tools/bandchain.js/wallet
https://docs.bandchain.org/develop/custom-scripts/data-source/tutorial
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Building on BandChain Data Source Creating a Data Source

Creating a Data Source
In this section, we will take a look at how to create a data source.

Writing the data source
In order for the data source to run, always make sure to add a shebang line containing #!/usr/bin/env python3 and to print the
function output. A simple Hello World! example can be seen below.

More Examples
However, in order to better understand the structure and implementation of a data source, let’s look at two more examples below:
Gold Price and Token Total Supply.

Gold Price

First, let’s look at a data source that queries GoldPrice.org for the current price of gold. The script itself is written in Python and
although this specific data source does not expect any arguments, a data source can have any number of arguments required.

Token Total Supply

As mentioned above, a data source can take any number of arguments. The example below, gives an example of a data source
which requires two arguments. The data source shown below queries the given network's RPC endpoint for the total supply of a
given token address.

More examples

For more data source examples, please refer to the ones available on our Mainnet to get an idea of the different types of data
source used on BandChain:

Latest crypto prices from CoinGecko

Latest stock prices from Finage

Latest forex prices from Alpha Vantage

Previous
« Introduction

Next
Deployment »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Creating a Data Source

Deployment

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

Building on BandChain

Data Source

Oracle Script

Nodes & Validators

Staking

#!/usr/bin/env python3

import sys

def main():

 return "Hello World!"

if __name__ == "__main__":

 try:

 print(main())

 except Exception as e:

 print(str(e), file=sys.stderr)

 sys.exit(1)

#!/usr/bin/env python3

import requests

import sys

URL = "https://data-asg.goldprice.org/dbXRates/USD"

HEADERS = {'User-Agent': 'curl/7.64.1'}

def main():

 try:

 pxs = requests.get(URL, headers=HEADERS).json()

 return pxs['items'][0]['xauPrice']

 except Exception as e:

 raise e

if __name__ == "__main__":

 try:

 print('{0:.2f}'.format(main()))

 except Exception as e:

 print(str(e), file=sys.stderr)

 sys.exit(1)

#!/usr/bin/env python3

import requests

import sys

def main(rpc, to):

 headers = {

 "Content-Type": "application/json",

 }

 data = (

 """{ "jsonrpc": "2.0", "method": "eth_call", "params": [{ "to": "%s", "data": "0x18160ddd" }, "

 % (to)

)

 response = requests.post(

 rpc,

 headers=headers,

 data=data,

)

 return int(response.json()["result"], 16)

if __name__ == "__main__":

 try:

 print(main(sys.argv[1], sys.argv[2]))

 except Exception as e:

 print(str(e), file=sys.stderr)

 sys.exit(1)

Band Protocol Search K

https://docs.bandchain.org/
https://goldprice.org/
https://cosmoscan.io/data-sources
https://cosmoscan.io/data-source/74#code
https://cosmoscan.io/data-source/23#code
https://cosmoscan.io/data-source/9#code
https://docs.bandchain.org/develop/custom-scripts/data-source/introduction
https://docs.bandchain.org/develop/custom-scripts/data-source/deployment
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/custom-scripts/data-source/introduction
https://docs.bandchain.org/develop/custom-scripts/data-source/tutorial
https://docs.bandchain.org/develop/custom-scripts/data-source/deployment
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Building on BandChain Oracle Script Deployment

Deployment
On BandChain, an oracle script can be registered into the system by anyone. This is done through the registrant sending a
MsgCreateOracleScript message to the chain.

A MsgCreateOracleScript message contains various parameters of the oracle script that is to be registered. These parameters
include:

name : Name of the oracle script.

description : A description of the oracle script.

schema : The oracle script's schema which details the inputs and outputs of this oracle script.

source_code_url : The URL for the source code of the oracle script.

code : The Owasm-compiled binary of the oracle script.

owner : The owner of the oracle script. The owner will have edit rights. If omitted, the oracle script's parameters will no longer
be able to be edited after being registered.

sender : The message sender account.

In order to send a MsgCreateOracleScript message, we can use either bandchain.js or pyband

An example on how to send a MsgCreateOracleScript message via bandchain.js can be seen below.

An example on how to send a MsgCreateDataSource message via pyband can also be seen below.

After a successful transaction broadcast, the newly created oracle script ID can be found in the response json. The registrant can
also view the created oracle script details on CosmoScan. An example of a successful transaction will return a response similar to
the one shown below.

Previous
« Creating an Oracle Script

Next
Supported Blockchains »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Creating an Oracle Script

Deployment

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

Building on BandChain

Data Source

Oracle Script

Nodes & Validators

Staking

import { Client, Wallet, Message, Coin, Transaction, Fee } from '@bandprotocol/bandchain.js'

import fs from 'fs'

import path from 'path'

const grpcURL = 'https://laozi-testnet6.bandchain.org/grpc-web'

const client = new Client(grpcURL)

// Setup the client

async function createOracleScript() {

 // Setup the wallet

 const { PrivateKey } = Wallet

 const mnemonic = process.env.MNEMONIC

 const privateKey = PrivateKey.fromMnemonic(mnemonic)

 const publicKey = privateKey.toPubkey()

 const sender = publicKey.toAddress().toAccBech32()

 // Setup the transaction's properties

 const chainId = await client.getChainId()

 const execPath = path.resolve(__dirname, 'hello_world.wasm')

 const code = fs.readFileSync(execPath)

 let feeCoin = new Coin()

 feeCoin.setDenom('uband')

 feeCoin.setAmount('0')

 const requestMessage = new Message.MsgCreateOracleScript(

 'Hello World!', // oracle script name

 code, // oracle script code

 sender, // owner

 sender, // sender

 '', // description

 '{repeat:u64}/{response:string}', // schema

 'https://ipfs.io/ipfs/QmSSrgJ6QuFDJHyC2SyTgnHKRBhPdLHUD2tJJ86xejrCfn' // source code url

)

 // Construct the transaction

 const fee = new Fee()

 fee.setAmountList([feeCoin])

 fee.setGasLimit(350000)

 const txn = new Transaction()

 txn.withMessages(requestMessage)

 await txn.withSender(client, sender)

 txn.withChainId(chainId)

 txn.withFee(fee)

 txn.withMemo('')

 // Sign the transaction

 const signDoc = txn.getSignDoc(publicKey)

 const signature = privateKey.sign(signDoc)

 const txRawBytes = txn.getTxData(signature, publicKey)

 // Broadcast the transaction

 const sendTx = await client.sendTxBlockMode(txRawBytes)

 return sendTx

}

;(async () => {

 console.log(await createOracleScript())

})()

import os

from pyband import Client, Transaction

from pyband.wallet import PrivateKey

from pyband.proto.cosmos.base.v1beta1.coin_pb2 import Coin

from pyband.proto.oracle.v1.tx_pb2 import MsgCreateOracleScript

from google.protobuf.json_format import MessageToJson

def main():

 # Setup Client

 grpc_url = "laozi-testnet6.bandchain.org"

 c = Client(grpc_url)

 # Setup Wallet

 mnemonic = os.getenv("MNEMONIC")

 private_key = PrivateKey.from_mnemonic(mnemonic)

 public_key = private_key.to_public_key()

 sender_addr = public_key.to_address()

 sender = sender_addr.to_acc_bech32()

 # Prepare Transaction Properties

 deploy_msg = MsgCreateOracleScript(

 name="Hello World!",

 description="",

 schema="{repeat:u64}/{response:string}",

 source_code_url="https://ipfs.io/ipfs/QmSSrgJ6QuFDJHyC2SyTgnHKRBhPdLHUD2tJJ86xejrCfn",

 code=open("hello_world.wasm", "rb").read(),

 owner=sender,

 sender=sender,

)

 account = c.get_account(sender)

 account_num = account.account_number

 sequence = account.sequence

 fee = [Coin(amount="0", denom="uband")]

 chain_id = c.get_chain_id()

 # Construct a Transaction

 txn = (

 Transaction()

 .with_messages(deploy_msg)

 .with_sequence(sequence)

 .with_account_num(account_num)

 .with_chain_id(chain_id)

 .with_gas(250000)

 .with_fee(fee)

)

 # Sign the Transaction

 sign_doc = txn.get_sign_doc(public_key)

 signature = private_key.sign(sign_doc.SerializeToString())

 tx_raw_bytes = txn.get_tx_data(signature, public_key)

 # Broadcast the transaction

 tx_block = c.send_tx_block_mode(bytes(tx_raw_bytes))

 print(MessageToJson(tx_block))

if __name__ == "__main__":

 main()

{

 "height": "7440523",

 "txhash": "FEDE0E7482CA6AB3A08E4643B2ADA03B0E6E961EE8747F41A1BF891BEDFE3C23",

 "data": "0A220A202F6F7261636C652E76312E4D73674372656174654F7261636C65536372697074",

 "rawLog": "[{\"events\":[{\"type\":\"create_oracle_script\",\"attributes\":[{\"key\":\"id\",\"value\"

 "logs": [

 {

 "events": [

 {

 "type": "create_oracle_script",

 "attributes": [

 {

 "key": "id",

 "value": "202"

 }

]

 },

 {

 "type": "message",

 "attributes": [

 {

 "key": "action",

 "value": "/oracle.v1.MsgCreateOracleScript"

 }

]

 }

]

 }

],

 "gasWanted": "250000",

 "gasUsed": "246278"

}

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/protocol-messages#msgcreateoraclescript
https://docs.bandchain.org/develop/developer-tools/bandchain.js/getting-started
https://docs.bandchain.org/develop/developer-tools/pyband/getting-started
https://docs.bandchain.org/develop/developer-tools/bandchain.js/getting-started
https://docs.bandchain.org/develop/developer-tools/pyband/getting-started
https://cosmoscan.io/oracle-scripts/
https://docs.bandchain.org/develop/custom-scripts/oracle-script/tutorial
https://docs.bandchain.org/develop/supported-blockchains/
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/custom-scripts/oracle-script/introduction
https://docs.bandchain.org/develop/custom-scripts/oracle-script/tutorial
https://docs.bandchain.org/develop/custom-scripts/oracle-script/deployment
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Building on BandChain Oracle Script Introduction

Introduction
When someone wants to request data from BandChain’s oracle, they do not interact or call the data sources directly. Instead, they
call an oracle script, which then proceeds to execute the necessary data sources.

An oracle script's job, unlike a data source, is to be responsible for compiling the results from various data sources to enable on-
chain security. As such, an oracle script, similarly to a smart contract on other platforms such as Ethereum, Near and Solana, is
executed on-chain rather than off-chain.

Oracle Script Specification

At a basic level, an oracle script itself is just an executable program that encodes two pieces of data:

A set of raw data requests to the data sources it requires

A method of aggregating those the raw data reports from the requests sent into a final result

Oracle scripts themselves are Turing-complete and can be written in any programming language that supports compilation into
WebAssembly code. This composability and Turing-completeness make oracle scripts very similar to smart contracts.

Oracle Script Execution Flow

1. Preparation Phase During the preparation phase, the oracle script outlines the data sources that are required for its execution. It
then sends out a request to BandChain’s validators to retrieve the result from the required data sources. The content of this
request consists of the data sources’ execution steps and the parameters required by said data sources.

2. Aggregation Phase During the aggregation phase, the oracle script aggregates all the data reports returned by the validators.
Each report contains the values which the validator received from said data sources. The script then proceeds to combine those
values into a single final result. Note that the specifics of the aggregation process is entirely up to the design of the oracle script.
BandChain does not enforce any regulations regarding the aggregation method used and entirely leaves that design decision to
the creator of the script. Instead of a typical plain medianizer, the oracle script can encode custom conditions such as a data
deviation rule to ensure that all data points returned will stay within certain percentage deviation from each other and to revert
the transaction if otherwise.

👉 For more information on oracle scripts and its execution, please refer to the corresponding page on our wiki.

Previous
« Deployment

Next
Creating an Oracle Script »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Creating an Oracle Script

Deployment

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

Building on BandChain

Data Source

Oracle Script

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://github.com/bandprotocol/bandchain/wiki/System-Overview#oracle-data-request
https://docs.bandchain.org/develop/custom-scripts/data-source/deployment
https://docs.bandchain.org/develop/custom-scripts/oracle-script/tutorial
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/custom-scripts/oracle-script/introduction
https://docs.bandchain.org/develop/custom-scripts/oracle-script/tutorial
https://docs.bandchain.org/develop/custom-scripts/oracle-script/deployment
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Building on BandChain Oracle Script Creating an Oracle Script

Creating an Oracle Script
In this section, we will take a look at how to create an oracle script.

