
Front. Comput. Sci., 2021, 15(2): 152802
https://doi.org/10.1007/s11704-020-9284-9

Ethereum smart contract security research: survey and future
research opportunities

Zeli WANG1,2, Hai JIN1,2, Weiqi DAI 1,3,4, Kim-Kwang Raymond CHOO5, Deqing ZOU1,3,4

1 National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System
Lab, Clusters and Grid Computing Lab, Hubei Engineering Research Center on Big Data Security, Wuhan 430074, China
2 School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

3 School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
4 Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China

5 Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio,
TX 78249-0631, USA

c© Higher Education Press 2020

Abstract Blockchain has recently emerged as a research
trend, with potential applications in a broad range of indus-
tries and context. One particular successful Blockchain tech-
nology is smart contract, which is widely used in commercial
settings (e.g., high value financial transactions). This, however,
has security implications due to the potential to financially ben-
efit from a security incident (e.g., identification and exploitation
of a vulnerability in the smart contract or its implementation).
Among, Ethereum is the most active and arresting. Hence, in
this paper, we systematically review existing research efforts
on Ethereum smart contract security, published between 2015
and 2019. Specifically, we focus on how smart contracts can
be maliciously exploited and targeted, such as security issues
of contract program model, vulnerabilities in the program and
safety consideration introduced by program execution environ-
ment. We also identify potential research opportunities and fu-
ture research agenda.

Keywords smart contract, security, blockchain, vulnerability,
unreliable data

1 Introduction and motivation
The “first wave” of cryptocurrency research probably takes
place between the 1980’s to early 2000’s, such as “anonymous
transactions” [1], “online shopping without bank” [2], Digi-
Cash [3], and Peppercoin [4]. The Blockchain-based Bitcoin
was proposed in late 2000s [5], and since the popularity of
Bitcoin, a number of altcoins, including Blockchain-based alt-
coins, have been proposed in the literature and market. For
example, there are approximately 2,169 cryptocurrencies been
tracked by CoinMarketCap. It is, perhaps, the popularity of Bit-
coin that the market recognizes the potential of Blockchain, for
example its capability to achieve properties such as decentral-
ization, tamper-proofing, transparency, and traceability. In the

Received August 6, 2019; accepted December 25, 2019

E-mail: wqdai@hust.edu.cn

past few years, there have been a number of Blockchain-related
studies focusing on a broad range of applications [6–20].

In addition to Bitcoin, another widely successful Blockchain
application is Ethereum [21], which uses Turing-complete pro-
graming language to enable users to develop smart contracts
on Blockchain. This is also referred to as the Blockchain 2.0
era, where different applications can be built on smart con-
tracts (e.g., Internet of Things [22, 23], healthcare [24–27],
commercial services [28, 29], secure data exchange [30] and
so on [31–33]). First proposed by Szabo [34], smart contracts
generally have the following features: (1) self-executing: trig-
gered by transactions, without the need for manual interaction;
(2) self-enforcing: once triggered, smart contracts cannot be
prevented from executing; (3) transparency: smart contracts
are known to each node in the Blockchain network, since their
correctness must be verified by most nodes; and (4) flexibility:
they can adjust to different scenario requirements. The popular-
ity of smart contracts is also evidenced by the interest in smart
contract programming languages and platforms. While there
are a large number of challenges related to smart contracts, se-
curity is one key challenge [35, 36] and hence, the focus of this
survey.

So why is the security of smart contracts important?
First, such contracts are generally used in financial settings,
and hence they are an attractive target for financially- and
criminally-motivated cybercriminals. In addition, any success-
ful breach, particularly those that are highly publicized, can
impact on the community’s belief in smart contracts, and hence
its usage. There have been a small number of such incidents
in recent years, such as the incidents involving the Decentral-
ized Autonomous Organization (DAO) event and Parity. More
recently in 2018, attackers hacked Fomo 3D, a game Dapp,
by conducting front-running and injecting Blockchain network
lots of transactions with high fees to prevent other transaction
from being packed, finally stealing around 10469.66 ETH (see
SECBIT report). A snapshot of recent attacks is presented in

2 Front. Comput. Sci., 2021, 15(2): 152802

Table 1 A snapshot of recent smart contract attacks

Year of event Smart contract Loss

2016/6 The DAO 3,600,000 ETH [37]
2017/10 SmartBillions 400 ETH [38]
2017/11 Parity 514,000 ETH [39]
2018/4 BeautyChain 1,000,000,000 USD [40]
2018/4 SmartMesh 140,000,000 USD [40]

Table 1.
Due to the wide diversity in Blockchain platforms and pro-

gramming languages, we focus only on Ethereum smart con-
tracts due to the following reasons: (1) Ethereum is the first
Blockchain-based application to realize Turing-complete smart
contracts; (2) it is one of the most popular and widely used
smart contract platforms; (3) transaction throughput always
ranks first; and (4) Solidity designed for Ethereum contracts
is the most widely used programming language.

Main contributions A summary of our contributions in this
paper is as follows:

• Systematic mapping of smart contract security chal-
lenges We perform a systematic and comprehensive lit-
erature review1) of existing research literature on smart
contract security, and categorize these security challenges
into abnormal contract, program vulnerability, and unsafe
external data.
• Systematic mapping of potential solutions For each se-

curity challenge, we also describe the potential solutions.
• Future research agenda Based on the survey, we present

a number of potential future research directions.

The remainder of this paper is structured as follows. In Sec-
tion 2, we will briefly introduce the Blockchain infrastructure
and Ethereum smart contracts. In Section 3, we will describe
our literature review protocol. In Sections 4 to 6, we will de-
scribe the key security challenges and potential solutions re-
lating to Abnormal Contract, Program Vulnerabilities and Ex-
ploitable Habitat. In Section 7, we summarize the existing
state-of-play on smart contract security and discuss potential
research directions. In the last section, we conclude this paper.

2 Overview of Blockchain and smart contract
2.1 Blockchain
Blockchain, in general, is a distributed ecological system,
where all nodes are independent in view of interests or will-
ings to execute tasks but meanwhile close-related in view of
maintaining an identical ledger by competition / cooperation.
Moreover, each transaction after being verified will be packed
into the block, which links to the latest block by setting previ-
ous block hash as one of input in computing current block hash.
Only when the majority of miners reach a consensus, can this
transaction be recorded into Blockchain ledger. All the above
behaviors introduce Blockchain several remarkable characters,
such as decentralization, transparency and tamper-proofing.

Blockchain underpins many smart contract platforms, and its
popularity is ever increasing. There have also been an increas-
ing awareness on the importance of security on Blockchain-

based platforms. For example, the OpenZeppelin is an open
source architecture designed to enable secure, test-providing,
and audited smart contract code development, and Quantstamp
specializes in auditing projects for making smart contracts
safer. Building on existing surveys such as [41], Blockchain
platform can be classified into two main categories, permis-
sionless and permissioned. In the former, everyone can join
or exit arbitrarily, while permissioned Blockchain adds an ex-
tra member management modular designed to put restrictions
on participants, where only predesignated members have rights
to access and maintain the Blockchain ledger. So permissioned
Blockchain is semi-decentralized, but it appeals much more at-
tentions than public chain in business circle. Because its higher
throughputs due to sharp shrink of node amount, and secu-
rity due to access control mechanism are more correspond-
ing to practical application scenarios. But in general, public
Blockchain is most popular due to its nearly complete compli-
ance to original Blockchain design goals.

To guarantee the same contracts held by different nodes to
obtain the same input and output the identical result, the key
is to ensure the determinacy of contracts. In other words, at
the Blockchain level, we need to ensure the distributed ledger
technology (DLT) is correct and consistent between all nodes.
Thus, we need to have the consensus mechanism. Blockchain
consensus should consider the presence of malicious users, who
seek to maximize their benefits even at the cost of destroy-
ing the entire system. Existing consensus mechanisms can be
categorized into deterministic and nondeterministic. In the for-
mer category, once the block is added on the main chain, all
transactions in the block is determined and cannot be modi-
fied anymore – typically represented by PBFT [42, 43]. PBFT
is suitable for permissioned Blockchain, where members (deter-
mined in advance) reach an agreement via the following three
steps: pre-prepare, prepare and commit. Typical nondetermin-
istic consensus mechanisms are Proof of Work (PoW) [5] and
Proof of Stake (PoS) [44,45]. In this kind of consensus, even if
the block is appended on the main chain, it may be invalidated
later. Since there are forks, two valid child blocks belonging
to the same parent block may be mined simultaneously, one of
which will be discarded if the chain in which the other block is
located becomes the longest chain. We refer reader interested
on Blockchain consensus to [10, 11], which plays a key role in
guaranteeing smart contract consistence and determinacy.

2.2 Smart contract
As our paper focus on Ethereum smart contracts, so we will
now revisit their underlying concept and execution context in
this section. Specifically, we will describe three key compo-
nents, namely: accounts, transactions, and EVM.

Accounts and storage Ethereum adopts an account mode
similar to the account management mechanism in conventional
banking system. There are two account types, namely: external
owned (EOA) and contract. Both account types are uniquely
identified by a 20-byte address (i.e., their identities in the
Ethereum network). EOAs are controlled by public/private key
pairs, mainly used to manage ethers and interact with contracts

1) In the literature and this paper, the terminologies “literature review” and “literature survey” are used interchangeably. Similarly, “review” and “survey” are also
used interchangeably

Zeli WANG et al. Ethereum smart contract security research: survey and future research opportunities 3

by sending transactions. While contract accounts are controlled
by codes without keys, and mainly used to implement diverse
function requirements and record contract state changes such as
executed transactions and balance modification. Unlike EOAs,
contract accounts cannot send transactions but they can send
message calls to call other contracts. In addition, contract ac-
counts cannot interact with EOAs proactively; however, they
can use some “radical” mechanism such as self-destruction
(where all their holding ethers will be refunded to their cre-
ators, upon successful execution). The contract account also has
a room to store code hash that can be used to find codes, whilst
EOAs do not store this value. In terms of similarity, both ac-
count types will store nonce, asset balance and the root hash of
all stored states. The nonce is a mechanism designed to mitigate
reply attacks and double spending, which will be incremented
by 1 once an account sends a transaction. In other words, if one
broadcasts a transaction again and again hoping it will be ex-
ecuted by miners many times, the miners will identify it as a
repeated transaction (due to the nonce) and discard it. Clearly,
if an attacker attempts to use the same nonce to facilitate dou-
ble spending, then the gas prices appended in the transaction
will determine the winner, because they are more likely to be
processed first.

Transactions and interaction Transactions will be broad-
cast to every miner for execution, and change the Blockchain
storage state after reaching consensus. Each transaction will
specify its account nonce (as discussed above), price per gas,
the maximum gas payment for this particular transaction, trans-
ferred value, recipient, input data and signature. Of the infor-
mation it contains, gas charging mechanism plays a key role in
many aspects, for example: 1) compensation and incentive for
miners executing and storing transactions; 2) countermeasure to
prevent denial of service (DoS) attacks such as malicious users
sending computation-complex transactions. Different combina-
tions of recipient and payload have diverse functions, such as
those listed in Table 2. Since we focus only on smart contracts,
we will explain cases 2 and 3 only.

• In case 2, a transaction with null recipient will be regarded
as a contract creation request. In such a case, the miners
will execute bytecodes included in the payload. There-
fore, the payload includes not only contract codes, but
also initial codes and parameters in the constructor. Initial
codes are responsible for creating the contract account,
storing codes, initialing constructor functions, etc. They
will then be discarded after completing the execution.
• In case 3, when the recipient is a contract address, min-

ers will call the related contract. There are four ways to
realize case 3. In order to better introduce them next, we
will explain the “Call” function first, which is also a kind
of method to call the contracts, with an external API and

Table 2 Function description under different combinations of recipient and
payload

Case Recipient Payload Function

1 EOA Null Value transfer
2 Null Contract deploying codes Contract account creation
3 Contract Function parameters Contract call

underlying API. Unlike transactions, “Call” will not prop-
agate in network or obtain consensus, and they are local
vocations by reading local state database without mak-
ing any change, suitable to view, pure and constant func-
tions in Solidity. Although they do not charge, they will
fail if there is a lack of gas. This is because they need
to be executed in the local EVM. Contracts can be called
by both EOAs and other accounts using “Call”. Clearly,
they can be called by EOAs using transactions. How can
they be called by contracts using transactions? Well, con-
tracts can interact with each other, and they use “mes-
sage call” rather than transactions. Theoretically speak-
ing, “message call” is a also a kind of transaction, which
allows callers to obtain the return values promptly.

