Brevis ProverNet Whitepaper

Brevis

v2.0

Abstract.

Brevis ProverNet is a decentralized marketplace that matches diverse zero-
knowledge (ZK) workloads—ranging from zkVM programs to ZK coprocessor queries
and aggregation proofs—with a heterogeneous supply of provers. Two pillars distin-
guish Brevis. First, it is designed from day one to support heterogeneous proofs and
composite, multistage proving pipelines, allowing applications to mix and match prov-
ing systems and workflows without being shoehorned into a single stack.

Second, Brevis introduces TODA, a truthful, budget-balanced, and asymptotically
efficient two-sided double auction. TODA matches proving jobs to provers through
continuous auction rounds, clearing demand and supply across proof types while pre-
serving permissionless participation by both requesters and provers.

The emphasis on heterogeneous workloads is empirically motivated. The network
design is informed by Brevis infrastructure operating in production across applications
with divergent proving requirements, demonstrating the need for native support for
multiple proof types and multistage pipelines.

To balance performance with openness, Brevis also deploys the auction logic on a
dedicated rollup. Running the market contracts on their own rollup isolates auction
throughput from L1/L2 congestion while keeping settlement, matching, and slashing
transparent and permissionless. This dedicated rollup is designed solely to coordi-
nate bids, assignments, and payments for proofs, while proofs themselves may target
arbitrary destination chains.

1. Introduction

1.1. Current Limitations of Blockchain Computing

Blockchains were conceived as “world computers”, yet their base layers remain con-
strained. Fach transaction must be re-executed by all validating nodes to preserve
consensus, security, and determinism. The very property that grants strong integrity
(full replication) also imposes a hard performance ceiling: a chain cannot, in steady
state, outpace a single machine running the same workload, and its costs scale with the
number of replicas, not with economies of scale. In practice, this replicated-execution
model makes heavy, stateful analytics and personalized logic (such as per-user discount
tiers) prohibitively expensive or operationally brittle on-chain.

A concrete example is the VIP trader experience on modern decentralized exchanges
(DEXes). Hooks for dynamic fees or loyalty programs need to ask questions such as:
“What was this addres’s trading volume in the past 30 days on this pool?” or “Does
this trader hold sufficient units of the governance token to qualify for a discount?”
Storing and recomputing such history on-chain is infeasible; scanning the chain in-
contract is cost-prohibitive; and off-chain servers without cryptographic accountability

reintroduce trust. Production systems therefore require a different primitive.

The underlying cause: replicated execution.

Every honest node must replay the same state transition function on the same in-
puts and arrive at the same post-state. This guarantees robust consensus but burns
compute on duplicate work. Even aggressive L.1/L2 scaling does not change the funda-
mental asymmetry: as long as validators must re-execute, heavy workloads will remain

expensive and slow relative to traditional computing environments.

1.2. Verifiable Computing with Zero Knowledge

A practical way to decouple execution from validation is to employ verifiable com-
puting: one machine (or a small cluster) performs the heavy computation off-chain,
then supplies a succinct, cryptographic proof that the result is correct. Instead of
re-executing the workload, the blockchain verifies the proof. Modern zero-knowledge
(ZK) proof systems make this approach economically compelling as verification costs

are small and predictable, while proving can scale up on specialized hardware.

ZK systems work by translating a program into constraints through arithmetiza-
tion and use a polynomial commitment scheme and interactive oracle proof (IOP)
techniques. The verifier checks correctness with often only a few queries and small-
size state. Verification time is sublinear in the original computation’s size (and, for
many systems, essentially constant). This allows chains to keep consensus simple while
outsourcing arbitrarily complex analytics and policy logic to off-chain provers.

In the context of DEX hooks and VIP programs, history scans, tier calculations,
and eligibility checks run off-chain while a proof is fed back to the hook contract.
The contract then verifies the proof and updates state accordingly, without trusting
any opaque server or paying to recompute history on-chain. Uniswap v4 and other

ecosystems have showcased prototypes and launches of precisely this pattern.

1.3. Brevis Products: Pico zkVM and the ZK Data Coprocessor

Brevis operationalizes verifiable computing through two complementary products:

e Pico zkVM—a modular, high-performance zero-knowledge virtual machine de-
signed to efficiently prove general-purpose programs and compose with recur-
sive aggregation. Pico emphasizes a minimal core with high-throughput crypto-
graphic “coprocessors” and acceleration paths, enabling developers to target a
stable VM while still capturing hardware gains.

e ZK Data Coprocessor—a production-grade pipeline that reads historical on-
chain data across supported networks, performs off-chain computations (such as
time-weighted balances, trading volume over windows, position analytics), and
returns results with validity proofs. Contracts consume these proofs directly,
enabling features like VIP trading programs, loyalty rewards, fee discounts, and

active-liquidity policies without trusting external servers.

These components are deployed in live partnerships across DeFi, L2 ecosystems,
and wallets: Uniswap v4 hook designs for VIP fee tiers, PancakeSwap and Quick-
Swap dynamic-fee programs, Euler’s Incentra-based trustless rewards, and Linea-wide

growth programs with millions of proofs and tens of thousands of unique addresses.

1.4. Motivation for an Open Marketplace and the Heterogeneity
Problem

Production deployments revealed an important reality: workloads are diverse. Some
jobs are low-latency and per-interaction (such as “ before swap” checks for VIP pric-
ing). Others are periodic and large-batch (such as per-epoch incentive distributions
across many addresses). Still others are heavyweight VM executions, recursive ag-
gregations or wrap/field conversions for cross-system compatibility. Hardware profiles
vary as well: single-GPU rigs, multi-GPU servers, heterogeneous clusters with fast in-
terconnects, or mixed CPU/GPU/FPGA setups. A single centralized prover cannot
efficiently cover this spectrum nor provide credible neutrality.

In real deployments, heterogeneity manifests along four axes: (i) history reach (how
far back in the chain one must scan), (ii) aggregation width (addresses/positions), (iii)
proof cadence (per swap, hourly, daily epochs), and (iv) latency SLOs (service-level
objectives). Consider the contrast: a DEX hook checking VIP eligibility must generate
proofs within 2-3 seconds, scanning 30 days of history for a single address. Meanwhile,
a protocol-wide incentive distribution processes 100,000 addresses monthly, prioritiz-
ing throughput over latency. The first workload demands low-latency GPUs with fast
memory access; the second benefits from CPU clusters optimized for parallel batch pro-
cessing. No single hardware configuration can efficiently serve both. A monolithic “one-
size-fits-all” prover stack inevitably leaves performance on the table. A STARK-first
pipeline with excellent FFT throughput might excel at history attestations, whereas
a SNARK-first stack with specialized elliptic-curve precompiles might shine in near
real-time use cases.