Prerequisites
Rust Installation

While there are many ways to install Rust on your system. The official and recommended way to install Rust is using Rustup.

Rustup installs rustc , cargo , rustup and other standard tools to Cargo's bin directory. On Unix it is located at
$HOME/.cargo/bin and on Windows at %USERPROFILE%\.cargo\bin . This is the same directory that cargo install will install Rust
programs and Cargo plugins.

After installing Rust you can check the current version by typing rustc --version or rustc -V on your terminal to verify the
success of the installation.

Note: If wasm32-unknown-unknown hasn't been added as a target, you can add it using the command below.

Writing the Oracle Script

File structure

Let's start by creating a Rust directory structure like in the example below.

Adding Dependencies

As Cargo.toml is the manifest file for Rust's package manager: Cargo, this file contains metadata such as the name, version and
dependencies of the package. By default, Cargo checks dependencies on crates.io. Therefore, when adding a crate, we only need to
add the crate name and version to the Cargo.toml .

When creating an oracle script, two main dependencies are required: owasm-kit and obi.

An example is shown below:

Writing the Oracle Script

As mentioned in the introduction, an oracle script execution flow can be categorized into two main phases, the preparation phase
and the execution phase. However, we also do need to define the oracle scripts input and outputs.

Input/Output

An oracle script's input and output can be defined in a struct. In the example below, we can see that this specific oracle scripts takes
in an input repeat as a u64 and returns an output response as a string

Preparation Phase

The function below shows an example preparation phase for requesting data from data source D327 . As D327 does not require any
inputs, an empty byte will be passed. However, in other data sources that do require an input, the corresponding calldata should be
sent instead.

Execution Phase

The function below shows an example of the execution phase for the data received from D327 . This example retrieves the data
reports and duplicates the majority result of the data report 𝑥 times where 𝑥 is defined by repeat as given in the input.

lib.rs

Compling the Oracle Script

To compile the oracle script, the following command can be run

After the compilation is complete, the .wasm file can be found in the sub-directory: ./target/wasm32-unknown-
unknown/release/*.wasm .

More Examples
Below is another example of an oracle script that queries a token's total supply.

Query for token total supply

lib.rs

Previous
« Introduction

Next
Deployment »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Creating an Oracle Script

Deployment

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

Building on BandChain

Data Source

Oracle Script

Nodes & Validators

Staking

rustup target add wasm32-unknown-unknown

.

├── hello_world

 ├── Cargo.toml

 └── src

 └── lib.rs

[package]

name = "hello-world"

version = "0.1.0"

authors = ["Band Protocol <dev@bandprotocol.com>"]

edition = "2018"

[lib]

crate-type = ["cdylib"]

[dependencies]

owasm-kit = { version = "0.1.13" }

obi = { version = "0.0.2" }

#[derive(OBIDecode, OBISchema)]

struct Input {

 repeat: u64,

}

#[derive(OBIEncode, OBISchema)]

struct Output {

 response: String,

}

const DATA_SOURCE_ID: i64 = 327;

const EXTERNAL_ID: i64 = 0;

#[no_mangle]

fn prepare_impl(_input: Input) {

 ask_external_data(

 EXTERNAL_ID, // The assigned external ID for this data source

 DATA_SOURCE_ID, // The data source to call by ID

 b"", // Calldata to be sent to the data source

)

}

oei::

#[no_mangle]

fn execute_impl(input: Input) -> Output {

 let raw_result = load_input::<String>(EXTERNAL_ID); // Raw results from the given external ID

 let result: Vec<String> = raw_result.collect();

 let majority_result: String = majority(result).unwrap(); // Majority result

 Output {

 response: majority_result.repeat(input.repeat as usize),

 }

}

ext::

ext::stats::

use {OBIDecode, OBIEncode, OBISchema};

use {execute_entry_point, prepare_entry_point, oei, ext};

#[derive(OBIDecode, OBISchema)]

struct Input {

 repeat: u64,

}

#[derive(OBIEncode, OBISchema)]

struct Output {

 response: String,

}

const DATA_SOURCE_ID: i64 = 327;

const EXTERNAL_ID: i64 = 0;

#[no_mangle]

fn prepare_impl(_input: Input) {

 ask_external_data(

 EXTERNAL_ID,

 DATA_SOURCE_ID,

 b"",

)

}

#[no_mangle]

fn execute_impl(input: Input) -> Output {

 let raw_result = load_input::<String>(EXTERNAL_ID);

 let result: Vec<String> = raw_result.collect();

 let majority_result: String = majority(result).unwrap();

 Output {

 response: majority_result.repeat(input.repeat as usize),

 }

}

prepare_entry_point!(prepare_impl);

execute_entry_point!(execute_impl);

obi::

owasm_kit::

oei::

ext::

ext::stats::

RUSTFLAGS='-C link-arg=-s' cargo build --release --target wasm32-unknown-unknown

use {OBIDecode, OBIEncode, OBISchema};

use {execute_entry_point, ext, oei, prepare_entry_point};

#[derive(OBIDecode, OBISchema)]

struct Input {

 rpc: String,

 to: String,

}

#[derive(OBIEncode, OBISchema)]

struct Output {

 total_supply: String,

}

const DATA_SOURCE_ID: i64 = 98;

const EXTERNAL_ID: i64 = 0;

#[no_mangle]

fn prepare_impl(input: Input) {

 ask_external_data(

 EXTERNAL_ID,

 DATA_SOURCE_ID,

 format!("{} {}", input.rpc, input.to).as_bytes(),

);

}

#[no_mangle]

fn execute_impl(_input: Input) -> Output {

 Output {

 total_supply: load_majority::<String>(EXTERNAL_ID).unwrap(),

 }

}

prepare_entry_point!(prepare_impl);

execute_entry_point!(execute_impl);

obi::

owasm_kit::

oei::

ext::

Band Protocol Search K

https://docs.bandchain.org/
https://www.rust-lang.org/tools/install
https://docs.rs/owasm-kit/0.1.13/owasm_kit/
https://docs.rs/obi/latest/obi/
https://docs.bandchain.org/develop/custom-scripts/oracle-script/introduction
https://laozi-testnet6.cosmoscan.io/data-source/327
https://docs.bandchain.org/develop/custom-scripts/oracle-script/introduction
https://docs.bandchain.org/develop/custom-scripts/oracle-script/deployment
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/custom-scripts/oracle-script/introduction
https://docs.bandchain.org/develop/custom-scripts/oracle-script/tutorial
https://docs.bandchain.org/develop/custom-scripts/oracle-script/deployment
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Building on BandChain Data Source Deployment

Deployment
On BandChain, a data source can be registered into the system by anyone. This is done through the registrant sending a
MsgCreateDataSource message to the chain.

A MsgCreateDataSource message contains various parameters of the data source that is to be registered. These parameters
include:

name : Name of the data source.

description : A description of the data source .

executable : Contents of the executable to be run by block validators upon receiving a data request for this data source.

fee : A stipulated per-query fee that those who use this data source are required to pay.

treasury : A treasury address of which the stipulated fee is to be paid to.

owner : The owner address of this data source. The owner will have edit rights. If omitted, the data source parameters will no
longer be able to be edited after being registered.

sender : The message sender account.

In order to send a MsgCreateDataSource message, we can use either bandchain.js or pyband

An example on how to send a MsgCreateDataSource message via BandChain.js can be seen below.

An example on how to send a MsgCreateDataSource message via pyband can also be seen below.

After the transaction is successfully broadcasted. The newly created data source ID can be found in the response json. The
registrant can also view the created data source details on CosmoScan. An example of a successful transaction will return a
response similar to the one shown below.

Previous
« Creating a Data Source

Next
Introduction »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Creating a Data Source

Deployment

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

Building on BandChain

Data Source

Oracle Script

Nodes & Validators

Staking

import { Client, Wallet, Message, Coin, Transaction, Fee } from '@bandprotocol/bandchain.js'

import fs from 'fs'

import path from 'path'

// Setup the client

const grpcURL = 'https://laozi-testnet6.bandchain.org/grpc-web'

const client = new Client(grpcURL)

async function createDataSource() {

 // Setup the wallet

 const { PrivateKey } = Wallet

 const mnemonic = process.env.MNEMONIC

 const privateKey = PrivateKey.fromMnemonic(mnemonic)

 const publicKey = privateKey.toPubkey()

 const sender = publicKey.toAddress().toAccBech32()

 // Setup the transaction's properties

 const chainId = await client.getChainId()

 const execPath = path.resolve(__dirname, 'hello_world.py')

 const file = fs.readFileSync(execPath, 'utf8')

 const executable = Buffer.from(file).toString('base64')

 let feeCoin = new Coin()

 feeCoin.setDenom('uband')

 feeCoin.setAmount('50000')

 const requestMessage = new Message.MsgCreateDataSource(

 'Hello World!', // Data source name

 executable, // Data source executable

 sender, // Treasury address

 sender, // Owner address

 sender, // Sender address

 [feeCoin], // Fee

 '' // Data source description

)

 // Construct the transaction

 const fee = new Fee()

 fee.setAmountList([feeCoin])

 fee.setGasLimit(60000)

 const txn = new Transaction()

 txn.withMessages(requestMessage)

 await txn.withSender(client, sender)

 txn.withChainId(chainId)

 txn.withFee(fee)

 txn.withMemo('')

 // Sign the transaction

 const signDoc = txn.getSignDoc(publicKey)

 const signature = privateKey.sign(signDoc)

 const txRawBytes = txn.getTxData(signature, publicKey)

 // Broadcast the transaction

 const sendTx = await client.sendTxBlockMode(txRawBytes)

 return sendTx

}

;(async () => {

 console.log(await createDataSource())

})()

import os

from pyband import Client, Transaction

from pyband.wallet import PrivateKey

from pyband.proto.cosmos.base.v1beta1.coin_pb2 import Coin

from pyband.proto.oracle.v1.tx_pb2 import MsgCreateDataSource

from google.protobuf.json_format import MessageToJson

def main():

 # Setup the client

 grpc_url = "laozi-testnet6.bandchain.org"

 c = Client(grpc_url)

 # Setup the wallet

 mnemonic = os.getenv("MNEMONIC")

 private_key = PrivateKey.from_mnemonic(mnemonic)

 public_key = private_key.to_public_key()

 sender_addr = public_key.to_address()

 sender = sender_addr.to_acc_bech32()

 # Prepare the transaction's properties

 deploy_msg = MsgCreateDataSource(

 name="Hello World!",

 description="",

 executable=open("hello_world.py", "rb").read(),

 fee=[Coin(amount="0", denom="uband")],

 treasury=sender,

 owner=sender,

 sender=sender,

)

 account = c.get_account(sender)

 account_num = account.account_number

 sequence = account.sequence

 fee = [Coin(amount="50000", denom="uband")]

 chain_id = c.get_chain_id()

 # Construct the transaction

 txn = (

 Transaction()

 .with_messages(deploy_msg)

 .with_sequence(sequence)

 .with_account_num(account_num)

 .with_chain_id(chain_id)

 .with_gas(60000)

 .with_fee(fee)

)

 # Sign the Transaction

 sign_doc = txn.get_sign_doc(public_key)

 signature = private_key.sign(sign_doc.SerializeToString())

 tx_raw_bytes = txn.get_tx_data(signature, public_key)

 # Broadcast the transaction

 tx_block = c.send_tx_block_mode(bytes(tx_raw_bytes))

 print(MessageToJson(tx_block))

if __name__ == "__main__":

 main()

{

 "height": "7232244",

 "txhash": "B7A039E4AE9567A7380B5241B72FF69D38DB6831BE5023F05140616AD71FFA62",

 "data": "0A200A1E2F6F7261636C652E76312E4D736743726561746544617461536F75726365",

 "rawLog": "[{\"events\":[{\"type\":\"create_data_source\",\"attributes\":[{\"key\":\"id\",\"value\":\"

 "logs": [

 {

 "events": [

 {

 "type": "create_data_source",

 "attributes": [

 {

 "key": "id",

 "value": "327"

 }

]

 },

 {

 "type": "message",

 "attributes": [

 {

 "key": "action",

 "value": "/oracle.v1.MsgCreateDataSource"

 }

]

 }

]

 }

],

 "gasWanted": "100000",

 "gasUsed": "55306"

}

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/protocol-messages#msgcreatedatasource
https://docs.bandchain.org/develop/developer-tools/bandchain.js/getting-started
https://docs.bandchain.org/develop/developer-tools/pyband/getting-started
https://docs.bandchain.org/develop/developer-tools/pyband/getting-started
https://cosmoscan.io/data-sources/
https://docs.bandchain.org/develop/custom-scripts/data-source/tutorial
https://docs.bandchain.org/develop/custom-scripts/oracle-script/introduction
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/custom-scripts/data-source/introduction
https://docs.bandchain.org/develop/custom-scripts/data-source/tutorial
https://docs.bandchain.org/develop/custom-scripts/data-source/deployment
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Products Band VRF VRF Supported Blockchains

VRF Supported Blockchains
VRFprovider and Bridge contracts have reviewed and audited by PeckShield

Audit report

Our deployed Bridge , VRFProvider , MockVRFConsumer and VRFLens contracts on each chain are shown in the table below.

