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Abstract.

Brevis ProverNet is a decentralized marketplace that matches diverse zero-

knowledge (ZK) workloads—ranging from zkVM programs to ZK coprocessor queries

and aggregation proofs—with a heterogeneous supply of provers. Two pillars distin-

guish Brevis. First, it is designed from day one to support heterogeneous proofs and

composite, multistage proving pipelines, allowing applications to mix and match prov-

ing systems and workflows without being shoehorned into a single stack.

Second, Brevis introduces TODA, a truthful, budget-balanced, and asymptotically

efficient two-sided double auction. TODA matches proving jobs to provers through

continuous auction rounds, clearing demand and supply across proof types while pre-

serving permissionless participation by both requesters and provers.

The emphasis on heterogeneous workloads is empirically motivated. The network

design is informed by Brevis infrastructure operating in production across applications

with divergent proving requirements, demonstrating the need for native support for

multiple proof types and multistage pipelines.

To balance performance with openness, Brevis also deploys the auction logic on a

dedicated rollup. Running the market contracts on their own rollup isolates auction

throughput from L1/L2 congestion while keeping settlement, matching, and slashing

transparent and permissionless. This dedicated rollup is designed solely to coordi-

nate bids, assignments, and payments for proofs, while proofs themselves may target

arbitrary destination chains.



1. Introduction

1.1. Current Limitations of Blockchain Computing

Blockchains were conceived as “world computers”, yet their base layers remain con-

strained. Each transaction must be re-executed by all validating nodes to preserve

consensus, security, and determinism. The very property that grants strong integrity

(full replication) also imposes a hard performance ceiling: a chain cannot, in steady

state, outpace a single machine running the same workload, and its costs scale with the

number of replicas, not with economies of scale. In practice, this replicated-execution

model makes heavy, stateful analytics and personalized logic (such as per-user discount

tiers) prohibitively expensive or operationally brittle on-chain.

A concrete example is the VIP trader experience on modern decentralized exchanges

(DEXes). Hooks for dynamic fees or loyalty programs need to ask questions such as:

“What was this addres’s trading volume in the past 30 days on this pool?” or “Does

this trader hold sufficient units of the governance token to qualify for a discount?”

Storing and recomputing such history on-chain is infeasible; scanning the chain in-

contract is cost-prohibitive; and off-chain servers without cryptographic accountability

reintroduce trust. Production systems therefore require a different primitive.

The underlying cause: replicated execution.

Every honest node must replay the same state transition function on the same in-

puts and arrive at the same post-state. This guarantees robust consensus but burns

compute on duplicate work. Even aggressive L1/L2 scaling does not change the funda-

mental asymmetry: as long as validators must re-execute, heavy workloads will remain

expensive and slow relative to traditional computing environments.

1.2. Verifiable Computing with Zero Knowledge

A practical way to decouple execution from validation is to employ verifiable com-

puting : one machine (or a small cluster) performs the heavy computation off-chain,

then supplies a succinct, cryptographic proof that the result is correct. Instead of

re-executing the workload, the blockchain verifies the proof. Modern zero-knowledge

(ZK) proof systems make this approach economically compelling as verification costs

are small and predictable, while proving can scale up on specialized hardware.
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ZK systems work by translating a program into constraints through arithmetiza-

tion and use a polynomial commitment scheme and interactive oracle proof (IOP)

techniques. The verifier checks correctness with often only a few queries and small-

size state. Verification time is sublinear in the original computation’s size (and, for

many systems, essentially constant). This allows chains to keep consensus simple while

outsourcing arbitrarily complex analytics and policy logic to off-chain provers.

In the context of DEX hooks and VIP programs, history scans, tier calculations,

and eligibility checks run off-chain while a proof is fed back to the hook contract.

The contract then verifies the proof and updates state accordingly, without trusting

any opaque server or paying to recompute history on-chain. Uniswap v4 and other

ecosystems have showcased prototypes and launches of precisely this pattern.

1.3. Brevis Products: Pico zkVM and the ZK Data Coprocessor

Brevis operationalizes verifiable computing through two complementary products:

• Pico zkVM—a modular, high-performance zero-knowledge virtual machine de-

signed to efficiently prove general-purpose programs and compose with recur-

sive aggregation. Pico emphasizes a minimal core with high-throughput crypto-

graphic “coprocessors” and acceleration paths, enabling developers to target a

stable VM while still capturing hardware gains.

• ZK Data Coprocessor—a production-grade pipeline that reads historical on-

chain data across supported networks, performs off-chain computations (such as

time-weighted balances, trading volume over windows, position analytics), and

returns results with validity proofs. Contracts consume these proofs directly,

enabling features like VIP trading programs, loyalty rewards, fee discounts, and

active-liquidity policies without trusting external servers.

These components are deployed in live partnerships across DeFi, L2 ecosystems,

and wallets: Uniswap v4 hook designs for VIP fee tiers, PancakeSwap and Quick-

Swap dynamic-fee programs, Euler’s Incentra-based trustless rewards, and Linea-wide

growth programs with millions of proofs and tens of thousands of unique addresses.
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1.4. Motivation for an Open Marketplace and the Heterogeneity

Problem

Production deployments revealed an important reality: workloads are diverse. Some

jobs are low-latency and per-interaction (such as “ before swap” checks for VIP pric-

ing). Others are periodic and large-batch (such as per-epoch incentive distributions

across many addresses). Still others are heavyweight VM executions, recursive ag-

gregations or wrap/field conversions for cross-system compatibility. Hardware profiles

vary as well: single-GPU rigs, multi-GPU servers, heterogeneous clusters with fast in-

terconnects, or mixed CPU/GPU/FPGA setups. A single centralized prover cannot

efficiently cover this spectrum nor provide credible neutrality.

