
Band Protocol Whitepaper
2024

Abstract

Band Protocol is a chain-agnostic data oracle pipeline designed to
bridge the gap between blockchains and real-world data. Built with
Cosmos-SDK, BandChain allows smart contracts on any blockchain to
consume real-time price data essential for various decentralized applica-
tions. BandChain is secured by validators who continuously publish price
data with sub-second latency, ensuring its accuracy and reliability. The
price data on BandChain is publicly accessible for non-blockchain use
cases, while on-chain applications can specify conditions for data delivery
through data tunnels. BandChain leverages interchain message passing
protocols and native threshold signature algorithm to ensure data is deliv-
ered as required. This whitepaper summarizes the features, architecture,
and operational mechanisms of BandChain, providing a comprehensive
overview of how it functions as a reliable data oracle.

1 Feature Overview
BandChain is a blockchain specifically de-
signed for oracle use cases. Leveraging six
years of experience in the blockchain space, we
have reengineered the system from the ground
up to support a wide range of existing oracle
use cases and to ensure scalability for the grow-
ing ecosystem of blockchains and broader ap-
plications. This section outlines the key fea-
tures of BandChain.

1.1 Sub-second Data Latency
BandChain’s block time is optimized to less
than one second, with reserved block capac-
ity dedicated to oracle-related operations. Val-
idators, responsible for submitting real-time
price data across hundreds of symbols, can
instantly update prices as new information
becomes available. This ensures BandChain
serves as a reliable source for decentralized ap-
plications requiring minimal data latency, such
as decentralized perpetual futures markets.

1.2 Support for Any Blockchain
BandChain is designed to integrate seamlessly
with existing interoperable protocols. This
allows BandChain to extend its support to
new blockchains as they emerge, provided
they are supported by one of these underlying

providers, facilitating rapid scalability. Addi-
tionally, BandChain introduces a novel, cost-
efficient threshold signature provider. The sys-
tem is built with extensibility in mind, allow-
ing for the easy addition of more interoperable
protocols as needed.

1.3 Price Signal Generalization
BandChain supports not only spot cryptocur-
rency symbols but also extends to a variety
of data types as required by the community.
Tickers within the BandChain ecosystem are
referred to as signals and can represent any as-
set with an associated price value. Band Pro-
tocol provides registry repository where any-
one can propose additional signal specifications
and the sources from which validators can ob-
tain price information by submitting a pull re-
quest. Once approved and released, validators
will automatically implement these changes,
making the new signals available on Band-
Chain.

1.4 Data Security
Price data on BandChain can only be sub-
mitted by validators with a stake in $BAND,
ensuring the data has real economic back-
ing. While validators are not directly slashed
for providing inaccurate data, as proving ma-

1

https://github.com/bandprotocol/registry

licious intent is challenging, BandChain is
highly resistant to price manipulation. Alter-
ing the medianized value would require control
over more than half of the voting power. Val-
idators are strongly disincentivized from pro-
viding inaccurate data as it risks losing dele-
gations from the community. This approach
has been validated by the successful operation
of BandChain v2 over several years with zero
instances of data corruption.

2 Signaling Hub
The Signaling Hub is a pivotal component of
BandChain, orchestrating which price symbols
are published by the validators. It acts as a co-
ordination mechanism to ensure that the most
relevant and in-demand price data is continu-
ously updated and made available to users.

Every $BAND token delegator has the abil-
ity to vote on which symbols should be in-
cluded, with voting power directly propor-
tional to their staked $BAND tokens. The
more votes a symbol receives, the more fre-
quently validators will update its price data on
BandChain, in accordance with the Signaling
Hub’s parameters. This system ensures that
the data provided by BandChain reflects the
preferences of the community.

2.1 Signal Submission
Users with delegating power can submit
MsgSubmitSignals to BandChain at any time
to express their preferences. The message
structure is as follows:

message Signal {
string id = 1;
int64 power = 2;

}

message MsgSubmitSignals {
signer = "delegator";
name = "feeds/MsgSubmitSignals";

string delegator = 1;
repeated Signal signals = 2;

}

Upon transaction confirmation, Band-
Chain updates the total power of the voted
signals based on the submitted power. Users
can vote for multiple signals, but the total

voted power must not exceed the user’s del-
egated $BAND power. Submitting a new
MsgSubmitSignals will override any previous
submissions.

2.2 Feeding Interval
To incentivize $BAND holders to signal their
desired price symbols and to optimize the load
on BandChain, a symbol’s feeding interval is
calculated based on the total signaling power
it receives, governed by several parameters:

• MIN INTERVAL: The minimum possible feed-
ing interval for a symbol.