Mainnet

Chain \
Contract

Bridge VRFProvider

BSC 0xB1bc084DFdf558C1DFE9332c955ffC60807Db350 0xaEC7D640E4F1970615e685286202486c26b7Bcb3 0x0753

Cronos 0xB1bc084DFdf558C1DFE9332c955ffC60807Db350 0xaEC7D640E4F1970615e685286202486c26b7Bcb3 0x0cc0E

Testnet

Chain \
Contract

Bridge VRFProvider

Goerli 0xFCb11e9560F9a646C0A917De27C9600cDf210A19 0xBCA1F17f6c01FA81f214F0e11e76e85C2261188c 0x

Cronos 0xFCb11e9560F9a646C0A917De27C9600cDf210A19 0x4BB1773b0e784cFEc78C152b1F78c4B5Dcb9D12A 0x

OKC 0xFCb11e9560F9a646C0A917De27C9600cDf210A19 0xb9EB7Dc3E79Dc98E78ecd067064D77a2cB67401e 0x

Oasis 0xFCb11e9560F9a646C0A917De27C9600cDf210A19 0x6c51E9a7680244F7ed20aeE24E7055D28DA91969 0x

BSC 0xFCb11e9560F9a646C0A917De27C9600cDf210A19 0x72d1dFBb367326DFCd919B9E52755AB3687126B4 0x

OP Goerli 0xFCb11e9560F9a646C0A917De27C9600cDf210A19 0xABde7B7A97D532E01bf988d39Ce1638A56c9b2b0 0x

Polygon 0xFCb11e9560F9a646C0A917De27C9600cDf210A19 0x3006cbB2d33AcE7D2e390D722367B0D82081AD24 0x

Avalanche 0xFCb11e9560F9a646C0A917De27C9600cDf210A19 0x16665448a08f68D82215CCFdceF88A9ba1589Ae7 0x

Shibuya 0xFCb11e9560F9a646C0A917De27C9600cDf210A19 0x14919325f2d97a05d146b7b4c9374b265e722f00 0x

Klaytn 0xFCb11e9560F9a646C0A917De27C9600cDf210A19 0xf1f3554b6f46d8f172c89836fbed1ea8551eabad 0x

Godwoken 0xFCb11e9560F9a646C0A917De27C9600cDf210A19 0xF1F3554b6f46D8f172c89836FBeD1ea8551eabad 0x

TCGverse 0xFCb11e9560F9a646C0A917De27C9600cDf210A19 0xF22bA22A57d387F3F55B4d7643092338cCDf99D5 0x

Meter 0xb865B52A5DC922C6cb7926B234725F37716Ed97d 0x1cF350DA842D4816c2978691D93e4670EEd7e10D 0x

Previous
« Example Use Cases

Next
Introduction »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Getting Started

VRF integration

Example Use Cases

VRF Supported Blockchains

Introduction

Core Concepts

Products

Band Standard Dataset

Band VRF

Pricefeed Module

cw-band

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://peckshield.com/
https://github.com/bandprotocol/vrf-and-bridge-contracts/blob/master/audit/PeckShield-Audit-Report-Band-VRF-Bridge-v1.0.pdf
https://bscscan.com/
https://cronoscan.com/
https://goerli.etherscan.io/
https://testnet.cronoscan.com/
https://www.oklink.com/en/okc-test
https://testnet.explorer.emerald.oasis.dev/
https://testnet.bscscan.com/
https://goerli-optimism.etherscan.io/
https://mumbai.polygonscan.com/
https://testnet.snowtrace.io/
https://blockscout.com/shibuya
https://baobab.scope.klaytn.com/
https://gw-explorer.nervosdao.community/
https://testnet.explorer.tcgverse.xyz/
https://scan-warringstakes.meter.io/
https://docs.bandchain.org/products/vrf/example
https://docs.bandchain.org/products/pricefeed-module/introduction
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/products/vrf/introduction
https://docs.bandchain.org/products/vrf/getting-started
https://docs.bandchain.org/products/vrf/vrf-integration
https://docs.bandchain.org/products/vrf/example
https://docs.bandchain.org/products/vrf/supported-blockchains
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop API Endpoints

API Endpoints
Laozi Mainnet

Type Value

Chain ID laozi-mainnet

RPC http://rpc.laozi1.bandchain.org

REST https://laozi1.bandchain.org/api/

GRPC https://laozi1.bandchain.org

GRPC_WEB https://laozi1.bandchain.org/grpc-web

Laozi Testnet 6

Type Value

Chain ID band-laozi-testnet6

RPC https://rpc.laozi-testnet6.bandchain.org

REST https://laozi-testnet6.bandchain.org/api/

GRPC https://laozi-testnet6.bandchain.org

GRPC_WEB https://laozi-testnet6.bandchain.org/grpc-web

Faucet https://laozi-testnet6.bandchain.org/faucet

Previous
« Supported Blockchains

Next
Band CLI & REST Endpoints »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

Building on BandChain

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
http://rpc.laozi1.bandchain.org/
https://laozi1.bandchain.org/api/
https://laozi1.bandchain.org/
https://laozi1.bandchain.org/grpc-web
https://rpc.laozi-testnet6.bandchain.org/
https://laozi-testnet6.bandchain.org/api/
https://laozi-testnet6.bandchain.org/
https://laozi-testnet6.bandchain.org/grpc-web
https://laozi-testnet6.bandchain.org/faucet
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Develop Band CLI & REST Endpoints

Band CLI & REST Endpoints
You can get the RPC and REST endpoints from here.

Get Data Source by ID
CLI: bandd query oracle data-source [id] --node ${RPC}

Path: /api/oracle/v1/data_sources/{id} Method: GET

Get Oracle Script by ID
CLI: bandd query oracle-script [id] --node ${RPC}

Path: /api/oracle/v1/oracle_scripts/{id} Method: GET

Get Data Oracle Request by ID
CLI: bandd query request [id] --node ${RPC}

Path: /api/oracle/v1/requests/{id} Method: GET

Get Data Requests by Query Info
Path: /api/oracle/v1/request_search?oracle_script_id={oracleScriptID}&calldata={calldataHex}&min_count=
{minCount}&ask_count={askCount} Method: GET

Get Data Content by Hash
Path: /oracle/v1/data/{data_hash} Method: GET

Get Active Status of a Validator
CLI: bandd query oracle validator [validator-address] --node ${RPC}

Path: /api/oracle/v1/validators/{validator-address} Method: GET

Check Grant of Account on This Validator
Path: /api/oracle/v1/reporter/{validator_address}/{reporter_address} Method: GET

Get Active Validators
CLI: bandd query oracle active-validators --node ${RPC}

Path: /api/oracle/v1/active_validators Method: GET

Get Pending Requests
bandd: bandd query oracle pending-requests [validator-address]

Path: /api/oracle/v1/pending_requests Method: GET

Get Latest Price on Standard Price Reference Database
Path: /oracle/v1/request_prices?ask_count={askCount}&min_count={minCount}&symbols={symbol-1}&symbols=
{symbol-2}&...&symbols={symbols-n} Method: GET

Get BandChain Oracle Governance Parameters
CLI: bandd query oracle params --node ${RPC}

Path: /oracle/v1/params Method: GET

Get BandChain Oracle Counts
CLI: bandd query oracle counts --node ${RPC}

Path: /oracle/v1/counts Method: GET

Previous
« API Endpoints

Next
Overview »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Supported Blockchains

API Endpoints

Band CLI & REST Endpoints

Introduction

Core Concepts

Products

Develop

Developer Guides

Developer Tools

Building on BandChain

Nodes & Validators

Staking

$ bandd query oracle data-source 1 --node ${RPC}

$ curl -X GET "${REST}/oracle/v1/data_sources/1"

{

 "data_source": {

 "owner": "band1m5lq9u533qaya4q3nfyl6ulzqkpkhge9q8tpzs",

 "name": "d1",

 "description": "d1",

 "filename": "c56de9061a78ac96748c83e8a22330accf6ee8ebb499c8525613149a70ec49d0",

 "treasury": "band1m5lq9u533qaya4q3nfyl6ulzqkpkhge9q8tpzs",

 "fee": [

 {

 "denom": "uband",

 "amount": "1"

 }

]

 }

}

$ bandd query oracle oracle-script 37 --node ${RPC}

$ curl -X GET "${REST}/oracle/v1/oracle_scripts/37"

{

 "oracle_script": {

 "owner": "band1lv90l7xf3jyneh046clyfujz2se6xkqgcvzs3p",

 "name": "Band Standard Dataset (Crypto)",

 "description": "",

 "filename": "f0b7d894b25eca60e8519ca3d37b25ba1df2b01058ccf81ee825fa68293fcf16",

 "schema": "{symbols:[string],multiplier:u64}/{rates:[u64]}",

 "source_code_url": ""

 }

}

$ bandd query oracle request 238769 --node ${RPC}

$ curl -X GET "${REST}/oracle/v1/requests/238769"

{

 "request": {

 "oracle_script_id": "37",

 "calldata": "AAAAAQAAAANCVEMAAAAAAA9CQA==",

 "requested_validators": [

 "bandvaloper1kfj48adjsnrgu83lau6wc646q2uf65rf84tzus",

 "bandvaloper1zrl8gmuj3vug7qy7yazzaenl25fvd3s3ussk40"

],

 "min_count": "2",

 "request_height": "358324",

 "request_time": "1632326855",

 "client_id": "from_scan",

 "raw_requests": [

 {

 "external_id": "6",

 "data_source_id": "61",

 "calldata": "QlRD"

 },

 {

 "external_id": "0",

 "data_source_id": "57",

 "calldata": "QlRD"

 },

 {

 "external_id": "3",

 "data_source_id": "62",

 "calldata": "QlRD"

 },

 {

 "external_id": "5",

 "data_source_id": "60",

 "calldata": "aHVvYmlwcm8gQlRD"

 },

 {

 "external_id": "2",

 "data_source_id": "59",

 "calldata": "QlRD"

 },

 {

 "external_id": "4",

 "data_source_id": "60",

 "calldata": "YmluYW5jZSBCVEM="

 },

 {

 "external_id": "9",

 "data_source_id": "60",

 "calldata": "Yml0dHJleCBCVEM="

 },

 {

 "external_id": "7",

 "data_source_id": "60",

 "calldata": "a3Jha2VuIEJUQw=="

 },

 {

 "external_id": "8",

 "data_source_id": "60",

 "calldata": "Yml0ZmluZXggQlRD"

 },

 {

 "external_id": "1",

 "data_source_id": "58",

 "calldata": "QlRD"

 }

],

 "ibc_channel": null,

 "execute_gas": "50000"

 },

 "reports": [

 {

 "validator": "bandvaloper1zrl8gmuj3vug7qy7yazzaenl25fvd3s3ussk40",

 "in_before_resolve": true,

 "raw_reports": [

 {

 "external_id": "0",

 "exit_code": 0,

 "data": "NDMyODEuMTQ0NQo="

 },

 {

 "external_id": "1",

 "exit_code": 0,

 "data": "NDMyMTIuMjEK"

 },

 {

 "external_id": "6",

 "exit_code": 0,

 "data": "NDMxOTEuOAo="

 },

 {

 "external_id": "3",

 "exit_code": 0,

 "data": "NDMyMDUuMjY0OQo="

 },

 {

 "external_id": "2",

 "exit_code": 0,

 "data": "NDM0MjgK"

 },

 {

 "external_id": "9",

 "exit_code": 0,

 "data": "NDMxNzUuMjA3Cg=="

 },

 {

 "external_id": "8",

 "exit_code": 0,

 "data": "NDMxMDYuMAo="

 },

 {

 "external_id": "7",

 "exit_code": 0,

 "data": "NDMxNzAuMgo="