In real deployments, heterogeneity manifests along four axes: (i) history reach (how

far back in the chain one must scan), (ii) aggregation width (addresses/positions), (iii)

proof cadence (per swap, hourly, daily epochs), and (iv) latency SLOs (service-level

objectives). Consider the contrast: a DEX hook checking VIP eligibility must generate

proofs within 2-3 seconds, scanning 30 days of history for a single address. Meanwhile,

a protocol-wide incentive distribution processes 100,000 addresses monthly, prioritiz-

ing throughput over latency. The first workload demands low-latency GPUs with fast

memory access; the second benefits from CPU clusters optimized for parallel batch pro-

cessing. No single hardware configuration can efficiently serve both. A monolithic “one-

size-fits-all” prover stack inevitably leaves performance on the table. A STARK-first

pipeline with excellent FFT throughput might excel at history attestations, whereas

a SNARK-first stack with specialized elliptic-curve precompiles might shine in near

real-time use cases.

To scale, Brevis advocates an open, decentralized marketplace for proof compute.

Requesters post typed jobs with explicit constraints (deadline, maximum fee, relia-

bility tier), and provers bid to execute them. Price discovery happens via auctions;

correctness is enforced by on-chain verification; and quality-of-service emerges from

economic incentives (staking, reputation, and redundancy for systemically important

tasks). This structure mirrors cloud marketplaces, but with cryptographic enforcement

that eliminates trusted billing ledgers and proprietary dashboards.
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1.5. Limitations of Existing Approaches

Early proving-as-a-service offerings and cluster managers demonstrate value, yet they

typically face two structural limitations:

(1) Narrow workload support. Many stacks optimize for one proof system, one

VM, or one circuit family. They excel at their niche but cannot gracefully absorb

workloads with different arithmetic, memory footprints, or aggregation strate-

gies. When a job type changes (from a small-range history scan to a full zkVM

trace with recursion for example), the system either performs poorly or hands

the request off to a different silo.

(2) Homogeneous nodes and monolithic tasks. Schedulers that assume simi-

lar nodes struggle to decompose and route jobs across heterogeneous hardware.

In practice, breaking jobs into sub-tasks (such as multi-GPU sharding/pipelin-

ing, partial proof generation, or parallel data ingestion) is essential, but requires

protocol-level interfaces and incentives so that independent operators can coor-

dinate without mutual trust.

These constraints limit throughput and degrade time-to-proof for real applications.

They also impede market efficiency by hiding specialized capacity (a farm that excels

at polynomial commitments but not at Keccak-heavy traces, for instance).

1.6. A New Market Design: Truthful Online Double Auctions (TODA)

To address these gaps, Brevis proposes and implements a market mechanism with the

properties of a Truthful Online Double Auction (TODA). A double auction clears a

market of many buyers and many sellers simultaneously. “Online” means jobs and

capacity arrive over time. TODA matches proving jobs to provers through auction

rounds, where requesters bid their maximum willingness to pay and provers bid their

costs. “Truthfulness (incentive compatibility)” ensures participants maximize utility

by bidding their true valuations (for buyers) or true costs (for sellers).

Desirable properties include:

• Incentive compatibility (truthfulness): best strategy is honest bidding; re-

duces strategic gaming.

• Individual rationality: no party is forced into a loss; winners pay at most their
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bid (buyers) or receive at least their ask (sellers).

• Budget balance: the mechanism does not require continuous subsidies; fees

cover payouts.

• Computational efficiency and low latency: auctions clear in bounded time

to honor SLA (service-level agreement) targets.

Within Brevis, job types (zkVM execution, recursive aggregation, historical data

attestations, wrap/field conversions) are first-class citizens. Provers advertise capabil-

ity profiles (hardware, supported systems, latency percentiles). Matching uses stake-

weighted, reputation-aware scoring, with optional redundancy for critical tasks. This

combination allows heterogeneous nodes to collaborate on decomposed jobs while com-

peting fairly across categories.

1.7. Performance Context: Pico Prism and Real-Time Proving

The viability of a compute marketplace improves as single-job latency drops. Brevis’s

Pico Prism demonstrates a multi-GPU, distributed architecture for zkVM proving that

materially advances the state of the art: in tests on current Ethereum L1 with a 45M

gas cap, 99.6% of blocks were proven under 12 seconds and 96.8% under 10 seconds

(the Ethereum Foundation’s real-time bar), with an average of about 6.9 seconds on

a 64×RTX 5090 cluster.[1]

1.8. Token as Market Plumbing: The Role of BREV

The marketplace requires a settlement medium and collateral. The BREV token plays

three operational roles (detailed in Section 5). First, it is the payment medium: all job

fees, verification, and settlement within Brevis ProverNet are denominated in BREV.

Second, it functions as staking collateral : provers stake BREV to enter auctions and

to guarantee service-level objectives; misbehavior or missed deadlines are penalized

via slashing. Third, BREV also serves as the gas token for on-network transactions

(job submissions, bids, proofs, staking updates). Finally, BREV also serves as gover-

nance token to adjust certain network parameters. This design links real compute and

blockspace demand to sustained demand for BREV, while translating reliability into

an economically enforced service property.
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1.9. Extended Motivation: What Users Actually Want

From the end user’s perspective, “blockchain UX” is about fast, cheap, and fair inter-

actions. Traders want fee discounts to apply before their swap confirms; lenders want

rewards that land on time and are computed according to transparent, auditable rules;

wallets want to surface account insights without leaking private data. None of these

experiences require every validator to replay a multi-second analytics query on-chain.

They do require a tamper-proof certificate that the query was executed correctly.

Constant-time verification as a UX primitive.

A recurring theme in this paper is that constant-time verification becomes a UX

building block: once an application expresses its business rule as a verifiable com-

putation, the chain can enforce that rule with small, predictable gas, regardless of

the dataset size. This turns previously “prohibitively expensive” ideas (personalized

fees, snapshot-based airdrops with fairness guarantees, or multichain reputation) into

routine patterns.

1.10. Running Example: VIP Trader Programs

To ground the discussion, consider a VIP program on a DEX pool. The goal is to

dynamically apply fee tiers to a swap based on the trader’s last-30-day volume in that

specific pool (or across a set of pools), plus optional token-holder discounts for gover-

nance token balances. A straightforward implementation would need to read thousands

of historical events per address, aggregate volume, check membership tiers, and make

the result available within the transaction’s execution window. Direct on-chain im-

plementation is infeasible: storing and recomputing such history incurs prohibitively

high gas costs, and off-chain servers without cryptographic proofs reintroduce trust

assumptions.