EVM and execution The EVM is an architecture based
on stack rather than register, and provides a separated execu-
tion environment to protect contract execution from external
attacks and avoid malicious contracts affecting the entire sys-
tem. There are three kinds of storage structure to assist opera-
tions, namely: stack, memory and storage. Stack can be used
to store local variables for free, and memory is used to store
parameters and return values, which will be released after be-
ing called by functions. Stack and memory are volatile, which
will be cleared after completing the transaction. Storage will
store state variables persistently; therefore, they are expensive.
Once calls to the contracts received (by message calls or trans-
actions), the EVM will first search and load contract code from
the local database. Unlike conventional software with only one
entry point (main()), all public functions in smart contracts can
be entry points. Therefore, the first four bytes of payload, func-
tion signature, will point out the calling function, followed by
the function parameters. The EVM will find the correspond-
ing function bytecodes and parse them to opcodes byte-by-byte.
Moreover, each opcode is bound with a detailed operation defi-
nition. Based on these instructions, the EVM will process these
parameters. The machine may throw exceptions for reasons,
such as stack underflow or invalid instructions. Thus, contract
vulnerabilities will be invoked in the EVM eventually. The ex-
ecution results (including participants’ balance change, execu-
tion logs and receipts) will be packed as “StorageObject” stored
into the Blockchain ledger. Since this entire process is repeat-
edly operated by all nodes in the Blockchain system, as long
as compromised nodes are less than majority, the Blockchain
can still run stably. The compromise of several nodes will not
impact the overall system’s security. However, we must guar-
antee that the same smart contract on all nodes receives the
same transaction, data and generates identical output. Interested
reader is referred to Ethereum yellowpaper for more details
about the contract principles.

3 Literature review protocol
There are a number of literature review protocols. For example,
we can perform a systematic mapping study (SMS) or a sys-
tematic literature review (SLR). SMS allows one to perform a
somewhat high-level / cursory review in order to obtain some
visual classification, whilst an SLR is an in-depth, comprehen-
sive analysis of a relatively established /mature field by search-

4 Front. Comput. Sci., 2021, 15(2): 152802

Fig. 1 Our literature review protocol

ing for and evaluating the existing literature. Since smart con-
tract technology is still in its infancy, in this paper, we choose
the former [46] as our literature review protocol – see also
Fig. 1 and Sections 1 to 5.

3.1 Identification of research questions
Research questions should reflect the main goals of performing
the literature review explicitly, guide us to locate the relevant
publications, and provide an insight on the research field. In this
paper, our research questions and sub-questions are as follows:

• RQ1: How is the existing security state-of-play for
smart contracts? RQ1.1: What are the security chal-
lenges in existing smart contracts? RQ1.2: Why are ex-
isting smart contracts prone to such attacks? Only by
having an in-depth understanding of the root source(s) of
the security challenges will we be able to mitigate such
challenges.
• RQ2: How to design countermeasures to the identi-

fied security challenges? RQ2.1: What are the exist-
ing countermeasures to each the identified security chal-
lenge? RQ2.2: What are the benefits and limitations as-
sociated with the different countermeasures?
• RQ3: When and where are these studies about smart

contract security published? This allows us to under-
stand the underpinning approaches (e.g. software engi-
neering, distributed system, or network traffic analysis)
and the recency of the challenges and countermeasures.
• RQ4: What are potential future research challenges?

3.2 Literature search
To facilitate the literature search, we will use the PICO prin-
ciples generally used in the medical literature. Specifically, as
shown in Table 3, we adopt the approach of Pahl et al. [47] to
help us identify the relevant keywords and databases.

3.2.1 Comparison with existing reviews/surveys
We combine Population with Comparison to form our search
string, since there are a number of existing literature review/

survey articles on different aspects of Blockchain, cryptocur-
rencies and smart contracts. This will allow us to better refine
our focus, to avoid having a significant overlap with existing
literature review/survey articles. For example, Bonneau et al.
[48] surveyed the cryptocurrency research, particularly focus-
ing on Bitcoin. However, the focus is on Blockchain 1.0 with-
out Turing-complete smart contracts. By contrast, we explore
emerging smart contracts in the Blockchain 2.0 era. Tschorsch
and Scheuermann [6] surveyed decentralized digital currencies,
particularly focusing on Bitcoin. Specifically, the authors intro-
duced the core protocol of Bitcoin, and discussed issues relating
to security, network, privacy and consensus. Along a similar
line, Conti et al. [7] examined the security and privacy chal-
lenges in Bitcoin, and discussed countermeasures and poten-
tial research directions; and Khalilov and Levi [8] reviewed
anonymity and privacy challenges in Bitcoin-like digital cash
systems. Ferrag et al. [9] reviewed existing research efforts
and challenges when applying Blockchain to Internet of Things
(IoT). The brief reviews of Alharb and van Moorsel [49] and
Atzei et al. [50] are, perhaps, closer to the aim of this paper.
Specifically, Alharb and van Moorsel [49] focused on codify-
ing, security, privacy and performance issues relating to smart
contracts, and Atzei et al. [50] presented a taxonomy of com-
mon programming pitfalls that results in Ethereum vulnerabili-
ties. Wang et al. [51] presented a systematic and comprehensive
overview of Blockchain-enabled smart contracts about archi-
tecture, application and future trends three levels. However, no
review presents an in-depth treatment of the security issues un-
derpinning smart contracts. Specifically, in this survey, we fo-
cus on abnormal contract, program vulnerability and unsafe ex-
ternal data issues in smart contracts – see proposed taxonomy in
Fig. 2. The taxonomy is built on the premise that codes and data
are central to (the security of) smart contracts, namely: entire
contract function (Abnormal Contract), local code issue (Pro-
gram Vulnerability), and malicious environment (Exploitable
Habitat).

3.2.2 Search for relevant publications
To avoid bias and preference, we overlook ICO related key-

Table 3 PICO principles and applying on smart contract security

PICO entry Original concept Present meaning

Population Objects affected by intervention Smart contract OR Ethereum OR Blockchain OR cryptocurrency OR token OR Dapp OR EVM
Intervention Diverse treatments or behaviors Attack OR analy* OR exploit OR validate OR secur* OR safety OR crim*
Comparison Contrast with other treatments Survey OR review OR evaluation OR study
Outcome The treatments will use on population Design OR Strategy OR model OR language OR framework

Zeli WANG et al. Ethereum smart contract security research: survey and future research opportunities 5

Fig. 2 Smart contract security: a taxonomy

words temporarily but left for our literature pruning in next
section. So we just use population in Table 3 as our search
strings. As to search databases, we do not limit it to one or
several repositories or venues in security, because smart con-
tract security covers lots of facets. Instead, Google Scholar is
our key search platform since it indexes publications from ma-
jor publishers. We also use DBLP, a computer science bibliog-
raphy, wherever possible to obtain the BIBTEX entry. In our
search, we also adopt the following strategy. Since the concept
of smart contracts dates back to 1990s, but the Ethereum lit-
erature is mainly published after July 2015 as Ethereum client
was launched successfully on July 30, 2015. In fact, we observe
that there are only a handful of publications in 2015 during our
search. In addition, to ensure that we capture recently accepted
publications, we also scan the list of accepted papers at top rel-
evant conferences. Besides, we will also scan the related refer-
enced literatures in searched papers.

3.3 Literature scoping
After the prior steps, we obtain hundreds of publications, but
many of these publications are not relevant. Our inclusion and
exclusion criteria are described in Table 4.

3.4 Classification
We skim the publications concentrating on keywords, abstract,
contribution and conclusions to identify the relevant features,
in order to come up with a classification. If these parts are not

Table 4 Inclusion and exclusion criteria

Action Criteria

Inclusion The title, abstract or keywords explicitly mention smart con-
tracts or Dapps or tokens or their execution environment such
as EVM and security. Papers published at security conferences
are also included. Also, if publications relate to vulnerabilities
or pitfalls published at software engineering conferences, they
are also included.

Exclusion Publications that do not refer to Ethereum smart contracts or
security are excluded. Examples include publications that use
smart contracts for IoT security.

enough to identify their features, we will scan their introduc-
tion even the main body to determine their belonged categories.
In view of the relationships between issues and programs, all
security issues can be classified from three facets: risks caused
by program model (Abnormal Contracts), internal fragility of
programs (Program Vulnerability), and dangers posed by their
environment (Exploitable Habitat). So these three facets estab-
lish the first level of classification.

Then we make a big table to put each literature attached with
keywords in categories. To further detailed division, based on
these keywords and our knowledge of these scanning papers,
we consider classifying each category from their goals or prob-
lem roots. For contract level, we divide them according to the
first principle, in which some contracts are used to prompt crim-
inal transactions, while some are specifically designed such as
left a back door to scam money, by contrast, some contracts are
apparently innocent but draw excess unnecessary cost. Finally,
contract is classified into three sub-categories. For vulnerability
level, we obey the second principle, some vulnerabilities result
from programming languages, however, some are caused by
programmers’ careless. For habitat level, also we divide them
according to different issue causes. Since the environment of
smart contract has three hierarchies, from the inside out, that is,
directly related EVM, Blockchain network, and external world
respectively. At end, we get the second level categories.

After identifying all problems, we aim to conclude and clas-
sify all related countermeasures. Since some papers type is so-
lution and proposal kind, they cover both problems and an-
swers, in this way, we just need to put them under correspond-
ing problems. To get a wider view, we will search specific prob-
lems again in Google scholar and browser to find more coun-
termeasures. We classify these solutions mainly based on their
involving technologies. Finally, we get our taxonomy of smart
contract security issues, illustrated in Fig. 2. We will describe
them at length in next three sections.

3.5 Findings
Retrospecting the selected studies, we find that smart contract

6 Front. Comput. Sci., 2021, 15(2): 152802

research is very hot especially in 2018. The related researches
frequently arise in top conferences, which account for nearly
thirty percent in over a hundred papers, among security and
software engineering fields are most popular. Moreover, dur-
ing our strengthened search process in top conferences, we
found that top four security vendors nearly every year have
Blockchain or cryptocurrency special columns but very few
smart contract, which implies that smart contract issues are less
popular than Blockchain. But from a global perspective, smart
contract security gets more and more attention. More findings
about contract security issues, countermeasures, challenges and
research agendas are illustrated in the remainder.

4 Abnormal contracts
Smart contracts are deployed on all miners in the Blockchain
network, and once triggered, they will be executed by each
node. From trigger to execution, this process does not require
user interaction, and is self-enforcing (i.e., contracts cannot
be canceled once conditions defined in the contracts are sat-
isfied). Thus, this allows fair-exchange. As smart contracts are
stored on Blockchain as bytecodes, they are not human read-
able. Although there are source codes on some websites such
as Etherchain and Etherscan, uploading source codes is not en-
forced and consequently the code libraries are not complete.
Also, smart contracts process significant volume of digital as-
sets. Hence, they are attractive to malicious users, for exam-
ple to deploy malicious codes on Blockchain without making
their source codes public, in order to obtain illicit financial
gains. Finally, to prevent distributed DOS attacks such as in-
finite programs, smart contract platforms introduce gas mecha-
nism to charge transaction sender for computation and storage
consumption. Although this is a good way to protect the system,
smart contracts may be designed to consume more gas that is
unfair to users. We will elaborate on the following three poten-
tial abuse / risks in Sections 1 to 3.

4.1 Criminal exploitation
Advantages of smart contracts (e.g., self-execution, self-
enforcing, self-destruction) can also be criminally exploited.
For example, self-enforcing and self-execution enable the smart
contract to be considered as a trusted third-party. This not only
reduces attack cost such as relying on the intermediate service,
but also provides a higher level of trust than a traditional third-
party. For example, funds paid to a cybercriminal (e.g., in a ran-
somware or other extortion incidents such as sextortion scams)
via smart contracts cannot be terminated and reversed, once the
contracts are triggered by transactions. So such fund transfer
does not require criminals’ interaction. Moreover, since all par-
ticipants in Blockchain are pseudonymous, the criminals’ iden-
tities will be challenging to trace. Also, some smart contracts
support self-destruction (e.g., suicide method). Thus, when the
transactions complete, the criminals can destroy the smart con-
tracts; thus, further complicating (forensic) investigations.