 },

 {

 "external_id": "4",

 "exit_code": 0,

 "data": "NDMzOTMuNDQ3OAo="

 },

 {

 "external_id": "5",

 "exit_code": 0,

 "data": "NDM1OTUuMDk0Ngo="

 }

]

 },

 {

 "validator": "bandvaloper1kfj48adjsnrgu83lau6wc646q2uf65rf84tzus",

 "in_before_resolve": true,

 "raw_reports": [

 {

 "external_id": "2",

 "exit_code": 0,

 "data": "NDM0NDAK"

 },

 {

 "external_id": "3",

 "exit_code": 0,

 "data": "NDMyMDUuMjY0OQo="

 },

 {

 "external_id": "0",

 "exit_code": 0,

 "data": "NDMyODEuMTQ0NQo="

 },

 {

 "external_id": "1",

 "exit_code": 0,

 "data": "NDMyMTIuMjEK"

 },

 {

 "external_id": "7",

 "exit_code": 0,

 "data": "NDMxNzAuMgo="

 },

 {

 "external_id": "6",

 "exit_code": 0,

 "data": "NDMxOTEuOAo="

 },

 {

 "external_id": "8",

 "exit_code": 0,

 "data": "NDMxMDYuMAo="

 },

 {

 "external_id": "9",

 "exit_code": 0,

 "data": "NDMxNzUuMjA3Cg=="

 },

 {

 "external_id": "5",

 "exit_code": 0,

 "data": "NDMzNzkuMjk3NAo="

 },

 {

 "external_id": "4",

 "exit_code": 0,

 "data": "NDMzNjQuMzkzMgo="

 }

]

 }

],

 "result": {

 "client_id": "from_scan",

 "oracle_script_id": "37",

 "calldata": "AAAAAQAAAANCVEMAAAAAAA9CQA==",

 "ask_count": "2",

 "min_count": "2",

 "request_id": "249802",

 "ans_count": "2",

 "request_time": "1632326855",

 "resolve_time": "1632326863",

 "resolve_status": "RESOLVE_STATUS_SUCCESS",

 "result": "AAAAAQAAAAoPcQKq"

 }

}

$ curl -X GET "${REST}/oracle/v1/request_search?oracle_script_id=37&calldata=000000010000000342544300000

{

 "request": {

 "request": {

 "oracle_script_id": "37",

 "calldata": "AAAAAQAAAANCVEMAAAAAAA9CQA==",

 "requested_validators": [

 "bandvaloper1kfj48adjsnrgu83lau6wc646q2uf65rf84tzus",

 "bandvaloper1zrl8gmuj3vug7qy7yazzaenl25fvd3s3ussk40"

],

 "min_count": "2",

 "request_height": "358324",

 "request_time": "1632326855",

 "client_id": "from_scan",

 "raw_requests": [

 {

 "external_id": "6",

 "data_source_id": "61",

 "calldata": "QlRD"

 },

 {

 "external_id": "0",

 "data_source_id": "57",

 "calldata": "QlRD"

 },

 {

 "external_id": "3",

 "data_source_id": "62",

 "calldata": "QlRD"

 },

 {

 "external_id": "5",

 "data_source_id": "60",

 "calldata": "aHVvYmlwcm8gQlRD"

 },

 {

 "external_id": "2",

 "data_source_id": "59",

 "calldata": "QlRD"

 },

 {

 "external_id": "4",

 "data_source_id": "60",

 "calldata": "YmluYW5jZSBCVEM="

 },

 {

 "external_id": "9",

 "data_source_id": "60",

 "calldata": "Yml0dHJleCBCVEM="

 },

 {

 "external_id": "7",

 "data_source_id": "60",

 "calldata": "a3Jha2VuIEJUQw=="

 },

 {

 "external_id": "8",

 "data_source_id": "60",

 "calldata": "Yml0ZmluZXggQlRD"

 },

 {

 "external_id": "1",

 "data_source_id": "58",

 "calldata": "QlRD"

 }

],

 "ibc_channel": null,

 "execute_gas": "50000"

 },

 "reports": [

 {

 "validator": "bandvaloper1zrl8gmuj3vug7qy7yazzaenl25fvd3s3ussk40",

 "in_before_resolve": true,

 "raw_reports": [

 {

 "external_id": "0",

 "exit_code": 0,

 "data": "NDMyODEuMTQ0NQo="

 },

 {

 "external_id": "1",

 "exit_code": 0,

 "data": "NDMyMTIuMjEK"

 },

 {

 "external_id": "6",

 "exit_code": 0,

 "data": "NDMxOTEuOAo="

 },

 {

 "external_id": "3",

 "exit_code": 0,

 "data": "NDMyMDUuMjY0OQo="

 },

 {

 "external_id": "2",

 "exit_code": 0,

 "data": "NDM0MjgK"

 },

 {

 "external_id": "9",

 "exit_code": 0,

 "data": "NDMxNzUuMjA3Cg=="

 },

 {

 "external_id": "8",

 "exit_code": 0,

 "data": "NDMxMDYuMAo="

 },

 {

 "external_id": "7",

 "exit_code": 0,

 "data": "NDMxNzAuMgo="

 },

 {

 "external_id": "4",

 "exit_code": 0,

 "data": "NDMzOTMuNDQ3OAo="

 },

 {

 "external_id": "5",

 "exit_code": 0,

 "data": "NDM1OTUuMDk0Ngo="

 }

]

 },

 {

 "validator": "bandvaloper1kfj48adjsnrgu83lau6wc646q2uf65rf84tzus",

 "in_before_resolve": true,

 "raw_reports": [

 {

 "external_id": "2",

 "exit_code": 0,

 "data": "NDM0NDAK"

 },

 {

 "external_id": "3",

 "exit_code": 0,

 "data": "NDMyMDUuMjY0OQo="

 },

 {

 "external_id": "0",

 "exit_code": 0,

 "data": "NDMyODEuMTQ0NQo="

 },

 {

 "external_id": "1",

 "exit_code": 0,

 "data": "NDMyMTIuMjEK"

 },

 {

 "external_id": "7",

 "exit_code": 0,

 "data": "NDMxNzAuMgo="

 },

 {

 "external_id": "6",

 "exit_code": 0,

 "data": "NDMxOTEuOAo="

 },

 {

 "external_id": "8",

 "exit_code": 0,

 "data": "NDMxMDYuMAo="

 },

 {

 "external_id": "9",

 "exit_code": 0,

 "data": "NDMxNzUuMjA3Cg=="

 },

 {

 "external_id": "5",

 "exit_code": 0,

 "data": "NDMzNzkuMjk3NAo="

 },

 {

 "external_id": "4",

 "exit_code": 0,

 "data": "NDMzNjQuMzkzMgo="

 }

]

 }

],

 "result": {

 "client_id": "from_scan",

 "oracle_script_id": "37",

 "calldata": "AAAAAQAAAANCVEMAAAAAAA9CQA==",

 "ask_count": "2",

 "min_count": "2",

 "request_id": "249802",

 "ans_count": "2",

 "request_time": "1632326855",

 "resolve_time": "1632326863",

 "resolve_status": "RESOLVE_STATUS_SUCCESS",

 "result": "AAAAAQAAAAoPcQKq"

 }

 }

}

$ curl -X GET "${REST}/oracle/v1/data/32ee6262d4a615f2c3ca0589c1c1af79212f24823453cb3f4cfff85b8d338045"

{

 "data": "IyEvdXNyL2Jpbi9lbnYgcHl0aG9uMwoKaW1wb3J0IGpzb24KaW1wb3J0IHVybGxpYi5yZXF1ZXN0CmltcG9ydCBzeXMKC

}

$ bandd query oracle validator bandvaloper1kfj48adjsnrgu83lau6wc646q2uf65rf84tzus --node ${RPC}

$ curl -X GET ${REST}/oracle/v1/validators/bandvaloper1kfj48adjsnrgu83lau6wc646q2uf65rf84tzus

{

 "status": {

 "is_active": true,

 "since": "2021-09-07T14:52:54.598085215Z"

 }

}

$ curl -X GET "${REST}/oracle/v1/reporter/bandvaloper1kfj48adjsnrgu83lau6wc646q2uf65rf84tzus/band1rgcrk9

{

 "is_reporter": true

}

$ bandd query oracle active-validators --node ${RPC}

$ curl -X GET "${REST}/oracle/v1/active_validators"

{

 "validators": [

 {

 "address": "bandvaloper1kfj48adjsnrgu83lau6wc646q2uf65rf84tzus",

 "power": "10132920646"

 },

 {

 "address": "bandvaloper1ajna89zrh4u2kuvc6qqyak7fn9dqphlhuvg0jk",

 "power": "10111034000"

 },

 {

 "address": "bandvaloper1nlepx7xg53fsy6vslrss6adtmtl8a33kusv7fa",

 "power": "10110700071"

 },

 {

 "address": "bandvaloper1274qgg28xkz6f3upx05ftr9zepgmtfgts392dy",

 "power": "10109100000"

 },

 {

 "address": "bandvaloper1jengg99ssg9xq9dycemt782syyr4wwdn4d68s7",

 "power": "10103500000"

 },

 {

 "address": "bandvaloper1zkf9qzs7ayf3uqksxqwve8q693dsdhxk800wvw",

 "power": "10101000000"

 },

 ...

 }

}

$ bandd query oracle pending-requests bandvaloper1kfj48adjsnrgu83lau6wc646q2uf65rf84tzus --node ${RPC}

$ curl -X GET "${REST}/oracle/v1/pending_requests/bandvaloper1kfj48adjsnrgu83lau6wc646q2uf65rf84tzus"

{

 "request_ids": [

 "249764"

]

}

$ curl -X GET "${REST}/oracle/v1/request_prices?symbols=BTC&symbols=ETH&ask_count=4&min_count=3"

{

 "price_results": [

 {

 "symbol": "BTC",

 "multiplier": "100",

 "px": "4822795",

 "request_id": "235866",

 "resolve_time": "1631766659"

 },

 {

 "symbol": "ETH",

 "multiplier": "100",

 "px": "303321",

 "request_id": "245820",

 "resolve_time": "1632163802"

 }

]

}

$ bandd query oracle params --node ${RPC}

$ curl -X GET "${REST}/oracle/v1/params"

{

 "params": {

 "max_raw_request_count": "12",

 "max_ask_count": "16",

 "max_calldata_size": "256",

 "max_report_data_size": "512",

 "expiration_block_count": "100",

 "base_owasm_gas": "20000",

 "per_validator_request_gas": "30000",

 "sampling_try_count": "3",

 "oracle_reward_percentage": "70",

 "inactive_penalty_duration": "600000000000",

 "ibc_request_enabled": true

 }

}

$ bandd query oracle counts --node ${RPC}

$ curl -X GET "${REST}/oracle/v1/counts"

{

 "data_source_count": "98",

 "oracle_script_count": "61",

 "request_count": "249073"

}

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/node-validators/overview
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/develop/supported-blockchains/
https://docs.bandchain.org/develop/api-endpoints
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Nodes & Validators Running a Node Joining Mainnet Getting Started

Getting Started
NOTE

This guide includes full instructions for joining the mainnet either as an archive/full node or a pruned node

Overview
Hardware Requirements

Setup Node

Setup Cosmovisor

Sync Options
Block Sync

State Sync

Snapshot - ChainLayer

Snapshot - HighStakes

Setup daemon service

Setup Yoda

Hardware Requirements
You have to have at least 32 GB of RAM and 4 CPU Cores to run a node in BandChain Laozi mainnet.

Note: Storage size for validators will depend on the level of pruning.

Previous
« Overview

Next
Installation »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Overview

Getting Started

Installation

Become a Validator

Yoda

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Running a Node

Joining Mainnet

Joining Testnet

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/installation#step-1-node-installation
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/installation#step-2-setup-cosmovisor
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/installation#step-3-sync-with-the-network
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/installation#step-3-sync-with-the-network
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/installation#step-3-sync-with-the-network
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/installation#step-3-sync-with-the-network
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/installation#step-3-sync-with-the-network
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/installation#step-4-setup-daemon-service
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/installation#step-5-setup-yoda
https://docs.bandchain.org/node-validators/overview
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/installation
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/node-validators/overview
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/getting-started
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/installation
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/become-validator
https://docs.bandchain.org/node-validators/yoda
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Nodes & Validators Running a Node Joining Testnet Installation

Installation
Step 1: Node Installation

Step 1.1: Node Configuration

This step provides procedures to install BandChain's executable and sync blocks with other peers.

Assuming to run on Ubuntu 22.04 LTS allowing connection on port 26656 for P2P connection.