Under a ZK coprocessor architecture, the hook contract remains small and deter-

ministic. The coprocessor performs the heavy computation off-chain, produces a proof,

and provides the hook with a succinct witness that can be verified in constant time.

1.11. From Engineering to Economics

The engineering side asks: can we produce proofs fast enough? Results from Pico

Prism and Brevis production systems indicate that, for many classes of workloads, we
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can.

The economics side asks: can we allocate the right hardware to the right job, at

the right price, under deadlines, without trusting a single operator? The remainder of

this paper argues that an online double auction with staking-backed reputation can

achieve this allocation efficiently.

1.12. Outline

The remainder of this paper proceeds as follows.

Section 2 covers ZK background and recent progress, emphasizing zkVM architec-

tures and recursive composition.

Section 3 surveys Brevis’s diverse workloads and launched partnerships.

Section 4 provides a formal explanation of the double auction scheme.

Section 5 formalizes BREV’s token utilities and value accrual.

2. Background

2.1. Recent Progress in ZK (2024–2025)

Progress in zero-knowledge proving has accelerated dramatically across multiple fronts.

zkSNARK systems offer short proofs and fast verification, often with strong engineer-

ing ecosystems, though sometimes requiring trusted setups. zkSTARKs provide trans-

parency (no trusted setup) and post-quantum security assumptions, with larger proofs

but excellent parallelism, leveraging FFT- and hash-heavy computation. Polygon’s

Plonky3, a modular toolkit for high-performance STARK-based systems, exemplifies

recent progress with external audits and increasing adoption. Recursive frameworks

like Nova employ folding schemes to enable proof composition and aggregation.

zkVMs have emerged as a critical proving primitive. A zkVM proves the correct

execution of a machine model (often RISC-V or WASM). Programs compile to that

ISA, and then further translate each instruction step into the zkVM constraints so

that the resulting proof certifies the entire execution. zkVMs trade peak performance

for flexibility: instead of handwriting circuits for each application, developers target a

general VM and rely on the prover to optimize.
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Metric SP1 Hypercube Pico Prism Improvement
RTP (<10s) coverage (36M gas limit) 40.9% 98.9% 2.4x higher coverage
RTP (<10s) coverage (45M gas limit) N/A 96.8% First to achieve
GPU cost (MSRP-based) $256K $128K 50% Reduction
Average proving time 10.3sec 6.04sec 71% Faster

Figure 1. Comparison of “real-time proving” results as of October 2025

2.2. Real-time Ethereum Proving

The defining challenge of 2024–2025 became real-time Ethereum proving: generating

validity proofs for L1 blocks fast enough to enable native rollup security and base-layer

verification without sacrificing decentralization. The Ethereum Foundation’s bench-

mark called for proving 99% of blocks in under 10 seconds with hardware under $100K.

Brevis announced Pico Prism in October 2025 and reported industry-leading cover-

age: 99.6% of current 45M-gas L1 Ethereum blocks proven in <12s, with 96.8% proven

in <10s (the Ethereum Foundation’s “real-time” bar) and an average proving time of

∼6.9s on consumer-grade hardware using 64 RTX 5090 GPUs. The Brevis team fur-

ther reports a 50% hardware cost reduction vs. the nearest competitor for a given

coverage target, yielding a 3.4× performance-per-dollar improvement.[1] Independent

media recaps confirm those metrics and frame real-time proving as crossing a critical

threshold for base-layer verification.

2.3. Brevis Pico and Pico Prism: Architectural Context

Pico. Pico is Brevis’s open-source zkVM that adopts a “glue-and-coprocessor” ar-

chitecture: a minimal, high-performance core plus pluggable coprocessors for heavy

cryptographic operations and domain-specific accelerators.[2] The design aims to pre-

serve programmability while letting jobs opt into specialized acceleration paths when

available.

Pico Prism. Pico Prism extends Pico with distributed, multi-GPU parallelism and

scheduling. Conceptually, Prism shards or pipelines execution traces across GPUs and

aggregates partial results into a final proof, balancing memory pressure and through-

put. Reported results emphasize coverage under latency constraints (<12s / <10s)

rather than single-run records. See 1 for comparison with prior art. More details can

be found at [1].
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Implications. If real-time proofs can be produced economically, base layer verification

can shift from social consensus about state transitions to cryptographic validity for

most blocks. This enables lighter nodes, faster finality for rollups, and new security

models for cross-chain validation.

2.4. Why a Networked (Market) Approach Still Matters

Even with faster zkVMs, the workload distribution is skewed: some jobs are massive

(entire L1 blocks), others are latency-sensitive (bridge updates, auctions), and some are

best-effort background tasks (historical aggregation). Hardware availability is similarly

heterogeneous: a single workstation with one GPU is not the same as a 64-GPU rig,

and specialized coprocessors may only exist in a subset of nodes.

A two-sided market (jobs ↔ provers) with typed orders solves for matching:

• Typed jobs: zkVM execution, recursive aggregation, wrap/compress, field con-

versions, STARK↔SNARK wrapping, etc.

• Constraints: max fee, deadline, required coverage percentile (such as prove

within 10s for 95% of instances), minimum hardware profile.

• Signals: reputation, historical latency distributions, reliability under load.

Brevis’s auction design (a truthful, near-optimal double auction with typed orders)

aims to clear this market while maintaining incentive compatibility for both sides.

The network batches orders each round, computes allocations, and settles on-chain;

unfilled users are refunded. (A full formal treatment appears later in the paper.)

3. Diverse Workloads

Production deployments across major DeFi protocols, L2 ecosystems, and wallet

providers demonstrate the spectrum of proving workloads that Brevis infrastructure

handles. This section surveys launched partnerships and the concrete jobs they run,

illustrating how workload heterogeneity necessitates a marketplace architecture.