To scale, Brevis advocates an open, decentralized marketplace for proof compute.
Requesters post typed jobs with explicit constraints (deadline, maximum fee, relia-
bility tier), and provers bid to execute them. Price discovery happens via auctions;
correctness is enforced by on-chain verification; and quality-of-service emerges from
economic incentives (staking, reputation, and redundancy for systemically important
tasks). This structure mirrors cloud marketplaces, but with cryptographic enforcement

that eliminates trusted billing ledgers and proprietary dashboards.

1.5. Limitations of Existing Approaches

Early proving-as-a-service offerings and cluster managers demonstrate value, yet they

typically face two structural limitations:

(1) Narrow workload support. Many stacks optimize for one proof system, one
VM, or one circuit family. They excel at their niche but cannot gracefully absorb
workloads with different arithmetic, memory footprints, or aggregation strate-
gies. When a job type changes (from a small-range history scan to a full zkVM
trace with recursion for example), the system either performs poorly or hands
the request off to a different silo.

(2) Homogeneous nodes and monolithic tasks. Schedulers that assume simi-
lar nodes struggle to decompose and route jobs across heterogeneous hardware.
In practice, breaking jobs into sub-tasks (such as multi-GPU sharding/pipelin-
ing, partial proof generation, or parallel data ingestion) is essential, but requires
protocol-level interfaces and incentives so that independent operators can coor-

dinate without mutual trust.

These constraints limit throughput and degrade time-to-proof for real applications.
They also impede market efficiency by hiding specialized capacity (a farm that excels

at polynomial commitments but not at Keccak-heavy traces, for instance).

1.6. A New Market Design: Truthful Online Double Auctions (TODA)

To address these gaps, Brevis proposes and implements a market mechanism with the
properties of a Truthful Online Double Auction (TODA). A double auction clears a
market of many buyers and many sellers simultaneously. “Online” means jobs and
capacity arrive over time. TODA matches proving jobs to provers through auction
rounds, where requesters bid their maximum willingness to pay and provers bid their

2

costs. “Truthfulness (incentive compatibility)” ensures participants maximize utility
by bidding their true valuations (for buyers) or true costs (for sellers).

Desirable properties include:

e Incentive compatibility (truthfulness): best strategy is honest bidding; re-
duces strategic gaming.

e Individual rationality: no party is forced into a loss; winners pay at most their

bid (buyers) or receive at least their ask (sellers).

e Budget balance: the mechanism does not require continuous subsidies; fees
cover payouts.

e Computational efficiency and low latency: auctions clear in bounded time

to honor SLA (service-level agreement) targets.

Within Brevis, job types (zkVM execution, recursive aggregation, historical data
attestations, wrap/field conversions) are first-class citizens. Provers advertise capabil-
ity profiles (hardware, supported systems, latency percentiles). Matching uses stake-
weighted, reputation-aware scoring, with optional redundancy for critical tasks. This
combination allows heterogeneous nodes to collaborate on decomposed jobs while com-

peting fairly across categories.

1.7. Performance Context: Pico Prism and Real-Time Proving

The viability of a compute marketplace improves as single-job latency drops. Brevis’s
Pico Prism demonstrates a multi-GPU, distributed architecture for zk VM proving that
materially advances the state of the art: in tests on current Ethereum L1 with a 45M
gas cap, 99.6% of blocks were proven under 12 seconds and 96.8% under 10 seconds
(the Ethereum Foundation’s real-time bar), with an average of about 6.9 seconds on

a 64xRTX 5090 cluster.[I]

1.8. Token as Market Plumbing: The Role of BREV

The marketplace requires a settlement medium and collateral. The BREV token plays
three operational roles (detailed in Section . First, it is the payment medium: all job
fees, verification, and settlement within Brevis ProverNet are denominated in BREV.
Second, it functions as staking collateral: provers stake BREV to enter auctions and
to guarantee service-level objectives; misbehavior or missed deadlines are penalized
via slashing. Third, BREV also serves as the gas token for on-network transactions
(job submissions, bids, proofs, staking updates). Finally, BREV also serves as gover-
nance token to adjust certain network parameters. This design links real compute and
blockspace demand to sustained demand for BREV, while translating reliability into

an economically enforced service property.

1.9. Extended Motivation: What Users Actually Want

From the end user’s perspective, “blockchain UX” is about fast, cheap, and fair inter-
actions. Traders want fee discounts to apply before their swap confirms; lenders want
rewards that land on time and are computed according to transparent, auditable rules;
wallets want to surface account insights without leaking private data. None of these
experiences require every validator to replay a multi-second analytics query on-chain.

They do require a tamper-proof certificate that the query was executed correctly.

Constant-time verification as a UX primitive.

A recurring theme in this paper is that constant-time verification becomes a UX
building block: once an application expresses its business rule as a verifiable com-
putation, the chain can enforce that rule with small, predictable gas, regardless of
the dataset size. This turns previously “prohibitively expensive” ideas (personalized
fees, snapshot-based airdrops with fairness guarantees, or multichain reputation) into

routine patterns.

1.10. Running Example: VIP Trader Programs

To ground the discussion, consider a VIP program on a DEX pool. The goal is to
dynamically apply fee tiers to a swap based on the trader’s last-30-day volume in that
specific pool (or across a set of pools), plus optional token-holder discounts for gover-
nance token balances. A straightforward implementation would need to read thousands
of historical events per address, aggregate volume, check membership tiers, and make
the result available within the transaction’s execution window. Direct on-chain im-
plementation is infeasible: storing and recomputing such history incurs prohibitively
high gas costs, and off-chain servers without cryptographic proofs reintroduce trust
assumptions.

Under a ZK coprocessor architecture, the hook contract remains small and deter-
ministic. The coprocessor performs the heavy computation off-chain, produces a proof,

and provides the hook with a succinct witness that can be verified in constant time.

1.11. From Engineering to Economics

The engineering side asks: can we produce proofs fast enough? Results from Pico

Prism and Brevis production systems indicate that, for many classes of workloads, we

can.

The economics side asks: can we allocate the right hardware to the right job, at
the right price, under deadlines, without trusting a single operator? The remainder of
this paper argues that an online double auction with staking-backed reputation can

achieve this allocation efficiently.

1.12. Outline

The remainder of this paper proceeds as follows.

