
AmbireTech / adex-protocol Public

 2 branches 0 tags

AdEx Protocol
Intro

Values

Terminology
Supply side

Demand side

Users

Events

Custom events

Campaigns

Layer 2

Offchain unidirectional trust-less payment channels (OUTPACE)

Validators

Observers

Validator stack

Flow
Closing a campaign

Campaign health

Validator fees

Validator consensus

Trust implications

Liveness implications

Components
Core

Market

Validator stack
campaignSpec

Paying by impression (CPM) or by click (CPC)

Analytical reports

Alternative implementations

AdView
Contextual targeting

Behavioral targeting

Blacklisting ads

Security

The AdEx Lounge

Identity
Pre-approved tokens

Sign-up process

Staking (Registry)
Nomination

Incentivized staking

Appendix
Basic visual representation

Preventing fraud/Sybil attacks

Scalability

Autonomous regulation

Privacy of publishers/advertisers

Privacy of the end-user

Rewarding end-users for attention

End-users paying for content

Real-time bidding / Header Bidding

Oracle-based advertising

Harberger tax ownership model

Role of AdEx Network OÜ

AdEx Protocol

Intro

AdEx is an open, trust-minimized protocol & stack for digital advertising that reduces ad fraud & malvertising and
protects user privacy. It originated in 2017 as a decentralized ad exchange for digital advertising, and later evolved
into the full-stack solution it is today.

The AdEx protocol facilitates trading of advertising space/time, as well as the subsequent verification and proof that it
actually occurred. Essentially, it covers all interactions between publishers, advertisers and end users. The protocol
combines traditional peer-to-peer technology, cryptography and blockchain.

The rationale for creating the AdEx protocol is to create an privacy-preserving, transparent, fraud-proof and open-
source replacement to the existing adtech stack. In a way, AdEx's mission is to create a new standard in digital
advertising: by introducing real-time tracking and reporting directly accessible to each advertiser and publisher, and
dropping the need for most intermediaries, we dramatically reduce the ability for any side to report wrong data to
others for their own financial gain. For more information about our rationale, see the Benefits overview.

The AdEx protocol is designed to be completely invisible to end users, while improving their internet browsing
experience (generally encouraging quality ads and unobtrusive experience).

AdEx heavily leverages smart accounts (a.k.a. account abstraction) through the Ambire SDK, in order to ensure that
publishers and advertisers can be easily onboarded into Web3 without previously having cryptocurrency for gas
payments.

This document assumes basic familiarity with computer science, blockchain and adtech.

The platform

The AdEx team also develops an open source ad platform built on top of the Ethereum implementation of the
protocol, available at https://platform.adex.network (GitHub Repository). The platform is targeted towards Web3
companies who intend to advertise their products towards a broader audience than just crypto-focused publishers.

The platform is built on top of Ambire Wallet and uses account abstraction to make onboarding as easy as possible
for publishers and advertisers.

Values

Transparency: full reporting transparency for publishers and advertisers; they both receive the same reports

No intermediaries: connect publishers and advertisers as directly as possible, therefore maximizing results and
revenues; this also implies minimized fees and no commissions

Privacy: ensure the user's data stays private by never collecting it

No custody of funds: users have full control over their own funds; you can withdraw any amount at any point,
no thresholds

Censorship resistance: we empower a free and self-governed ad market with no centralised restrictions on
what can and can't be advertised

Ease of use: modern adtech is complicated. We aim to make it as easy as possible to interact with AdEx

Flexibility: wide variety of use cases, including but not limited to: display advertising, affiliate networks, and
even content micropayments

Terminology

Supply side

Throughout these documents, "supply side", "publisher" or "publishers" all refer to entities who sell ad inventory.

Demand side

Throughout these documents, "demand side", "advertiser", "advertisers" or "buyers" all refer to entities who buy ad
inventory.

Users

When we refer to "users", we mean end users: not of AdEx itself, but of the publishers. In other words, the users who
see the ads, but might not even be aware of AdEx's existence.

Events

Events, in the context of the AdView or the off-chain event aggregation, mean anything that a user does in regard to
a digital ad - for example, click, impression, closing of the web page, etc. Events are usually broadcast as signed
messages.

Custom events

Custom events usually refer to events that are publisher-defined. For example, if you're a publisher with an e-
commerce website, you might choose to send an event for product purchases.

A potential use case is using AdEx for affiliate networks, where publishers get a share of the revenue on every
purchase of a product.

Campaigns

Ad campaigns are traditionally defined as "coordinated series of linked advertisements with a single idea or theme".
In AdEx, they further represent a intent to spend a certain budget towards spreading those advertisements:
essentially, a big piece of ad demand.

Campaigns are created with a total budget (e.g. 5000 USDC) and a specification of the desired result: e.g. purchase
as many impressions as possible for this ad, with a maximum allowed price per impression and targeting information.

Because campaigns represent a financial commitment on a smart contract, they can be also be seen as smart,
automated insertion orders.

The cryptocurrencies that can be used for a campaign depend on what Core is used and what it supports: e.g. the
Ethereum implementation supports all ERC20 tokens, but it can also be deployed on any EVM network.

In the AdEx protocol, each campaign uses a payment channel powered by a technology we call OUTPACE. Multiple
campaigns can run on the same payment channel, as payment channels are created between validators (more on
this later).

Layer 2

Layer 2 refers to blockchain scaling solutions, which allow financial transactions or other state transitions to happen
very fast, off the blockchain, while still being enforceable or eventually being committed to the underlying blockchain.

Ideally, layer 2 solutions allow throughput levels seen in centralized systems, while still being as trustless and
censorship-resistant as blockchains.

In AdEx, we use two scaling primitives that we defined: OCEAN and OUTPACE.

Offchain unidirectional trust-less payment channel (OUTPACE)

OUTPACE stands for Offchain unidirectional trustless payment channel

An OUTPACE channel is defined on-chain with a validator set and a token address. Any amount of funds of that
token can be deposited into the channel at any time. The validators observe off-chain events, and the leading
validator (validators[0]) would propose the new state of the channel, and the rest of the validators check and confirm
those new states.

If a state is signed by a supermajority (>=2/3) of validators, it can be used to enforce a result on-chain and withdraw
funds from the channel.