3.1. DEX Hooks: Personalized Fees and Data-Driven Trading

PancakeSwap Infinity (launched May 2025) rolled out Brevis-powered hooks

that make fees user-aware, including (i) a Token Holder Discount Hook that applies
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up to 45% fee discounts based on time-weighted holdings and (ii) a Trading Volume

Discount Hook that tiers fees by a trader’s recent pool-specific volume.These features

require scanning historical events, computing statistics off-chain, then verifying results

on-chain via ZK proofs, so the router can apply the correct fee tier at swap time. Early

telemetry reports show: 6,151 app requests processed, 17,277,767 proofs generated, and

3,678 unique addresses.

Uniswap v4 Hooks (reference design; shipped examples) demonstrated

“VIP trader” fee tiers that compute last-30-day trading volume per address entirely

off-chain and prove it back to the hook contract.[5] The original article details why

DEXes cannot economically store/query all historical trades on-chain, and how a ZK

coprocessor lets hooks remain simple while still benefiting from rich, verifiable history.

The same pattern generalizes to LP loyalty rewards, volatility-aware fees, and ZK-ML

assisted active liquidity management.

QuickSwap Dynamic Fees (launched) introduced Brevis-powered dynamic-fee

hooks on Soneium (Sony’s EVM L2), starting with pools such as WBTC/WETH

and USDC/WETH. Traders are assigned VIP tiers by last-30-day volume (proved by

Brevis) and receive discounted fees, with additional hook variants (holding-based and

volatility-based) in the pipeline.

3.2. Uniswap v4 Router Gas Rebates (launched)

Uniswap v4 introduced heterogeneous pools where hooks can modify fee logic and

execution guarantees. This heterogeneity raises integration costs for aggregators (such

as 1inch and ParaSwap), as routers must detect and handle diverse pool behaviors.

The Uniswap Foundation partnered with Brevis to launch trustless gas rebates for

routers that process swaps through hook-enabled v4 pools, creating direct economic

incentives to accelerate adoption.

The rebate system operates entirely trustlessly through Brevis’s ZK Data Coproces-

sor. Routers submit lists of eligible transaction hashes and receive a request ID. The

Brevis service fetches receipts, filters swaps by eligible pool IDs, incorporates on-chain

claimer data, and generates a ZK proof. Once finalized, the router queries by request

ID to retrieve the proof and calldata for on-chain claiming.

On-chain claiming occurs through claimWithZkProof in the rebate contract. The

function enforces: (i) the ZK proof is valid, (ii) swaps in the specified block range have
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Partner Workload Cadence/Scale
PancakeSwap VIP/holding fee discounts via hooks 17.3M proofs; thousands of addrs
Uniswap v4 VIP tiers; LP loyalty; ZK-ML patterns per-user periodic updates
QuickSwap Dynamic fees (volume-based) before-swap VIP checks
Euler Incentra rewards on Arbitrum 4h epochs; $100k rEUL
Linea Ignition 1B LINEA program (Etherex/Aave/Euler) 12.1M proofs; 61.9k addrs
MetaMask 2.4% APR via Aave (Linea) 4h balance proofs
Uniswap v4 Rebates Trustless gas rebates for v4 hooks router-initiated claims;

Table 1. Representative launched workloads across partners and domains.

not been rebated already, and (iii) the caller is the registered claimer address. When

checks pass, ETH rebates are released to the specified recipient address. Depending

on router policy, rebates can offset operating costs, reduce user fees, or accrue to

treasuries, accelerating v4 liquidity and adoption without centralized reward ledgers

or opaque calculations.

3.3. Trustless Incentives at Scale: Euler, Linea, MetaMask

Euler (launched on Arbitrum) was the launch partner for Incentra, Brevis’s trust-

less incentive platform. In June 2025 Euler ran four lending reward campaigns dis-

tributing $100K in rEUL across USDC, WETH, USDT, and WBTC vaults, with

rewards computed every four hours from time-weighted supply balances and verified

on-chain.The program improved depth and narrowed borrowing spreads within weeks

while requiring zero custom contracts or back-office scripts; Incentra handled data

ingestion, proving, and on-chain distribution.

Linea Ignition (launched) ran a 10-week program distributing 1 billion LINEA

tokens across Etherex, Aave, and Euler, with all reward computation performed

off-chain and proven on-chain. Reported telemetry: 12,147,200 proofs and 61,902

unique addresses.

MetaMask on Linea (launched) in partnership with Brevis, powers a program

offering MetaMask Card users a 2.4% fixed APR on USDC lending/borrowing via

Aave on Linea. Brevis computes time-weighted balances every four hours and proves

eligibility; users claim through Incentra.
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3.4. Ecosystem Expansion: Linea, TAC, and Others

Linea (strategic): Beyond Ignition, Linea integrates Brevis as a general verifiable

compute layer for dApps (to leverage historic data access, complex position analytics,

and trustless rewards) illustrating chain-level adoption.

TAC and Usual (launched): Brevis is live on TAC (an EVM L1 for Telegram),

with Incentra campaigns by Usual that reward time-weighted USD0++ holdings and

liquidity actions. Everything is proven via ZK and verified on-chain.

PADO (attestations): Earlier, Brevis enabled PADO users to attest their largest

Uniswap trade within a given time range and generate a proof as an on-chain credit cre-

dential, a lightweight, user-centric workload that still exercises historical data proofs.

3.5. Implications for Network Architecture

These production deployments span radically different computational profiles. DEX

hooks demand sub-second latency for per-transaction checks, scanning limited histor-

ical ranges. Incentive distributions process hundreds of thousands of addresses over

multi-day epochs, prioritizing throughput over latency. Cross-chain attestations re-

quire different proof system optimizations than recursive aggregation pipelines. A

DEX user’s 30-day volume calculation leverages SNARK-friendly elliptic curve op-

erations, while a STARK-first system excels at the FFT-heavy aggregation required

for epoch-based reward distributions.

No single prover configuration efficiently serves this spectrum. Hardware optimized

for low-latency GPU proving underperforms on CPU-bound batch aggregation tasks.

Proof systems optimized for certain arithmetics (Keccak-heavy traces versus polyno-

mial commitment operations) leave performance on the table for other workload types.