Section [2] covers ZK background and recent progress, emphasizing zkVM architec-
tures and recursive composition.

Section [3] surveys Brevis’s diverse workloads and launched partnerships.

Section [4] provides a formal explanation of the double auction scheme.

Section [l formalizes BREV’s token utilities and value accrual.

2. Background

2.1. Recent Progress in ZK (2024-2025)

Progress in zero-knowledge proving has accelerated dramatically across multiple fronts.
zkSNARK systems offer short proofs and fast verification, often with strong engineer-
ing ecosystems, though sometimes requiring trusted setups. zkSTARKSs provide trans-
parency (no trusted setup) and post-quantum security assumptions, with larger proofs
but excellent parallelism, leveraging FFT- and hash-heavy computation. Polygon’s
Plonky3, a modular toolkit for high-performance STARK-based systems, exemplifies
recent progress with external audits and increasing adoption. Recursive frameworks
like Nova employ folding schemes to enable proof composition and aggregation.
zkVMs have emerged as a critical proving primitive. A zkVM proves the correct
execution of a machine model (often RISC-V or WASM). Programs compile to that
ISA, and then further translate each instruction step into the zkVM constraints so
that the resulting proof certifies the entire execution. zkVMs trade peak performance
for flexibility: instead of handwriting circuits for each application, developers target a

general VM and rely on the prover to optimize.

Metric SP1 Hypercube | Pico Prism Improvement
RTP (<10s) coverage (36M gas limit) 40.9% 98.9% 2.4x higher coverage
RTP (<10s) coverage (45M gas limit) N/A 96.8% First to achieve
GPU cost (MSRP-based) $256K $128K 50% Reduction
Average proving time 10.3sec 6.04sec 71% Faster

Figure 1. Comparison of “real-time proving” results as of October 2025

2.2. Real-time Ethereum Proving

The defining challenge of 2024-2025 became real-time Ethereum proving: generating
validity proofs for L1 blocks fast enough to enable native rollup security and base-layer
verification without sacrificing decentralization. The Ethereum Foundation’s bench-
mark called for proving 99% of blocks in under 10 seconds with hardware under $100K.

Brevis announced Pico Prism in October 2025 and reported industry-leading cover-
age: 99.6% of current 45M-gas L1 Ethereum blocks proven in <12s, with 96.8% proven
in <10s (the Ethereum Foundation’s “real-time” bar) and an average proving time of
~6.9s on consumer-grade hardware using 64 RTX 5090 GPUs. The Brevis team fur-
ther reports a 50% hardware cost reduction vs. the nearest competitor for a given
coverage target, yielding a 3.4x performance-per-dollar improvement.[I] Independent
media recaps confirm those metrics and frame real-time proving as crossing a critical

threshold for base-layer verification.

2.3. Brevis Pico and Pico Prism: Architectural Context

Pico. Pico is Brevis’s open-source zkVM that adopts a “glue-and-coprocessor” ar-
chitecture: a minimal, high-performance core plus pluggable coprocessors for heavy
cryptographic operations and domain-specific accelerators.[2] The design aims to pre-
serve programmability while letting jobs opt into specialized acceleration paths when

available.

Pico Prism. Pico Prism extends Pico with distributed, multi-GPU parallelism and
scheduling. Conceptually, Prism shards or pipelines execution traces across GPUs and
aggregates partial results into a final proof, balancing memory pressure and through-
put. Reported results emphasize coverage under latency constraints (<12s / <10s)
rather than single-run records. See 1] for comparison with prior art. More details can

be found at [I].

Implications. If real-time proofs can be produced economically, base layer verification
can shift from social consensus about state transitions to cryptographic validity for
most blocks. This enables lighter nodes, faster finality for rollups, and new security

models for cross-chain validation.

2.4. Why a Networked (Market) Approach Still Matters

Even with faster zkVMs, the workload distribution is skewed: some jobs are massive
(entire L1 blocks), others are latency-sensitive (bridge updates, auctions), and some are
best-effort background tasks (historical aggregation). Hardware availability is similarly
heterogeneous: a single workstation with one GPU is not the same as a 64-GPU rig,
and specialized coprocessors may only exist in a subset of nodes.

A two-sided market (jobs <> provers) with typed orders solves for matching;:

e Typed jobs: zkVM execution, recursive aggregation, wrap/compress, field con-
versions, STARK+SNARK wrapping, etc.

e Constraints: max fee, deadline, required coverage percentile (such as prove
within 10s for 95% of instances), minimum hardware profile.

e Signals: reputation, historical latency distributions, reliability under load.

Brevis’s auction design (a truthful, near-optimal double auction with typed orders)
aims to clear this market while maintaining incentive compatibility for both sides.
The network batches orders each round, computes allocations, and settles on-chain;

unfilled users are refunded. (A full formal treatment appears later in the paper.)

3. Diverse Workloads

Production deployments across major DeFi protocols, L2 ecosystems, and wallet
providers demonstrate the spectrum of proving workloads that Brevis infrastructure
handles. This section surveys launched partnerships and the concrete jobs they run,

illustrating how workload heterogeneity necessitates a marketplace architecture.

3.1. DEX Hooks: Personalized Fees and Data-Driven Trading

PancakeSwap Infinity (launched May 2025) rolled out Brevis-powered hooks

that make fees user-aware, including (i) a Token Holder Discount Hook that applies

10

up to 45% fee discounts based on time-weighted holdings and (ii) a Trading Volume
Discount Hook that tiers fees by a trader’s recent pool-specific volume.These features
require scanning historical events, computing statistics off-chain, then verifying results
on-chain via ZK proofs, so the router can apply the correct fee tier at swap time. Early
telemetry reports show: 6,151 app requests processed, 17,277,767 proofs generated, and
3,678 unique addresses.

Uniswap v4 Hooks (reference design; shipped examples) demonstrated
“VIP trader” fee tiers that compute last-30-day trading volume per address entirely
off-chain and prove it back to the hook contract.[5] The original article details why
DEXes cannot economically store/query all historical trades on-chain, and how a ZK
coprocessor lets hooks remain simple while still benefiting from rich, verifiable history.
The same pattern generalizes to LP loyalty rewards, volatility-aware fees, and ZK-ML
assisted active liquidity management.

QuickSwap Dynamic Fees (launched) introduced Brevis-powered dynamic-fee
hooks on Soneium (Sony’s EVM L2), starting with pools such as WBTC/WETH
and USDC/WETH. Traders are assigned VIP tiers by last-30-day volume (proved by
Brevis) and receive discounted fees, with additional hook variants (holding-based and

volatility-based) in the pipeline.