State transition rules

The state transition function enforces a few simple rules for each next state: (1) the sum of all balances in the state
can only increase, (2) each individual balance can only increase and (3) the total sum of the balances can never
exceed the channel deposit.

Because of these rules, an OUTPACE channel does not need sequences or challenge periods.

The initially delegated validators sign every new state, and a state signed by a supermajority (>=2/3) of validators is
considered

One advertising campaign is mapped to a single OUTPACE channel, where the deposit is the entire campaign
budget, and the validators are normally an advertiser-side and a publisher-side validators. That allows the advertiser
to make micropayments to multiple publishers (one micropayment per impression/click/etc.), and the publishers are
able to withdraw their earnings at any point.

States

The possible states of an OUTPACE channel are:

Unknown : the channel does not exist yet

Active : the channel exists, has a deposit, and it's within the valid period

Expired : the channel exists, but it's no longer valid

Exhausted : this is a meta-state that's not reflected on-chain; it means the channel is Active, but all funds in it
are spent

For a full explanation, see OUTPACE.

Validators

Validators are responsible for tracking ad impressions/clicks and signing the state. The validator set (can also be
called a committee) is individually defined by each OUTPACE channel. Since each ad campaign is an OUTPACE
channel, it has it's own validator set.

Each validator must have a keypair and a publicly accessible HTTPS endpoint for receiving events from the AdView.

Observers

The observers are delegated to collect events in relation to a certain campaign. All validators of a campaign
(OUTPACE channel) are, by definition, observers of all events related to it.

However, in practice, it's possible to have additional observers who are not validators - for example, a publisher's
node might observe all events related to the ad units of the publisher, without necessarily being validators.

Each observer must have a publicly accessible HTTPS endpoint for receiving events from the AdView.

This functionality is unused as of V5, but it's a inherent property of the protocol and can become useful for specific
use-cases.

Validator stack

"Validator stack" refers to the entire validator stack, which is a set of software components that all
validators/observers need to run.

To prevent confusion with the normal terms "supply-side platform" (SSP) and "demand-side platform" (DSP), we will
use "publisher-side validator" and "advertiser-side validator".

Flow

The entire flow is as follows:

1. The advertiser (demand side) starts a campaign with a total budget and certain parameters (ad units, targeting,
min/max price per impression/click/etc.); this translates to opening an OUTPACE channel; at this point the
advertiser delegates two validators: one that represents them (advertiser-side validator), and one that represents
publishers (publisher-side validator).

2. Validator(s) have to accept that they're nominated for this channel (and prove that they're available) by
broadcasting a signed message to the other validator(s).

3. Publishers will query their own validator(s) for available demand (active channels) every time someone opens
their website/app; the query will happen on the client side (in the browser/app), much like header bidding; the
AdEx AdView will select one of those bids and relay that selection to the validators.

4. The AdView will generate events (impressions, clicks, page closed, etc.) and send them to the validators.

5. The events will be reflected by the validators, creating a new state; each valid impression event is turned into a
micropayment to a publisher; publishers will be immediately able to use that state to withdraw their earnings.

6. Should the publisher decide to withdraw their earnings, they can withdraw from any number of channels at once.

7. As long as the state keeps advancing, publishers have a constant guarantee of their revenue; should the state
stop advancing properly, publishers can immediately stop serving ads (see campaign health and Campaign
health vs refusal to sign).

The benefits of this approach are:

Scalability: the only on-chain transactions are a deposit operation (which creates a campaign and a channel,
channelOpen) and a withdraw (allowing any party to withdraw earnings, channelWithdraw);

Publishers can withdraw their latest earnings on-chain at any time;

Since OUTPACE is one-to-many, a campaign can be executed by multiple publishers;

If new states are no longer created (someone is no longer online or is malicious), publishers can immediately
stop delivering ads for this campaign (channel);

Allows off-chain negotiations: advertisers can bid for impressions in real time;

All data other than payments information is kept off-chain.

Each campaign has a duration, normally in the range of 2-12 weeks. An OUTPACE channel should have 2-3 times as
long of a duration, in order to allow extra time for publishers to withdraw their revenue.

Closing a campaign

If an advertiser wants to close a campaign, they sign a new state, which distributes the remaining deposit: most of it
goes back to the advertiser's wallet, and a small part goes to the publisher validator as a cancellation fee.

The publisher-side validator recognizes this as an intention to close the campaign, and signs the state as well,
therefore allowing the advertiser to withdraw their unspent funds. With this, the channel is considered exhausted and
no longer represents any demand.

While it is possible for a publisher-side validator to refuse to approve the state, they gain nothing from doing so: (1)
the advertiser has decided to cancel the campaign, meaning they won't sign any new states with new payments to
publishers anyway; (2) after a channel is no longer valid, they still get their unspent deposit back; and (3) the
publisher-side validator gets compensated with a cancellation fee.

Campaign health

The campaign health is a publisher-specific concept that indicates whether the advertiser is properly paying out after
impression events.

Each publisher, with the help of the publisher-side validator, tracks the health status of each campaign they've ever
interacted with. If a certain (configurable) threshold of non-paid impression events is reached, the campaign will be
marked unhealthy, and the publisher will no longer pick it until the paid amount increases sufficiently.

The campaign health should not be confused with OUTPACE state sanity: even if a campaign is unhealthy, the
publisher-side validator will continue signing new states as long as they're valid: because of the unidirectional flow,
valid states can only mean more revenue for publishers.

Campaign health vs Refusal to sign

While a campaign can be unhealthy and the publisher-side validator (Follower) will continue to sign new states, there
are 2 cases in which it will refuse to sign states:

1. In case of the campaign health dropping below an unsignalbe (configurable) threshold, the publisher-side
validator (Follower) will stop approving states proposed by the advertiser-side validator (Leader) until this
threshold is surpassed again.

NOTE: The Unsignable and Unhealthy thresholds and 2 different configurable values and the latter is greater.

For example:

Unhealthy : when health < 95%;

Unsignable : when health < 75%;

2. Refusal to sign on rules violation will happen when the proposed state of the advertiser-side validator
(Leader) violates one of the 3 rules of state transition (see also OUTPACE State transitions rules &
OUTPACE.md Specification).