Before beginning instructions, the following variables should be set to be used in further instructions. Please make sure that these
variables are set every time when using the new shell session.

Step 1.2: Build BandChain Core

The following applications are required to build and run the BandChain node.

make, gcc, g++ (can be obtained from the build-essential package on linux)

wget, curl for downloading files

Install Go 1.19.1

Go binary should be at /usr/local/go/bin and any executable compiled by go install command should be at ~/go/bin

Step 1.3: Clone & Install BandChain Laozi

Step 1.4: Initialize the BandChain and download the genesis file

Step 1.5: Setup seeds and minimum gas price

Step 2: Setup Cosmovisor

PRE-REQUISITE READINGS

Cosmoviser

Cosmovisor is a small process manager for Cosmos SDK application binaries that monitors the governance module via stdout for
incoming chain upgrade proposals

Step 2.1: Setup environment variables

Add required environment variables for Cosmovisor into your profile

Step 2.2: Install and provide binaries

Install Cosmovisor and provide bandd binary to Cosmovisor

Step 3: Sync with the network
There are two main ways to sync a node on the BandChain; Blocksync and State Sync. However, we recommend using State Sync
as it's faster.

Block Sync State Sync

Block Sync

Blocksync is faster than traditional consensus and syncs the chain from genesis by downloading blocks and verifying against the
Merkle tree of validators. For more information see Tendermint's Fastsync Docs

When syncing via Blocksync, node operators will need to provide the binary of each upgrade version for Cosmovisor to switch
when it reaches the upgrade heights.

You can see the detail of genesis and each upgrade in the table below.

Upgrade
name

Upgrade
Height

Upgrade
detail

Go
version

Bandd
version

Binary path

genesis 0 - 1.16.7 v2.3.6 ~/.band/cosmovisor/genesis/bin

v2_4 427000 link 1.19.1 v2.4.1 ~/.band/cosmovisor/upgrades/v2_4/bin

v2_5 5557800 link 1.19.1 v2.5.1 ~/.band/cosmovisor/upgrades/v2_5/bin

Before doing the next step, you have to build and provide each correct bandd binary version to Cosmovisor in the binary path so
that Cosmovisor can automatically switch it correctly.

Step 4: Setup daemon service
We do recommend running the Bandchain node as a daemon, which can be set up using systemctl .

Step 4.1: Create BandChain service

Run the following command to create a new daemon for cosmovisor that runs bandd (This script work on non-root user).

Step 4.2: Register and start bandd service

In this step, we will register and start bandd service

Once bandd service has been started, logs can be queried by running journalctl -u bandd.service -f command. You will
see your node beginning to sync.

Step 5: Setup Yoda

PRE-REQUISITE READINGS

Yoda

Since a subset of validators who are selected for a data request must send the data they received as a transaction of
MsgReportData to BandChain.

Yoda is a program used by BandChain's validator nodes to help automatically query data from data providers by executing data
source script, then submitting the result to fulfill the request. Read more on the Yoda section.

Step 5.1: Installation

Before setting up Yoda, the Lambda function executor need to be set up to execute data sources. If this step has not been done yet,
please follow the instructions on the following pages (select either one of these methods):

AWS Lambda Function

Google Cloud Function

To check Yoda version, use the following command.

Step 5.2: Set the Yoda configurations

Use the command below to config your Yoda, replacing $VARIABLES with their actual values.

Then, add multiple reporter accounts to allow Yoda to submit transactions concurrently.

Lastly, configure the Lambda Executor endpoint to helps running data source scripts and return results to Yoda. More details about
the executor can be found in this section.

Step 5.3: Start Yoda

To start Yoda, it's also recommended to use systemctl .

The first time running Yoda, you will need to register and start yoda services by running the following commands.

After yoda service has been started, logs can be queried by running journalctl -u yoda.service -f command. The log
should be similar to the following log example below. Once verified, you can stop tailing the log by typing Control-C .

Step 5.4: Wait for the latest blocks to be synced

It is imperative to exercise caution and allow adequate time for the newly started BandChain node to synchronize its blocks until it
has reached the latest block. The latest block can be verified on CosmoScan.

Previous
« Getting Started

Next
Become a Validator »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Overview

Getting Started

Installation

Become a Validator

Yoda

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Running a Node

Joining Mainnet

Joining Testnet

Staking

Chain ID of testnet

export CHAIN_ID="band-laozi-testnet6"

Wallet name to be used as validator's account, please change this into your name (no whitespace).

export WALLET_NAME=<YOUR_WALLET_NAME>

Name of your validator node, please change this into your name.

export MONIKER=<YOUR_MONIKER>

Seed and persistent peers for P2P communication

export SEEDS="da61931cbbbb2b62dbe7c470d049126cf365d257@35.213.165.61:26656,fffd730672f04d5dc065fa9afce2e

URL of genesis file for Laozi testnet

export GENESIS_FILE_URL=https://raw.githubusercontent.com/bandprotocol/launch/master/band-laozi-testnet6

Data sources/oracle scripts files

export BIN_FILES_URL=https://raw.githubusercontent.com/bandprotocol/launch/master/band-laozi-testnet6/fi

Faucet endpoint

export FAUCET_URL=https://laozi-testnet6.bandchain.org/faucet

install required tools

sudo apt-get update && \

sudo apt-get upgrade -y && \

sudo apt-get install -y build-essential curl wget jq

Install Go 1.19.1

wget https://go.dev/dl/go1.19.1.linux-amd64.tar.gz

tar xf go1.19.1.linux-amd64.tar.gz

sudo mv go /usr/local/go

Set Go path to $PATH variable

echo "export PATH=$PATH:/usr/local/go/bin:~/go/bin" >> $HOME/.profile

source ~/.profile

cd ~

Clone BandChain Laozi version v2.5.1

git clone https://github.com/bandprotocol/chain

cd chain

git fetch && git checkout v2.5.1

Install binaries to $GOPATH/bin

make install

cd $HOME

Initialize configuration and genesis state

bandd init --chain-id $CHAIN_ID "$MONIKER"

Replace genesis file with our genesis file

wget $GENESIS_FILE_URL -O $HOME/.band/config/genesis.json

Download data sources / oracle scripts files, and store in $HOME/.band/files

wget -qO- $BIN_FILES_URL | tar xvz -C $HOME/.band/

Create new account

bandd keys add $WALLET_NAME

Add seeds to config.toml

sed -E -i \

 "s/seeds = \".*\"/seeds = \"${SEEDS}\"/" \

 $HOME/.band/config/config.toml

Add minimum gas price

sed -E -i \

 "s/^minimum-gas-prices *=.*/minimum-gas-prices = \"0.0025uband\"/" \

 $HOME/.band/config/app.toml

cd ~

echo "export DAEMON_NAME=bandd" >> ~/.profile

echo "export DAEMON_HOME=$HOME/.band" >> ~/.profile

source ~/.profile

Install Cosmovisor

go install github.com/cosmos/cosmos-sdk/cosmovisor/cmd/cosmovisor@v1.0.0

Setup folder and provide bandd binary for Cosmovisor Genesis

mkdir -p $HOME/.band/cosmovisor/genesis/bin

mkdir -p $HOME/.band/cosmovisor/upgrades

cp $HOME/go/bin/bandd $HOME/.band/cosmovisor/genesis/bin

Setup folder and provide bandd binary for Cosmovisor Upgrades

mkdir -p $HOME/.band/cosmovisor/upgrades/v2_5/bin

cp $HOME/go/bin/bandd $DAEMON_HOME/cosmovisor/upgrades/v2_5/bin

Write bandd service file to /etc/systemd/system/bandd.service

export USERNAME=$(whoami)

sudo -E bash -c 'cat << EOF > /etc/systemd/system/bandd.service

[Unit]

Description=BandChain Node Daemon

After=network-online.target

[Service]

Environment="DAEMON_NAME=bandd"

Environment="DAEMON_HOME=${HOME}/.band"

Environment="DAEMON_RESTART_AFTER_UPGRADE=true"

Environment="DAEMON_ALLOW_DOWNLOAD_BINARIES=false"

Environment="UNSAFE_SKIP_BACKUP=true"

User=$USERNAME

ExecStart=${HOME}/go/bin/cosmovisor start

Restart=always

RestartSec=3

LimitNOFILE=4096

[Install]

WantedBy=multi-user.target

EOF'

Register bandd to systemctl

sudo systemctl enable bandd

Start bandd daemon

sudo systemctl start bandd

yoda version

v2.5.1

rm -rf ~/.yoda # clear old config if exist

yoda config chain-id $CHAIN_ID

yoda config node http://localhost:26657

yoda config broadcast-timeout "5m"

yoda config rpc-poll-interval "1s"

yoda config max-try 5

yoda config validator $(bandd keys show $WALLET_NAME -a --bech val)

yoda keys add REPORTER_1

yoda keys add REPORTER_2

yoda keys add REPORTER_3

yoda keys add REPORTER_4

yoda keys add REPORTER_5

export EXECUTOR_URL=<YOUR_EXECUTOR_URL>

yoda config executor "rest:${EXECUTOR_URL}?timeout=10s"

Write yoda service to /etc/systemd/system/yoda.service

export USERNAME=$(whoami)

sudo -E bash -c 'cat << EOF > /etc/systemd/system/yoda.service

[Unit]

Description=Yoda Daemon

After=network-online.target

[Service]

User=$USERNAME

ExecStart=/home/$USERNAME/go/bin/yoda run

Restart=always

RestartSec=3

LimitNOFILE=4096

[Install]

WantedBy=multi-user.target

EOF'

Register yoda to systemctl

sudo systemctl enable yoda

Start yoda daemon

sudo systemctl start yoda

... systemd[...]: Started Yoda Daemon.

... yoda[...]: I[...] ⭐ Creating HTTP client with node URI: tcp://localhost:26657

... yoda[...]: I[...] 🚀 Starting WebSocket subscriber

... yoda[...]: I[...] 👂 Subscribing to events with query: tm.event = 'Tx'...

Band Protocol Search K

https://docs.bandchain.org/
https://docs.cosmos.network/main/tooling/cosmovisor
https://docs.tendermint.com/v0.34/tendermint-core/fast-sync.html
https://medium.com/bandprotocol/bandchain-v2-4-upgrade-70dbb896618c
https://laozi-testnet6.cosmoscan.io/proposal/6
https://docs.bandchain.org/node-validators/yoda
https://docs.bandchain.org/core-concepts/protocol-messages#msgreportdata
https://docs.bandchain.org/node-validators/yoda
https://github.com/bandprotocol/data-source-runtime/wiki/Setup-Yoda-Executor-Using-AWS-Lambda
https://github.com/bandprotocol/data-source-runtime/wiki/Setup-Yoda-Executor-Using-Google-Cloud-Function
https://docs.bandchain.org/develop/developer-guides/remote-data-source-executor
https://laozi-testnet6.cosmoscan.io/blocks
https://docs.bandchain.org/node-validators/run-node/joining-testnet/getting-started
https://docs.bandchain.org/node-validators/run-node/joining-testnet/become-validator
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/node-validators/overview
https://docs.bandchain.org/node-validators/run-node/joining-testnet/getting-started
https://docs.bandchain.org/node-validators/run-node/joining-testnet/installation
https://docs.bandchain.org/node-validators/run-node/joining-testnet/become-validator
https://docs.bandchain.org/node-validators/yoda
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Nodes & Validators Running a Node Joining Mainnet Become a Validator

Become a Validator
This guide will show you how to register the running node as a validator. So that the program can fulfill the data on BandChain.

Step 1: Fund the Validator Account

Then fund tokens into this account ready for staking.

Step 2: Stake Tokens with the Validator Account

Registered validators can be found on CosmoScan.

Step 3: Register Reporters and Become Oracle Provider
Yoda contains multiple reporters. You will need to register the reporters to help the validator submit transactions of reporting data.

Firstly, reporter accounts must be created on BandChain by supplying a small amount of BAND tokens.

Secondly, register reporters to the validator, so that oracle requests for validator can be assigned to the reporters.

Finally, activate the validator to become an oracle provider

If all procedures are successful, then the oracle provider status for the validator should be active .

And now you have become a validator on BandChain Laozi mainnet.