3.2. Uniswap v4 Router Gas Rebates (launched)

Uniswap v4 introduced heterogeneous pools where hooks can modify fee logic and
execution guarantees. This heterogeneity raises integration costs for aggregators (such
as linch and ParaSwap), as routers must detect and handle diverse pool behaviors.
The Uniswap Foundation partnered with Brevis to launch trustless gas rebates for
routers that process swaps through hook-enabled v4 pools, creating direct economic
incentives to accelerate adoption.

The rebate system operates entirely trustlessly through Brevis’s ZK Data Coproces-
sor. Routers submit lists of eligible transaction hashes and receive a request ID. The
Brevis service fetches receipts, filters swaps by eligible pool IDs, incorporates on-chain
claimer data, and generates a ZK proof. Once finalized, the router queries by request
ID to retrieve the proof and calldata for on-chain claiming.

On-chain claiming occurs through claimWithZkProof in the rebate contract. The

function enforces: (i) the ZK proof is valid, (ii) swaps in the specified block range have

11

Partner Workload Cadence/Scale

PancakeSwap VIP /holding fee discounts via hooks 17.3M proofs; thousands of addrs
Uniswap v4 VIP tiers; LP loyalty; ZK-ML patterns per-user periodic updates
QuickSwap Dynamic fees (volume-based) before-swap VIP checks

Euler Incentra rewards on Arbitrum 4h epochs; $100k rEUL

Linea Ignition 1B LINEA program (Etherex/Aave/Euler) | 12.1M proofs; 61.9k addrs
MetaMask 2.4% APR via Aave (Linea) 4h balance proofs

Uniswap v4 Rebates | Trustless gas rebates for v4 hooks router-initiated claims;

Table 1. Representative launched workloads across partners and domains.

not been rebated already, and (iii) the caller is the registered claimer address. When
checks pass, ETH rebates are released to the specified recipient address. Depending
on router policy, rebates can offset operating costs, reduce user fees, or accrue to
treasuries, accelerating v4 liquidity and adoption without centralized reward ledgers

or opaque calculations.

3.3. Trustless Incentives at Scale: Euler, Linea, MetaMask

Euler (launched on Arbitrum) was the launch partner for Incentra, Brevis’s trust-
less incentive platform. In June 2025 Euler ran four lending reward campaigns dis-
tributing $100K in rEUL across USDC, WETH, USDT, and WBTC vaults, with
rewards computed every four hours from time-weighted supply balances and verified
on-chain.The program improved depth and narrowed borrowing spreads within weeks
while requiring zero custom contracts or back-office scripts; Incentra handled data
ingestion, proving, and on-chain distribution.

Linea Ignition (launched) ran a 10-week program distributing 1 billion LINEA
tokens across Etherex, Aave, and Euler, with all reward computation performed
off-chain and proven on-chain. Reported telemetry: 12,147,200 proofs and 61,902
unique addresses.

MetaMask on Linea (launched) in partnership with Brevis, powers a program
offering MetaMask Card users a 2.4% fixed APR on USDC lending/borrowing via
Aave on Linea. Brevis computes time-weighted balances every four hours and proves

eligibility; users claim through Incentra.

12

3.4. Ecosystem Expansion: Linea, TAC, and Others

Linea (strategic): Beyond Ignition, Linea integrates Brevis as a general verifiable
compute layer for dApps (to leverage historic data access, complex position analytics,
and trustless rewards) illustrating chain-level adoption.

TAC and Usual (launched): Brevis is live on TAC (an EVM L1 for Telegram),
with Incentra campaigns by Usual that reward time-weighted USD0+4 holdings and
liquidity actions. Everything is proven via ZK and verified on-chain.

PADO (attestations): Earlier, Brevis enabled PADO users to attest their largest
Uniswap trade within a given time range and generate a proof as an on-chain credit cre-

dential, a lightweight, user-centric workload that still exercises historical data proofs.

3.5. Implications for Network Architecture

These production deployments span radically different computational profiles. DEX
hooks demand sub-second latency for per-transaction checks, scanning limited histor-
ical ranges. Incentive distributions process hundreds of thousands of addresses over
multi-day epochs, prioritizing throughput over latency. Cross-chain attestations re-
quire different proof system optimizations than recursive aggregation pipelines. A
DEX user’s 30-day volume calculation leverages SNARK-friendly elliptic curve op-
erations, while a STARK-first system excels at the FFT-heavy aggregation required
for epoch-based reward distributions.

No single prover configuration efficiently serves this spectrum. Hardware optimized
for low-latency GPU proving underperforms on CPU-bound batch aggregation tasks.
Proof systems optimized for certain arithmetics (Keccak-heavy traces versus polyno-
mial commitment operations) leave performance on the table for other workload types.
This empirical reality (validated across 124 million proofs for 94,000+ users) motivates
the marketplace architecture detailed in Section 4] where specialized provers compete
across typed job categories rather than a monolithic infrastructure attempting to serve

all use cases.

13

4. Double Auction for Heterogeneous Prover Network

4.1. System Model

We consider a prover network that supports heterogeneous proof workloads. For
example, a prover network may support the generation of ZK coprocessor proofs, zkVM
proofs, aggregation proofs, among others. Without loss of generality, we assume that
there are K types of proof workloads that the network can support and denote by
K =1{1,2,..., K} the set of all proof workload types.

In the prover network, there is a set of proof requesters N' = {1,2,..., N} and a
set of provers M = {1,2,..., M }. Each requester i has a proof request d; that can be
decomposed into a vector of different proof job types d; = (dil,d?, ...,diK) where df
is the required number of type-k proof in the request d;. We also refer to d; as the
demand vector of requester ¢. If the requester ¢ does not require type-k proving,
then df = 0. Each request has a deadline by which all proof jobs in the demand vector
must be completed. Moreover, each request is atomic: either all the proof jobs in the
demand vector are 100% fulfilled, or the request is deemed failed. Partial fulfillment
of a request has no value.

The above heterogeneous model characterizes a wider range of realistic prover net-
works than prior literature [4][13], which only assumes homogeneous proving tasks.