Validator fees

Running the validator stack requires computational resource, and the way the validator consensus works implies that
channel validators have to represent opposite sides (if they don't, the channel should not be used).

This means that in most cases, no matter if you're a publisher or an advertiser, you'd end up using a validator ran by
someone else.

Third-party validators may require fees to participate in your channel (campaign). With OUTPACE, there's a
convenient way of doing that, by just including an entry in the balances tree. Furthermore, the fees can be ongoing
(e.g. per 1k events, or per minute), taking advantage of the micropayments capability of OUTPACE.

In practice, a validator fee paid out proportionally to the distributed funds also works as the cancellation fee: if the
cancel the campaign early, the full validator fee will be distributed without any real work done, giving the publisher-
side validator an incentive to allow this.

Validator consensus

In a minimal setup, we have two validators defending opposite interests (advertiser-side, publisher-side).

This setup, by itself, does not imply any additional trust: each new state has to be approved by both the paying side
and the receiving side (essentially, a 2 out of 2 setup). Essentially, the sender signs a new state, which pays more to
the receiver, but we require both to sign off, otherwise the sender would be able to arbitrarily manipulate the
balances. To learn more, you can read Understanding payment channels or state channels.

However, in OUTPACE, unlike in regular state/payment channels, we separate participants from signing parties
(validators), and allow any arbitrary number of validators.

We do that because:

Sometimes we need a third party to resolve conflicts created by natural discrepancies (e.g. an event was
received by 1 out of 2 parties, and there's no tiebreaker);

Maintaining liveness is critical; in a 2 out of 2 setup, 1 party going down means that the channel stalls;

The publisher needs to trust the publisher-side validator, read on to Trust implications.

Trust implications

For a state to be valid, it requires >=2/3 validator signatures. In a setup with the minimum number of validators, 2,
this can only mean 2 signatures.

As you many have noticed, we imply that multiple publishers delegate/operate a single publisher-side validator,
implying it will act in their interest.

Generally, even without trusting the validator, the publishers will receive constant guarantees for their revenue.

However, if the publisher-side validator and the advertiser-side validator both become malicious, they can sign a new
state, allowing them to withdraw the channel balance together.

This attack is only possible if >2/3 (in this case, all 2 out of 2) validators become malicious, and it wouldn't be a
problem in a regular payment channel where the signers are the actual participants.

There are a number of mitigations that we believe are sufficient:

1. The publisher-side validator(s) should be operated by consortiums of the largest publishers;

2. There could be more than 2 validators (this also solves natural discrepancies and liveness issues);

3. Generally, there's little incentive for an advertiser-side validator to help a publisher-side validator steal a portion
of their own deposit

4. Anyone can run publisher-side validators, so we expect different publishers grouping together to create multiple
validators; in other words, large publishers can run their own publisher-side validators.

Liveness implications

It's absolutely essential that validators stay online all of the time. If more than a third of them go offline, no new states
can be produced (threshold for a valid state is >=2/3 signatures), meaning that the micropayments from the
advertiser to the publishers are essentially stopped.

If this happens, the publishers can immediately stop delivering ads for the given campaign mapped to the stalled
channel, therefore not losing anything. The market component is responsible for monitoring the state of all channels,
and keeping track of which ones are active and non-exhausted.

Should the validator(s) come online again, everything can resume as normal.

The possibility of validators going offline is mitigated by (1) the architecture of the validator stack and (2) the ability of
OUTPACE to work with any arbitrary number of validators.

Components

Core

The AdEx protocol builds on top of blockchain technology to facilitate the parts that need achieving consensus in a
trust-less, decentralized manner. This part is commonly referred as the "AdEx Core".

The Core has to implement everything related to moving funds between advertisers and publishers. To be more
precise, it provides an implementation of OUTPACE channels (unidirectional payment channel), and every
advertiser's campaign maps to one OUTPACE channel with a certain deposit.

The channel is created with the following information:

deposit : total monetary deposit; on Ethereum, this is denoted in tokenAddr and tokenAmount ;

validUntil : the date until this channel is valid; this is also the period within the publishers can withdraw, so it
should be longer than the actual specified campaign length (e.g. 3x longer);

validators : an array of all the validators who are responsible for signing a new state; one of them should
represent the advertiser, and the other - the publisher(s);

spec : describes all the campaign criteria: e.g. buy as many impressions as possible, the maximum price they're

willing to pay for impressions, and campaign duration; this is stored as arbitrary bytes (32); in the platform, we
encode the criteria directly in there, but it can be used to reference a JSON descriptor stored on IPFS.

The Ethereum implementation of this component is called adex-protocol-eth . While the current running
implementation of AdEx is the Ethereum one, we are also experimenting with Cosmos and Polkadot.

For more information on how the payment channels work, see OUTPACE.

Market

The market is a RESTful service maintained and hosted by AdEx Network OÜ.

The primary role of the market is to facilitate demand/supply discovery and trading. It keeps record of all campaigns
that are currently valid, and allows publishers/advertisers to query that list in order to find what they need.

The market needs to track all on-chain OUTPACE channels and needs to constantly monitor their liveness (>=2/3
validators online and producing new states) and state.

Additional privacy can be achieved by having groups of publishers/advertisers run their own instances of the market -
that way, campaigns will be visible only within their private group.

The market is currently implemented in the adex-market repository. Because of it's aggregation-only role, it can be

considered a back-end to the Platform.

For a detailed specification, see market.md.

Validator stack

The validator stack is a collective term for all off-chain components responsible of handling events, managing
OUTPACE channels and generating analytical reports.

Full list of functionalities:

1. Collecting events from users; this includes filtering them to ensure their validity and applying campaignSpec

policies (e.g. max 10 events per user);

2. Track the on-chain state of OUTPACE channels;

3. Serve as a validator of the OUTPACE channels;

4. Generating analytical reports;

5. Providing RESTful APIs for access to reports, events and OUTPACE channel data.

In a normal setup, each of the nominated validators for an OUTPACE channel would run a full validator stack setup.

The validators communicate with the outside world and between each other through a RESTful API, exposed by a
component called a Sentry.