Previous
« Installation

Next
Getting Started »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Overview

Getting Started

Installation

Become a Validator

Yoda

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Running a Node

Joining Mainnet

Joining Testnet

Staking

bandd keys show $WALLET_NAME

bandd tx staking create-validator \

 --amount 1000000uband \

 --commission-max-change-rate 0.01 \

 --commission-max-rate 0.2 \

 --commission-rate 0.1 \

 --from $WALLET_NAME \

 --min-self-delegation 1 \

 --moniker "$MONIKER" \

 --pubkey $(bandd tendermint show-validator) \

 --chain-id $CHAIN_ID

Send 1uband from a wallet to each reporter.

bandd tx multi-send 1uband $(yoda keys list -a) \

 --from $WALLET_NAME \

 --chain-id $CHAIN_ID

bandd tx oracle add-reporters $(yoda keys list -a) \

 --from $WALLET_NAME \

 --chain-id $CHAIN_ID

bandd tx oracle activate \

 --from $WALLET_NAME \

 --chain-id $CHAIN_ID

bandd query oracle validator $(bandd keys show -a $WALLET_NAME --bech val)

{

"is_active": true,

"since": ...

}

Band Protocol Search K

https://docs.bandchain.org/
https://cosmoscan.io/validators
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/installation
https://docs.bandchain.org/node-validators/run-node/joining-testnet/getting-started
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/node-validators/overview
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/getting-started
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/installation
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/become-validator
https://docs.bandchain.org/node-validators/yoda
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Nodes & Validators Running a Node Joining Testnet Getting Started

Getting Started
NOTE

This guide includes full instructions for joining the testnet either as an archive/full node or a pruned node

Overview
Hardware Requirements

Setup Node

Setup Cosmovisor

Sync Options
Block Sync

State Sync

Snapshot - ChainLayer

Snapshot - HighStakes

Setup daemon service

Setup Yoda

Hardware Requirements
You have to have at least 16 GB of RAM and 4 CPU Cores to run a node in BandChain Laozi testnet.

Note: Storage size for validators will depend on the level of pruning.

Previous
« Become a Validator

Next
Installation »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Overview

Getting Started

Installation

Become a Validator

Yoda

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Running a Node

Joining Mainnet

Joining Testnet

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/node-validators/run-node/joining-testnet/installation#step-1-node-installation
https://docs.bandchain.org/node-validators/run-node/joining-testnet/installation#step-2-setup-cosmovisor
https://docs.bandchain.org/node-validators/run-node/joining-testnet/installation#step-3-sync-with-the-network
https://docs.bandchain.org/node-validators/run-node/joining-testnet/installation#step-3-sync-with-the-network
https://docs.bandchain.org/node-validators/run-node/joining-testnet/installation#step-3-sync-with-the-network
https://docs.bandchain.org/node-validators/run-node/joining-testnet/installation#step-3-sync-with-the-network
https://docs.bandchain.org/node-validators/run-node/joining-testnet/installation#step-3-sync-with-the-network
https://docs.bandchain.org/node-validators/run-node/joining-testnet/installation#step-4-setup-daemon-service
https://docs.bandchain.org/node-validators/run-node/joining-testnet/installation#step-5-setup-yoda
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/become-validator
https://docs.bandchain.org/node-validators/run-node/joining-testnet/installation
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/node-validators/overview
https://docs.bandchain.org/node-validators/run-node/joining-testnet/getting-started
https://docs.bandchain.org/node-validators/run-node/joining-testnet/installation
https://docs.bandchain.org/node-validators/run-node/joining-testnet/become-validator
https://docs.bandchain.org/node-validators/yoda
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Nodes & Validators Running a Node Joining Mainnet Installation

Installation
Step 1: Node Installation

Step 1.1: Node Configuration

This step provides procedures to install BandChain's executable and sync blocks with other peers.

Assuming to run on Ubuntu 22.04 LTS allowing connection on port 26656 for P2P connection.

Before beginning instructions, the following variables should be set to be used in further instructions. Please make sure that these
variables are set every time when using the new shell session.

The following applications are required to build and run the BandChain node.

make, gcc, g++ (can be obtained from the build-essential package on linux)

wget, curl for downloading files

Install Go 1.19.1

Go binary should be at /usr/local/go/bin and any executable compiled by go install command should be at ~/go/bin

Step 1.2: Clone & Install BandChain Laozi

Step 1.3: Initialize the BandChain and download the genesis file

Step 1.4: Configure general settings

This can be done by editing fields in $HOME/.band/config/config.toml and $HOME/.band/config/app.toml .

For a list of seeds and peers, please see here.

For minimum-gas-prices, you can set any number but the recommendation is 0.0025uband (according to this proposal).

Step 2: Setup Cosmovisor

PRE-REQUISITE READINGS

Cosmoviser

Cosmovisor is a small process manager for Cosmos SDK application binaries that monitors the governance module via stdout for
incoming chain upgrade proposals

Step 2.1: Setup environment variables

Add required environment variables for Cosmovisor into your profile

Step 2.2: Install and provide binaries

Install Cosmovisor and provide bandd binary to Cosmovisor

Step 3: Sync with the network
There are three main ways to sync a node on the BandChain; Blocksync, State Sync, and Snapshots.

INFO

It is highly recommended to use State Sync or Snapshots as it's faster. However, if you want to use Blocksync, please read the
following section.

Block Sync State Sync Snapshot - ChainLayer Snapshot - HighStakes

Block Sync

Blocksync is faster than traditional consensus and syncs the chain from genesis by downloading blocks and verifying against the
Merkle tree of validators. For more information see Tendermint's Fastsync Docs

When syncing via Blocksync, node operators will need to provide the binary of each upgrade version for Cosmovisor to switch
when it reaches the upgrade heights.

You can see the detail of genesis and each upgrade in the table below.

Upgrade
name

Upgrade
Height

Upgrade
detail

Go
version

Bandd
version

Binary path

genesis 0 - 1.16.7 v2.3.6 ~/.band/cosmovisor/genesis/bin

v2_4 11525000 link 1.19.1 v2.4.1 ~/.band/cosmovisor/upgrades/v2_4/bin

v2_5 16562500 link 1.19.1 v2.5.1 ~/.band/cosmovisor/upgrades/v2_5/bin

Before doing the next step, you have to build and provide each correct bandd binary version to Cosmovisor in the binary path so
that Cosmovisor can automatically switch it correctly.

Step 4: Setup daemon service
We do recommend running the Bandchain node as a daemon, which can be set up using systemctl .

Step 4.1: Create BandChain service

Run the following command to create a new daemon for cosmovisor that runs bandd (This script work on non-root user).

Step 4.2: Register and start bandd service

In this step, we will register and start bandd service

Once bandd service has been started, logs can be queried by running journalctl -u bandd.service -f command. You will
see your node beginning to sync.

Step 5: Setup Yoda

PRE-REQUISITE READINGS

Yoda

Yoda is a program used by BandChain's validator nodes to help automatically query data from data providers by executing data
source script, then submitting the result to fulfill the request.

Since a subset of validators who are selected for a data request must send the data they received as a transaction of
MsgReportData to BandChain.

Step 5.1: Installation

Before setting up Yoda, the Lambda function executor need to be set up to execute data sources. If this step has not been done yet,
please follow the instructions on the following pages (select either one of these methods):

AWS Lambda Function

Google Cloud Function

To check Yoda version, use the following command.

Step 5.2: Set the Yoda configurations

Use the command below to config your Yoda, replacing $VARIABLES with their actual values.

Then, add multiple reporter accounts to allow Yoda to submit transactions concurrently.

Lastly, configure the Lambda Executor endpoint to helps running data source scripts and return results to Yoda. More details about
the executor can be found in this section.

Step 5.3: Start Yoda

To start Yoda, it's also recommended to use systemctl .

The first time running Yoda, you will need to register and start yoda services by running the following commands.

After yoda service has been started, logs can be queried by running journalctl -u yoda.service -f command. The log
should be similar to the following log example below. Once verified, you can stop tailing the log by typing Control-C .

Step 5.4: Wait for the latest blocks to be synced

It is imperative to exercise caution and allow adequate time for the newly started BandChain node to synchronize its blocks until it
has reached the latest block. The latest block can be verified on CosmoScan.

Previous
« Getting Started

Next
Become a Validator »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Overview

Getting Started

Installation

Become a Validator

Yoda

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Running a Node

Joining Mainnet

Joining Testnet

Staking

Chain ID of Laozi Mainnet

export CHAIN_ID=laozi-mainnet

Wallet name to be used as validator's account, please change this into your name (no whitespace).

export WALLET_NAME=<YOUR_WALLET_NAME>

Name of your validator node, please change this into your name.

export MONIKER=<YOUR_MONIKER>

URL of genesis file for Laozi Mainnet

export GENESIS_FILE_URL=https://raw.githubusercontent.com/bandprotocol/launch/master/laozi-mainnet/genes

Data sources/oracle scripts files

export BIN_FILES_URL=https://raw.githubusercontent.com/bandprotocol/launch/master/laozi-mainnet/files.ta

install required tools

sudo apt-get update && \

sudo apt-get upgrade -y && \

sudo apt-get install -y build-essential curl wget jq

Install Go 1.19.1

wget https://go.dev/dl/go1.19.1.linux-amd64.tar.gz

tar xf go1.19.1.linux-amd64.tar.gz

sudo mv go /usr/local/go

Set Go path to $PATH variable

echo "export PATH=$PATH:/usr/local/go/bin:~/go/bin" >> $HOME/.profile

source ~/.profile

cd ~

Clone BandChain Laozi version v2.5.1

git clone https://github.com/bandprotocol/chain

cd chain

git fetch && git checkout v2.5.1

Install binaries to $GOPATH/bin

make install

cd $HOME

Initialize configuration and genesis state

bandd init --chain-id $CHAIN_ID "$MONIKER"

Replace genesis file with our genesis file

wget $GENESIS_FILE_URL -O $HOME/.band/config/genesis.json

Download data sources / oracle scripts files, and store in $HOME/.band/files

wget -qO- $BIN_FILES_URL | tar xvz -C $HOME/.band/

Create new account

bandd keys add $WALLET_NAME

List of seeds and persistent peers you want to add

e.g. SEEDS="8d42bdcb6cced03e0b67fa3957e4e9c8fd89015a@34.87.86.195:26656,543e0cab9c3016a0e99775443a17bc

export SEEDS="<SEED>,<SEED>,..."

export PERSISTENT_PEERS="<PERSISTENT_PEER>,<PERSISTENT_PEER>,..."

Add seeds and persistent peers to config.toml

sed -E -i \

 "s/seeds = \".*\"/seeds = \"${SEEDS}\"/" \

 $HOME/.band/config/config.toml

sed -E -i \

 "s/persistent_peers = \".*\"/persistent_peers = \"${PERSISTENT_PEERS}\"/" \

 $HOME/.band/config/config.toml

Add minimum gas price

sed -E -i \

 "s/^minimum-gas-prices *=.*/minimum-gas-prices = \"0.0025uband\"/" \

 $HOME/.band/config/app.toml

cd ~

echo "export DAEMON_NAME=bandd" >> ~/.profile

echo "export DAEMON_HOME=$HOME/.band" >> ~/.profile

source ~/.profile

Install Cosmovisor

go install github.com/cosmos/cosmos-sdk/cosmovisor/cmd/cosmovisor@v1.0.0

Setup folder and provide bandd binary for Cosmovisor Genesis

mkdir -p $HOME/.band/cosmovisor/genesis/bin

mkdir -p $HOME/.band/cosmovisor/upgrades

cp $HOME/go/bin/bandd $HOME/.band/cosmovisor/genesis/bin

Setup folder and provide bandd binary for Cosmovisor Upgrades

mkdir -p $HOME/.band/cosmovisor/upgrades/v2_5/bin

cp $HOME/go/bin/bandd $DAEMON_HOME/cosmovisor/upgrades/v2_5/bin

Write bandd service file to /etc/systemd/system/bandd.service

export USERNAME=$(whoami)

sudo -E bash -c 'cat << EOF > /etc/systemd/system/bandd.service

[Unit]

Description=BandChain Node Daemon

After=network-online.target

[Service]

Environment="DAEMON_NAME=bandd"

Environment="DAEMON_HOME=${HOME}/.band"

Environment="DAEMON_RESTART_AFTER_UPGRADE=true"

Environment="DAEMON_ALLOW_DOWNLOAD_BINARIES=false"

Environment="UNSAFE_SKIP_BACKUP=true"

User=$USERNAME

ExecStart=${HOME}/go/bin/cosmovisor start

Restart=always

RestartSec=3

LimitNOFILE=4096

[Install]

WantedBy=multi-user.target

EOF'

Register bandd to systemctl

sudo systemctl enable bandd

Start bandd daemon

sudo systemctl start bandd

yoda version

v2.5.1

rm -rf ~/.yoda # clear old config if exist

yoda config chain-id $CHAIN_ID

yoda config node http://localhost:26657

yoda config broadcast-timeout "5m"

yoda config rpc-poll-interval "1s"

yoda config max-try 5

yoda config validator $(bandd keys show $WALLET_NAME -a --bech val)

yoda keys add REPORTER_1

yoda keys add REPORTER_2

yoda keys add REPORTER_3

yoda keys add REPORTER_4

yoda keys add REPORTER_5

export EXECUTOR_URL=<YOUR_EXECUTOR_URL>

yoda config executor "rest:${EXECUTOR_URL}?timeout=10s"

Write yoda service to /etc/systemd/system/yoda.service

export USERNAME=$(whoami)

sudo -E bash -c 'cat << EOF > /etc/systemd/system/yoda.service

[Unit]

Description=Yoda Daemon

After=network-online.target

[Service]

User=$USERNAME

ExecStart=/home/$USERNAME/go/bin/yoda run

Restart=always

RestartSec=3

LimitNOFILE=4096

[Install]

WantedBy=multi-user.target

EOF'

Register yoda to systemctl

sudo systemctl enable yoda

Start yoda daemon

sudo systemctl start yoda

... systemd[...]: Started Yoda Daemon.