Specifically, the heterogeneous model has the following benefits:

e First, the heterogeneous model captures the diversity of ZK applications. With
recent advancement of ZK technology and the rapid growth of ZK-based dApps,
proving tasks are becoming increasingly heterogeneous. Brevis ProverNet han-
dles proving tasks from applications that use both the Brevis ZK coprocessor [3]
and the Brevis Pico zkVM [2]. In the future, a prover network may even support
proving tasks from multiple ZK solutions (multiple zkVMs) developed within
diverse ZK frameworks.

e Second, the heterogeneous model can characterize any complex proving task
that consists of multiple smaller proving sub-tasks (such as to generate an EVM-
verifiable zkVM proof). This effectively enables distributed proof generation
in the prover network and achieves finer-grained proof workload allocation, which
encourages the participation of provers with limited proving capability.

e Finally, the heterogeneous model captures the diversity of provers in the net-

14

work. Due to differences in provers’ hardware capabilities and the heterogeneous
hardware requirements of proving tasks, provers may have preferences for the
types of proving tasks they undertake. Provers with high memory may prefer
Plonk-based proving tasks (since a large proving key must be loaded into mem-
ory in advance), while provers with limited memory but fast CPUs may prefer

STARK-based proving tasks.

Example: Heterogeneous Proof Workloads for zkVM
Consider a request to generate an EVM-verifiable proof for a large zkVM pro-
gram. In the framework of Brevis’s Pico zkVM, the request can be decomposed

into multiple proving sub-tasks of different types as follows:

(1) First, the VM program is divided into multiple chunks, each assigned a proof
(chunk proof). Suppose the VM program is divided into 32 chunks.

(2) Then, the 32 chunk proofs each undergo a recursion step to compress their
proof size (compression proof).

(3) Next, the 32 compressed chunk proofs are merged in a binary-tree fashion
until a single root proof is generated (merge proof). In this example, the
binary tree has 32 leaves and 31 intermediate nodes, so the number of merge
proofs is 31.

(4) Then, the merged root proof is wrapped from the field used by the underlying
Poseidon2 hash function to BN254, so that it can be natively verified in a
Plonk proof (field-wrap proof).

(5) Finally, the wrapped proof recurses through a Plonk system (e.g., Gnark) to
generate an EVM-verifiable proof (Plonk-wrap proof).

In this example, the request has five types of proving jobs, and the demand

vector is d = (32,32,31,1,1).

4.2. Double Auction Framework

While many auction models exist in the literature (e.g., VCG auctions [14], combina-
torial auctions [9, [10], all-pay auctions [6]), we consider a two-sided auction or double
auction [II] framework that better captures the dynamics of the prover market. In

this model, (1) multiple proof requesters bid for prover resources so their requests can

15

be 100% fulfilled at some cost; (2) multiple provers compete for opportunities to serve
those requests and earn rewards.

The auction proceeds in a series of rounds. At the beginning of each round, requester
i submits a bid B} = (d;, v;), where v; is the requester’s reported valuation for com-
pleting the job (the maximum fee the requester is willing to pay). Each prover j also
submits a bid B;’ = (wj,c;). Here,w; = (wjl-, w]z, e w]K) is the prover j’s reported sup-
ply vector, where each w;’? denotes the number of type-k proof jobs the prover wishes
to proces&ﬂ cj = (cjl,c?, ...,CJK) is the reported marginal-cost vector, where each c;?
represents the cost of processing one type-k proof job. If a prover does not support a

k—

particular proof type (say type-k proof), then wj

0 and c;? = 00.

The reported value v; from requester ¢ may differ from its true valuation o;. Similarly,
a prover’s reported supply vector w; and marginal cost vector ¢; may differ from their
true counterparts w; and ¢;.

Finally, if a proof request is accepted in a round, the proof must be generated within

that same round. In other words, the proof generation deadline coincides with the end

of the round.

4.3. Problem Formulation

We aim to design a mechanism for the prover market that solves the following two

problems.

(1) (Proof Request Allocation) The mechanism should decide whether each re-
quester’s bid wins the auction and is allocated the required prover resources.
Moreover, the mechanism should determine the number of proof jobs (of differ-
ent types) allocated to each prover. Specifically, let £ = (z1,x9,...,zn) be the
allocation vector for requesters, where z; € {0, 1} indicates whether requester i
wins the auction. Let y; = (yjl»,yjz, ,yJK) be the allocation vector for prover j
where yf is an integer indicating the number of type-k proof jobs allocated to
prover j.

(2) (Pricing) The mechanism should determine the payment each requester sends
to the platform (i.e., the auctioneer). The payment vector is denoted by p =

(p1,p2,.--,PN). Moreover, the mechanism should determine the reward each

1To simplify the analysis, we assume that the deadline for each request equals the duration of an auction
round so all jobs in the reported supply vector should be completed in the auction round.

16

prover receives from the platform. The reward vector for prover j is denoted

K

by r; = (rjl.,rjz, e T), where 7%

7 1s the reward credited to prover j for fulfilling

the allocated type-k jobs. The total reward received by prover j is denoted by
_ k
Ty = Zjelc Ty

The utility function for requester i is
Uj = viz; — pi.

The utility function for prover j is

k k k
Uy =Y Up =D = 5yl)-

jex jex

Define the social welfare function as

SW(z,y) = Zviwi — Z Z c?yf. (1)

ieEN JEMEKeEK

Our target is to design a mechanism with the following properties:

e Truthfulness: Both proof requesters and provers should not benefit from bid-
ding dishonestly; that is, for any requester i, U/ (0;) > U] (v;), Yv;, and for any
prover j, Uf(i'j,éj) > Uf(rj,cj), vrj,c;.

e Budget Balance: The total payments made by all proof requesters are no less
than the total rewards paid to all provers, i.e., > ;o\ pi > ZjeM Y okek r;-“.

e Individual Rationality: Both proof requesters and provers have non-negative
utilities when reporting true valuations, i.e., U (9;) > 0, Vi € N and U]p('f‘j, ¢j) >
0, Vj € M.

e Computational Efficiency: The mechanism should run in polynomial time.

e Asymptotic Optimality: The mechanism should approach the maximum so-
cial welfare as the total prover supply becomes increasingly sufficient relative to

the requester demands.

17

4.4. TODA: Truthful and Asymptotically Optimal Double Auction

Mechanism for a Heterogeneous Prover Network

In this section, we introduce TODA, a Truthful and Asymptotically Optimal Double
Auction mechanism for a heterogeneous prover network. The mechanism design is de-
scribed in Sections and We prove that TODA achieves truthfulness, budget
balance, individual rationality, computational efficiency, and asymptotic optimality in

Section 4.4.3]

4.-4.1. Proof Allocation Algorithm

The optimal proof request allocation should maximize the social welfare , which

can be obtained by solving the following Integer Programming (IP) problem:

matgy SW(z,y) = Z VT — Z Z c?yf

ieN jEMEkEK
s.t. Z dfxi = Z yf, Vk e IC,
ieN JEM (2)

z; €{0,1}, VieN,

y¥ e {0,1,.., 0k}, Vjie M kek.