For a detailed specification, see validator-stack.md.

campaignSpec

In the Core, each OUTPACE channel has it's own spec , which is an arbitrary blob of bytes designed to contain any
additional information for this channel.

In the AdEx Protocol, we use that field for a specification of the advertising campaign, by referencing a JSON blob of
the campaignSpec format.

To do that, we set the spec value to a 32-byte IPFS hash of the JSON blob, using the SHA2-256 digest function.

If you're a dApp builder, it is recommended that you pin this file on your own IPFS nodes. However, this file will also
be permanently stored by the Market when it's uploaded to it.

For the JSON blob specification, see campaignSpec.md . It includes detailed description of the campaign, including

min/max impression prices, targeting, ad units and etc.; currently, the format is specific to AdEx, but AdCOM might be
incorporated in the future.

Paying by impression (CPM) or by click (CPC)

It's possible to pay for advertising in any way by configuring a campaign goal - e.g. by impression, by click, or even
by number of user registrations (CPA).

However, the default option is always impressions as we believe that this creates the best incentives. Paying by click
implies more risk and unpredictability, since the publishers will be pushing impressions out without prior knowledge of
how much a certain ad will convert.

Ultimately, the raw resource the publisher provides is impressions, and the conversion rate of the ad depends mostly
on the advertiser.

Analytical reports

The validators of an OUTPACE channel are usually two instances of the validator stack: one represents the
advertiser, and the other represents multiple publishers.

This means they receive all the data related to this OUTPACE channel, therefore allowing them to aggregate it into
useful reports.

This architecture ensures that both parties get their analytical reports by aggregating the data directly from the users,
which ensures reporting transparency.

Alternative implementations

The validator stack is, like anything else in the AdEx protocol, modular and replaceable.

Alternative validator stack implementations can be created, and can be useful for optimizing for particular
flows/workloads.

In order to maintain compatibility with the existing AdEx infrastructure (the Platform and the AdView), you don't need
to follow the architecture outlined in validator-stack.md, but you need to implement the same RESTful APIs.

AdView

The primary implementation is adex-adview-manager , which is designed for the web.

It's important to note that the AdView is entirely browser-agnostic. It can run as a library (alongside React or any
other modern framework) or in an <iframe> on the publisher's webpage.

There are currently no native mobile implementations, but the AdView can be easily wrapped into a WebView on

iOS/Android, and it will work as expected, at a small performance cost.

The AdView is responsible for:

1. Pulling all possible demand (campaigns, bids) from the Market;

2. Picking which ad to show depending on the user: this depends on a combination of price and targeting (header
bidding and contextual targeting);

3. Generating events (impressions as per IAB's guidelines, clicks) and sending them to all validators and observers
of the given ad;

Later on, if needed, it will also be responsible for:

1. Creating a cryptographic identity (keypair) for the user, if they don't already have one, and persisting it in their
browser;

Contextual targeting

Notice a common pattern here: sensitive information never leaves the user's browser, and this is achieved by
shifting the process of targeting (selecting ads) to the browser itself. To achieve this, we use contextual targeting.

This works by relying on publishers to feed what they know about the context (e.g. "this page is about bicycles") and
potentially the user (e.g. "this user is female") directly into the AdView API. The incentive for this is built-in: better
targeted ads mean higher revenues.

This system is based on tags, which are not specified in the AdEx protocol itself and are entirely defined by network
participants. They could describe anything - interests, demographics, geographics and etc.

Behavioral targeting

Because contextual targeting has certain limitations (e.g. no remarketing), there is a possibility to introduce
behavioral targeting, using localStorage to remember tags for the user. This will not compromise privacy, because
the data collected localStorage is not exposed to any third parties.

To achieve this, the AdView always has to be loaded from the same domain (e.g. adex.network), in order to ensure
it always reads/writes to the same localStorage . This can be trust-minimized in the future through ENS, IPFS or
even just using checksum-based integrity checks.

Advertisers may report tags that allow for remarketing, such as a tag indicating that a user visited their website, or
even a tag indicating they've visited a particular page, allowing for dynamic remarketing.

Blacklisting ads

Users can blacklist ads, very similarly to how ads on Google/Facebook have a cross icon on the top right corner.
Once you do this, it will be saved locally so this ad will never be shown to you, but also reported to all publisher-side
validators the AdView is aware of.

While a publisher-side validators may choose to ignore such an event, it's mostly in the interest of publishers to keep
track of the most blacklisted ads and possibly stop serving them altogether.

An additional improvement on the AdView would be to allow users to gossip blacklists directly between each other,
therefore eliminating the ability of publisher-side validators to act together and ignore blacklist events. This feature is
not trivial, as it requires a reliable sybil resistance mechanism.

Security

The keypair is saved in localStorage . However it never holds any funds, it merely serves to identify users

anonymously.

In case localStorage is deleted, the user will receive a new keypair and the system will start learning about them
again - which is actually intended behavior (e.g. using incognito mode in the browser).

The AdEx Lounge

The AdEx Lounge (called "AdEx Profile" in the original whitepaper) is a user-facing part of AdEx that allows the user
to control their ad preferences.

In particular, users can opt out of seeings certain kinds of ads.

With OUTPACE channels, it's possible for users to earn monetary rewards as well, so at some point the Lounge may
be used to allow for users to withdraw their funds.

There's no public implementation of the Lounge yet.

Identity (replaced by Ambire Wallet)

NOTE: The Identity layer has been spun into it's own product, called Ambire Wallet.

The Identity layer is currently specific to our Ethereum implementation and designed to streamline the user
experience of the Platform.

It is a smart contract that allows the users of the Platform (publishers/advertisers) to:

Use many devices (e.g. PC, mobile, HW wallet) as one identity, without having to share the same private key
between them (essentially a multisig)

Interact with the Ethereum network without needing to have ETH: fees can be paid in USDC or another ERC20
token

Allow certain actions to be scheduled/performed automatically without needing them to be online, for example
withdrawing funds from OUTPACE channels (called "sweeping" to distinguish it from actual withdrawing)

This solves many UX hurdles that are typical for blockchain-related applications.

In the Platform, we also allow the so-called "Quick accounts": you can sign up with an email/passphrase, and the
Platform will generate and store a keypair for you, encrypted with your passphrase.

