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Abstract

ARPA Network provides an efficient, permissionless threshold signature service for blockchains.
At its core, the ARPA Network contains a threshold BLS signature that meets the need for
decentralization, non-interactivity, verifiability, and high availability. The system is designed
and implemented to work with blockchains and provide threshold signature capability for users.
Nodes of the ARPA Network are grouped to handle computation tasks in parallel. We utilize a
smart-contract-capable blockchain as a bulletin to manage dynamic global states and coordinate
multiple groups. It is expected that developers can build applications like secure key management,
cross-chain messaging, and quorum approval on our network. Finally, Randcast is proposed as a
distributed random number generator as a use case of the ARPA network.

1 Introduction

Blockchain technology has proven itself to be a significant part of the global internet infrastructure.
During the past decade, academic and industrial experts have extensively improved its privacy, scala-
bility, and interoperability. An effective means to enhance the blockchain is by verifiably outsourcing
computation and storage from on-chain to off-chain through threshold cryptography schemes. These
schemes offer trust through their provable security and decentralization, which matches the dis-
tributed and trustless nature of the blockchain. At the same time, as a bulletin board, the blockchain
can serve as a reliable broadcast channel for these cryptographic algorithms. Therefore, combining
threshold cryptography with blockchains can simultaneously strengthen blockchains and facilitate
the implementation of threshold cryptography.

In this paper, we propose ARPA Network, a permissionless distributed network, to provide es-
sential threshold signature capability for blockchains. Threshold signature is a protocol that allows
for processing signature-related functions among a group of nodes through multi-party computation
(MPC). It can help with keeping secrets distributed, reaching consensus by majority vote, or hiding
the identity of signers. With the aid of the ARPA Network, one can build applications involving se-
cure key management, anonymous transaction, cross-chain messaging, quorum approval, distributed
randomness generation, etc. Like blockchain, the trustworthiness of the ARPA Network comes from
its distribution across independent nodes. These nodes are bundled into groups, with each group
capable of executing the threshold Boneh-Lynn-Shacham (BLS) signature scheme. Thanks to the ag-
gregatability of BLS signatures and the node management mechanism we apply, the ARPA Network
has the following features.

e Decentralization: ARPA nodes provide threshold signature service in a decentralized manner.
Trust is distributed to multiple entities located in different regions running individual nodes.
This manner offers better tamper protection at the physical level.

e Flexibility: ARPA protocol supports a variety of signature applications. Users are allowed to
customize their signature policy, import or export secrets, and choose the security level.



e Verifiability: ARPA signature scheme allows users to trivially verify their signatures. By virtue
of the underlying cryptographic primitive, the signatures cannot be forged or manipulated.

e Non-interactivity: ARPA protocol avoids heavy synchronous communication in the signature
generation phase. A non-interactive procedure guarantees reliable service status and flexible
network topology.

e High availability: ARPA signature service keeps a high availability thanks to its decentralization
and non-interactivity. As the network grows, the downtime will reduce accordingly.

e Multi-Chain Support: ARPA network is designed to support multiple chains, allowing devel-
opers from diverse ecosystems to leverage ARPA when building their applications. In addition,
our underlying threshold signature network will keep consistency between the different data
replicas.

In the remainder of this paper, we first overview the existing threshold signature schemes and
point out the reason why threshold BLS signature is suitable for distributed systems in section 2.
Then section 3 lists out presuppositions and the building blocks of our design. A walk-through
of our implemented protocol is given in section 4, including the cryptographic part and the node
management mechanism. Section 5 presents the system design by showing the high-level architecture
of the network. Finally, section 6 demonstrates Randcast, a distributed pseudo-random number
generator, as a use case of the ARPA Network.