The notion that smart contracts can be criminally exploited
(or criminal smart contracts – CSCs) is not new. For example
in [52], the authors pointed out that smart contracts can be used
in the criminal ecosystem, such as leakage of sensitive informa-
tion, theft of private keys, and calling-card criminal activities.
To explain how smart contracts may promote or be abused to

facilitate criminal activities, we take the “Key-Theft” as an ex-
ample. In this activity, the initiator wants to find a person (part-
ner) to help him/her steal C’s private key and will pay for the
information. However, participants do not trust each other as ei-
ther party may be an undercover law enforcement officer or one
party may rip the other party off. In addition, how can the re-
sponding individual guarantee that the initiator will pay him/her
as agreed? Hence, the need for fair-exchange. If in traditional
ways, criminals need to use a trusted third party or communi-
cate directly, however, in this way, criminals may be discovered
by law enforcement or cheated. Instead, this deal can be easily
achieved without these risks by decentralized smart contracts.
Moreover, in [52], the authors defined a more strict transac-
tion rule (commission-fair) than fair-exchange, which assumes
that contractual parties are arbitrarily malicious and are satis-
fied only when all participants get their initial fair expected re-
sults. And in this way, fair-exchange is only a precondition of
commission-fair. For example, in the Key-Theft contract, al-
though we can achieve fair-exchange by defining a smart con-
tract for rewards to be paid once the key is delivered, the con-
tract cannot guarantee that the key is valid. For example, the
key may have been revoked, and this results in an unfair situa-
tion. As introduced in [52], even under such strict requirements,
smart contracts can also successfully satisfy criminals.

Smart contracts can also be used as a launch pad to attack the
Blockchain system. For instance, in a typical block-withholding
attack [53, 54], miners will obtain the bonus not only from full
proof of work (FPoW) but also partial proof of work (PPoW).
However, the computation administrators can control is limited.
With the help of smart contracts, attackers can reach agree-
ments with miners in other pool(s) to facilitate the launching
of attacks. Since all rules have been written in smart contracts,
which will be definitely executed after specific requirements
are satisfied, so there is no need for the miner conspirator to
trust the initiator’s intention or payment capacity. Hence, they
can be in collusion with each other more easily. Under this
situation, any malicious user even with little computation can
breach a large mining pool by collaborating with other miners,
and reduces its revenue to zero with minimal or no financial
penalty [55]. In addition to the pool attack, smart contracts may
have a significant influence on Nakamoto consensus. The au-
thors in [56] used three cases to explain how smart contracts can
be leveraged to compromise consensus security. For example, a
briber A without having majority computations, wants to con-
trol transactions in the mined blocks. Instead of renting hard-
ware power to become the majority (and pays the full cost), A
deploys a smart contract to employ miners, compensating them
only after they mine the required uncle blocks. Because the in-
herent uncle block reward in the Blockchain can subside these
bribes partially, to some extent, reducing A’s attack costs. Also,
smart contracts can also be used to cause hard forks maliciously
and reduce the utility of certain cryptocurrency.

In summary, the fair-exchange feature of smart contracts can
be criminally exploited to help non-trusting individuals coop-
erate with each other in a criminal activity. There have been
some attempts to mitigate criminal activities on Blockchain.
Wang et al. demonstrate through simulation that CSCs are not
as powerful as expected, further they can be alleviated by in-

Zeli WANG et al. Ethereum smart contract security research: survey and future research opportunities 7

troducing randomness [57]. Meanwhile, some communities are
built to guard smart contract ecology secure. For example, the
Blockchain Alliance is a platform dedicated to enable differ-
ent stakeholder groups (e.g., law enforcement, and banking and
financial institutions) worldwide to collaborate in their crime-
fighting and investigation activities. Another example is Crys-
tal developed by the Bitfury Group’s software team, which is
designed to monitor the state of public Blockchain ecosystem.
Advanced data analytic technologies are used to detect abnor-
mal transactions and map them to related accounts. However,
such initiatives particularly for CSCs are limited.

4.2 Malicious contract

Different from CSCs (where the codes are technically sound),
malicious contracts refer to vulnerabilities (e.g., back-doors)
intentionally introduced to facilitate criminal activities such
as stealing of contracts’ digital assets. For example, in some
smart contracts, creators may seek to maximize the utility of
their smart contracts, for example by offering incentives or dis-
counts. Once they have had some critical mass, these creators
then make use of intentionally introduced back-doors to steal
the digital assets. One real-world example is LastWinner, which
is designed to mostly target the Chinese population. Honeypot
is another an approach to scam users, which seems vulnerable
but contains unconspicuous traps, [58] makes a taxonomy of
smart contract honeypots. Moreover, it employs symbolic ex-
ecution to collect program informations, cash flow analysis to
exclude completely impossible honeypots that cannot receive
or transfer funds, and honeypot analysis combining detection
rules with heuristic knowledges to implement HoneyBadger, a
honeypot detection tool.

Since it is not always easy to identify such malicious con-
tracts as it is not mandatory to share the contract’s source codes.
For example, according to [59], as of January 2018, 26,000
(approximately 77%) smart contracts do not have readily avail-
able source codes, although not all such contracts are malicious.
What’s more, albeit contracts’ bytecodes are transparent to any-
one but bytecodes are hard to be understood by human. Hence,
there have been focus on smart contract reverse engineering.
Researchers from University of Illinois, for example, explained
how one can reverse engineer Ethereum’s smart contracts from
their bytecodes [59] using Erays. Erays first transfers bytecodes
into high-level pseudocodes suitable for manual analysis, in
which conventional software technologies can then be used.
For example, one can use linear sweep [60] to disassemble the
hex string (bytecode) into EVM instructions. Finally, after ob-
taining the pseudocode, Erays can link bytecodes to publicly
available source codes based on code similarity. But the re-
versed pseudocodes are not much read friendly and have some
errors due to incomplete recovery and simulation of evm opera-
tions. Other similar reverse engineering tools include Etherscan
that can reverse bytecodes into opcodes. However, opcodes are
still relatively obscure and challenging to work with. To an-
alyze contracts easier, Gigahorse [61] can transfer Ethereum
bytecode into 3-address code representation making data- and
control- flow dependencies explicit. There have also been ef-
forts to convert EVM bytecodes to source codes.There have
also been efforts to convert EVM bytecodes to source codes.

However, as pointed out by Parizi et al. [62], “research on the
empirical knowledge evaluation of security testing for smart
contracts is scarce in the literature” and it is not trivial for even
smart contract developers to security test their own product.

4.3 Exorbitant cost

Costly contracts can be either gas-costly or verification-costly.
Ethereum supports Turing-complete languages to satisfy differ-
ent requirements, but this can be exploited to write a transac-
tion or contract that demands significant computation power to
perform DoS attacks in the Blockchain system. Consequently,
transactions will be blocked and transaction fees experience
a steep increase; thus, affecting system stability. Therefore,
smart contract platforms generally run a gas mechanism to pre-
vent DoS attacks. Such platforms provide computation as a
service, and users pay for their computation consumption on
the Blockchain. Each operation will be charged, and there is a
charge rule for gas cost of different operations. This discourages
attackers (or in fact, most users) from creating complex con-
tracts or transaction scripts to consume significant Blockchain
resources. In [63], however, the authors revealed that some con-
tracts cost too much gas relative to the normal. They identified
seven under-optimized patterns, which were then grouped into
two categories. Category 1 (useless code related patterns) refers
to gas-costly codes with no real functions, and category 2 (loop
related patterns) involves expensive or unnecessary operations
in a loop that incur additional (unnecessary) costs. The authors
also introduced a new tool, Gasper based on Oyente [64], to
automatically discover gas-costly programming patterns based
on bytecodes. Specifically, Gasper first recovers control flow
graph (CFG) based on disassembled codes, then symbolically
executes each basic block according to CFG to derive the neces-
sary information for subsequent analysis. Gasper will identify
dead codes by comparing whether all blocks in CFG are ex-
plored by symbolic execution. However, Gasper can only iden-
tify specified patterns with significant limitations. A probably
better dynamic gas charge mechanism is also proposed to al-
leviate this problem [65]. Developers can also use developer
libraries and templates to program gas-efficient contracts.

The high costs can also be attributed to bad design logic in
the smart contracts, which result in additional unncessary over-
heads. Since each smart contract execution will be executed
by all full nodes on the Blockchain, any complex computation
will incur resource wastage. Luu et al. [66] explained that the
attacker can construct customized script that requires nontriv-
ial computation effort — resource exhaustion attack, and even
the gas mechanism is not capable of preventing such an attack.
Specifically speaking, focusing on a matrix operation (A*B)
contract, the attacker may create an expensive transaction script
involving two large size matrices with low gas prize, so other
miners are not willing to pack this transaction into the block.
Hence, the attacker will pack this himself/herself. In this way,
although this transaction will cause huge gas consumption, all
gas will be rewarded to the miner (attacker). Then, all nodes
have to execute this transaction after the block is broadcasted,
and decide whether to verify this transaction. If verifiers check
the transaction, this will consume much of their computation
and time resources; thus, affecting their probability to mine the

8 Front. Comput. Sci., 2021, 15(2): 152802

next block. If not, the attacker may involve an illegal transac-
tion. Since gas charged in each transaction is credited to the
attacker’s account, (s)he will launch this attack successfully at
minimal or no cost. Such costly contracts are more difficult to
deal with, in comparison to the first type of costly contracts.
Since this is not only a design issue but also one that con-
cerns the underlying consensus mechanism (how to incentivize
miners to verify transactions), a consensus-based computation
model where individuals should only accept to verify the trans-
action that has a specified bounded gas limit is required.

5 Program vulnerability
Vulnerability analysis is an ongoing research topic. Unlike con-
ventional software programs, smart contract codes are much
more vulnerable. Also, since smart contracts run on a large-
scale complex Blockchain system, they will be subjected to
more complicated situations. For example, smart contracts must
be executed by all nodes in the same order of transactions. Dur-
ing the execution process, there is a broad range of attack vec-
tors. For example, the authors in [50] surveyed smart contract
vulnerabilities, and made a taxonomy of existing popular pit-
falls for Solidity, EVM, and Blockchain. [67] analyzes concur-
rency exploits, which are posed because contracts can be called
simultaneously by multiple transactions, and different transac-
tions execution order may significantly influence the final re-
sults. There are also other public resources relating to smart
contract vulnerabilities, such as Ethereum blog and Consensys
community. To better classify existing solutions, we propose
categorizing program vulnerabilities into language flaw (1) and
code bug (2). The code bug mainly indicates vulnerabilities due
to the programmer’s negligence. If the vulnerability is intro-
duced intentionally, then this is considered Malicious Contract
(see Section 2).

5.1 Language flaw
Programming language limitation is one of prime culprits
for smart contract vulnerabilities. For example, Solidity is an
object-oriented high-level programming language and currently
one of the most popular programming languages. However, it
has many constrains. For example, Solidity does not have a
standard library that supports arrays and strings, and it does not
allows one to compare two strings directly. Solidity has more
drawbacks than other established languages like Python, C++,
and Javascript. For instance, “assert” may use up all remain-
ing gas, date suffixes cannot be applied to variables (only up
to three parameters can be received as the attribute indexed for
event parameters), and so on.

There have also been attempts to create new languages for
programming more robust contracts or easier verifying correct-
ness. For example, various alternative languages for Solidity
such as Bamboo, Obsidian [68], Vyper, Flint [69], Yul, Bab-
bage have been proposed to enhance code security. Bamboo
aims to enforce programmed codes execute in an expected order
eliminating nondeterminacy, moreover, by modeling contracts
as state machines and making state transition explicit, Bam-
boo perfectly circumvents reentrancy attack. Similar to Bam-
boo, Obsidian [68] is another language modeling contracts as
state machines, but more advanced than Bamboo, adds addi-
tional functions to track contract states statically, finally facili-

tating developers programming correct codes. However, Obsid-
ian focuses only on mitigating three sources of vulnerabilities,
namely: high-level state dependence addressed by moving dy-
namical state information into static types (thus, allowing one
to analyze them statically); monetary loss addressed by tracking
financial changes using a linear type system; and re-entrancy at-
tacks. Seeking to construct more secure, easily implementable
and human-readable smart contracts, Vyper, extends Solidity
to achieve enhanced security. However, Vyper deliberately re-
stricts several actions that are allowed in Solidity (e.g., modi-
fiers, class inheritance and function overloading); thus, limit-
ing the smart contracts’ functionalities. Moreover, it is still in
a beta stage at the time of this research. Thus, its effectiveness
remains to be verified. Besides these high-level programming
languages, there are also some languages specially designed to
verify contract security conveniently. Flint [69, 70], for exam-
ple, is a language for better contract ecosystem, which can be
more easily verified and rectified by introducing features such
as asset types and type states and setting different restrictions
on them. Taking asset types as an example, Flint only allows
limited operations in predefined patterns, restricting some dan-
gerous operations like creation or duplication. However, at the
time of this research this language still in alpha version and not
ready to be used in production yet. Rather than focus on high-
level programming language, Ethereum community also devel-
ops Yul intermediate language able to be transferred to byte-
codes for various Ethereum backends (EVM1.0, EVM1.5 and
eWASM). While Babbage is a visual programming language,
aimed at revealing how different parts interact and fit together.
In this way, users can better understand smart contracts.