• MAX INTERVAL: The maximum possible feed-
ing interval for a symbol.

• POWER STEP: The voting power required for
a symbol to move to the next feeding inter-
val step.

The feeding interval algorithm operates as
follows:

1. A symbol is eligible for price feeding if its
power exceeds the POWER STEP.

2. The symbol’s power factor is determined
by dividing the power by POWER STEP and
rounding down.

3. The feeding interval is calculated as
MAX INTERVAL divided by the power factor,
capped at MIN INTERVAL.

Validators are responsible for updating the
price data of each symbol according to its feed-
ing interval. Validators must submit price up-
dates at least once per interval. Given that
there are a hundred validators on BandChain,
price updates occur much more frequently in
practice. Developers of decentralized applica-
tions must signal the necessary symbols to en-
sure their availability with adequate feeding in-
tervals.

2.3 Current Feeds Update
At intervals defined by the UPDATE INTERVAL
governance parameter, the list of supported
symbols and their feeding intervals are up-
dated. To maintain data quality and effi-
cient block space usage, only the top sym-
bols, up to the maximum count specified by
the MAX SUPPORTED FEEDS governance parame-
ter, will be supported. This parameter may be
adjusted by the community as needed and as

2

more performant hardware becomes available
to handle increased throughput. During the
feeds update period, validators must update
their software configurations to include poten-
tially new signals with their respective feeding
intervals.

3 Price Submission
This section discusses the process by which
price data is collected from each validator and
the method used to aggregate these individual
price data points for any given symbol into the
final price data. This aggregation process not
only ensures price integrity, given the honest
majority of validators, but also allows the sys-
tem to quickly reflect new price data points as
they are submitted, without needing to react
to rapid price movements.

3.1 Validator’s Price Data

MsgSubmitSignalPrices must be broadcasted
by each validator to submit individual price
data for all symbols listed in the signaling
hub according to the specified interval for each
symbol. Failure to do so will result in the val-
idator being deactivated and losing a portion
of their revenue, as well as that of their dele-
gators.

enum PriceStatus {
PRICE_STATUS_UNSPECIFIED = 0;
PRICE_STATUS_UNSUPPORTED = 1;
PRICE_STATUS_UNAVAILABLE = 2;
PRICE_STATUS_AVAILABLE = 3;

}

message SignalPrice {
PriceStatus price_status = 1;
string signal_id = 2;
uint64 price = 3;

}

message MsgSubmitSignalPrices {
signer = "validator";
name = "feeds/MsgSubmitSignalPrices";

string validator = 1;
int64 timestamp = 2;
repeated SignalPrice prices = 3;

}

Band Protocol does not dictate how valida-
tors should obtain the raw price data. How-
ever, the Band Protocol team provides an
open-source reference implementation called
Bothan, which can be found at the Bothan
repository. Validators are required to disclose
their methods for obtaining price data for each
symbol. It is the responsibility of Band Proto-
col token holders to choose validators based on
these disclosures, ensuring the quality of the
data is maintained.

3.2 Aggregation Algorithm
The aggregation algorithm in BandChain is
designed to balance the amount of voting
power required to influence the final median-
ized price data with the system’s ability to re-
spond quickly to rapid price movements. Val-
idators report data independently within the
specified interval, which means that price data
does not arrive simultaneously from all valida-
tors.

At any given time, the registered price
for a symbol is the weighted median value of
the prices reported by all validators, exclud-
ing those who report UNAVAILABLE. Price data
is weighted by the validator’s voting power,
with additional multipliers applied to priori-
tize more recent submissions.

BandChain applies multipliers to the most
recent price points to ensure greater influ-
ence. The voting power is adjusted as follows:

Note that if the majority voting power of
validators submits UNSUPPORTED, the aggre-
gated final price will not be available, and the
symbol will be registered as INVALID.

3.3 Price Availability
At the end of each block, BandChain computes
the weighted medianized price data for all sym-
bols in the signaling hub and stores it on the
blockchain. At this point, the price data be-
comes available for anyone to consume. For
on-chain usage, refer to the subsequent sec-
tions. For off-chain usage, anyone running a

3

https://github.com/bandprotocol/bothan
https://github.com/bandprotocol/bothan

BandChain node can directly query the price
data using the Cosmos-SDK query interface to
the feeds module.

4 Data Tunnels
The previous sections describe how price data
is continuously available on BandChain for
public consumption. To utilize these prices
on public blockchains without a trusted point
of failure, decentralized application developers
can use BandChain’s data tunnels to transmit
price data. This section details the architec-
ture of data tunnels and user interactions.