2 Background and Related Works

Threshold signature schemes have been researched and extensively applied in the last few years.
Many classical signature algorithms have been thresholdized, including BLS, ECDSA [10], EADSA
[17], RSA [8]. However, Some threshold signature schemes are not well-suitable for use in distributed
systems. For example, threshold ECDSA takes 3 to 13 synchronous communication rounds depending
on the construction methods used [1|. In real-world situations, transmission latency determines the
performance of the MPC protocols. Multiple rounds of communications will undoubtedly affect the
average speed of threshold signature generation. Moreover, a failed node may even cause the protocol
to abort. Fortunately, by utilizing a bilinear pairing, the BLS signature may help to mitigate this
problem.
A pairing is a map e : Gy x Gy — G7, which has bilinearity,

Va,be Z*, P € G1,Q € G, e(aP,bQ) = e(P,Q)™. (1)

The BLS signature scheme is built upon the pairing while its signatures and public keys lie in G; and
(9, respectively. Without loss of generality, we represent signatures by elements in (z; to achieve a
more compact signature. It can be seen from equation 1 that there exists a homomorphic mapping
between the secret keys and the signatures. This means specific computations on generated signatures
imply corresponding computations on secret keys. This makes the asynchronous threshold signature
scheme possible.

Threshold BLS signatures have also been studied by some authors. Some of them consider multi-
signatures. They can be seen as a special threshold signature scheme that requires all parties to
participate in signature generation rather than a part of them. Compared with a multi-signature
scheme built on other signatures, BLS signatures can be aggregated publicly by a simple multipli-
cation, even when original signers are offline. e.g., a BLS multi-signature for Bitcoin is described in
Boneh, Drijvers, and Neven [2].

As for the t-out-of-n threshold BLS signature schemes, the main difference among them is the
choice of distributed key generation (DKG) sub-protocol. Generally speaking, a DKG protocol
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generates public and private key shares for nodes without computing the private key. It can be seen
as several parallel executions of verifiable secret sharing (VSS), which is the cornerstone of most
MPC protocols. DKG protocols have different communication settings, synchrony and asynchrony.
An asynchronous verifiable secret sharing scheme is intractable to design, but there are still several
teams researching this subject. Unconditionally secure AVSS has a communication complexity of
Q(n”), making it unrealistic to use. Compromising the unconditional security assumption, several
schemes provide a more practical performance but are still generally ineffective [13].

Synchronous VSS is more practical to design and deploy. Galindo [9] implements its DKG by
Pedersen’s VSS [16]. The Keep Network [18] uses DKG proposed by Gennaro [11] to generate
keypairs. These DKGs are all based on the Joint-Feldman Distributed Key Generation (JF-DKG)
mentioned by Pedersen [15]. It has been discussed in Gennaro et al. [11] that the public key generated
by JF-DKG could be biased by a static adversary. However, the hardness of the elliptic curve discrete-
log problem (ECDLP) for the public key will not be weakened. It is sufficiently secure for threshold
BLS signatures. Considering the simplicity and efficiency of the protocol, we will deploy JF-DKG to
generate key shares for nodes in our system. Other DKG variants will be integrated in the future to
support different scenarios.

3 Presuppositions

While building an underlying threshold signature service for the blockchain, we should first clarify
the security and communication model. The following outlined assumptions are highly relevant to
the characteristics of the blockchain, where the system is distributed and permissionless while the
participants are economically rational but potentially malicious.

3.1 Security Assumption

We assume that the adversary is a static, malicious, honest-majority adversary. The attacker can
corrupt up to t of the n parties in the network at one time, where t < n/2. The corrupted parties
may divert from the prescribed protocol in any way. Considering the malicious behaviors, honest-
majority is the best achievable threshold for protocols that provide both secrecy and robustness [11].
The static adversary would choose the corrupted parties far ahead of time, which means getting
control of a particular party is non-trivial. But it is possible that the corrupted parties may vary
for a long time. Therefore, a key rotation or refreshment scheme is introduced to cope with the
long-term key exposure.