Some of these concepts are sometimes refered to as "smart wallets", "meta tx" or "account abstraction".

The Identity component is implemented in the adex-protocol-eth repository.

Pre-approved tokens

While OUTPACE can work with any Ethereum token that implements the ERC20 standard, not all of them are
suitable for using as campaign deposit. Some tokens have fatal bugs, others allow arbitrary minting, and some are
simply not liquid enough.

This is why we came up with a set of pre-approved tokens. For now, we've decided on USDC and ADX, but we can
easily allow more.

It's important to note that this is not enforced on a blockchain/smart contract level, but it's merely a UI limitation.
If you feel that a certain token should be added, you can submit a PR to adex-platform .

Sign-up process

We intend to allow publishers/advertisers to sign-up to the platform using any pre-approved token (e.g. USDC, ADX),
or with ETH, by leveraging Uniswap to automatically convert to one of the pre-approved tokens.

If there's a suitable way to do it, we intend to allow opening a campaign with USD/EUR by integrating the platform
with a third-party service that allows purchasing USDC with USD/EUR, such as Ramp Network.

We are also exploring the possibilities of allowing signing up with BTC, by using HTLC-based atomic swaps or
Bitcoin SPVs to exchange it for a pre-approved token.

ADX token and tokenomics

ADX token

The ADX token was launched in 2017 and is currently trading on Binance, Kraken, Huobi, Uniswap and more.

Staking and validator registry

The Registry is an autonomous system designed to provide a list of publically accessible validators that you can
nominate for your campaign.

The ultimate goal of the Registry is provide exposure for everyone who wants to be a public validator, and also to
hold these validators accountable if they misbehave.

This is accomplished by having each validator who wants to be on the Registry stake ADX tokens. Every time they
misbehave, a small portion of those tokens will be burned (slashed). This makes validators with higher stake more
trustworthy, as they have more skin in the game. The reason ADX is the only token allowed for staking is that ideally,
staking for the registry would be the token's primary use case, as this implies a large part of the token supply would
be staked and locked up, therefore making it more expensive to perform a Sybil attack.

This system differs from token curated registries in that there is no approval/rejection game, and anyone with a
sufficient minimal stake can be registered. Furthermore, there are specific conditions which will punish misbehavior,
related to the particular mechanics of OUTPACE and the validator stack.

Because challenges may require verifying validator NewState and ApproveState messages on-chain, the Registry

needs high transaction throughput. Therefore, we have decided to build it as a Substrate chain, and possibly make it
part of the Polkadot network.

Protocol fee discounts

With V5 that will be rolled out in 2023, there will be fee discounts to users who stake over a certain amount of ADX.

Nomination and staking

If a validator chooses so, they may allow users to "nominate" them: stake tokens in the validator's name (delegate),
therefore receiving a pro rata share of their fee earnings, but also inheriting their slash risk. We call this "staking
pools". This is the case with the current staking portal. A validator may choose to run a pool and distribute their
earnings in order to increase the ADX staked against their name.

If you're interested in staking ADX as a token holder, you can learn more here.

Incentivized staking

As of 2021, there's an incentivized staking campaign running which generates over 50% annual percentage yield.

You can also stake through Binance and Huobi.

Automated buybacks

In May 2021, a mechanism was introduced in the Tom staking pool that uses the validator's fees to buy ADX and
distribute it to stakers.

Appendix

Basic visual representation

The box-shaped platform and AdView are client-side software

Round-shaped items represent parts of the AdEx peer-to-peer network (in practice, many validators and markets
may exist)

The diamond shape represents another P2P network, in this case Ethereum

To keep the representation simple, we've omitted some components: for example, the Identity is used by
publishers/advertisers to interact with the platform, and the Core runs on the Ethereum network itself. The Registry is
a separate system, designed to help platform users pick validators.

Integration with traditional supply-side platforms

AdEx allows for integrating traditional supply-side platforms (SSPs) that are external to the AdEx protocol.

The way this works is by having the validator software itself bid for the supply available on plugged in SSPs, and
record the event (impression) internally.

Preventing fraud/Sybil attacks

One of the main challenges of any digital advertising system is preventing fake or invalid impressions/clicks.

There are a few ways to mitigate that in AdEx:

1. Traditional adtech methods, such as IP whitelists/blacklists, as well as verifying publishers by their domain name

2. The AdView has to send each event to each validator, and they will keep an internal ledger of IPs events came
from and impose a limit

3. Requiring a proof of work challenge to be solved in order to submit a click/impression message, therefore
making it more expensive than the reward you'd get for the corresponding event

4. The AdView allows publishers to vouch for users of their website/app, for example if a user registers on your
website and verifies a valid phone number; that allows users to gain reputation as "real" users, and therefore more
conservative advertisers may define in their campaigns to only target users above a certain threshold 5. Publishers
integrating the AdView may opt to show a captcha to users, the first time the user's cryptographic identity is created;
this essentially means the user will solve the captcha once for all sites that integrate AdEx; they will need to solve the
captcha again if they clear `localStorage` or change their browser.
It should be noted that such a system is, by definition, always gameable. AdEx tries to make it as hard as possible.
We believe the transparent reporting aspect of the system, combined with the "custom events", which allow you to
track end results (e.g. registrations, purchases, etc.), ensure that the incentives for fraud are significantly reduced.

Scalability

Because impressions are tracked and rewarded off-chain, the only on-chain bottleneck of AdEx is
depositing/withdrawing funds. We think the current capacity of the Ethereum network is enough for thousands of
advertisers and publishers, assuming they withdraw once every 2-3 weeks.

We do have a way to improve on-chain capacity as well: our OUTPACE payment channels have an alternative
Substrate implementation and can be deployed on Polkadot. AdEx can also be deployed on any EVM chain, and as
such it's scalability is virtually unlimtied.

Autonomous regulation

Ultimately, AdEx is completely censorship resistant since anyone can run their own Market and Platform and do
whatever they want with them.

However, there are plenty of situations where you need control; for example, as a publisher, you may want your
website to be free of deceptive ads (malvertising).

The AdEx components provide multiple ways for the system to self regulate:

Publishers can whitelist or blacklist advertisers or ad units;

Advertisers can whitelist or blacklist publishers, topics (tags) or individual ad slots;

Users can blacklist ad units, advertisers and even topics (tags).