Of these programming languages, functional may be pre-
ferred over other imperative programming languages. This is
because the other imperative programming languages tell soft-
ware how to do to achieve what we want, which is clumsy
and complex. Functional, on the other hand, follows a declar-
ative programming model, supports parallel programming, and
is more easily audited; thus, it is suitable for smart contracts
running on Blockchain. In addition, it treats computation as
the evaluation mathematical functions without changing state
and mutable data (see Wikipedia), and appears to introduce
fewer vulnerabilities. Due to space limitation, we cannot enu-
merate each language concretely. Based on existing classifica-
tion methods [101], Table 5 tries to cover existing popular lan-
guages for Ethereum as much as possible from three different
level, high-level, intermediate and low-level.

5.2 Code bug
It is impossible to claim that a program does not have any sin-
gle bug, even if the developing team is very experienced and the
program has been audited multiple times. The authors in [50],
for example, presented a detailed summary of smart contract
bugs. Vulnerabilities in smart contracts are constantly been dis-
covered. For example, a simple keyword search for smart con-
tracts on the website of Common Vulnerabilities & Exposures
(CVE) revealed 100 or more vulnerabilities in smart contracts
published in 2018 (e.g., CVE-2018-13746, CVE-2018-13661,
CVE-2018-12702, CVE-2018-12079, CVE-2018-12079, and
CVE-2018-13782).

Zeli WANG et al. Ethereum smart contract security research: survey and future research opportunities 9

Table 5 Features of several representative smart contract languages

Level Language Paradigm Turing-complete? Goal(s)

Solidity Contract-oriented Y(yes) Realize smart contracts on Ethereum virtual machine
Bamboo Procedure Y Provide polymorphic contracts that can be executed in predefined order with en-

hanced auditability
Obsidian Object-oriented - Make it easier for programmers to write correct programs while leveraging a type

system to provide strong safety guarantees
High-level

Vyper Procedural N(no) Provide more secure,simple and auditable smart contracts on EVM
Flint Procedure Y Write robust smart contracts on Ethereum

Babbage Mechanical - Expose how different parts interact and fit together
Pyramid Functional Y Scheme programming language targets at EVM
DAML Functional N Build composable applications on an abstract DA Ledger Model

Yul Procedure Y Designed to be a usable common denominator of various different backends in
Ethereum((EVM 1.0, EVM 1.5 and eWASM)Intermediate

language IELE Rigister-based Y Designed to provide smart contracts security, formal verification, human-readability,
and portability

Ewasm Stack-based Y Redesign of the Ethereum smart contract execution layer to facilitate smart contract
ecology such as execution speed and supporting more programming languages

Low-level
Huff Stack-based Y Write highly optimized EVM smart contracts enabling construction of EVM assem-

bly macros and working of EVM explicitly

Vulnerability detection methods for smart contracts are
somewhat similar to conventional softwares. But existing tools
of traditional programs cannot be applied on contracts directly.
Compared with traditional codes, the most remarkable feature
of smart contracts is decentralized, which are stored and ex-
ecuted by lots of peers. So there are many unpredicted risks.
For example, when a user sends a transaction to the network
to invoke some contracts, he cannot ensure that the transac-
tion will be run in the same state as the time of sending that
transaction. Because, in the meanwhile, other transactions may
have changed the contract state. Moreover, Ethereum contracts
currently only support single thread, while mostly traditional
codes support multi-threads. Therefore, there are many domain
specific vulnerabilities for contracts, such as transaction or-
der dependence and reentracy. Furthermore, smart contracts are
programmed by customized language like solidity, which has
particular features relative to traditional languages like C and
C++. Hence it is impossible to leverage existing traditional pro-
gram analysis tools straightly. Nevertheless, we can refer exist-
ing vulnerability detection knowledges and meanwhile consider
contract features to design satisfied tools suitable to contracts.
But many challenges need to be overcome, for example, getting
master of contracts’ features, finding an efficient way to figure
out risks caused by these features, and guarding against these
risks based on existing knowledges or their improvements.

Many solutions about contract vulnerability detection have
been proposed. However, due to the complicated execution en-
vironment in smart contracts, dynamic code analysis may not
be as effective as static code analysis, since dynamic code anal-
ysis requires more complex configuration to simulate the exe-
cution environment. Hence, most existing vulnerability detec-
tion methods are based on static analysis technologies (e.g.,
symbolic execution, data- or control- flow analysis and for-
mal verification) [64, 71, 72]. But to reduce false positive or
protect smart contracts in runtime, several dynamical methods
are proposed, represented by fuzzing and code instrumenta-
tion [73–75]. What’s more, some works adopt text comparison
approaches of natural language processing or code similarity
methods to detect known vulnerabilities [76–78]. Since Angelo

and Salzer made a thorough review and comparison of existing
tools for analyzing Ethereum smart contracts [79], and we con-
centrate more on security issues and exposing diverse solutions,
consequently, we just list a few typical tools to demonstrate the
fundamental principles of these methods.

• Static analysis can evaluate the potential risks of codes
without execution, among symbolic execution is most
popular for smart contracts. Symbolic execution substi-
tutes program variable values with symbols, and performs
symbolic computations when traversing codes. A sym-
bolic expression will be produced when the judgment
statement is satisfied, and finally a path condition will be
determined for each path, which is a key factor to confirm
path feasibility and vulnerability existence. Due to the
brevity of smart contracts and the completeness of sym-
bolic execution, this technology is very suitable to smart
contracts. Oyente [64], for example, is designed to de-
tect particular pitfalls within contracts (e.g., transaction-
ordering dependence (TOD) and timestamp dependence).
Specifically, after feeding both bytecodes and Blockchain
global state, Oyente recovers CFG and symbolically exe-
cutes all instructions recursively to derive each trace infor-
mation with path constraint and some additional auxiliary
data. Finally, Oyente uses such information to determine
the existence of bugs. Oyente will also check whether two
different traces have discrepant Ether flows. Other similar
works chooses to complement symbolic execution with
additional analysis technologies [72,80–82] or only focus
on a kind of bugs to enhance accuracy [71]. However, be-
cause of unsound completion of the system and the limita-
tion of symbolic execution technology such as path explo-
sion, no tool can guarantee totally accuracy. Formal veri-
fication is a promising technology to improve correctness
by using mathematical language to comprehensively de-
fine the expected behavior of systems. Given a system-
atic formal specification, formal verification can deter-
mine whether each step of the implementation is consis-
tent with the specification. Formal verification can com-

10 Front. Comput. Sci., 2021, 15(2): 152802

plement vulnerability detection methods, but it is complex
and resource-intensive. Generally, formal verification is
used only in security critical areas, such as spacecraft and
operating systems. Increasingly, there has been focus on
the use of formal verification for Blockchain applications,
as evidenced in the literature [83–88], and the increasing
number of companies providing verification-as-a-service
(VaaS). Examples of VaaS include the CertiK platform,
Secbit.io, and Securify.ch. The latter (Securify) [89], de-
signed by researchers from ETH Zurich, is a security an-
alyzer for Ethereum contracts to determine whether the
contract behavior is safe or unsafe. Specifically, the tool
can extract accurate semantic information based on con-
tract’s dependency relationships and then judges whether
a property holds according to predetermined patterns in-
volving both compliance and violation. Other approaches,
such as those of [90] are designed to determine whether
the contract templates satisfy correctness and the neces-
sary properties. Clearly, this is an area of ongoing re-
search.
• Dynamical analysis needs to execute codes but it has very

low false positives relative to static analysis. Contract-
Fuzzer [73] and Reguard [91] are typical fuzzing tools
to detect vulnerabilities, which execute smart contracts
by feeding enormous randomly generated inputs and then
detect vulnerabilities based on execution logs. Due to the
randomness of inputs, some extreme bug locations may
consume too much time even bypass the detection. Al-
though several researches focus on improving the quality
of the inputs [92], this field is still in infancy. These tools
can merely be used on pre-tests, unable to protect de-
ployed contracts. Sereum [74] instruments EVM with vul-
nerability detection codes, which can dynamically check
correctness. Once an execution violates predefined rules,
the transaction will be aborted in real time. EVM* [75]
is another similar detection tool focus on overflow and
timestamp bugs. However, due to distributed execution,
this method may introduce excessive overheads.
• Code similarity regards the features of existing vulnera-

bility code base as the reference, and checks whether an-
other program has the same bugs by assessing the simi-
larity of their features. Liu et. al. conduct a serial of re-
searches. They extract contract birthmarks involving both
semantic and syntactic features [76] and then implement a
tool - EClone [78] - to identify clones by comparing simi-
larity between two contract birthmarks. They also attempt
to use S-gram technology similar to N-gram to capture
characters of contracts, providing basic elements for eval-
uating similarity [77].
There are also other vulnerability approaches, for exam-
ple, there are commercial providers that offer vulnerabil-
ity detection as a service, similar to VaaS. Smart con-
tract users or designers can submit their contracts to such
providers to verify the contracts’ security. However, the
audit service may not be totally transparent and the cus-
tomer may not have an easy way to determine how in-
depth the analysis is. Also a few works try to apply ma-
chine learning into smart contract bug detection [93], but

due to lack of vulnerability libraries, this method has
many limitations until now. In a nutshell, there is no one-
for-all-bug approach.

Bug bounty program is another way where vulnerabilities
can be discovered and reported, for a financial reward. The
bug bounty program is widely used by organizations such as
Mozilla, Google, Facebook and Microsoft – see also [94]. Of-
ficial bug bounty programs are not the only forum where vul-
nerabilities are being sold or traded. For example, there are un-
derground or gray markets where such vulnerabilities are sold,
in order to maximize the vulnerability identifier’s profits. One
key challenge in bug bounty is for the initiator to set a “fair”
price that satisfies all parties. Seeking to address this, the Hydra
project [95], for example, proposes an approach to model and
administer bug bounties that incentives bug disclosure. Specif-
ically, the approach is to exploit the price gap based on N-
version programming, in order to motivate bug report even the
reward is much lower than the asking price. By mathematically
modeling and analyzing the market trend, one could arrive at
a “fair” or reasonable price range. In the context of smart con-
tracts, a bug in one version may not affect all the remaining
versions. However, only when all versions have the same bug
can then the bug be exploited. So there is an exploit gap be-
tween bug discovery and bug exploit, and this will also affect
the pricing of the bug. In addition, there is a risk of holding
on to the vulnerability for longer than required, as the value of
the bug decreases significantly if it has already been reported
or known. Unsurprisingly, designing efficient incentive mecha-
nism in bug bounty and how to guarantee fair-exchange in bug
bounty are ongoing research areas [96, 97]. For example, when
a participant reports a bug, the bug bounty program must en-
sure that the participant will be financially rewarded as agreed.
Tramer et al. [97], for example, considered using smart con-
tracts for bug bounties, based on Sealed-Glass Proof (SGP).
Such an approach permits safe verifiable computing using zero-
knowledge. In other words, a reporter can prove to the buyer
that he found bugs without leaking key information. However,
the approach needs to utilize smart contracts and does not con-
sider that the contract may also have vulnerabilities.

Contract upgrade is considered impossible in a Blockchain,
due to its immutability property. This in itself is also a limita-
tion for public Blockchain-based applications, for example it
prevents the updating / patching of an incorrect or removal of
a malicious / vulnerable contract. In permissioned Blockchain-
based smart contracts (e.g., “fabric” series), however, the con-
tract can be upgraded by authorized federated nodes. To make
the public chain more flexibly, several work attempts to design
new programming models or Blcockhain architectures to sup-
port contract code modification. Thus, contracts can be repaired
after being found bugs.

Two “families” of patterns proposed by Zeppelin have
emerged for upgradable contracts’ design models, namely: data
separation and delegatecall-based proxies – see also Fig. 3.
Data separation pattern splits a contract into a data contract
managing storage and a logic contract implementing special
functions. The data contract is responsible for manipulating
database, which cannot be upgraded. Therefore, it is designed

Zeli WANG et al. Ethereum smart contract security research: survey and future research opportunities 11

Fig. 3 Control flow of two design patterns (data separation pattern (top) and
delegatecall-based proxy pattern (bottom))

as simple as possible. The logic contract can only access data
indirectly by the data contract, and responsible for processing
all required complex business logics, hence are more prone to
bugs. However, it is designed to be upgradeable. Essentially,
“upgrade” does not mean patching. Instead, it is replaced us-
ing a new logic contract. But, the Blockchain states can still be
utilized again for the new contract by calling the data contract.