3.2 Communication Model

The distributed signature network is composed of a set of n parties Py, --- , P, that are connected
by a complete network of private point-to-point channels. In addition, the parties have access to a
dedicated broadcast channel. Several works have researched the threshold signature without a preset
reliable broadcast [12, 13, 6]. They assimilate various secret sharing schemes into reliable broadcast
or consensus protocols. AVSS [6] merges a bivariate polynomial into Bracha’s reliable broadcast
[5]. Gennaro [11] leverages Byzantine fault tolerant (BFT) protocol [7] to build the DKG for the
Internet. It can be concluded from these articles that constructing a reliable broadcast channel is
almost equivalent to reaching a consensus among nodes. Considering there are kinds of blockchains
and smart contracts that help us broadcast and record messages publicly, it is reasonable to offload
this part of a protocol to blockchains.



3.3 Synchrony Assumption

Based on the block generation mechanism, we may assume a partially synchronous communication
model: the protocol proceeds in synchronized rounds, and messages are received by their recipients
within some specified time-bound. The block time of a blockchain that guarantees liveness can be
used as the synchronized clock in the threshold signature. The drawback is that a typical block time
is several orders of magnitude longer than an Internet transmission. The partial synchrony opens up
an avenue of attack where an adversary can observe the messages of the uncorrupted parties, then
decide on his action during each round of the protocol, and still get his messages delivered to the
rest of the parties on time. In the worst case, the adversary may speak last in every communication
round to exploit back-running [11].

4 ARPA Threshold Signature Protocol

Based on the assumptions made previously, ARPA Network builds up the protocol by incorporating
Joint-Feldman Distributed Key Generation into standardized BLS signature [3] on curve BLS 12-381
[4]. Furthermore, ARPA Network combines the threshold BLS signature with the blockchain. The
threshold BLS signature is responsible for generating a decentralized tamper-proof signature, and the
blockchain provides a reliable broadcast channel as well as coordinating functionality. Procedures
for node registration, secession, grouping, as well as other node management mechanisms are also
defined.

At a high level, the network initializes by allowing nodes to stake and join. These nodes will then
be divided into groups and complete the DKG process. After the networks has started, the user can
request services by sending a transaction to a specific smart contract on their blockchain. The task
will then be forwarded to the ARPA network and get assigned to one of the groups of network nodes.
This group of nodes will then collectively generate a signature on the message provided and return
it back to the blockchain.

4.1 Distributed Key Generation

As an essential component of threshold cryptosystems, a distributed key generation protocol is re-
sponsible for generating private and public keys of participants. The underlying secret sharing scheme
used in the DKG decides the relationship of key shares held by each participant. This also funda-
mentally determines the key management policy and the signature generation algorithm used in the
threshold signature scheme. Our deployed JF-DKG is described in algorithm 1.

4.2 Threshold BLS Signature

BLS signature is first proposed as a short signature scheme where the signatures consist only of a single
group element. ElGamal type schemes such as digital signature algorithm (DSA) and elliptic curve
digital signature algorithm (ECDSA) produce signatures comprised of a pair of integers. Therefore,
BLS signatures are about half the length of those produced by other widely used schemes at the same
security level [14]. BLS signatures utilize a bilinear pairing which offers several interesting features.
Firstly, BLS signatures are deterministic given a particular message and a keypair, unlike ECDSA,
which requires a fresh random value for each signing. This prevents signers from biasing results
by repeated signing attempts. Secondly, BLS signatures are aggregatable, which means specific
computations on generated signatures are possible. This makes a difference between the threshold
BLS signature and other threshold signatures. Multiple rounds of synchronous communication are
unnecessary for combining partial BLS signatures. The BLS signature scheme consists of the following
sub-procedures.



Algorithm 1 Joint-Feldman Distributed Key Generation [11]

Require: Adversary threshold ¢, group size n, an elliptic curve G2 with a prime order » and a
generator go.
Ensure: Shamir secret shares sk; for party P; respectively.
1: Each party P; chooses a fi(z) = ZE::O a;x2*. where a;1 €g 7, broadcasts commitment Cjp = go™*
for k € [0,%]. Each party P; computes the shares s;; = f;(j) mod r for j € [1,n| and sends s;; to
party P; secretly.