Further down the line, reputation systems could be developed to make it easier for participants to push out low
quality or deceptive ads.

Privacy of publishers/advertisers

There's nothing in AdEx requiring advertisers/publishers to identify themselves with anything other than a
cryptographic identity. Information that might reveal more (e.g. ad unit info, web addresses, creatives) is kept off-
chain and and revealed between parties only with explicit consent.

Furthermore, the full event history is distributed across validators/observers. Each validator will only collect the full
event history for the channels they're validating.

In other words, sensitive and valuable data is kept private to the parties that have accumulated it, and relationships
between publishers/advertisers cannot be publically traced.

Anyone in the network can query any validators for events, but only for the events that they're involved in. For
example, if you're a publisher/advertiser/user, you can query all validators to get the events related to you.

Please note that the entire balance tree of each channel will be revealed to everyone at all times, (1) to allow earners
(publishers) to observe it's validity and (2) it will be revealed on-chain anyway once everyone withdraws.

Privacy of the end-user

Privacy of end users is protected by not collecting any data at all, at any part of the system. Instead, we leverage
contextual targeting.

Furthermore, we have moved the process of selecting an ad to show to the user's browser, which is essentially
equivalent header bidding but with stronger privacy guarantees. This ensures that user data never needs to be
exposed/revealed.

A further advantage to this approach is that the user can easily control what kinds of ads they see, without this being
revealed to third parties.

To ensure that infrastructure providers such as the Market and validators have no ability to collect data, AdView
sends no identifiable user data when interacting with them. Furthermore, each ad campaign can be handled by
different validators to ensure that the validator operators cannot perform side-channel attacks. Finally, validators are
required to implement the EFF's Do not track policy.

Rewarding end-users for attention

Through OUTPACE channels, it's possible that users are rewarded for certain events.

However, this is currently not something we intend to implement, mostly because it makes it might make it easier to
perform Sybil attacks and earn from fake traffic.

We do intend to implement this capability in the validator stack once we analyze the implications and risks. Once
we've established a model we're confident with, we will make this configurable through the campaignSpec .

In technical terms, everything needed to do this is there - every user signs an event with a keypair (which can be
used for receiving funds), OUTPACE channels allow easy micropayments, and users would be able to see their
earnings and withdraw them through the AdEx Lounge UI.

The fund flow would be: advertiser -> {publisher AND user} .

End-users paying for content

It is possible for users to pay for the publisher's content and therefore not see any ads.

This could be done in what we believe is a very fair way: by having users deposit funds (open an OUTPACE channel)
through the AdEx Lounge, and implicitly outbid advertisers for each ad they'd otherwise see.

That way, the ad space/attention is priced fairly by the market. This ensures that the users pay minimal amounts
while still not damaging the publishers' revenue.

The fund flow would be: {user OR advertiser} -> publisher .

A realistic way for this to work is for it to be implemented in an ad blocker, so that any ads that don't allow being
implicitly outbid (not AdEx-enabled) would not appear at all.

To be explored further; including possible collaborations with ad blockers.

Real-time bidding / Header Bidding

Real-time bidding (RTB) is something we intentionally left out of the protocol, primarily because it relies on some
details about the user being propagated around the network to the exchange.

From a scalability perspective, real-time bidding can be implemented using off-chain scaling solutions, however the
privacy trade-off is too big.

We don't consider this to be a major disadvantage as header bidding is very rapidly replacing RTB in the adtech
industry anyway. Header bidding is the process of pulling all the bids in the browser, evaluating them and then
sending the preferred bids to the ad exchange. In AdEx, there is no classic ad exchange, but what we do is even
more convenient: we pull all information about demand (campaigns, bids) in the browser, and directly select the bid
depending on what we know about the user, therefore implementing targeting without revealing the user's profile.

In other words, in AdEx, advertisers can bid for an impression in real-time, but we do not implement traditional
real-time bidding.

See Flow and Bidding Process.

OpenRTB integration

While real-time bidding is supported in a different way, AdEx can integrate with traditional OpenRTB with the purpose
of plugging in supply from external SSPs. This is done directly through the validator code and in such a setup, the
campaign can either use two validators: advertiser-side and publisher-side which integrates the SSP(s), or a single
validator setup where one validator does both roles. This is safe because the SSP itself is in the role of the publisher-
side validator, as the responsibility of protecting the interests of publishers falls on it.

Oracle-based advertising

With the advancement of trust-minimized blockchain oracles, it is possible for AdEx to be used in a much wider set of
use cases, including, but not limited to:

Ads in the physical world - e.g. highway banners, magazines;

Video product placement;

Influencer marketing, etc.

In those cases, OUTPACE will still be used, but the payments would be time-based ("time tick" event).

We believe that AdEx still offers benefits for those cases, mostly revolving around transparent auctions and
payments.

To be explored further.

Harberger tax ownership model

There is a project that uses this model for ads right now, called Harberger ads.

In AdEx, it is possible to use the Harberger tax ownership model. However, due to the dynamic nature of digital
advertising, it's not practical for advertisers to fully buy and own ad spaces.

The way we envision the model working is by using the OUTPACE channels to pay rent, but paying rent on display
time rather than on physical time ("time tick" event).

Role of AdEx Network OÜ

AdEx Network OÜ is a legal entity with the following primary responsibilities:

1. Fund and govern the development of the AdEx Protocol, with an emphasis of keeping it completely open-source,
transparent and free of corporate agenda;

2. Profit from providing any additional services related to the AdEx Protocol, such as consultancy related to
integration of the protocol or running a SaaS for rentable AdEx validators.

3. Fund development of additional services built around the AdEx Protocol; for this purpose, AdEx employs
SmartCode, a software development company that also develops Stremio

Because of the open-source nature of the protocol, we do expect (and encourage) other entities interested in using it
to join the development/design over time.

Relationship with Ambire Wallet

1. Ambire Wallet spun off the AdEx Protocol itself - back in 2019, as part of AdEx, we built a smart contract wallet to
solve the onboarding challenges of publishers/advertisers, that we initially called Identity. This later became
Ambire Wallet

2. Ambire Wallet and the AdEx Protocol are founded by the same founders. Even though they have separate
teams, those teams share a great deal of know-how.