This empirical reality (validated across 124 million proofs for 94,000+ users) motivates

the marketplace architecture detailed in Section 4, where specialized provers compete

across typed job categories rather than a monolithic infrastructure attempting to serve

all use cases.
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4. Double Auction for Heterogeneous Prover Network

4.1. System Model

We consider a prover network that supports heterogeneous proof workloads. For

example, a prover network may support the generation of ZK coprocessor proofs, zkVM

proofs, aggregation proofs, among others. Without loss of generality, we assume that

there are K types of proof workloads that the network can support and denote by

K = {1, 2, ...,K} the set of all proof workload types.

In the prover network, there is a set of proof requesters N = {1, 2, ..., N} and a

set of provers M = {1, 2, ...,M}. Each requester i has a proof request dddi that can be

decomposed into a vector of different proof job types dddi = (d1i , d
2
i , ..., d

K
i ) where dki

is the required number of type-k proof in the request dddi. We also refer to dddi as the

demand vector of requester i. If the requester i does not require type-k proving,

then dki = 0. Each request has a deadline by which all proof jobs in the demand vector

must be completed. Moreover, each request is atomic: either all the proof jobs in the

demand vector are 100% fulfilled, or the request is deemed failed. Partial fulfillment

of a request has no value.

The above heterogeneous model characterizes a wider range of realistic prover net-

works than prior literature [4][13], which only assumes homogeneous proving tasks.

Specifically, the heterogeneous model has the following benefits:

• First, the heterogeneous model captures the diversity of ZK applications. With

recent advancement of ZK technology and the rapid growth of ZK-based dApps,

proving tasks are becoming increasingly heterogeneous. Brevis ProverNet han-

dles proving tasks from applications that use both the Brevis ZK coprocessor [3]

and the Brevis Pico zkVM [2]. In the future, a prover network may even support

proving tasks from multiple ZK solutions (multiple zkVMs) developed within

diverse ZK frameworks.

• Second, the heterogeneous model can characterize any complex proving task

that consists of multiple smaller proving sub-tasks (such as to generate an EVM-

verifiable zkVM proof). This effectively enables distributed proof generation

in the prover network and achieves finer-grained proof workload allocation, which

encourages the participation of provers with limited proving capability.

• Finally, the heterogeneous model captures the diversity of provers in the net-
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work. Due to differences in provers’ hardware capabilities and the heterogeneous

hardware requirements of proving tasks, provers may have preferences for the

types of proving tasks they undertake. Provers with high memory may prefer

Plonk-based proving tasks (since a large proving key must be loaded into mem-

ory in advance), while provers with limited memory but fast CPUs may prefer

STARK-based proving tasks.

Example: Heterogeneous Proof Workloads for zkVM

Consider a request to generate an EVM-verifiable proof for a large zkVM pro-

gram. In the framework of Brevis’s Pico zkVM, the request can be decomposed

into multiple proving sub-tasks of different types as follows:

(1) First, the VM program is divided into multiple chunks, each assigned a proof

(chunk proof). Suppose the VM program is divided into 32 chunks.

(2) Then, the 32 chunk proofs each undergo a recursion step to compress their

proof size (compression proof).

(3) Next, the 32 compressed chunk proofs are merged in a binary-tree fashion

until a single root proof is generated (merge proof). In this example, the

binary tree has 32 leaves and 31 intermediate nodes, so the number of merge

proofs is 31.

(4) Then, the merged root proof is wrapped from the field used by the underlying

Poseidon2 hash function to BN254, so that it can be natively verified in a

Plonk proof (field-wrap proof).

(5) Finally, the wrapped proof recurses through a Plonk system (e.g., Gnark) to

generate an EVM-verifiable proof (Plonk-wrap proof).

In this example, the request has five types of proving jobs, and the demand

vector is ddd = (32, 32, 31, 1, 1).

4.2. Double Auction Framework

While many auction models exist in the literature (e.g., VCG auctions [14], combina-

torial auctions [9, 10], all-pay auctions [6]), we consider a two-sided auction or double

auction [11] framework that better captures the dynamics of the prover market. In

this model, (1) multiple proof requesters bid for prover resources so their requests can
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be 100% fulfilled at some cost; (2) multiple provers compete for opportunities to serve

those requests and earn rewards.

The auction proceeds in a series of rounds. At the beginning of each round, requester

i submits a bid Br
i = (dddi, vi), where vi is the requester’s reported valuation for com-

pleting the job (the maximum fee the requester is willing to pay). Each prover j also

submits a bid Bp
j = (wwwj , cccj). Here,wwwj = (w1

j , w
2
j , ..., w

K
j ) is the prover j’s reported sup-

ply vector, where each wk
j denotes the number of type-k proof jobs the prover wishes

to process1. cccj = (c1j , c
2
j , ..., c

K
j ) is the reported marginal-cost vector, where each ckj

represents the cost of processing one type-k proof job. If a prover does not support a

particular proof type (say type-k proof), then wk
j = 0 and ckj = ∞.

The reported value vi from requester imay differ from its true valuation ṽi. Similarly,

a prover’s reported supply vector wwwj and marginal cost vector cccj may differ from their

true counterparts w̃wwj and c̃ccj .

Finally, if a proof request is accepted in a round, the proof must be generated within

that same round. In other words, the proof generation deadline coincides with the end

of the round.

4.3. Problem Formulation

We aim to design a mechanism for the prover market that solves the following two

problems.

(1) (Proof Request Allocation) The mechanism should decide whether each re-

quester’s bid wins the auction and is allocated the required prover resources.

Moreover, the mechanism should determine the number of proof jobs (of differ-

ent types) allocated to each prover. Specifically, let xxx = (x1, x2, ..., xN ) be the

allocation vector for requesters, where xi ∈ {0, 1} indicates whether requester i

wins the auction. Let yyyi = (y1j , y
2
j , ..., y

K
j ) be the allocation vector for prover j

where ykj is an integer indicating the number of type-k proof jobs allocated to

prover j.