The delegatecall-based proxies model comprises a proxy
contract holding data and a logic contract. The former code
(without implementing concrete functionality) is made as sim-
ple as possible to prevent loophole. For each call, the proxy
contract will send the logic contract context involving the orig-
inal data using the “delegatecall” instruction. Once the current
logic contract is determined to be limited or vulnerable, we can
deploy a new contract by replacing the limited / vulnerable con-
tract by changing the proxy contract pointer. When using proxy
pattern, three storage models can be used to realize the separa-
tion of data and logic, namely: inherited storage, eternal storage
and unstructured storage. All these models rely on low-level
“delegatecall” (managing the returned data different from high-
level delegatecall instruction). In inherited storage, the storage
structure is built into the proxy contract, and the logic contract
will inherit from it. In eternal storage, one uses a separate con-
tract for the storage schema, and both proxy and logic contract
are inherited from it. Unstructured storage is somewhat similar
to inherited storage, but it does not require the logic contract
to inherit any state variables associated with upgradeability. To
sum up, both models have their own drawbacks, for instance,
data separation’s complexity makes it hard to ensure sound re-
alization and proxy contract’s old state data is difficult to be
migrated.

Another alternative is the voting mechanism. Arbitrum [98],
for example, designs a new blockchain architecture, that re-
quires participants to reach an agreement off-chain so that min-
ers only need to verify digital signatures on final results. In
Arbitrum, contracts are realized as VMs that encode rules of
corresponding contracts, which will be assigned a set of man-
agers. The group of managers will be the regulator responsi-

ble for managing and executing of the contracts. Once a con-
tract is found to be vulnerable, it can be upgraded as long as
all honest managers approve during a dispute phase. Nebulas
also supports contract upgrade by voting. Specifically, Nebulas
allows state variables defined as “shared” to be accessed and
modified directly by another contract. Thus, new contracts can
inherit some necessary states of the old contract without addi-
tional data migration. It is worth noting that contract upgrade is
not the same as contract modification. While deployed contracts
on existing Blockchain platforms such as Ethereum or Nebulas
cannot be changed, we can use some special design models to
allow new contracts to use old data. This is somewhat equiva-
lent to upgrading the contract. However, approaches undertaken
in systems such as Arbitrum need to be closely examined to
determine whether they conflict the tamper-proof property that
underpins Blockchain.

Other alternative approaches include designing new contract
secure development libraries and templates, such as several se-
cure and gas-efficient libraries proposed by CryptoFin, to al-
low contract developers to create more secure and standard
contracts. Fault-tolerant is another post-contract deployment
remedial measure. For example, Hydra [95] improves upon
conventional software fault-tolerant (N version programming
(NVP)) to address contract bugs during runtime, as described
earlier. One potential future research agenda is to explore other
fault-tolerant approaches to enhance contract security. Allow-
ing Blockchain to be modified [99] especially with fine-grained
access control [100] is another underway novel research field,
then the vulnerable deployed contracts may be patched timely.

6 Exploitable habitat
Located in a complicated environment, smart contract secu-
rity is closely related to them. First, Ethereum contracts run in
an isolated stack-based virtual machine (EVM), whose limita-
tions can seriously affect the execution process. For example,
the stack depth is limited to l024 bits, if the number of call
exceeds this range, then the transaction will terminate abnor-
mally. Extending outward a layer, transactions and contracts are
propagated or executed both through the whole Blockchain net-
work, attackers can leverage the Blockchain network or miners’
mining strategies to hack contracts such as chain fork, trans-
action congestion, front-running, etc. Moreover, sometimes,
smart contracts need to interact with the outside world, such
as data feeding, so the trustworthy of data inputs may signifi-
cantly influence the final results. To sum up, we will introduce
the contract security issues introduced by execution environ-
ment (Section 1), Blockchain network (Section 2), and untrust-
worthy oracle (Section 3) three levels.

6.1 Isolated execution environment
EVM is specifically designed for executing smart contracts in a
sandbox, providing two-way protection between physical hosts
and smart contracts. However, some features of EVM can intro-
duce potential risks. For example, EVM is actually semi-Turing
complete, because its execution is limited by transaction gas,
and gas-costly calculations such as the loop and recursion may
be aborted due to out of gas (OOG) exception; EVM does not
necessarily throw an exception when dealing with bugs such
as arithmetic overflows, instead, it will quietly wrap it around

12 Front. Comput. Sci., 2021, 15(2): 152802

by modulo 2**256; besides, EVM with the Wei as the smallest
unit does not support floating point numbers, resulting in impre-
cise computation results; unlike JVM that loads the executing
function individually, EVM loads the entire smart contract as
an opaque block and blindly executes from the first instruction,
causing that calling an external contract is complicated; lack of
standard libraries makes contract develop, deployment and exe-
cution more energy-intensive; moreover, since EVM parses the
contract bytecode based on the definition of the contract Ap-
plication Binary Interface (ABI), when attackers leverage the
function [function transfer(address to, uint tokens) public re-
turns (bool success)] in ERC-20 token contracts to transfer to-
kens with the length of first parameter less than 20 bytes, EVM
will automatically regards significant bits of the next parameter
as the supplement, moving the value of the second parameter to
the right, resulting in an increase of the actual value of money
transfer, namely, short address attack. If the contract has enough
balances, it will be deducted more money than the expected.

To provide a more satisfiable execution environment,
Ethereum community currently is dedicated into developing
Ethereum WebAssembly (ewasm) targeted at reconstructing ex-
ecution layer. Meanwhile, aimed at better describing EVM and
automatically generating smart contract analysis tools easily,
Hildenbrandt et al. provide a formal executable semantics of the
EVM [101] - KEVM - based on K framework [102]. KEVM
can find some contract defects that are untraceable to gen-
eral detection tools, such as the recent Gridlock bug in Edge-
ware’s lockdrop smart contracts, which is posed by program-
mers’ wrong intuitive that the balance of a newly created ac-
count is always zero.

6.2 Malicious Blockchain network

All participants in Blockchain try to maximize their own prof-
its. Hence, they are eager to leverage any shortcoming of
Blockchain such as chain fork to hack smart contracts. A typi-
cal example is replay attack, namely, when a Blockchain forks
into two isolated chains, at then, no matter EOAs or contracts
hold same states on both chains. For example, to make up the
loss caused by the DAO attack, after getting the majority votes,
Ethereum is forked into ETH and ETC. So if a transaction ex-
tracting money from the victim contract is successfully exe-
cuted in a fork chain, attackers can propagate the same trans-
action to another chain, then the contract will lose assets on
both chains. To prevent this attack, Ethereum realizes reply at-
tack protection by adopting different hash rules, see EIP-155
proposed by Vitalik Buterin.

Besides Blockchain changes caused by human can affect
contract security, blockchain constrain rules can also be ma-
liciously exploited. Ethereum uses “Block Gaslimit” to limit
block size, but this value may be leveraged to launch smart con-
tract DoS attack. For instance, if a contract iterates through an
array to pay users, the attacker can invoke it to pay a bunch
of receivers, but accumulated gas consumption of all transfer
transactions may exceed block gas limit, resulting in the fail-
ure of all transfers. Contract owners can choose pull payments
rather than push to mitigate this problem. Similarly, preferences
of miners can also be an attack surface. Specifically, miners will
first consider transactions with higher gas price. Given this pol-

icy, the attacker can send a computation-intensive transaction
with extremely high gas price to achieve various kinds of at-
tacks. On the one hand, he can perform front-running and his
transaction will be preferentially processed by miners; on the
other hand, due to complicated computation requirements, the
miner cannot spare any energy to deal with other transactions,
thus forming DoS attack again.

6.3 Unsafe external data
As smart contracts are applied in commercial setting, external
data can be input into the contracts. As contracts are executed
independently by each node on the Blockchain, any request to
retrieve from an external data source is also independently ex-
ecuted. Since the external world is dynamical and potentially
unsafe, it is challenging to ensure every node distributed in dif-
ferent countries will get a consistent response. Stock prices and
weather forecast are two typical examples, where their values or
readings may vary (e.g., between platforms / sources). If consis-
tence cannot be enforced, then such inconsistent data can cause
a Blockchain system to crash. Unsafe external data sources can
be due to non-random random number or unreliable online data
source.

6.3.1 Non-random random number
The security and stability of Blockchain rely heavily on random
numbers, for example in leader selection, airdrop reward, and
gambling decentralized applications (dApps). For most conven-
tional centralized applications, a pseudo-random number gener-
ator (PRNG) may be adequate. However, Blockchain as a dis-
tributed system needs an approach to generate consistent and
publicly verifiable random numbers, in order for fairness to be
assured. However, determinacy of smart contracts contradicts
indeterminacy of randomness. Several popular adopted solu-
tions that are based on Blockchain inherent data such as Block
hash, timestamp, and block number, can be easily manipulated
or predicted by miners [103, 104].

The commit-and-reveal approach [105] is typically used in
practice, where each participant will commit a commitment
in the first step. Then, all commitments will be published and
the random number will be constructed from all these commit-
ted numbers. This can be easily verified whether the process
is fair. Examples where this approach is used include Randao,
where anyone can participate and the random number is gen-
erated collaboratively by all participants (see Randao whitepa-
per). However, it involves too many participants and hence is
expensive to manage and run. In fact, Randao has not been
used in certain dApps until now. Another alternative approach
is to extract information in a future block, in order to provide
uniform randomness. Only at the pre-specified time will the
random number be computed. In other words, when malicious
user attempts to tamper with it, the result is already known by
then. Examples of usage include gambling contracts [50] and
Bitcoin-based protocols [106, 107]. However, the randomness
can still be manipulated by miners through withholding valid
blocks or reordering transactions. Countermeasures to prevent
these attacks include the use of (efficient) verifiable delay func-
tions (VDF) [108,109], which is a hard-to-compute inherently-
sequential function in a specified time. Thus, this prevents ma-
licious miners from computing the random outputs in a timely

Zeli WANG et al. Ethereum smart contract security research: survey and future research opportunities 13

fashion.
There have also been attempts to use other cryptographic ap-

proaches to create randomness. For example, Algorand [110]
uses a cipher to choose the leader that is tasked with block
generation. In general, Algorand executes two major parts (i.e.,
block proposal and Byzantine Agreement (BA*) for reaching
consensus on the proposal) iteratively. In the proposal step, Al-
gorand will first select committee members randomly in a pri-
vate and non-interactive way using the verified random func-
tion (VRF) [111] to protect their security, prior to selecting a
proposer using the same way to mine a block. The entire com-
mittee will decide whether to grant it consent using the BA*
consensus mechanism. Specifically, for member selection in the
first step, each verifier computes a seed and a proof for round r
that has been accepted in round r-1. The seed can be verified by
the corresponding proof. A leader will be chosen based on these
seeds. However, this mechanism relies on advanced cryptogra-
phy technologies, which imposes a significant requirement on
the hardware and is not easily applied in practice. Dfinity [112]
adopts a bias-resistant threshold scheme to guarantee the adver-
sary cannot abort the protocol. Specifically, it ensures that an
attacker can neither hinder its creation nor predict the outcome.
This mechanism can guarantee security in any Boneh-Lynn-
Shacham (BLS)-based scheme as long as the attacker does not
have more than a half of stakes (i.e., the majority attack). Both
Algorand and Dfinity adopt the VRF method. Another example
is Ouroboros [113], a composable proof-of-stake Blockchain
with dynamic availability. Ouroboros also utilizes VRF to gen-
erate the slot leader. In summary, VRF is a relatively promising
technology to create random number in distributed system. In
Thunderella [114], a nonce is set by the miner for next r rounds.
Combined with the nonce and other parameters, the proposer’s
public key will be hashed and then the hash value will be con-
firmed whether it is less than a difficulty value. The proposer
will be chosen as a leader as long as it satisfies this inequation.
However in this design, the same nonce is reused for subsequent
rounds. Thus, an attacker may be able to predict the proposers
in advance.

6.3.2 Unreliable online data source
A smart contract works as an arbitrary institution, in the sense
that when it is asked to make a decision, relevant data is re-
quired. However, it is challenging to ensure that data is correct
and consistent. For instance, if the contract needs static data
from a specific source, one cannot guarantee that the data at
the point of access has not been tainted / compromised. If dy-
namical data is required, due to time and geographical differ-
ences in unstable / uncertain networks, it is also challenging
to ensure all nodes obtain consistent and correct data. In gen-
eral, data can be sent directly by the transaction senders such
as third-party providers, but there is a risk that they may at-
tempt to influence the decision by manipulating critical data.
Therefore, we require a trusted relayer, who transfers data that
is reliable and correct. Trusted relayers are also referred to as
oracles, which are in the business of providing external data for
smart contracts.