About

AdEx Protocol: docs

ethereum adtech advertising

impression payment-channel polkadot

adex-protocol adex-lounge

 Readme

 Activity

 41 stars

 8 watching

 17 forks

Report repository

Releases

No releases published

Packages

No packages published

Contributors 8

Languages

CSS 55.3% HTML 26.1%

JavaScript 18.6%

Notifications Fork 17 Star 41

Code Issues 6 Pull requests 1 Actions Projects Security Insights

 master Go to file Code

Ivshti README: add OpenRTB integration 91532a0 on May 19 463 commits

.vscode inital adex protocol html form readme 3 years ago

assets use fixed image 3 years ago

blog move OCEAN.md to blog/ 5 years ago

components Fix typos 3 years ago

graphs architecture graphics updated again 3 years ago

lib printing css progress 3 years ago

.nojekyll nojenkyll and fix css path to png 3 years ago

BENEFITS.md BENEFITS: add non-custodial, censorship resistance 4 years ago

FAQ.md FAQ: edited staking rewards 3 years ago

OUTPACE.md Issue #26 and some typos/consistency fixes 3 years ago

README.md README: add OpenRTB integration 4 months ago

adSlot.md Issue #26 and some typos/consistency fixes 3 years ago

architecture-slides.pdf add architecture-slides 4 years ago

campaignSpec.md validator-stack - more API endpoints defined 3 years ago

index.html add new cover page 3 years ago

index.js Fix links and typos 3 years ago

styles.css use fixed image 3 years ago

targetingAndBidding.md targetingAndBidding - remove the fn getPriceInUSD 2 years ago

© 2023 GitHub, Inc. Terms Privacy Security Status Docs Contact GitHub Pricing API Training Blog About