(2) (Pricing) The mechanism should determine the payment each requester sends

to the platform (i.e., the auctioneer). The payment vector is denoted by ppp =

(p1, p2, ..., pN ). Moreover, the mechanism should determine the reward each

1To simplify the analysis, we assume that the deadline for each request equals the duration of an auction

round so all jobs in the reported supply vector should be completed in the auction round.
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prover receives from the platform. The reward vector for prover j is denoted

by rrrj = (r1j , r
2
j , ..., r

K
j ), where rkj is the reward credited to prover j for fulfilling

the allocated type-k jobs. The total reward received by prover j is denoted by

rj =
∑

j∈K rkj .

The utility function for requester i is

U r
i = ṽixi − pi.

The utility function for prover j is

Up
j =

∑
j∈K

Up
jk =

∑
j∈K

(rkj − ckj y
k
j ).

Define the social welfare function as

SW (xxx,yyy) =
∑
i∈N

vixi −
∑
j∈M

∑
k∈K

ckj y
k
j . (1)

Our target is to design a mechanism with the following properties:

• Truthfulness: Both proof requesters and provers should not benefit from bid-

ding dishonestly; that is, for any requester i, U r
i (ṽi) ≥ U r

i (vi), ∀vi, and for any

prover j, Up
j (r̃rrj , c̃ccj) ≥ Up

j (rrrj , cccj), ∀rrrj , cccj .

• Budget Balance: The total payments made by all proof requesters are no less

than the total rewards paid to all provers, i.e.,
∑

i∈N pi ≥
∑

j∈M
∑

k∈K rkj .

• Individual Rationality: Both proof requesters and provers have non-negative

utilities when reporting true valuations, i.e., U r
i (ṽi) ≥ 0, ∀i ∈ N and Up

j (r̃rrj , c̃ccj) ≥

0, ∀j ∈ M.

• Computational Efficiency: The mechanism should run in polynomial time.

• Asymptotic Optimality: The mechanism should approach the maximum so-

cial welfare as the total prover supply becomes increasingly sufficient relative to

the requester demands.
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4.4. TODA: Truthful and Asymptotically Optimal Double Auction

Mechanism for a Heterogeneous Prover Network

In this section, we introduce TODA, a Truthful and Asymptotically Optimal Double

Auction mechanism for a heterogeneous prover network. The mechanism design is de-

scribed in Sections 4.4.1 and 4.4.2. We prove that TODA achieves truthfulness, budget

balance, individual rationality, computational efficiency, and asymptotic optimality in

Section 4.4.3.

4.4.1. Proof Allocation Algorithm

The optimal proof request allocation should maximize the social welfare (1), which

can be obtained by solving the following Integer Programming (IP) problem:

maxxxx,yyy SW (xxx,yyy) =
∑
i∈N

vixi −
∑
j∈M

∑
k∈K

ckj y
k
j

s.t.
∑
i∈N

dki xi =
∑
j∈M

ykj , ∀k ∈ K,

xi ∈ {0, 1}, ∀i ∈ N ,

ykj ∈ {0, 1, ..., wk
j }, ∀j ∈ M, k ∈ K.

(2)

Theorem 4.1. The social welfare maximization problem (2) is NP-hard.

Proof. We consider a special case where there is only one type of job (|K| = 1), there

is only one prover (|J | = 1), and the marginal cost c of the single prover for this job

type is 0. In this case, the problem (2), can be reduced to

maxxxx
∑
i∈N

vixi

s.t.
∑
i∈N

dixi ≤ w,

xi ∈ {0, 1}, ∀i ∈ N ,

(3)

Here, di is requester i’s demand for the (only type of) job, and w is the (only) prover’s

supply for that job. Clearly, the reduced problem (3) is a Knapsack problem, which is

NP-hard [12]. As a result, the original problem (2) is also NP-hard.

A straightforward attempt to solve for the Integer Programming problem (2) is to
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take its linear relaxation. However, there is no guarantee that the solution to the linear

relaxation will be integral. Inspired by the “Padding” method used in [7][8], TODA

introduces a “Phantom Proof Requester” (PPR), a virtual powerful requester with

an unlimited budget and a demand vector dddPPR = (d1PPR, ..., d
K
PPR), where dkPPR =

maxj∈Mwk
j is the PPR’s demand for type-k jobs. In other words, the PPR’s demand

vector can cover the supply vector of any single prover.

With the introduction of PPR, the proof allocation algorithm in TODA is divided

into two stages.

(Stage 1) In the first stage, we solve a modified linear relaxation of the original

Integer Programming problem (2) by introducing the PPR to the auction. Since the

PPR has an unlimited budget, its demand will always be fulfilled, and thus the linear

relaxation problem becomes:

maxxxx,yyy SW (xxx,yyy) =
∑
i∈N

vixi −
∑
j∈M

∑
k∈K

ckj y
k
j

s.t.
∑
i∈N

dki xi + dkPPR =
∑
j∈M

ykj , ∀k ∈ K,

0 ≤ xi ≤ 1, ∀i ∈ N ,

0 ≤ ykj ≤ wk
j , ∀j ∈ M, k ∈ K.

(4)

Denote by (xxx′, yyy′) the optimal solution to the above linear programming problem (4).

For each requester i, define critical valuation ϕi as the minimum valuation (i.e., price

or budget) that requester i must report such that x′i = 1, given other requesters’

reported valuations remain unchanged. Let N ∗ denote the set of requesters whose

reported valuation satisfies vi ≥ ϕi. In other words, N ∗ is the set of requesters with

x′i = 1 in the above linear programming problem (without any bid changes). Only

requesters in N ∗ proceed to the next stage.

(Stage 2) In the second stage, we solve a new linear programming problem involving
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only requesters in N ∗ and all provers M:

maxxxx,yyy SW (xxx,yyy) =
∑
i∈N

vixi −
∑
j∈M

∑
k∈K

ckj y
k
j

s.t.
∑
i∈N ∗

dki xi =
∑
j∈M

ykj , ∀k ∈ K,

0 ≤ xi ≤ 1, ∀i ∈ N ∗,

0 ≤ ykj ≤ wk
j , ∀j ∈ M, k ∈ K.

(5)

Let (xxx′′, yyy′′) be the optimal solution to the above linear programming problem (5).

The final allocation by TODA is

yyyTODA = yyy′′,

xTODA
i =

x′′i , if i ∈ N ∗

0, if i /∈ N ∗
.