4.1 Data Tunnel Architecture
BandChain allows developers to create a tunnel
specifying the pricing symbols (signals), the
feeding interval, and the price deviation trig-
gering condition. Once registered, BandChain
continuously and automatically checks for data
delivery conditions, which are met if any of the
following occurs:

• The time since the last feeding interval de-
livery exceeds the specified feeding interval.

• The last fed price of the signal differs from
the current price by more than the specified
price deviation.

Each time price data is delivered, Band-
Chain incurs a cost to the tunnel creator. Tun-
nel creators are responsible for monitoring the
tunnel’s balance and depositing more $BAND
to ensure continuous availability. If the tunnel
runs out of funds, it will be deactivated and
stop triggering price feeds.

Developers can choose their preferred
provider for inter-chain data transmission.
BandChain supports various popular interop-
erable protocols as well as its native thresh-
old signature-powered solution. Refer to sub-
sequent sections for supported providers.

4.2 New Tunnel Creation
Anyone can broadcast MsgCreateTunnel to
create a new tunnel. The message specifies
data feeding conditions, the initial $BAND de-
posit, and the data delivery route.

message SignalInfo {
string signal_id = 1;

uint64 soft_deviation_bps = 2;
uint64 hard_deviation_bps = 3;

}

enum Encoder {
ENCODER_UNSPECIFIED = 0;
ENCODER_TYPE_FIXED_POINT_ABI = 1;
ENCODER_TYPE_TICK_ABI = 2;

}

message MsgCreateTunnel {
signer = "creator";
name = "tunnel/MsgCreateTunnel";

repeated SignalInfo signal_infos = 1;
uint64 interval = 2;
Any route = 3;
Encoder encoder = 4;
repeated Coin deposit = 5;
string creator = 6;

}

Once the tunnel is created, it will be as-
signed an ID for future reference, and a ded-
icated BandChain address will be generated.
Anyone can send $BAND tokens to this ad-
dress to cover data delivery costs.

4.3 Data Delivery Fee
The fee for using a data tunnel consists of two
parts. The first part is a fixed fee charged per
data delivery. If a delivery contains multiple
signals from the same tunnel, only one fixed
fee will be charged. This fee is specified by the
TUNNEL FIXED FEE governance parameter.

The second part of the fee depends on the
utilized tunnel. Different tunnels may have
varying charges. BandChain does not impose
additional fees but may perform necessary con-
versions of $BAND to different tokens for fee
payments. Refer to the section specific to in-
teroperability providers for more details.

4.4 Tunnel Modification
Once created, a tunnel can be modified by the
creator. To do so, the MsgEditTunnel message
must be broadcast.

message MsgEditTunnel {
signer = "creator";
name = "tunnel/MsgEditTunnel";

4

uint64 tunnel_id = 1;
repeated SignalInfo signal_infos = 2;
uint64 interval = 3;
string creator = 4;

}

4.5 Tunnel Activation
If a tunnel runs out of funds to pay for data
delivery fees, it will be deactivated and stop
checking for delivery conditions. To re-enable
the tunnel, the creator can send $BAND to
the tunnel’s deposit address and broadcast
MsgActivateTunnel to BandChain.

message MsgActivateTunnel {
signer = "creator";
name = "tunnel/MsgActivateTunnel";

uint64 tunnel_id = 1;
string creator = 2;

}

In addition, the owner may voluntarily
sends MsgDeactivateTunnel to pause data de-
livery logic.

message MsgDeactivateTunnel {
signer = "creator";
name = "tunnel/MsgDeactivateTunnel";

uint64 tunnel_id = 1;
string creator = 2;

}

4.6 Manual Triggering of a Tun-
nel

A tunnel can be manually triggered by the tun-
nel owner if certain conditions require immedi-
ate data delivery, bypassing the normal auto-
mated feeding intervals.

message MsgManualTriggerTunnel {
signer = "creator";
name = "tunnel/MsgManualTriggerTunnel";

uint64 tunnel_id = 1;
string creator = 2;

}

5 Threshold Signature
[REDACTED]

6 Integration with Interop-
erability Protocols

[REDACTED]

5

	Feature Overview
	Sub-second Data Latency
	Support for Any Blockchain
	Price Signal Generalization
	Data Security

	Signaling Hub
	Signal Submission
	Feeding Interval
	Current Feeds Update

	Price Submission
	Validator’s Price Data
	Aggregation Algorithm
	Price Availability

	Data Tunnels
	Data Tunnel Architecture
	New Tunnel Creation
	Data Delivery Fee
	Tunnel Modification
	Tunnel Activation
	Manual Triggering of a Tunnel

	Threshold Signature
	Integration with Interoperability Protocols