Theorem 4.1. The social welfare mazimization problem is NP-hard.

Proof. We consider a special case where there is only one type of job (|| = 1), there
is only one prover (|J| = 1), and the marginal cost ¢ of the single prover for this job

type is 0. In this case, the problem , can be reduced to

malqy E VX4

1eEN

s.t. Z dix; < w, (3)

ieEN
x; €{0,1}, Vie N

Here, d; is requester i’s demand for the (only type of) job, and w is the (only) prover’s
supply for that job. Clearly, the reduced problem is a Knapsack problem, which is
NP-hard [12]. As a result, the original problem ([2)) is also NP-hard. O

A straightforward attempt to solve for the Integer Programming problem is to

18

take its linear relaxation. However, there is no guarantee that the solution to the linear
relaxation will be integral. Inspired by the “Padding” method used in [7][8], TODA
introduces a “Phantom Proof Requester” (PPR), a virtual powerful requester with
an unlimited budget and a demand vector dppr = (dbpp, ..., d5pg), Where dbpp =
max;e pm w;? is the PPR’s demand for type-k jobs. In other words, the PPR’s demand
vector can cover the supply vector of any single prover.

With the introduction of PPR, the proof allocation algorithm in TODA is divided
into two stages.

(Stage 1) In the first stage, we solve a modified linear relaxation of the original
Integer Programming problem by introducing the PPR to the auction. Since the
PPR has an unlimited budget, its demand will always be fulfilled, and thus the linear

relaxation problem becomes:

matgy SW(z,y) = Z VT — Z Z c?yf

ieN jEM ke
ieEN JEM (4)

0<z; <1, \V/’L'G./\/’,
k k .

0<y; <wj, VjeMkek.
Denote by (z’,y’) the optimal solution to the above linear programming problem .
For each requester i, define critical valuation ¢; as the minimum valuation (i.e., price
or budget) that requester ¢ must report such that a2} = 1, given other requesters’
reported valuations remain unchanged. Let N* denote the set of requesters whose
reported valuation satisfies v; > ¢;. In other words, N* is the set of requesters with
z; = 1 in the above linear programming problem (without any bid changes). Only
requesters in N* proceed to the next stage.

(Stage 2) In the second stage, we solve a new linear programming problem involving

19

only requesters in A* and all provers M:

matgy SW(x,y) = Z Vii — Z Z C; ?J]

ieN JEMEKEK
S dizi=)y, VkeK,
ieN* JjEM (5)

0<z; <1, Vie N,

0<yf <wh, VjeMkek.

Let (z”,y”) be the optimal solution to the above linear programming problem (5.

The final allocation by TODA is

TODA /"
Y =y,

/! LN *
L TODA _ zf, ifieN

0, ifid¢N*

Following a similar analysis of the padding method [7][8], it can be shown that
the solution of TODA is feasible. That is, the solution (xTOPA yTOPA) is an integer

solution.

4.4.2. Pricing Policy

Under TODA, the payment made by requester i to the platform equals the critical
price ¢ if i € N* and 0 if ¢ ¢ N'*:
¢;, ifie N*
p;I'ODA —) (6)
0, ifig¢N*

For provers, a VCG-like pricing scheme is used, where the reward received by prover
j is defined as the change of all other bidders’ social welfare caused by prover j’s

participation:

rTOPA = Nk ek 1 SW (N, M) — SW(N*, M\{j}), Vj € M. (7)
kel

20

4.4.3. Mechanism Analysis of TODA

We show that TODA achieves the desired economic properties as mentioned in the
previous section: (1) Truthfulness, (2) Budget Balance, (3) Individual Rationality,
(4) Computational Efficiency, and (5) Asymptotic Optimality. Their proofs follow the

same line of arguments as the padding method used in [7][§], and are therefore omitted

in this paper for brevity.

Theorem 4.2. TODA is truthful, individually rational, budget-balanced, computation-

ally tractable, and asymptotically efficient as prover supply becomes increasingly suffi-
cient relative requester demand.

4.5. Auction Implementation with Brevis Chain

In this section, we describe the implementation of the above auction with Brevis

Chain as the decentralized auctioneer and platform that coordinates the auc-

tion. Figure [2] illustrates the high-level flow.

Brevis Chain

Proof Request Prover Bulletin
Inbox Board
2a.Collect bids and

compute proof
Rgsignment and pricing

1a. Submit proof request
and make payment

1c. Report capacity

1b. Deposit payment supply and marginal cost

TODA Solver

2b. Proof assighment
Requester 1

4b. Refund payment if
proof request not

4a. Send paynjent for
Requester 2

fulfilling the prdof requests

3b. Proof fulfiling results

Requester N 4c. Fetch requested proofs

3a. Generatp and submit
assigned prgofs for verification.

Proof Fulfiller

4d. Slash a provers stake if failing to -
fulfllproof requesty deadline

A 0. Register and deposit stake

Prover Registry

Prover Staking -
Vault

Figure 2. High-level flow for prover network auction with Brevis Chain

21

4.5.1. Prover Registration

Before participating in the proof auction, a prover must first register with the network.

Any prover can join permissionlessly. Specifically, each prover should register with the

Prover Registry contract on the Brevis Chain and deposit a required stake. The stake

will be slashed if the prover is assigned a proving job but fails to submit a verified ZK

proof before the deadline.

4.5.2. Flow for an Auction Round

(Step 1)

(Step 2)

(Step 3)

(Step 4)

At the beginning of an auction round, there is a bid collection window for gather-
ing proof requests and prover capacity reports. Each requester i submits a proof
demand vector d; to the Proof Request Inbox contract on the Brevis Chain and
places a deposit (equal to the valuation v;) to the Prove Fee Vault. During the
same window, each prover j must report its supply vector w;, and marginal cost
vector ¢; to the Prover Bulletin Board.

After the bid collection window, the TODA Solver is triggered to compute the
proof allocation and pricing for the auction (according to the mechanism de-
scribed in Sections and The pricing results are communicated to the
Prove Fee Vault, and the proof assignment results are sent to the provers. Note
that TODA Solver is a native primitive supported by the Brevis Chain.
Each prover generates proofs according to the assignments from the TODA Solver
and submits the proofs to the Proof Fulfiller for storage and verification.