Following a similar analysis of the padding method [7][8], it can be shown that

the solution of TODA is feasible. That is, the solution (xxxTODA, yyyTODA) is an integer

solution.

4.4.2. Pricing Policy

Under TODA, the payment made by requester i to the platform equals the critical

price ϕ if i ∈ N ∗ and 0 if i /∈ N ∗:

pTODA
i =

ϕi, if i ∈ N ∗

0, if i /∈ N ∗
. (6)

For provers, a VCG-like pricing scheme is used, where the reward received by prover

j is defined as the change of all other bidders’ social welfare caused by prover j’s

participation:

rTODA
j =

∑
k∈K

ykj c
k
j + SW (N ∗,M)− SW (N ∗,M\{j}), ∀j ∈ M. (7)
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4.4.3. Mechanism Analysis of TODA

We show that TODA achieves the desired economic properties as mentioned in the

previous section: (1) Truthfulness, (2) Budget Balance, (3) Individual Rationality,

(4) Computational Efficiency, and (5) Asymptotic Optimality. Their proofs follow the

same line of arguments as the padding method used in [7][8], and are therefore omitted

in this paper for brevity.

Theorem 4.2. TODA is truthful, individually rational, budget-balanced, computation-

ally tractable, and asymptotically efficient as prover supply becomes increasingly suffi-

cient relative requester demand.

4.5. Auction Implementation with Brevis Chain

In this section, we describe the implementation of the above auction with Brevis

Chain as the decentralized auctioneer and platform that coordinates the auc-

tion. Figure 2 illustrates the high-level flow.

Prover 1

Prover 2

Prover M

….

Requester 1

Requester 2

….

Requester N

Proof Request 
Inbox

1a. Submit proof request 
and make payment

Prover Bulletin 
Board

Prove Fee 
Vault

Proof Fulfiller

TODA Solver

Prover Staking 
Vault

Prover Registry

Brevis Chain

0. Register and deposit stake

1c. Report capacity 
supply and marginal cost

2a.Collect bids and 
compute proof 
assignment and pricing

2b. Proof assignment

3a. Generate and submit 
assigned proofs for verification.

4b. Refund payment if 
proof request not fulfilled

4c.  Fetch requested proofs

4a. Send payment for 
fulfilling the proof requests

2c. Pricing results

3b. Proof fulfilling results

4d. Slash a prover’s stake if failing to 
fulfill proof request by deadline

1b. Deposit payment

Figure 2. High-level flow for prover network auction with Brevis Chain
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4.5.1. Prover Registration

Before participating in the proof auction, a prover must first register with the network.

Any prover can join permissionlessly. Specifically, each prover should register with the

Prover Registry contract on the Brevis Chain and deposit a required stake. The stake

will be slashed if the prover is assigned a proving job but fails to submit a verified ZK

proof before the deadline.

4.5.2. Flow for an Auction Round

(Step 1) At the beginning of an auction round, there is a bid collection window for gather-

ing proof requests and prover capacity reports. Each requester i submits a proof

demand vector dddi to the Proof Request Inbox contract on the Brevis Chain and

places a deposit (equal to the valuation vi) to the Prove Fee Vault. During the

same window, each prover j must report its supply vector wwwj , and marginal cost

vector cccj to the Prover Bulletin Board.

(Step 2) After the bid collection window, the TODA Solver is triggered to compute the

proof allocation and pricing for the auction (according to the mechanism de-

scribed in Sections 4.4.1 and 4.4.2. The pricing results are communicated to the

Prove Fee Vault, and the proof assignment results are sent to the provers. Note

that TODA Solver is a native primitive supported by the Brevis Chain.

(Step 3) Each prover generates proofs according to the assignments from the TODA Solver

and submits the proofs to the Proof Fulfiller for storage and verification.

(Step 4) If the proof is successfully verified, payment is sent to the prover based on the

pricing results produced by the TODA Solver, and proof requesters can fetch the

required proofs. If a prover fails to submit or verify the requested proofs before

the auction round ends, the prover’s stake will be slashed. Any requester whose

request was not fulfilled will receive a refund after the auction round concludes.

The above flow provides a high-level overview of the auction implementation on the

Brevis Chain, omitting details such as proof storage, privacy protection, and related

mechanisms.

5. Token Utility
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5.1. Overview

The BREV token is the core utility token of the Brevis ecosystem. It serves as the

medium of payment for proving and settlement, the collateral that aligns incentives

and service–level guarantees among provers, and the governance token for setting

global system parameters. This section expands on those utilities and shows how they

interlock to produce reliable, market–priced verifiable compute.

5.2. Payment Medium for Verifiable Compute

All fees associated with Brevis ProverNet are paid in BREV. This includes (i) proof

generation for zkVM execution, ZK Data Coprocessor, ZKTLS Coprocessor, and re-

cursive aggregation; (ii) verification and settlement on the network; and (iii) auxiliary

services such as result availability and receipt publication. Job prices are discovered

via the auction mechanism.

In addition, the Brevis ProverNet can be deployed as a specialized rollup, where

BREV serves as the gas token for transactions within the network. This gives BREV

additional utility tied to the gas costs payments for the network usage.

5.3. Staking for Provers to Receive Order Flow

Provers in the distributed network must stake BREV or receive delegated stake from

BREV token holders to receive work.

Staking performs three roles:

(1) Sybil resistance & admission control: minimum effective stake gates access

to sensitive or high-value jobs.

(2) Economic alignment: staked value is placed at risk for missed SLAs, incorrect

proofs, or equivocation.

(3) Capacity signaling: larger effective stake (with good historical performance)

pushes a prover higher in the matching queue for larger or time-critical jobs.

Applications requesting proofs will submit their proof request along with the amount

of stake they require the prover to lock up to accept this request. It reflects the

opportunity costs/loss if the request is not fulfilled in time with predefined verification

parameters. The corresponding stake is unlocked only when a proof is successfully
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delivered.

Token holders may delegate BREV to professional provers. The process of delegation

is a form of active participation similar to proof of stake delegation.