... yoda[...]: I[...] ⭐ Creating HTTP client with node URI: tcp://localhost:26657

... yoda[...]: I[...] 🚀 Starting WebSocket subscriber

... yoda[...]: I[...] 👂 Subscribing to events with query: tm.event = 'Tx'...

Band Protocol Search K

https://docs.bandchain.org/
https://github.com/bandprotocol/launch/tree/master/laozi-mainnet
https://www.cosmoscan.io/proposal/10
https://docs.cosmos.network/main/tooling/cosmovisor
https://docs.tendermint.com/v0.34/tendermint-core/fast-sync.html
https://medium.com/bandprotocol/bandchain-v2-4-upgrade-70dbb896618c
https://www.cosmoscan.io/proposal/11
https://docs.bandchain.org/node-validators/yoda
https://docs.bandchain.org/core-concepts/protocol-messages#msgreportdata
https://github.com/bandprotocol/data-source-runtime/wiki/Setup-Yoda-Executor-Using-AWS-Lambda
https://github.com/bandprotocol/data-source-runtime/wiki/Setup-Yoda-Executor-Using-Google-Cloud-Function
https://docs.bandchain.org/develop/developer-guides/remote-data-source-executor
https://cosmoscan.io/blocks
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/getting-started
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/become-validator
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/node-validators/overview
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/getting-started
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/installation
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/become-validator
https://docs.bandchain.org/node-validators/yoda
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Nodes & Validators Running a Node Joining Testnet Become a Validator

Become a Validator
This step provides procedures to register the node as a validator.

Step 1: Create a new Account to be Used as Validator

Step 2: Stake Tokens with the Validator Account

After becoming a validator, the validator node will be shown on Block Explorer here.

Step 3: Register Reporters and Become Oracle Provider

Now, Yoda has multiple reporters. To grant the reporters be able to report data for the validator, the following commands should be
run.

Firstly, reporter accounts must be created on Bandchain by supplying some small amount of BAND tokens.

Secondly, grant all reporters for the validator, so that oracle requests for validator can be sent by the reporters.

Finally, activate the validator to become an oracle provider

If all procedures are successful, then the oracle provider status for the validator should be active .

And now you have become a validator on Bandchain Laozi testnet.

Previous
« Installation

Next
Yoda »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Overview

Getting Started

Installation

Become a Validator

Yoda

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Running a Node

Joining Mainnet

Joining Testnet

Staking

Request new coins from faucet

curl --location --request POST "${FAUCET_URL}" \

--header 'Content-Type: application/json' \

--data-raw "{

 \"address\": \"$(bandd keys show $WALLET_NAME -a)\"

}"

bandd tx staking create-validator \

 --amount 1000000uband \

 --commission-max-change-rate 0.01 \

 --commission-max-rate 0.2 \

 --commission-rate 0.1 \

 --from $WALLET_NAME \

 --gas-prices 0.0025uband \

 --min-self-delegation 1 \

 --moniker "$MONIKER" \

 --pubkey $(bandd tendermint show-validator) \

 --chain-id $CHAIN_ID

Send 1uband from a wallet to each reporter.

bandd tx multi-send 1uband $(yoda keys list -a) \

 --from $WALLET_NAME \

 --gas-prices 0.0025uband \

 --chain-id $CHAIN_ID

bandd tx oracle add-reporters $(yoda keys list -a) \

 --from $WALLET_NAME \

 --gas-prices 0.0025uband \

 --chain-id $CHAIN_ID

bandd tx oracle activate \

 --from $WALLET_NAME \

 --gas-prices 0.0025uband \

 --chain-id $CHAIN_ID

bandd query oracle validator $(bandd keys show -a $WALLET_NAME --bech val)

{

"is_active": true,

"since": ...

}

Band Protocol Search K

https://docs.bandchain.org/
https://laozi-testnet6.cosmoscan.io/validators
https://docs.bandchain.org/node-validators/run-node/joining-testnet/installation
https://docs.bandchain.org/node-validators/yoda
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/node-validators/overview
https://docs.bandchain.org/node-validators/run-node/joining-testnet/getting-started
https://docs.bandchain.org/node-validators/run-node/joining-testnet/installation
https://docs.bandchain.org/node-validators/run-node/joining-testnet/become-validator
https://docs.bandchain.org/node-validators/yoda
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Nodes & Validators Yoda

Yoda
Yoda is a program that is used by BandChain's validator nodes to automatically fulfill data for oracle requests.

Since a subset of validators who are selected for a data request must return the data they received from running the specified data
source(s), each of them have to send a MsgReportData transaction to BandChain in order to fulfill their duty.

Although the transaction can be sent manually by user, it is not convenient, and would be rather time-consuming. Furthermore, most
data providers already have APIs that can be used to query data automatically by another software. Therefore, we have developed
Yoda to help validators to automatically query data from data providers by executing data source script, then submit the result to
fulfill the request.

Yoda's execution flow consists of the follwing steps

1. Listening on incoming oracle requests and filter them.

2. Loading data source script based on received requests.

3. Execute the data source to get a result from data provider.

4. Collect result into messages and store in local pending list.

5. Send transaction based on pending list to fulfill oracle requests.

Yoda usually run as a process alongside the main BandChain daemon process. It holds another wallet (private key) account called a
reporter account , which is owned by validator account. The reporter account is used to help validator submit transactions of
reporting data.

The reason of using reporter account instead of validator account is to maintain security of validator's private key. If Yoda's server is
compromised, then reporter's private key may be exposed but not validator's private key. Moreover, most validators use hardware
wallets, which is not designed for server that runs 24/7.

It's mechanism is designed as event-driven approach, which handle tasks concurrently to improve performance.

Yoda's diagram

The image above represents high-level mechanism of Yoda.

The following section describes mechanism of the Yoda in each step.

1. Subscribe to Events and Filter Only Oracle Requests that should be responsible to

Firstly, Yoda listen to newly created transaction events occurred on BandChain via Tendermint's RPC Websocket. Then, it is
extracted to check whether there is any event of newly created oracle request inside the transaction. If the event is found, then it is
filtered to only select request that is assigned to the validator that yoda is responsible for.

2. Extract Oracle Request Events and Load Data Source Scripts

After oracle request events have been filtered, they are extracted to collect list of data source and calldata that need to be executed
for this request.

Then, We have to also provide information for verifying request, which are as follow

Chain ID of the BandChain

Validator address

Oracle request ID

Data source's external ID (indicated by request)

Signature of above content signed by Yoda's reporter account

Public key of Yoda's reporter account for verify signature

These information can be used by data provider to ensure that incoming requests do really need the result to fulfill oracle requests
and not to be used elsewhere or by someone else other than assigned validators.

3. Execute Data Source on Executor

Yoda executes those data source scripts by sending their script files along with necessary information for verifying oracle request to
Yoda's executor environment, which helps running data source scripts and returns results to Yoda. More information about data
source executor can be found in this section.

4. Collect Results from Executor, Add to Local Pending List

Once results have been returned from Yoda's executor, Yoda constructs MsgReportData based on given answers and append to a
pending message queue. As submitting a transaction takes some time and it is impossible to sign multiple transactions at the same
time, the pending list can be accumulated.

5. Pack unsend ReportMsg(s) to a transaction and send to BandChain node

Once Yoda's reporter account is ready to sign a transaction, as a transaction can contains multiple messages, all messages in the
pending list will be taken to construct the new transaction, then Yoda sign the transaction and send to BandChain to fulfill target
oracle requests.

Previous
« Become a Validator

Next
Introduction »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Overview

Yoda

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Running a Node

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/core-concepts/protocol-messages#msgreportdata
https://docs.bandchain.org/develop/developer-guides/remote-data-source-executor
https://docs.bandchain.org/node-validators/run-node/joining-testnet/become-validator
https://docs.bandchain.org/staking/introduction
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/node-validators/overview
https://docs.bandchain.org/node-validators/yoda
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Staking Introduction

Introduction
What is staking
In a Proof-of-Stake (PoS) blockchain protocol, block creation is reliant on validators. These entities bond the native asset (in this
case, BAND) to the network and take part in the consensus protocol by broadcasting cryptographic signatures, or votes, to agree
upon the next block. In exchange for their contributions to the network, validators are awarded transaction fees. These fees are then
distributed proportionately among the stakeholders who have bonded their BAND. Staking is an integral part of PoS protocols as it
motivates honest participation in the network and bolsters the network's security.

Validators are required to operate and maintain a software referred to as a node (see Running a node for further details). However,
you have the option to delegate your BAND to a validator and receive a portion of the staking rewards in line with your staked
amount.

Risks of Slashing
There must be some penalty imposed on the validators for any intentional or unintentional deviation from the sanctioned protocol.
Some evidence is immediately admissible, such as a double-sign at the same height and round, or a violation of “prevote-the-lock”
(a rule of the Tendermint consensus protocol). Such evidence will result in the validator losing its good standing and its bonded
atoms as well its proportionate share of tokens in the reserve pool – collectively called its “stake” – will get slashed.

The slashing mechanism is a fundamental component of PoS protocols, including the Band Protocol. It acts as a preventive measure
against malicious activities and violations within the network. Validators, by staking their BAND tokens, are motivated to operate in
the best interest of the network. However, if they contravene these expectations, they stand to lose a part or all of their staked
tokens

There are two primary conditions under which a validator can get slashed.

1. Double Signing:

Double signing refers to the act of a validator signing two blocks at the same height on two different chains. This is considered a
severe violation of the network protocol, and it can cause instability and uncertainty in the blockchain.

To deter this, Band Protocol imposes a significant penalty. If a validator is caught double signing, they face a slashing penalty of 5%
of their staked and delegated BAND tokens.

What's critical to understand is that the penalty isn't limited to validators. If you've delegated your BAND tokens to a validator, and
they engage in double signing, your staked tokens are also at risk. The 5% penalty also applies to the BAND tokens you've staked
with that validator.

2. Downtime:

A robust and reliable network necessitates active and consistent participation from validators. Validators in the Band Protocol have a
duty to be online and operational to validate transactions and add new blocks to the blockchain.

If a validator is offline and misses a certain number of blocks, in this case, 30,000 blocks, they face a downtime penalty. A slashing
penalty of 0.01% is imposed, and the validator is put into jail. This means they are prevented from signing any further blocks until
they can prove they're back online and operational.

Again, if you've delegated your tokens to a validator and they're jailed due to downtime, your staked tokens also face the 0.01%
slashing penalty.

These slashing risks underline the importance of due diligence when choosing a validator. You need to assess their security
measures, reliability, and track record to ensure you don't inadvertently put your staked tokens at risk. Moreover, it highlights the
importance of understanding the technicalities and rules of the protocol before staking or delegating your BAND tokens.

How to choose a validator
On the Validators page, you will encounter a table that outlines various validators. This table is made up of 6 columns:

Column 1 — Rank: Represents the sequence of validators based on the number of tokens bonded to each validator.

Column 2 — Validator: Name of validator

Column 3 — Voting Power: Denotes the number of tokens bonded to a particular validator.

Column 4 — Commission: Every validator charge commission on the rewards earned by the delegators on their behalf.

Column 5 — Uptime: Demonstrates the proportion of blocks a validator has been active within the last 100 blocks.

Column 6 — Oracle Status: shows that is this validator working as an oracle provider or not.