If the proof is successfully verified, payment is sent to the prover based on the
pricing results produced by the TODA Solver, and proof requesters can fetch the
required proofs. If a prover fails to submit or verify the requested proofs before
the auction round ends, the prover’s stake will be slashed. Any requester whose

request was not fulfilled will receive a refund after the auction round concludes.

The above flow provides a high-level overview of the auction implementation on the

Brevis Chain, omitting details such as proof storage, privacy protection, and related

mechanisms.

5.

Token Utility

22

5.1. Overview

The BREV token is the core utility token of the Brevis ecosystem. It serves as the
medium of payment for proving and settlement, the collateral that aligns incentives
and service-level guarantees among provers, and the governance token for setting
global system parameters. This section expands on those utilities and shows how they

interlock to produce reliable, market—priced verifiable compute.

5.2. Payment Medium for Verifiable Compute

All fees associated with Brevis ProverNet are paid in BREV. This includes (i) proof
generation for zkVM execution, ZK Data Coprocessor, ZKTLS Coprocessor, and re-
cursive aggregation; (ii) verification and settlement on the network; and (iii) auxiliary
services such as result availability and receipt publication. Job prices are discovered
via the auction mechanism.

In addition, the Brevis ProverNet can be deployed as a specialized rollup, where
BREYV serves as the gas token for transactions within the network. This gives BREV

additional utility tied to the gas costs payments for the network usage.

5.3. Staking for Provers to Receive Order Flow

Provers in the distributed network must stake BREV or receive delegated stake from
BREV token holders to receive work.

Staking performs three roles:

(1) Sybil resistance & admission control: minimum effective stake gates access
to sensitive or high-value jobs.

(2) Economic alignment: staked value is placed at risk for missed SLAs, incorrect
proofs, or equivocation.

(3) Capacity signaling: larger effective stake (with good historical performance)

pushes a prover higher in the matching queue for larger or time-critical jobs.

Applications requesting proofs will submit their proof request along with the amount
of stake they require the prover to lock up to accept this request. It reflects the
opportunity costs/loss if the request is not fulfilled in time with predefined verification

parameters. The corresponding stake is unlocked only when a proof is successfully

23

delivered.

Token holders may delegate BREV to professional provers. The process of delegation
is a form of active participation similar to proof of stake delegation.

With these delegated tokens, a prover can therefore receive more proving workload
by locking them up and earn additional revenue. In return, the prover will share
a portion of the proving fees with the delegators. At the same time, if the delegated
prover violates its committed SLAs, the delegated stake will also be slashed. Therefore,
it is critical for delegators to carefully evaluate different proving providers and adjust

their delegation from time to time.

5.4. Slashing for Breaking SLA

The entire Brevis system is rooted in ZK proof. There is no way for provers to generate
an invalid proof that can be successfully verified by the task settlement contract.

The worst thing that can happen to disrupt the normal operation of the network is
previously committed provers breaking their Service-Level Agreement, such as missing
deadlines, requesting more payment and/or generating proofs with lower security level
or larger size than previously committed.

If a prover broke the SLA, the proof requester may trigger the staking contract to
slash the locked stake from the prover. The slashing percentage is a system parameter
and is initially set as 1%. It will gradually increase according to the protocol governance

process.

5.5. Governance for Protocol Parameters

The BREV token will also serve as the governance token for setting important system
parameters through on-chain governance processes. Initially, the following parameters

are governed:

(1) Acceptable Proof Size: Brevis ProverNet accepts smaller than 1MB proof.

(2) Level of Security: Brevis ProverNet accepts larger than 100-bit security for
all proofs.

(3) Slashing Percentage: 1% of the locked stake will be slashed for provers break-
ing their SLA.

(4) Auction Market Fee: 3% of the fees paid by requesters will be allocated to

24

Brevis ProverNet.

6. Tokenomics

The BREV token serves as the core utility and value-accrual asset of the Brevis ecosys-
tem, designed to sustain network growth, incentivize participation, and ensure eco-
nomic alignment across provers, developers, and users. The total supply of BREV is
fixed at 1,000,000,000 tokens, with allocations structured to balance long-term ecosys-
tem health, decentralization, and operational sustainability.

The distribution of BREV tokens is designed to align incentives among contributors,

users, and stakeholders:

e Ecosystem Development (37%): Funds ecosystem growth, research and de-
velopment, strategic partners, initial market making, and long-term protocol
expansion.

e Community Incentive (28.7%):Covers rewards for provers, stakers, and com-
munity contributors and developer integrations.

e Team (20%): Allocated to current and future core developers and contributors
of Brevis.

e Investors (10.8%): Seed investors supporting development and launch of Bre-
vis.

e Airdrop (3.5%): Initial airdrops allocations of different categories to qualifying

contributors and community members.

Ecosystem Development and Community Incentives vest linearly over 24 months
after an initial unlock at TGE, with 14.50% and 7.50% circulating at launch respec-
tively. 3% of the airdrops will be unlocked at TGE with the remaining 0.5% released
at the 6th month after TGE. Team and Investor allocations are fully locked for the
first year with no initial unlock, followed by 24-month linear vesting. At TGE, the
circulating supply is 25% of the total supply.

7. Business Model

Brevis’s business model is built on a sustainable and usage-driven economy centered

around verifiable computation. Applications built on Brevis, including those using the

25

ZK Data Coprocessor, Pico zkVM, and, in the future, Ethereum full block proving, con-
tinuously generate workloads that require zero-knowledge proof computation. These
workloads form the order flow that powers the Brevis Prover Network, a decentralized
marketplace for compute.

Within this marketplace, independent provers and prover pools compete to ful-
fill computation requests submitted by applications. Each proving task is matched
through a transparent auction process governed by the Service Level Agreement (SLA)
mechanism and the TODA double auction system. Performance, reliability, and stake
size determine how tasks and rewards are allocated. Provers must stake BREV tokens
to participate, signaling commitment and ensuring service quality. The more BREV a
prover stakes and the better their SLA record, the greater their share of proving jobs
and corresponding revenue.

This model creates a self-reinforcing value loop: as more applications integrate Bre-
vis and demand verifiable computation, the demand for BREV increases to pay for
network usage and staking. In turn, staking strengthens network reliability and capac-
ity, attracting more applications and computation workloads.

As the proving workload increases, the Brevis Prover Network can transition to a
specialized rollup, ensuring scalability and efficient coordination of auctions and set-
tlements. All transactions within this rollup, including job payments, staking, and
prover rewards, are denominated in BREV tokens, embedding intrinsic utility directly
into the network’s economic flow. Additionally, each successful ProverNet auction con-
tributes a small protocol fee to the Brevis protocol treasury, creating a recurring and
transparent source of revenue that scales with network activity.