With these delegated tokens, a prover can therefore receive more proving workload

by locking them up and earn additional revenue. In return, the prover will share

a portion of the proving fees with the delegators. At the same time, if the delegated

prover violates its committed SLAs, the delegated stake will also be slashed. Therefore,

it is critical for delegators to carefully evaluate different proving providers and adjust

their delegation from time to time.

5.4. Slashing for Breaking SLA

The entire Brevis system is rooted in ZK proof. There is no way for provers to generate

an invalid proof that can be successfully verified by the task settlement contract.

The worst thing that can happen to disrupt the normal operation of the network is

previously committed provers breaking their Service-Level Agreement, such as missing

deadlines, requesting more payment and/or generating proofs with lower security level

or larger size than previously committed.

If a prover broke the SLA, the proof requester may trigger the staking contract to

slash the locked stake from the prover. The slashing percentage is a system parameter

and is initially set as 1%. It will gradually increase according to the protocol governance

process.

5.5. Governance for Protocol Parameters

The BREV token will also serve as the governance token for setting important system

parameters through on-chain governance processes. Initially, the following parameters

are governed:

(1) Acceptable Proof Size: Brevis ProverNet accepts smaller than 1MB proof.

(2) Level of Security: Brevis ProverNet accepts larger than 100-bit security for

all proofs.

(3) Slashing Percentage: 1% of the locked stake will be slashed for provers break-

ing their SLA.

(4) Auction Market Fee: 3% of the fees paid by requesters will be allocated to
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Brevis ProverNet.

6. Tokenomics

The BREV token serves as the core utility and value-accrual asset of the Brevis ecosys-

tem, designed to sustain network growth, incentivize participation, and ensure eco-

nomic alignment across provers, developers, and users. The total supply of BREV is

fixed at 1,000,000,000 tokens, with allocations structured to balance long-term ecosys-

tem health, decentralization, and operational sustainability.

The distribution of BREV tokens is designed to align incentives among contributors,

users, and stakeholders:

• Ecosystem Development (37%): Funds ecosystem growth, research and de-

velopment, strategic partners, initial market making, and long-term protocol

expansion.

• Community Incentive (28.7%):Covers rewards for provers, stakers, and com-

munity contributors and developer integrations.

• Team (20%): Allocated to current and future core developers and contributors

of Brevis.

• Investors (10.8%): Seed investors supporting development and launch of Bre-

vis.

• Airdrop (3.5%): Initial airdrops allocations of different categories to qualifying

contributors and community members.

Ecosystem Development and Community Incentives vest linearly over 24 months

after an initial unlock at TGE, with 14.50% and 7.50% circulating at launch respec-

tively. 3% of the airdrops will be unlocked at TGE with the remaining 0.5% released

at the 6th month after TGE. Team and Investor allocations are fully locked for the

first year with no initial unlock, followed by 24-month linear vesting. At TGE, the

circulating supply is 25% of the total supply.

7. Business Model

Brevis’s business model is built on a sustainable and usage-driven economy centered

around verifiable computation. Applications built on Brevis, including those using the
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ZK Data Coprocessor, Pico zkVM, and, in the future, Ethereum full block proving, con-

tinuously generate workloads that require zero-knowledge proof computation. These

workloads form the order flow that powers the Brevis Prover Network, a decentralized

marketplace for compute.

Within this marketplace, independent provers and prover pools compete to ful-

fill computation requests submitted by applications. Each proving task is matched

through a transparent auction process governed by the Service Level Agreement (SLA)

mechanism and the TODA double auction system. Performance, reliability, and stake

size determine how tasks and rewards are allocated. Provers must stake BREV tokens

to participate, signaling commitment and ensuring service quality. The more BREV a

prover stakes and the better their SLA record, the greater their share of proving jobs

and corresponding revenue.

This model creates a self-reinforcing value loop: as more applications integrate Bre-

vis and demand verifiable computation, the demand for BREV increases to pay for

network usage and staking. In turn, staking strengthens network reliability and capac-

ity, attracting more applications and computation workloads.

As the proving workload increases, the Brevis Prover Network can transition to a

specialized rollup, ensuring scalability and efficient coordination of auctions and set-

tlements. All transactions within this rollup, including job payments, staking, and

prover rewards, are denominated in BREV tokens, embedding intrinsic utility directly

into the network’s economic flow. Additionally, each successful ProverNet auction con-

tributes a small protocol fee to the Brevis protocol treasury, creating a recurring and

transparent source of revenue that scales with network activity.

Through this architecture, Brevis transforms computation demand into economic

value, aligning token incentives with real, measurable network usage and long-term

ecosystem growth.

8. Roadmap

Q4 2025

• Launch Brevis Prover Network testnet, onboarding third-party provers.

• Complete Proving Grounds user activation campaign and pre-TGE ecosystem

rollout.
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• Target TGE early December 2025.

H1 2026

• Achieve full real-time Ethereum block proving on 16 consumer-grade GPUs.

• Integrate ZK-TLS Coprocessors for verifiable web data and AI inference.

• Deploy TODA auction mechanism for decentralized prover task allocation.

• Expand adoption in Intelligent DeFi, stablecoin/RWA incentive rails, and

ZK-powered prediction oracles.

H2 2026

• Explore custom hardware acceleration (FPGA / ASIC) for Pico zkVM.

• Scale Brevis Prover Network into a decentralized marketplace for global ver-

ifiable computing.

• Enshrine Pico zkVM into Ethereum L1 as part of the real-time proving stack.

• Launch Brevis Ecosystem Grants to support builders integrating verifiable

computing into DeFi, AI, and cross-chain systems.

9. Conclusion

This white paper advances a simple thesis: the way to break through the performance

and cost limits of replicated execution is to make verifiable computing the default

interface between applications and consensus, and to supply that computing through

an open, heterogeneous marketplace. The Brevis ProverNet operationalizes this idea by

treating proof generation as a first-class market in which demand arrives as typed jobs

and supply is a diverse set of provers with different hardware profiles and proof-system

specializations. Matching occurs through an on-chain auction with clear service-level

objectives and cryptographic settlement, so correctness and payment do not depend

on trust in any single operator.
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