README.md

Sign upProduct Solutions Open Source Pricing Search or jump to... Sign in

https://github.com/AmbireTech
https://github.com/AmbireTech/adex-protocol
https://github.com/AmbireTech/adex-protocol/branches
https://github.com/AmbireTech/adex-protocol/tags
https://github.com/AdExNetwork/adex-protocol/blob/master/BENEFITS.md
https://www.ambire.com/
https://platform.adex.network/
https://github.com/AdExNetwork/adex-platform
https://www.ambire.com/
https://github.com/AdExNetwork/adex-protocol/blob/master/OUTPACE.md
https://github.com/AdExNetwork/adex-protocol/blob/master/OUTPACE.md#refusal-to-sign-on-rules-violation
https://github.com/AdExNetwork/adex-protocol/blob/master/OUTPACE.md#specification
https://blog.chainside.net/understanding-payment-channels-4ab018be79d4
https://www.jeffcoleman.ca/state-channels/
https://github.com/AdExNetwork/adex-protocol-eth
https://github.com/AdExNetwork/adex-protocol-cosmos
https://github.com/AdExNetwork/adex-protocol-substrate
https://github.com/AdExNetwork/adex-protocol/blob/master/OUTPACE.md
https://github.com/AdExNetwork/adex-market
https://platform.adex.network/
https://github.com/AdExNetwork/adex-protocol/blob/master/components/market.md
https://github.com/AdExNetwork/adex-protocol/blob/master/campaignSpec.md
https://github.com/AdExNetwork/adex-protocol/blob/master/components/validator-stack.md
https://github.com/AdExNetwork/adex-protocol/blob/master/campaignSpec.md
https://github.com/InteractiveAdvertisingBureau/AdCOM
https://github.com/AdExNetwork/adex-protocol/blob/master/components/validator-stack.md
https://github.com/AdExNetwork/adex-adview-manager
https://www.iab.com/wp-content/uploads/2015/06/Ad-Impression-Measurment-Guideline-US.pdf
https://medium.com/the-adex-blog/why-we-use-contextual-targeting-d49f3ecf0acf
https://www.ambire.com/
https://github.com/AdExNetwork/adex-protocol-eth/blob/master/contracts/Identity.sol
https://github.com/AdExNetwork/adex-platform
https://uniswap.io/
https://github.com/paritytech/substrate
https://polkadot.network/
https://staking.adex.network/
https://www.adex.network/staking/
https://www.adex.network/blog/new-token-economics-and-staking/
https://raw.githubusercontent.com/AdExNetwork/adex-protocol/master/graphs/architecture-pretty.png
https://raw.githubusercontent.com/AdExNetwork/adex-protocol/master/graphs/real-world.svg
https://github.com/paritytech/substrate
https://github.com/AdExNetwork/adex-protocol-substrate
https://medium.com/the-adex-blog/why-we-use-contextual-targeting-d49f3ecf0acf
https://github.com/AdExNetwork/adex-validator/blob/135de40575a9e136ad1f4140c5b31c23031518c3/.well-known/dnt-policy.txt
https://github.com/AdExNetwork/adex-protocol/blob/master/components/validator-stack.md#bidding-process
https://devpost.com/software/harberger-ads
https://www.teatmik.ee/en/personlegal/14288387-AdEx-Network-O%C3%9C
https://www.stremio.com/
https://github.com/topics/ethereum
https://github.com/topics/adtech
https://github.com/topics/advertising
https://github.com/topics/impression
https://github.com/topics/payment-channel
https://github.com/topics/polkadot
https://github.com/topics/adex-protocol
https://github.com/topics/adex-lounge
https://github.com/AmbireTech/adex-protocol/activity
https://github.com/AmbireTech/adex-protocol/stargazers
https://github.com/AmbireTech/adex-protocol/watchers
https://github.com/AmbireTech/adex-protocol/forks
https://github.com/contact/report-content?content_url=https%3A%2F%2Fgithub.com%2FAmbireTech%2Fadex-protocol&report=AmbireTech+%28user%29
https://github.com/AmbireTech/adex-protocol/releases
https://github.com/orgs/AmbireTech/packages?repo_name=adex-protocol
https://github.com/AmbireTech/adex-protocol/graphs/contributors
https://github.com/Ivshti
https://github.com/IvoPaunov
https://github.com/rori4
https://github.com/vanina-iv
https://github.com/elpiel
https://github.com/samparsky
https://github.com/Dylanoshi
https://github.com/jtakalai
https://github.com/AmbireTech/adex-protocol/search?l=css
https://github.com/AmbireTech/adex-protocol/search?l=html
https://github.com/AmbireTech/adex-protocol/search?l=javascript
https://github.com/login?return_to=%2FAmbireTech%2Fadex-protocol
https://github.com/login?return_to=%2FAmbireTech%2Fadex-protocol
https://github.com/login?return_to=%2FAmbireTech%2Fadex-protocol
https://github.com/AmbireTech/adex-protocol
https://github.com/AmbireTech/adex-protocol/issues
https://github.com/AmbireTech/adex-protocol/pulls
https://github.com/AmbireTech/adex-protocol/actions
https://github.com/AmbireTech/adex-protocol/projects
https://github.com/AmbireTech/adex-protocol/security
https://github.com/AmbireTech/adex-protocol/pulse
https://github.com/AmbireTech/adex-protocol?search=1
https://github.com/AmbireTech/adex-protocol/commits?author=Ivshti
https://github.com/AmbireTech/adex-protocol/commit/91532a02ec916bac7f76584adb1155cee7d2ab95
https://github.com/AmbireTech/adex-protocol/commit/91532a02ec916bac7f76584adb1155cee7d2ab95
https://github.com/AmbireTech/adex-protocol/commit/91532a02ec916bac7f76584adb1155cee7d2ab95
https://github.com/AmbireTech/adex-protocol/commits/master
https://github.com/AmbireTech/adex-protocol/tree/master/.vscode
https://github.com/AmbireTech/adex-protocol/commit/78ea0b481ce40657451d81bb0fb9a6a8866f60c6
https://github.com/AmbireTech/adex-protocol/tree/master/assets
https://github.com/AmbireTech/adex-protocol/commit/4fd8a59b74f6f0ee7badaaf6d338bdf58232a0a0
https://github.com/AmbireTech/adex-protocol/tree/master/blog
https://github.com/AmbireTech/adex-protocol/commit/286af0c75a91fb0b7c39be65d620392d05e5b892
https://github.com/AmbireTech/adex-protocol/tree/master/components
https://github.com/AmbireTech/adex-protocol/commit/cade3da90cc43eac0dee8e367e45046b357d5658
https://github.com/AmbireTech/adex-protocol/tree/master/graphs
https://github.com/AmbireTech/adex-protocol/commit/8794ef5b529a8c2b3d1ebe6e1a70f67e75b50d74
https://github.com/AmbireTech/adex-protocol/tree/master/lib
https://github.com/AmbireTech/adex-protocol/commit/fc342c4cbd5db4407dba78bf88dd84d074e5c4ef
https://github.com/AmbireTech/adex-protocol/blob/master/.nojekyll
https://github.com/AmbireTech/adex-protocol/commit/edceb619ee6918e4008e331f5b14fb3854807f98
https://github.com/AmbireTech/adex-protocol/blob/master/BENEFITS.md
https://github.com/AmbireTech/adex-protocol/commit/0b2010d7cdda28826766eb94b647c52ca2588863
https://github.com/AmbireTech/adex-protocol/blob/master/FAQ.md
https://github.com/AmbireTech/adex-protocol/commit/f0cbdbef4d4de2a37e14d9498329a20717befb39
https://github.com/AmbireTech/adex-protocol/blob/master/OUTPACE.md
https://github.com/AmbireTech/adex-protocol/commit/fa973039869ba0f99ad0bac6f12351bfbc4ac0ff
https://github.com/AmbireTech/adex-protocol/issues/26
https://github.com/AmbireTech/adex-protocol/commit/fa973039869ba0f99ad0bac6f12351bfbc4ac0ff
https://github.com/AmbireTech/adex-protocol/blob/master/README.md
https://github.com/AmbireTech/adex-protocol/commit/91532a02ec916bac7f76584adb1155cee7d2ab95
https://github.com/AmbireTech/adex-protocol/blob/master/adSlot.md
https://github.com/AmbireTech/adex-protocol/commit/fa973039869ba0f99ad0bac6f12351bfbc4ac0ff
https://github.com/AmbireTech/adex-protocol/issues/26
https://github.com/AmbireTech/adex-protocol/commit/fa973039869ba0f99ad0bac6f12351bfbc4ac0ff
https://github.com/AmbireTech/adex-protocol/blob/master/architecture-slides.pdf
https://github.com/AmbireTech/adex-protocol/commit/8166bc16c432952554817b94660213180c2be88b
https://github.com/AmbireTech/adex-protocol/blob/master/campaignSpec.md
https://github.com/AmbireTech/adex-protocol/commit/e3caaf1eae56a40fbece59b2b48c4d7f4b63670d
https://github.com/AmbireTech/adex-protocol/blob/master/index.html
https://github.com/AmbireTech/adex-protocol/commit/c1a8d6d8e0529471fd50cffb82fb89e8fde25fca
https://github.com/AmbireTech/adex-protocol/blob/master/index.js
https://github.com/AmbireTech/adex-protocol/commit/63d127deb27c7a3a35a1b98018bc3da22e481f52
https://github.com/AmbireTech/adex-protocol/blob/master/styles.css
https://github.com/AmbireTech/adex-protocol/commit/4fd8a59b74f6f0ee7badaaf6d338bdf58232a0a0
https://github.com/AmbireTech/adex-protocol/blob/master/targetingAndBidding.md
https://github.com/AmbireTech/adex-protocol/commit/ffda3aed85d2e8a8b65810a03a3ff1177810d081
https://github.com/
https://docs.github.com/site-policy/github-terms/github-terms-of-service
https://docs.github.com/site-policy/privacy-policies/github-privacy-statement
https://github.com/security
https://www.githubstatus.com/
https://docs.github.com/
https://support.github.com/?tags=dotcom-footer
https://github.com/pricing
https://docs.github.com/
https://services.github.com/
https://github.blog/
https://github.com/about
https://github.com/Ivshti
https://github.com/
https://github.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E&source=header-repo&source_repo=AmbireTech%2Fadex-protocol
https://github.com/pricing
https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2FAmbireTech%2Fadex-protocol