Through this architecture, Brevis transforms computation demand into economic
value, aligning token incentives with real, measurable network usage and long-term

ecosystem growth.

8. Roadmap

Q4 2025

e Launch Brevis Prover Network testnet, onboarding third-party provers.
e Complete Proving Grounds user activation campaign and pre-TGE ecosystem

rollout.

26

e Target TGE early December 2025.
H1 2026

e Achieve full real-time Ethereum block proving on 16 consumer-grade GPUs.
o Integrate ZK-TLS Coprocessors for verifiable web data and Al inference.

e Deploy TODA auction mechanism for decentralized prover task allocation.

e Expand adoption in Intelligent DeF1i, stablecoin/RWA incentive rails, and

ZK-powered prediction oracles.

H2 2026

Explore custom hardware acceleration (FPGA / ASIC) for Pico zkVM.

Scale Brevis Prover Network into a decentralized marketplace for global ver-

ifiable computing.

Enshrine Pico zkVM into Ethereum L1 as part of the real-time proving stack.

Launch Brevis Ecosystem Grants to support builders integrating verifiable

computing into DeFi, Al, and cross-chain systems.

9. Conclusion

This white paper advances a simple thesis: the way to break through the performance
and cost limits of replicated execution is to make wverifiable computing the default
interface between applications and consensus, and to supply that computing through
an open, heterogeneous marketplace. The Brevis ProverNet operationalizes this idea by
treating proof generation as a first-class market in which demand arrives as typed jobs
and supply is a diverse set of provers with different hardware profiles and proof-system
specializations. Matching occurs through an on-chain auction with clear service-level
objectives and cryptographic settlement, so correctness and payment do not depend

on trust in any single operator.

27

References

[1] Brevis pico prism: Real time proving, https://blog.brevis.network/2025/10/15/
pico-prism-99-6-real-time-proving-for-45m-gas-ethereum-blocks-on-consumer-hardware/.
| Brevis pico zkvm, https://pico-docs.brevis.network/.
| Brevis zkcoprocessor, https://coprocessor-docs.brevis.network/.
| Succinct network: Prove the world’s software, https://www.provewith.us/.
| Uniswap v4 hook: Brevis zk, https://blog.brevis.network/2023/11/01/
uniswap-v4-hook-brevis-zk-coprocessor-data-driven-dex-experiences/.
[6] M.R. Baye, D. Kovenock, and C.G. De Vries, The all-pay auction with complete informa-
tion, Economic Theory 8 (1996), pp. 291-305.
[7] S. Chen, M. Liu, and X. Chen, A truthful double auction for two-sided heterogeneous
mobile crowdsensing markets, Computer Communications 81 (2016), pp. 31-42.
[8] L.Y. Chu, Truthful bundle/multiunit double auctions, Management Science 55 (2009), pp.
1184-1198.
[9] S. De Vries and R.V. Vohra, Combinatorial auctions: A survey, INFORMS Journal on
computing 15 (2003), pp. 284-309.
[10] M. Dong, G. Sun, X. Wang, and Q. Zhang, Combinatorial auction with time-frequency
flexibility in cognitive radio networks, in 2012 Proceedings IEEE INFOCOM. IEEE, 2012,
pp. 2282-2290.
[11] D. Friedman, The double auction market institution: A survey, in The double auction
market, Routledge, 2018, pp. 3-26.
[12] R.M. Karp, Reducibility among combinatorial problems, in 50 Years of Integer Program-
ming 1958-2008: from the Early Years to the State-of-the-Art, Springer, 2009, pp. 219-241.
[13] A. Lazzaretti, C. Papamanthou, and I. Hishon-Rezaizadeh, Robust double auctions for
resource allocation, Cryptology ePrint Archive (2024).
[14] H.R. Varian and C. Harris, The vcg auction in theory and practice, American Economic

Review 104 (2014), pp. 442-445.

28

https://blog.brevis.network/2025/10/15/pico-prism-99-6-real-time-proving-for-45m-gas-ethereum-blocks-on-consumer-hardware/
https://blog.brevis.network/2025/10/15/pico-prism-99-6-real-time-proving-for-45m-gas-ethereum-blocks-on-consumer-hardware/
https://pico-docs.brevis.network/
https://coprocessor-docs.brevis.network/
https://www.provewith.us/
https://blog.brevis.network/2023/11/01/uniswap-v4-hook-brevis-zk-coprocessor-data-driven-dex-experiences/
https://blog.brevis.network/2023/11/01/uniswap-v4-hook-brevis-zk-coprocessor-data-driven-dex-experiences/

	Introduction
	Current Limitations of Blockchain Computing
	Verifiable Computing with Zero Knowledge
	Brevis Products: Pico zkVM and the ZK Data Coprocessor
	Motivation for an Open Marketplace and the Heterogeneity Problem
	Limitations of Existing Approaches
	A New Market Design: Truthful Online Double Auctions (TODA)
	Performance Context: Pico Prism and Real-Time Proving
	Token as Market Plumbing: The Role of BREV
	Extended Motivation: What Users Actually Want
	Running Example: VIP Trader Programs
	From Engineering to Economics
	Outline

	Background
	Recent Progress in ZK (2024–2025)
	Real-time Ethereum Proving
	Brevis Pico and Pico Prism: Architectural Context
	Why a Networked (Market) Approach Still Matters

	Diverse Workloads
	DEX Hooks: Personalized Fees and Data-Driven Trading
	Uniswap v4 Router Gas Rebates (launched)
	Trustless Incentives at Scale: Euler, Linea, MetaMask
	Ecosystem Expansion: Linea, TAC, and Others
	Implications for Network Architecture

	Double Auction for Heterogeneous Prover Network
	System Model
	Double Auction Framework
	Problem Formulation
	TODA: Truthful and Asymptotically Optimal Double Auction Mechanism for a Heterogeneous Prover Network
	Proof Allocation Algorithm
	Pricing Policy
	Mechanism Analysis of TODA

	Auction Implementation with Brevis Chain
	Prover Registration
	Flow for an Auction Round

	Token Utility
	Overview
	Payment Medium for Verifiable Compute
	Staking for Provers to Receive Order Flow
	Slashing for Breaking SLA
	Governance for Protocol Parameters

	Tokenomics
	Business Model
	Roadmap
	Conclusion