Currently, oracles can be broadly categorized into trusted
third-party oracles and decentralized oracles. Oraclize and

Town Crier [115] are two examples of trusted third-party or-
acles. Oraclize is widely used as a data carrier to help contracts
fetch external data by leveraging Amazon with TLS notary-
based proofs to guarantee data security. Specifically, Amazon
is responsible for storing the proofs. Thus, verifying the signa-
ture / proof AWS provides, smart contracts can determine au-
thenticity of the retrieved data. Although it provides secure web
contents, it suffers from a number of drawbacks. For example,
attackers may attempt to tamper the proofs by compromising
the AWS oracle. Town Crier focuses on the utilization of Intel
Software Guard Extensions (SGX) to verify data correctness.
SGX will attach the data a signature if it passes verification,
then will send it to the smart contract. The contract only needs
to check the signature to judge correctness of the data. Such an
approach, however, defrays from the essence of Blockchain as
we should rely on a third-party.

On the other end of the spectrum, we have decentralized
oracles such as ChainLink. ChainLink is a decentralized ora-
cle network [116], where anyone can apply to become a data
provider once the requirements and application conditions have
been posted. Data purchasers can manually sort, filter and select
oracles via off-chain listing service, which runs based on the
reputation maintained on-chain along with a set of data gath-
ered from prior contracts logs. ChainLink avoids failure of sin-
gle point, but to some extent we need to rely on the architecture
of ChainLink system running normally. However, once this sys-
tem crashes, the reliability of relayed data cannot be ensured.

7 Challenges and future work
7.1 Challenges and potential solutions
In this paper, we systematically surveyed existing smart con-
tract security research, next, we will introduce related chal-
lenges and potential solutions. For example, in abnormal con-
tracts, it is challenging to distinguish between CSCs, normal
smart contracts, and contracts that are been criminally ex-
ploited. This is partly because CSCs are essentially the same
as normal smart contracts, including how they are triggered,
invoked, stored, etc. In addition, there are many different pro-
gramming languages and compilers, resulting in complex in-
ternal call relationships. Therefore, it is not realistic to design
a one-size-fit-all reverse engineering tool to transfer bytecodes
to source codes or human readable form. It is also challenging
to recreate the intent from the bytecodes alone due to a lack of
contextual information. Even in the event that we identify the
intention of a smart contract, it is also nontrivial to determine
whether it is associated with some illegal activities. This is also
partly due to lack of a clear definition for contracts intention
legality. A potential solution may be to use machine learning
to learn the differences between CSCs, normal smart contracts,
and contracts that are been criminally exploited, so that we can
better detect abnormal contracts.

Instances relating to exorbitant costs are also challenging to
detect. For example, there are many low-level instructions and
applications, and defining or figuring out costly patterns can be
tricky. Existing gas-costly detection tools are not entirely ef-
fective; thus, designing gas-efficient templates may help reduce
the potential for costly contracts.

Another potential research agenda is to design a more secure

14 Front. Comput. Sci., 2021, 15(2): 152802

programming language, without affecting the performance of
the smart contracts. For example, in a smart contract context,
since the language will be executed by a VM, the design should
therefore take into consideration the compiler. However, there
will be instances where vulnerabilities exist due to implemen-
tation or design flaws.

Research on smart contract vulnerability is also crucial, par-
ticularly as the usage of smart contracts broadens. There is,
therefore, the need to design automated tools to identify and ex-
ploit vulnerabilities in existing smart contracts, for the diverse
smart contract languages and platforms.

In the event that a vulnerability is identified, we also need
a secure way of performing upgrade / patching. Therefore, we
should explore designing ways to upgrade the smart contract
that holds the data state, without affecting the security and trust
of the underpinning Blockchain.

Due to the complexity of EVM and blockchain network, it
is tricky to define the semantics of EVM, simulate the whole
system or consider comprehensive attack surface of the survive
environment. Given the lessons of EVM 1.0, maybe a better
blockchain ecology from technical improvement to incentive
mechanism constrains can mitigate this problem. As discussed
earlier, there is also a need to design secure random number
generator or PRNG, which is suitable for Blockchain applica-
tions (e.g., sufficiently lightweight).

Recall that smart contracts are required to be stored by
all full nodes and each execution is repeated across the to-
tal Blockchain system. Therefore, a potential threat exists that
codes, inputs, and outputs are exposed to the public. Even if
the variable in smart contracts are private, it is only so in the
Blockchain. Therefore, there is a need to design effective ap-
proaches, such as homomorphic encryption techniques, to pro-
tect private data yet allowing the data to be publicly verified.

7.2 Future work
Besides future research areas about addressing hot problems
mentioned above, some overlooked but important security as-
pects are worth considering as well. Smart contract issues
on other platforms owns much less attentions than Ethereum.
Other Blockchain platforms of interest include Hyperledger
Fabric and EOS. For example, in fabric, smart contracts (chain-
codes) running in Docker may escape from the container; thus,
resulting in malicious network access. The associated program-
ming language, go, can also be the cause of vulnerabilities in
the smart contracts, and EOS is also frequently targeted by ma-
licious actor (see “Eos smart contract security best practices”
proposed by Slow Mist team).

Exploring vulnerabilities beyond contract codes. Future re-
search should extend beyond the existing that only focus on
contract codes. On the one hand, most times, smart contracts do
not merely mean codes and involve some other meanings such
as decentralized applications (DAPPs) or ERC tokens. Not only
do they involve codes, but also external front-end applications.
Under this context, new issues may generate. For instance, the
interaction process between the font-end and the contract codes
may also be controlled and can be an attack vector. As the num-
ber of various DAPPs soars, researches on DAPP security are
extremely significant. On the other hand, smart contracts are

different from traditional programs, which have specific busi-
ness logics, it is important to guarantee their security by en-
sure the safety of the logics, namely making contracts behaviors
identical to the expected. But now contract logic defects such
as improper access control are few touched. Combining addi-
tional informations provided by the front-end, detecting logic
vulnerabilities may be easier. In addition, smart contracts sup-
port reuse, and hence flaws in the reused codes can have a
far-reaching consequence. Hence, this necessitates the ongo-
ing need to design new (automated) tools and approaches (e.g.,
using machine learning) to identify previously unknown vulner-
abilities.

To improve performance, there have been attempts to facil-
itate smart contract concurrency by changing its original exe-
cution modes [117–119]. While smart contract concurrency en-
hances effectiveness to some extent, we have to closely exam-
ine the security implications. For example, running on complex
distributed Blockchain network, we need to consider race con-
dition bugs such as reentrancy vulnerability, when supporting
concurrency.

Machine learning has been shown to be relatively efficient
in identifying vulnerability problems in conventional software
[120–123]. Similarly, we posit its potential in learning nor-
mal semantics of smart contracts and identifying previously
unknown bugs / vulnerabilities, or analyzing existing bug pat-
terns to check contract security. Moreover, it can also be used
to check complex logic bugs and verify whether smart contract
behaviors are expected. One key challenge in using machine
learning is the lack of training datasets.

Formal verification on smart contracts should be attached
importance. Until now, there are only a handful of works in
this area. But comparing with traditional program analysis tech-
nologies, formal verification is more suitable to check whether
smart contract codes satisfy expected functions. Although get-
ting master of this technology is difficult, it will benefit contract
security significantly.

Generating smart contracts that can escape from common
vulnerability detection tools is also an interesting area. Al-
though hiding bugs is not a good way to secure contracts, but
it someway somehow can enhance them security. In turn, the
accumulated knowledges can facilitate designing more robust
program analysis tools.

Performance is an issue that has yet to be discussed in this
paper so far, however it is critical. For example, unlike a typical
payment system such as Visa (that reportedly processes 1,200 to
56,000 transactions per second (TPS)), Blockchain’s through-
put does not scale well (e.g., Bitcoin 7 TPS, and Ethereum 25
TPS). While in theory Ethereum can pack unlimited transac-
tions due to unbounded block size, in practice the throughput
is far less due to network performance and the block gas limit
(GasLimit). However, improving performance shouldn’t sacri-
fice security. For example, hot researches about execution in
SGX off chain, state channel, and cross chain focus more on
performance. But it is noted that, any change may introduce
potential risks. Digging out contract issues or proving its safety
in these new contexts is also a meaningful and necessary work.

Because all smart contracts are deployed on a decentralized
and public environment, so contracts are supported to reuse

Zeli WANG et al. Ethereum smart contract security research: survey and future research opportunities 15

or invoke each other. Developers can copy on-chain contracts
in the development stage, or directly call them in Blockchain.
Hence, to reduce the development or deployment cost, the phe-
nomenon of contract code reuse becomes more and more popu-
lar. So contract quality assessment is also a significant research
area. Currently, most state-of-art work focuses on vulnerability
prevention and detection, but vulnerability is just one of met-
rics of the contract quality. For example, gas usage, code size,
design mode etc, are both key metrics. More comprehensive
and precise metrics are waited to be explored. Also efficient
assessment technologies of contract quality are expected. Fur-
ther, software defect detection, an almost neglected direction,
is somewhat analogous to quality assessment, which can find
more potential improper places.

Last but not least, as Blockchain and distributed ledger net-
works are exploding by the day, interaction between multiple
Blockchains is necessary, so there is a need to develop cross-
chain smart contracts. There has been merely a little work until
now, but it is definitely a popular area in the future. It is noted
that, under this kind of scenario, the attack surface of smart
contracts is more enlarged, because it involves more differ-
ent Blockchain ecologies rather than just one; therefore, when
developing cross-chain contracts, security issues should be at-
tached much more importance.

8 Conclusion
Blockchain-based smart contracts are moving beyond hype
to real-world deployment. Due to its usage to support high
value financial transactions, ensuring its security is crucial.
Therefore, in this paper, we surveyed existing literature on
Blockchain-based smart contracts from its birth (July, 2015) to
this manuscript writing (July, 2019) and presented a taxonomy
focusing on the various security challenges and potential miti-
gation strategies. Moreover, some promising research areas are
provided to promote contract security.

Acknowledgements This work was supported by the National Key Research
and Development (R&D) Plan of China (2019YFB2101700), the Science and
Technology Program of Guangzhou (201902020016), the Shenzhen Funda-
mental Research Program (JCYJ20170413114215614), the Guangdong Provin-
cial Science and Technology Plan Project (2017B010124001), and the Guang-
dong Provincial Key R&D Plan Project (2019B010139001).

References

1. Chaum D. Blind signatures for untraceable payments. In: Proceedings
of the 2nd Annual International Cryptology Conference. 1982, 199–203

2. Chaum D, Fiat A, Naor M. Untraceable electronic cash. In: Proceedings
of the 8th Annual International Cryptology Conference. 1988, 319–327

3. Schoenmakers B. Security aspects of the ecashtm payment system. In:
State of the Art in Applied Cryptography. Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, 1998, 338–352

4. Rivest R L. Peppercoin micropayments. In: Proceedings of the 8th In-
ternational Conference on Financial Cryptography. 2004, 2–8

5. Satoshi N. Bitcoin: a peer-to-peer electronic cash system. 2008

6. Tschorsch F, Scheuermann B. Bitcoin and beyond: a technical survey on
decentralized digital currencies. IEEE Communications Surveys Tutori-
als, 2016, 18(3): 2084–2123

7. Conti M, Kumar E S, Lal C, Ruj S. A survey on security and privacy
issues of bitcoin. IEEE Communications Surveys Tutorials, 2018, 20(4):
3416–3452

8. Khalilov M C K, Levi A. A survey on anonymity and privacy in bitcoin-
like digital cash systems. IEEE Communications Surveys Tutorials,
2018, 20(3): 2543–2585

9. Ferrag M A, Derdour M, Mukherjee M, Derhab A, Maglaras L, Janicke
H. Blockchain technologies for the internet of things: research issues
and challenges. IEEE Internet of Things Journal, 2018, 6(2): 2188–2204

10. Sankar L S, Sindhu M, Sethumadhavan M. Survey of consensus proto-
cols on blockchain applications. In: Proceedings of the 4th IEEE Inter-
national Conference on Advanced Computing and Communication Sys-
tems. 2017, 1–5

11. Nguyen G T, Kim K. A survey about consensus algorithms used in
blockchain. Journal of Information Processing Systems, 2018, 14(1):
101–128

12. Zhu L, Wu Y, Gai K, Choo K R. Controllable and trustworthy
blockchain-based cloud data management. Future Generation Computer
system, 2019, 91: 527–535

13. Esposito C, Santis A D, Tortora G, Chang H, Choo K R. Blockchain:
a panacea for healthcare cloud-based data security and privacy. IEEE
Cloud Computing, 2018, 5(1): 31–37

14. Gai K, Choo K R, Zhu L. Blockchain-enabled reengineering of cloud
Datacenters. IEEE Cloud Computing, 2018, 5(6): 21–25