There are three factors you should consider when choosing a validator:

1. Voting Power: It's critical to distribute Voting Power across all validators for network security. You can contribute to strengthening
the BandChain network by choosing validators with lower voting power.

2. Commission: A lower commission implies that you'll retain more rewards.

3. Uptime: As we discussed earlier in the Staking Risks section, validators with lower uptime are at a greater risk of getting
slashed.

In conclusion, the decision on which validator to stake with requires careful consideration of these factors.

Previous
« Yoda

Next
Delegate »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Delegate

Undelegate

Redelegate

Claim Rewards

Reinvest

Staking FAQ

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/node-validators/overview
https://docs.bandchain.org/node-validators/yoda
https://docs.bandchain.org/staking/delegate
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/staking/introduction
https://docs.bandchain.org/staking/delegate
https://docs.bandchain.org/staking/undelegate
https://docs.bandchain.org/staking/redelegate
https://docs.bandchain.org/staking/claim
https://docs.bandchain.org/staking/reinvest
https://docs.bandchain.org/staking/faq
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Staking Delegate

Delegate
Participation in BandChain doesn't require you to be a validator. Instead, you can delegate BAND tokens to any validator and earn a
share of the fees and rewards associated with block creation. However, it's important to note that staking with a validator involves
certain risks. Make sure to familiarize yourself with the potential dangers related to validator staking

This tutorial will assist you in staking your BAND tokens easily and efficiently

Step 0 — Before you start

Download and install the newest version of Ledger Live on your desktop machine.

Update your Ledger device to the newest firmware.

Install the latest version of the Cosmos App on your Ledger device.

Have some BAND on BandChain mainnet

Step 1 — Navigate to Cosmoscan

To begin, assume that you have BAND on the BandChain, then navigate to the website cosmoscan.io. This website is our official
block explorer and is a crucial tool for interacting with the BandChain.

Step 2 — Make sure you in the right site

Once you're on the site, make sure the url is https://www.cosmoscan.io and ensure that you're operating on the mainnet. You
can verify this by locating the network information on the top-left corner of the website interface. The mainnet is the primary network
for transacting tokens.

Step 3 — Click to connect wallet

Next, you will need to connect your wallet to the website. click the button Connect Wallet on the right of navigation bar to initiate this
process.

Step 4 — Connect with ledger

Upon clicking the Connect Wallet button, a pop-up window will appear. At the moment, our website only supports wallet connections
via the Ledger device utilizing the Cosmos Application. Please ensure your Ledger device is properly set up, the Cosmos application
is open on your device, and it's ready for the connection process.

Once you've successfully connected your Ledger device, you'll see an account button, as shown in the image below.

Step 5 — Navigate to Validators page

Proceed to the validators page by clicking on Validator located in the navigation bar. or navigate to Validators. Once on the validators
page, you'll see a list of all validators that you can choose to delegate your tokens to.

Step 6 — Choose a validator

Choose a validator that you wish to delegate to. This decision should be based on various factors (check out How to choose a
validator section) Upon clicking on a validator, you'll be presented with specific information about them. This typically includes their
identity, performance statistics, commission rates, and more.

Step 7 — Delegate to validator

Scroll down to the Your Delegation Info section. This area provides detailed information about your current and past delegations with
the selected validator. You'll notice a Delegate button within this section – click on it to initiate the delegation process.

Upon clicking Delegate, a new window will pop up. Enter the amount of BAND tokens you wish to stake in the provided field, and
then click Next.

At this point, you'll see transaction details for your delegation. Review the information, and if everything is ok, click Broadcast.

Voila! You have successfully delegated your BAND tokens. Congratulations on taking this step in staking and earning rewards on
your tokens!

To verify your transaction, navigate back to your Account Details page. To view detailed information about your account, click the
drop-down arrow, then click your address prefixed with band to navigate to your account details page.

you'll be able to see the updated status showing that you've delegated to your chosen validator.

Next — Manage your BAND stake
Once you have staked your BAND, you have 4 options to consider.

Undelegate

Redelegate

Claim Rewards

Reinvest

Previous
« Introduction

Next
Undelegate »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Delegate

Undelegate

Redelegate

Claim Rewards

Reinvest

Staking FAQ

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/staking/introduction#risks-of-slashing
https://www.cosmoscan.io/
https://www.cosmoscan.io/validators
https://docs.bandchain.org/staking/introduction#how-to-choose-a-validator
https://docs.bandchain.org/staking/introduction
https://docs.bandchain.org/staking/undelegate
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/staking/introduction
https://docs.bandchain.org/staking/delegate
https://docs.bandchain.org/staking/undelegate
https://docs.bandchain.org/staking/redelegate
https://docs.bandchain.org/staking/claim
https://docs.bandchain.org/staking/reinvest
https://docs.bandchain.org/staking/faq
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Staking Undelegate

Undelegate
Once you delegate your BAND, you can later undelegate to receive your BAND back. However, there is a 21-day unbonding period
before the BAND amount becomes available.

we will show you how to undelegate

INFO

This guide necessitates that you first familiarize yourself with the Delegate document before proceeding.

Step 1 — Select the Validator you want to undelegate

Navigate to your account details page. you will see the Delegation section. then click Undelegate on your selected validator

Step 2 — Enter BAND amount

Undelegate pop-up window will be shown. enter BAND amount that you want to undelegate and click Next

Step 3 — Check Transaction details

check if transaction detail is valid then click Broadcast

Well done! Your BAND has been successfully undelegated.

Step 4 — Check Unbonding tab

In the Unbonding tab, the date when your BAND will be available will be displayed.

Previous
« Delegate

Next
Redelegate »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Delegate

Undelegate

Redelegate

Claim Rewards

Reinvest

Staking FAQ

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/staking/delegate
https://docs.bandchain.org/staking/delegate
https://docs.bandchain.org/staking/redelegate
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/staking/introduction
https://docs.bandchain.org/staking/delegate
https://docs.bandchain.org/staking/undelegate
https://docs.bandchain.org/staking/redelegate
https://docs.bandchain.org/staking/claim
https://docs.bandchain.org/staking/reinvest
https://docs.bandchain.org/staking/faq
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Staking Redelegate

Redelegate
If you've already delegated your BAND tokens and then decide to switch validators, you have the option to redelegate your BAND to
new validators.

INFO

This guide necessitates that you first familiarize yourself with the Delegate document before proceeding.

Step 1 — Select the Validator you want to redelegate

navigate to your account details page. you will see the section of Delegation. then click Redelegate on your selected validator

Step 2 — Select the Validator you want to delegate to

In the Redelegate pop-up window, you will see a dropdown menu labeled Enter or select validator to delegate to Click on the
dropdown menu and select the new validator you want to delegate to.

and Enter BAND amount you want to redalegate to and click Next to the next step

Step 3 — Check Transaction details

Check if transaction detail is valid then click Broadcast

Congratulations! Your BAND has been successfully redelegated to the new validator

Step 4 — Check Redelegate tab

In the Redelegate tab, you can view the details of your redelegation.

Previous
« Undelegate

Next
Claim Rewards »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Delegate

Undelegate

Redelegate

Claim Rewards

Reinvest

Staking FAQ

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/staking/delegate
https://docs.bandchain.org/staking/undelegate
https://docs.bandchain.org/staking/claim
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/staking/introduction
https://docs.bandchain.org/staking/delegate
https://docs.bandchain.org/staking/undelegate
https://docs.bandchain.org/staking/redelegate
https://docs.bandchain.org/staking/claim
https://docs.bandchain.org/staking/reinvest
https://docs.bandchain.org/staking/faq
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Nodes & Validators Overview

Overview
What is Node
A node in the context of the BandChain network refers to any computer equipped with the necessary software to interface with the
network. These nodes, by connecting and communicating with one another, play a pivotal role in transmitting information, validating
transactions, and maintaining the ledger's overall integrity. Although the terms 'node' and 'client' can be mistakenly interchanged,
they represent two distinct components of the blockchain ecosystem. The 'node' denotes the connected computers, while the 'client'
is the software running on these computers.

A specific type of node, known as a full-node, carries out more comprehensive tasks within the network. It does not only participate
in the information exchange and transaction validation process; it stores and verifies the entire blockchain's state. By maintaining a
complete copy of the blockchain, a full-node contributes significantly to the robustness, decentralization, and security of the entire
network.

What is Validator
In the world of blockchain and decentralized finance, a validator plays a crucial role in maintaining the health, security, and smooth
operation of the network. Essentially, a validator is a network participant that verifies and validates new transactions and adds them
to the blockchain. They do this by running a full node that is constantly synced with the network and participating in the consensus
protocol, which can vary from one blockchain to another. In proof-of-stake (PoS), validators are chosen based on the number of
tokens they hold and are willing to stake as collateral.

Validators are responsible for performing two main functions on the network. First, they are responsible for proposing and committing
new blocks to the blockchain. They participate in the block consensus protocol by broadcasting votes which contain cryptographic
signatures signed by each validator's private key. This is similar to most other Cosmos-based delegated proof-of-stake blockchains.

Each validator will have a certain amount of BAND tokens bonded to them. The source of these tokens can either be their own
holdings, or the tokens delegated to them by other token owners. In most cases, there will be a large number of parties with tokens
staked to them. In that case, the top 100 validator candidates with the most token staked to them will become BandChain’s
validators.

Running a Node
There are two networks you can join.If this is your initial experience operating a validator on BandChain, we advise you to begin by
running a node on the testnet.

Joining Mainnet

Joining Testnet

An node is simply any computer running the software needed to connect with the BandChain network. Nodes connect with one
another to send information back and forth to validate transactions and store data about the state of the blockchain.

Though the terms are often used interchangeably these connected computers are the nodes and the software that they run is called
the client.

A full-node is a node that stores and verifies the entire state of a blockchain.

Previous
« Band CLI & REST Endpoints

Next
Getting Started »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Overview

Yoda

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Running a Node

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/getting-started
https://docs.bandchain.org/node-validators/run-node/joining-testnet/getting-started
https://docs.bandchain.org/develop/band-cli-rest-endpoints
https://docs.bandchain.org/node-validators/run-node/joining-mainnet/getting-started
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/node-validators/overview
https://docs.bandchain.org/node-validators/yoda
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

Staking Claim Rewards

Claim Rewards
Delegator will get rewards for staking. This guide is intended to provide step-by-step instructions on how to claim these staking
rewards.

INFO

This guide necessitates that you first familiarize yourself with the Delegate document before proceeding.

Step 1 — Navigate account details page

navigate to your account details page. you will see the section of Delegation. then click Claim on your selected validator

Step 2 — Click Next in pop-up window

In the Withdraw Reward pop-up window, you will see the amount of reward you will receive.

Step 3 — Check Transaction details

check if transaction detail is valid then click Broadcast

Congratulations! Your BAND has been successfully claimed reward

Previous
« Redelegate

Next
Reinvest »

Explore

About Us

Cosmoscan

Band Standard Dataset

Band Bootcamp

Band Builder

Community

Band Partners

Twitter

Discord

Telegram

Reddit

Forum

More

Blog

CoinMarketCap

CoinGecko

Copyright © 2023 Band Protocol. All Rights Reserved.

Band Protocol Documentation

Introduction

Delegate

Undelegate

Redelegate

Claim Rewards

Reinvest

Staking FAQ

Introduction

Core Concepts

Products

Develop

Nodes & Validators

Staking

Band Protocol Search K

https://docs.bandchain.org/
https://docs.bandchain.org/staking/delegate
https://docs.bandchain.org/staking/redelegate
https://docs.bandchain.org/staking/reinvest
https://bandprotocol.com/
https://bandprotocol.com/
https://cosmoscan.io/
https://data.bandprotocol.com/
https://bootcamp.bandprotocol.com/
https://builder.bandprotocol.com/
https://www.bandpartners.io/
https://twitter.com/BandProtocol
https://100x.band/discord
https://t.me/bandprotocol
https://www.reddit.com/r/bandprotocol
https://forum.bandprotocol.com/
https://blog.bandprotocol.com/
https://coinmarketcap.com/currencies/band-protocol
https://www.coingecko.com/en/coins/band-protocol
https://docs.bandchain.org/
https://docs.bandchain.org/staking/introduction
https://docs.bandchain.org/staking/delegate
https://docs.bandchain.org/staking/undelegate
https://docs.bandchain.org/staking/redelegate
https://docs.bandchain.org/staking/claim
https://docs.bandchain.org/staking/reinvest
https://docs.bandchain.org/staking/faq
https://docs.bandchain.org/
https://github.com/bandprotocol/chain