15. Lin C, He D, Huang X, Choo K R, Vasilakos A V. Bsein: a blockchain-
based secure mutual authentication with fine-grained access control sys-
tem for industry 4.0. Journel of Network and Computer Applications,
2018, 116: 42–52

16. Conoscenti M, Vetro A, De Martin J C. Blockchain for the internet
of things: a systematic literature review. In: Proceedings of the 13th
IEEE/ACS International Conference of Computer Systems and Applica-
tions. 2016, 1–6

17. Hassan M U, Rehmani M H, Chen J. Privacy preservation in blockchain
based iot systems: integration issues, prospects, challenges, and future
research directions. Future Generation Computer Systems, 2019, 97:
512–529

18. Taylor P J, Dargahi T, Dehghantanha A, Parizi R M, Choo K R. A sys-
tematic literature review of blockchain cyber security. Digital Commu-
nications and Networks, 2020, 6(2): 147–156

19. Xie J, Tang H, Huang T, Yu F R, Xie R, Liu J, Liu Y. A survey of
blockchain technology applied to smart cities: research issues and chal-
lenges. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2794–
2830

20. Yang R, Yu F R, Si P, Yang Z, Zhang Y. Integrated blockchain and edge
computing systems: a survey, some research issues and challenges. IEEE
Communications Surveys & Tutorials, 2019, 21(2): 1508–1532

21. Buterin V. A next-generation smart contract and decentralized applica-
tion platform. White Paper, 2014, 3(37): 1–36

22. Ronen E, Shamir A, Weingarten A, O’Flynn C. IoT goes nuclear: cre-
ating a zigbee chain reaction. In: Proceedings of the 38th IEEE Sympo-
sium on Security and Privacy. 2017, 195–212

23. Vasisht D, Kapetanovic Z, Won J, Jin X, Chandra R, Sinha S N, Kapoor
A, Sudarshan M, Stratman S. Farmbeats: an IoT platform for data-driven
agriculture. In: Proceedings of the 14th USENIX Symposium on Net-
worked Systems Design and Implementation. 2017, 515–529

24. Azaria A, Ekblaw A, Vieira T, Lippman A. Medrec: using blockchain
for medical data access and permission management. In: Proceedings of
the 2nd International Conference on Open and Big Data. 2016, 25–30

25. Yue X, Wang H, Jin D, Li M, Jiang W. Healthcare data gateways: found
healthcare intelligence on blockchain with novel privacy risk control.
Journal of Medical Systems, 2016, 40(10): 218

26. Chen L, Lee W K, Chang C, Choo K R, Zhang N. Blockchain based
searchable encryption for electronic health record sharing. Future Gen-
eration Computer Systems, 2019, 95: 420–429

27. McGhin T, Choo K R, Liu C Z, He D. Blockchain in healthcare appli-

16 Front. Comput. Sci., 2021, 15(2): 152802

cations: research challenges and opportunities. Journal of Network and
Computer Applications, 2019, 135(1): 62–75

28. Huckle S, Bhattacharya R, White M, Beloff N. Internet of things,
blockchain and shared economy applications. In: Proceedings of the 7th
International Conference on Emerging Ubiquitous Systems and Perva-
sive Networks (EUSPN 2016)/The 6th International Conference on Cur-
rent and Future Trends of Information and Communication Technologies
in Healthcare (ICTH-2016)/Affiliated Workshops. 2016, 461–466

29. Yao Q. A systematic framework to understand central bank digital cur-
rency. Science China Information Sciences, 2018, 61(3): 033101

30. Liang J, Han W, Guo Z, Chen Y, Cao C, Wang X S, Li F. DESC: en-
abling secure data exchange based on smart contracts. Science China
Information Sciences, 2018, 61(4): 049102

31. Matsumoto S, Reischuk R M. IKP: turning a PKI around with decentral-
ized automated incentives. In: Proceedings of the 38th IEEE Symposium
on Security and Privacy. 2017, 410–426

32. Chen J, Yao S, Yuan Q, He K, Ji S, Du R. Certchain: public and ef-
ficient certificate audit based on blockchain for TLS connections. In:
Proceedings of the 2018 IEEE International Conference on Computer
Communications. 2018, 2060–2068

33. Chase M, Meiklejohn S. Transparency overlays and applications. In:
Proceedings of the 23th ACM SIGSAC Conference on Computer and
Communications Security. 2016, 168–179

34. Szabo N. Formalizing and securing relationships on public networks.
First Monday, 1997, 2(9): 1–21

35. Paul A, Ahmad A, Khan M, Jeon G. Smart contract’s interface for
user centric business model in blockchain. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing. 2019, 709–714

36. Siano P, Marco G De, Rolán A, Loia V. A survey and evaluation of the
potentials of distributed ledger technology for peer-to-peer transactive
energy exchanges in local energy markets. IEEE Systems Journal, 2019,
13(3): 3454–3466

37. Castillo M. The dao attacked: code issue leads to 60 million ether theft.
see Coindesk Website, 2020

38. Reddit. Smartbillions lottery contract just got hacked. see Reddit Web-
site, 2020

39. Petrov S. Another parity wallet hack explained. see Medium Website,
2020

40. Slow Mist. Eth dapp hack events. see Slow Mist Hacked Website, 2020

41. Bartoletti M, Pompianu L. An empirical analysis of smart contracts:
platforms, applications, and design patterns. In: Proceedings of the 21st
International Conference on Financial Cryptography and Data Security.
2017, 494–509

42. Castro M, Liskov B. Practical byzantine fault tolerance. In: Proceed-
ings of the 3rd USENIX Symposium on Operating Systems Design and
Implementation. 1999, 173–186

43. Sukhwani H, Martínez J M, Chang X, Trivedi K S, Rindos A.
Performance modeling of PBFT consensus process for permissioned
blockchain network (hyperledger fabric). In: Proceedings of the 36th
IEEE Symposium on Reliable Distributed Systems. 2017, 253–255

44. David B, Gazi P, Kiayias A, Russell A. Ouroboros praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Proceedings of
the 37th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. 2018, 66–98

45. Badertscher C, Gazi P, Kiayias A, Russell A, Zikas V. Ouroboros gen-
esis: composable proof-of-stake blockchains with dynamic availability.
In: Proceedings of the 27th ACM SIGSAC Conference on Computer
and Communications Security. 2018, 913–930

46. Petersen K, Feldt R, Mujtaba S, Mattsson M. Systematic mapping stud-
ies in software engineering. In: Proceedings of the 12th International
Conference on Evaluation and Assessment in Software Engineering.
2008

47. Pahl C, Brogi A, Soldani J, Jamshidi P. Cloud container technologies: a
state-of-the-art review. IEEE Transactions on Cloud Computing, 2019,
7(3): 677–692

48. Bonneau J, Miller A, Clark J, Narayanan A, Kroll J A, Felten E W. Sok:
research perspectives and challenges for bitcoin and cryptocurrencies.
In: Proceedings of the 36th IEEE Symposium on Security and Privacy.
2015, 104–121

49. Alharby M, van Moorsel A. Blockchain-based smart contracts: a sys-
tematic mapping study. 2017, arXiv preprint arXiv:1710.06372

50. Atzei N, Bartoletti M, Cimoli T. A survey of attacks on ethereum smart
contracts (sok). In: Proceedings of the 6th International Conference on
Principles of Security and Trust. 2017, 164–186

51. Wang S, Ouyang L, Yuan Y, Ni X, Han X, Wang F Y. Blockchain-
enabled smart contracts: architecture, applications, and future trends.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019,
49(11): 2266–2277

52. Juels A, Kosba A E, Shi E. The ring of gyges: investigating the future
of criminal smart contracts. In: Proceedings of the 23rd ACM SIGSAC
Conference on Computer and Communications Security. 2016, 283–295

53. Kwon Y, Kim D, Son Y, Vasserman E Y, Kim Y. Be selfish and avoid
dilemmas: fork after withholding (FAW) attacks on bitcoin. In: Pro-
ceedings of the 24th ACM SIGSAC Conference on Computer and Com-
munications Security. 2017, 195–209

54. Eyal I. The miner’s dilemma. In: Proceedings of the 36th IEEE Sympo-
sium on Security and Privacy. 2015, 89–103

55. Velner Y, Teutsch J, Luu L, Smart contracts make bitcoin mining pools
vulnerable. In: Proceedings of the 21st International Conference on Fi-
nancial Cryptography and Data Security. 2017, 298–316

56. McCorry P, Hicks A, Meiklejohn S. Smart contracts for bribing Miners.
IACR Cryptology ePrint Archive, 2018, 2018: 581

57. Wang Y, Bracciali A, Li T, Li F, Cui X, Zhao M. Randomness invalidates
criminal smart contracts. Information Science, 2019, 477: 291–301

58. Torres C F, Steichen M. The art of the scam: demystifying honeypots in
ethereum smart contracts. In: Proceedings of the 28th USENIX Security
Symposium. 2019

59. Zhou Y, Kumar D, Bakshi S, Mason J, Miller A, Bailey M. Erays: re-
verse engineering ethereum’s opaque smart contracts. In: Proceedings
of the 27th USENIX Security Symposium. 2018, 1371–1385

60. Schwarz B, Debray S K, Andrews G R. Disassembly of executable code
revisited. In: Proceedings of the 9th Working Conference on Reverse
Engineering. 2012, 45–54

61. Grech N, Brent L, Scholz B, Smaragdakis Y. Gigahorse: thorough,
declarative decompilation of smart contracts. In: Proceedings of the 41st
International Conference on Software Engineering. 2019, 1176–1186

62. Parizi R M, Dehghantanha A, Choo R. A singh, empirical vulnerability
analysis of automated smart contracts security testing on blockchains.
In: Proceedings of the 28th Annual International Conference on Com-
puter Science and Software Engineering. 2018, 103–113

63. Chen T, Li X, Luo X, Zhang X. Under-optimized smart contracts devour
your money. In: Proceedings of the 24th IEEE International Conference
on Software Analysis, Evolution and Reengineering. 2017, 442–446

64. Luu L, Chu D, Olickel H, Saxena P, Hobor A. Making smart contracts
smarter. In: Proceedings of the 23rd ACM SIGSAC Conference on Com-
puter and Communications Security. 2016, 254–269

65. Chen T, Li X, Wang Y, Chen J, Li Z, Luo X, Au M H, Zhang X. An adap-
tive gas cost mechanism for ethereum to defend against under-priced dos
attacks. In: Proceedings of the 13th International Conference on Infor-
mation Security Practice and Experience. 2017, 3–24

66. Luu L, Teutsch J, Kulkarni R, Saxena P. Demystifying incentives in the
consensus computer. In: Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security. 2015, 706–719

67. Li Y. Finding concurrency exploits on smart contracts. In: Proceedings

Zeli WANG et al. Ethereum smart contract security research: survey and future research opportunities 17

of the 41st International Conference on Software Engineering: Compan-
ion Proceedings. 2019, 144–146

68. Coblenz M J. Obsidian: a safer blockchain programming language. In:
Proceedings of the 39th International Conference on Software Engineer-
ing. 2017, 97–99

69. Schrans F, Eisenbach S, Drossopoulou S. Writing safe smart contracts
in flint. In: Proceedings of the 2nd International Conference on Art, Sci-
ence, and Engineering of Programming. 2018, 218–219

70. Schrans F, Hails D, Harkness A, Drossopoulou S, Eisenbach S. Flint for
safer smart contracts. 2019, arXiv preprint arXiv:1904.06534

71. Torres C F, SchĀijtte J, State R. Osiris: hunting for integer bugs in
ethereum smart contracts. In: Proceedings of the 34th Annual Computer
Security Applications Conference. 2018

72. Nikolic I, Kolluri A, Sergey I, Saxena P, Hobor A. Finding the greedy,
prodigal, and suicidal contracts at scale. In: Proceedings of the 34th An-
nual Conference on Computer Security Applications. 2018

73. Jiang B, Liu Y, Chan W K. Contractfuzzer: fuzzing smart contracts for
vulnerability detection. In: Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering. 2018, 259–269

74. Rodler M, Li W, Karame G O, Davi L. Sereum: protecting existing smart
contracts against re-entrancy attacks. In: Proceedings of the 26th Annual
Network and Distributed System Security Symposium. 2019

75. Ma F, Fu Y, Ren M, Wang M, Jiang Y, Zhang K, Li H, Shi X. EVM∗:
from offline detection to online reinforcement for ethereum virtual ma-
chine. In: Proceedings of the 26th IEEE International Conference on
Software Analysis, Evolution and Reengineering. 2019, 554–558

76. Liu H, Yang Z, Jiang Y, Zhao W, Sun J. Enabling clone detection for
ethereum via smart contract birthmarks. In: Proceedings of the 27th In-
ternational Conference on Program Comprehension. 2019, 105–115

77. Liu H, Liu C, Zhao W, Jiang Y, Sun J. S-gram: towards semantic-aware
security auditing for ethereum smart contracts. In: Proceedings of the
33rd ACM/IEEE International Conference on Automated Software En-
gineering. 2018, 814–819

78. Liu H, Yang Z, Liu C, Jiang Y, Zhao W, Sun J, Eclone: detect semantic
clones in ethereum via symbolic transaction sketch. In: Proceedings of
the 26th 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing. 2018, 900–903

79. Angelo M D, Salzer G. A survey of tools for analyzing ethereum smart
Contracts. In: Proceedings of IEEE International Conference on Decen-
tralized Applications and Infrastructures. 2019

80. Krupp J, Rossow C. teEther: gnawing at ethereum to automatically ex-
ploit smart contracts. In: Proceedings of the 27th USENIX Security
Symposium. 2018, 1317–1333

81. Mossberg M, Manzano F, Hennenfent E, Groce A, Grieco G, Feist J,
Brunson T, Dinaburg A. Manticore: a user-friendly symbolic execution
framework for binaries and smart contracts. In: Proceedings of the 34th
ACM/IEEE International Conference on Automated Software Engineer-
ing. 2019

82. Kalra S, Goel S, Dhawan M, Sharma S. ZEUS: analyzing safety of smart
contracts. In: Proceedings of the 25th Annual Network and Distributed
System Security Symposium. 2018

83. Bhargavan K, Delignat-Lavaud A, Fournet C, Gollamudi A, Gonthier G,
Kobeissi N, Kulatova N, Rastogi A, Sibut-Pinote T, Swamy N, Béguelin
S Z. Formal verification of smart contracts: Short paper. In: Proceedings
of the 2016 ACM Workshop on Programming Languages and Analysis
for Security. 2016, 91–96

84. Idelberger F, Governatori G, Riveret R, Sartor G. Evaluation of logic-
based smart contracts for blockchain systems. In: Proceedings of the
10th International Symposium on Rule Technologies, Research, Tools,
and Applications. 2016, 167–183

85. Hildenbrandt E, Saxena M, Rodrigues N, Zhu X, Daian P, Guth D,

Moore B M , Park D, Zhang Y, Stefanescu A, Rosu G. KEVM: a com-
plete formal semantics of the ethereum virtual machine. In: Proceedings
of the 31st IEEE Computer Security Foundations Symposium. 2018,
204–217

86. Park D, Zhang Y, Saxena M, Daian P, Rosu G. A formal verification tool
for ethereum VM bytecode. In: Proceedings of the 2018 ACM Joint
Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering. 2018, 912–915

87. Ahrendt W, Pace G J, Schneider G. Smart contracts: a killer applica-
tion for deductive source code verification. In: Müller P, Schaefer I. eds.
Principled Software Development. Springer, Cham, 2018, 1–18

88. Ellul J, Pace G J. Runtime verification of ethereum smart contracts. In:
Proceedings of the 14th European Dependable Computing Conference.
2018, 158–163.

89. Tsankov P, Dan A M, Drachsler-Cohen D, Gervais A, Bünzli F, Vechev
M T. Securify: practical security analysis of smart contracts. In: Pro-
ceedings of the 25th ACM SIGSAC Conference on Computer and Com-
munications Security. 2018, 67–82

90. Bai X, Cheng Z, Duan Z, Hu K. Formal modeling and verification of
smart contracts. In: Proceedings of the 7th International Conference on
Software and Computer Applications. 2018, 322–326

91. Liu C, Liu H, Cao Z, Chen Z, Chen B, Roscoe B. Reguard: finding reen-
trancy bugs in smart contracts. In: Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings. 2018,
65–68

92. Wüstholz V, Christakis M. Harvey: a greybox fuzzer for smart contracts.
2019, arXiv preprint arXiv:1905.06944

93. Tann W J, Han X J, Gupta S S, Ong Y. Towards safer smart contracts:
a sequence learning approach to detecting vulnerabilities. 2018, arXiv
preprint arXiv:1811.06632

94. Finifter M, Akhawe D, Wagner D A. An empirical study of vulnerabil-
ity rewards programs. In: Proceedings of the 22nd USENIX Security
Symposium. 2013, 273–288

95. Breidenbach L, Daian P, Tramèr F, Juels A. Enter the hydra: towards
principled bug bounties and exploit-resistant smart contracts. In: Pro-
ceedings of the 27th USENIX Security Symposium. 2018, 1335–1352

96. Banasik W, Dziembowski S, Malinowski D. Efficient zero-knowledge
contingent payments in cryptocurrencies without scripts. In: Proceed-
ings of the 21st European Symposium on Research in Computer Secu-
rity. 2016, 261–280

97. Tramèr F, Zhang F, Lin H, Hubaux J, Juels A, Shi E. Sealed-glass proofs:
using transparent enclaves to prove and sell knowledge. In: Proceedings
of the 2nd IEEE European Symposium on Security and Privacy. 2017,
19–34

98. Kalodner H A, Goldfeder S, Chen X, Weinberg S M, Felten E W. Ar-
bitrum: scalable, private smart contracts. In: Proceedings of the 27th
USENIX Security Symposium. 2018, 1353–1370

99. Ateniese G, Magri B, Venturi D, Andrade E R. Redactable blockchain
- or - rewriting history in bitcoin and friends. In: Proceedings of 2017
IEEE European Symposium on Security and Privacy. 2017, 111–126

100. Derler D, Samelin K, Slamanig D, Striecks C. Fine-grained and con-
trolled rewriting in blockchains: chameleon-hashing gone attribute-
based. In: Proceedings of the 26th Annual Network and Distributed Sys-
tem Security Symposium. 2019

101. Hildenbrandt E, Saxena M, Rodrigues N, Zhu X, Daian P, Guth D,
Moore B M, Park D, Zhang Y, Stefanescu A, Rosu G. KEVM: a com-
plete formal semantics of the ethereum virtual machine. In: Proceedings
of the 31st IEEE Computer Security Foundations Symposium. 2018,
204–217

102. Rosu G, Serbanuta T. An overview of the K semantic framework. Journal
of Logic and Algebraic Programming, 2010, 79(6): 397–434

103. Chatterjee K, Goharshady A K, Pourdamghani A. Probabilistic smart

18 Front. Comput. Sci., 2021, 15(2): 152802

contracts: secure randomness on the blockchain. In: Proceedings of
IEEE International Conference on Blockchain and Cryptocurrency. 2019

104. Pierrot C, Wesolowski B. Malleability of the blockchain’s entropy. Cryp-
tography and Communications, 2018, 10(1): 211–233

105. Cachin C, Kursawe K, Shoup V. Random oracles in constantinople:
practical asynchronous byzantine agreement using cryptography. Jour-
nal of Cryptology, 2005, 18(3): 219–246

106. Bonneau J, Narayanan A, Miller A, Clark J, Kroll J A, Felten E W. Mix-
coin: anonymity for bitcoin with accountable mixes. In: Proceedings of
the 18th International Conference on Financial Cryptography and Data
Security. 2014, 486–504

107. Garman C, Green M, Miers I, Rubin A D. Rational zero: economic secu-
rity for zerocoin with everlasting anonymity. In: Proceedings of the 18th
International Conference on Financial Cryptography and Data Security.
2014, 140–155

108. Bünz B, Goldfeder S, Bonneau J. Proofs-of-delay and randomness bea-
cons in ethereum. IEEE Security and Privacy on the Blockchain (IEEE
S&B), 2017

109. Lenstra A K, Wesolowski B. A random zoo: sloth, unicorn, and trx
IACR Cryptology ePrint Archive, 2015, 2015: 366

110. Gilad Y, Hemo R, Micali S, Vlachos G, Zeldovich N. Algorand: scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th
Symposium on Operating Systems Principles. 2017, 51–68

111. Micali S, Rabin M O, Vadhan S P. Verifiable random functions. In: Pro-
ceedings of the 40th Annual Symposium on Foundations of Computer
Science. 1999, 120–130

112. Hanke T, Movahedi M, Williams D. DFINITY technology overview se-
ries, consensus system. 2018, arXiv preprint arXiv:1805.04548

113. Badertscher C, Gazi P, Kiayias A, Russell A, Zikas V. Ouroboros gen-
esis: composable proof-of-stake blockchains with dynamic availability.
In: Proceedings of the 25th ACM SIGSAC Conference on Computer
and Communications Security. 2018, 913–930

114. Pass R, Shi E. Thunderella: Blockchains with optimistic instant confir-
mation. In: Proceedings of the 37th Annual International Conference on
the Theory and Applications of Cryptographic Techniques. 2018, 3–33

115. Zhang F, Cecchetti E, Croman K, Juels A, Shi E. Town crier: an authen-
ticated data feed for smart contracts. In: Proceedings of the 23rd ACM
SIGSAC Conference on Computer and Communications Security. 2016,
270–282

116. Ellis S, Juels A, Nazarov S. Chainlink—a decentralized oracle Network.
2017

117. Sergey I, Hobor A. A concurrent perspective on smart contracts. In: Pro-
ceedings of the 21st International Conference on Financial Cryptogra-
phy and Data Security. 2017, 478–493

118. Dickerson T D, Gazzillo P, Herlihy M, Koskinen E. Adding concurrency
to smart contracts. In: Proceedings of the 36th ACM Symposium on
Principles of Distributed Computing. 2017, 303–312

119. Zhang A, Zhang K. Enabling concurrency on smart contracts using mul-
tiversion ordering. In: Proceedings of the 2nd International Joint Con-
ference on Web and Big Data. 2018, 425–439

120. Li Z, Zou D, Xu S, Ou X, Jin H, Wang S, Deng Z, Zhong Y. Vuldeep-
ecker: a deep learning-based system for vulnerability detection. In: Pro-
ceedings of the 25th Annual Network and Distributed System Security
Symposium. 2018

121. Russell R, Kim L, Hamilton L, Lazovich T, Harer J, Ozdemir O, Elling-
wood P, McConley M. Automated vulnerability detection in source code
using deep representation learning. In: Proceedings of the 17th IEEE In-
ternational Conference on Machine Learning and Applications. 2018,
757–762

122. Liu B, Huo W, Zhang C, Li W, Li F, Piao A, Zou W. αdiff: cross-version
binary code similarity detection with DNN. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-

ing. 2018, 667–678

123. White M, Tufano M, Vendome C, Poshyvanyk D. Deep learning
code fragments for code clone detection. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing. 2016, 87–98

Zeli Wang is a PhD candidate at Huazhong Univer-
sity of Science and Technology (HUST), China.
Her main research topics are blockchain and smart
contract security.

Hai Jin received the PhD degree in computer en-
gineering from the Huazhong University of Sci-
ence and Technology (HUST), China in 1994. He
is currently Chair Professor of computer science
and engineering with HUST, China. He is the also
Chief Scientist of the National 973 Basic Research
Program Project of Virtualization Technology of
Computing System. He has co-authored 22 books

and published over 700 research papers. His research interests include
computer architecture, virtualization technology, cluster computing
and cloud computing, peer-to-peer computing, network storage, and
network security. He is a fellow of CCF and a member of the ACM.

Weiqi Dai received the PhD degree in computer
science and technology from Huazhong University
of Science and Technology (HUST), China. He is
an assistant professor in school of cyber science
and engineering at HUST, China. His expertise and
research interests include blockchain, cloud com-
puting security, trusted computing, virtualization
technology, and trusted SDN.

Kim-Kwang Raymond Choo received his PhD in
Information Security from Queensland University
of Technology, Australia. He currently holds the
Cloud Technology Endowed Professorship at the
University of Texas, USA at San Antonio and is an
associate professor at the University of South Aus-
tralia, Australia. He was named one of 10 Emerg-
ing Leaders in the Innovation category of The

Weekend Australian Magazine/Microsoft’s Next 100 series in 2009,
and is the recipient of various awards including the British Computer
Society’s Wilkes Award and the Fulbright Scholarship. He is a fellow
of the Australian Computer Society, and a Senior Member of IEEE.

Deqing Zou received the PhD degree from the
Huazhong University of Science and Technology
(HUST), China in 2004. He is currently a profes-
sor in school of cyber science and engineering at
HUST, China. He has applied almost 20 patents,
published two books, one is theXen virtualization
Technologies and the other is Trusted Computing
Technologies and Principles, and published over

50 high-quality papers. His main research interests include system se-
curity, trusted computing, virtualization, and cloud security. He has
served as the PC member/PC chair of over 40 international confer-
ences.