Ly

Each party P; verifies the shares his received g,” = Hi::g(cik)j fori € [1,n]. If the check for

an index ¢ fails, P; raises a complaint against party F;

3: Party P; reveals the shares corresponding to raised complaints. Each party P; checks the validity
between complaints and equations. Any failed party will be contained in a local disqualified set
of each party. QU AL is defined as the set of non-disqualified parties.

4: The public key y is computed as pk = HiEQUAL Cio. The secret shared value sk itself is not

computed by any party, but it is equal to sk = ZiEQU 4z @io mod . Each party P; sets his

share of the secret as sk; = ZieQUA ; 8y mod r, and the corresponding public key share as
-k

5ij t
pkj = H-JZEQUAL 9," = HiEQUAL [Li—0(Cir)?

Key Generation To generate a key pair, a signer first chooses a random secret sk €r Z; and
computes the corresponding public key as pk = g:j;“ € Go.

Signing To compute a BLS signature ¢ on an arbitrary message m, the signer computes
o= sk x H(m) € Gy. H(m) is a hash-to-curve function that maps an arbitrary bit string to
an element in .

Verification To verify the validity of a BLS signature ¢ on a given message m, the verifier
checks if (go, pk, H(m), o) is a Diffie-Hellman quadruple, which will be the case that e(o, g2) =
e(H(m),pk) holds.

A threshold signature scheme is computing a signature among a group of independent nodes
MPC. Considering the different processes of various signature schemes, the construction of their
threshold versions will be very dissimilar. For example, the threshold ECDSA involves homomorphic
multiplication of encrypted messages resulting in a complex sub-protocol called Multiplicative to
Additive (MtA). It takes several rounds of synchronous communications to process. As for the BLS
signature, thanks to the homomorphic property, the threshold BLS signature is neat and clear. Its
sub-procedures are as follows.

Distributed Key Generation The n parties jointly execute Algorithm 1 to generate a group
public key pk € GGo, a virtual private key sk € Z*, and their shares pk;, sk;.

Partial Signature Generation To sign a message m, each party P; individually signs the
partial BLS signature o; = sk; x H(m) by his private key share sk;.

Partial Signature Verification To validate a partial BLS signature, one uses the correspond-
ing public key share to check if e(H(m), pk;) = e(0;.g2) holds.

Signature Reconstruction To reconstruct the BLS signature ¢ on m, one has to collect ¢+ 1
valid and independent partial signatures, then compute

t

t .
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g = I I T I | — Uylm € [1,n].
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Verification To verify the validity of a BLS signature o on a given message m, the verifier

checks if (g9, pk, H(m), o) is a Diffie-Hellman quadruple, which will be the case that e(e, g2) =
e(H(m), pk) holds.

Thanks to the properties of Feldman’s VSS scheme, the generated signature o is identical no
matter which partial signatures are chosen during reconstruction. Meanwhile, the determinism of
BLS signature also gnarantees the immutability of the threshold signature no matter what kinds of
(computationally bounded) attacks are conducted. We now have a decentralized, verifiable, tamper-
proof threshold BLS signature scheme.

5 ARPA Network System Design

The ARPA Network is designed and implemented as a distributed system to process the threshold
BLS signature scheme, as shown in Figure 1. The network is compatible with any smart-contract-
capable blockchain. The only requirement to support a new blockchain is the creation of a smart
contract to integrate the ARPA Network with the target blockchain. Logically, the ARPA Network
has two layers: the service layer and the provision layer. The service layer conducts the above-
mentioned threshold BLS signature scheme, while the provision layer manages the nodes and reliably
broadcasts information through blockchain.

When integrating with a blockchain, The ARPA Network needs a “controller” smart contract to
manage its dynamic global states. On a high level, these dynamic global states include node infor-
mation, group information, and all BLS signature tasks. Each unregistered node directly interacts
with the “controller” to register themselves into the ARPA Network and discover the information
needed to communicate with other registered nodes.

For higher throughput and better service availability, the nodes in the ARPA network are split
into multiple groups to handle BLS signature tasks in parallel. The “controller” is also responsible
for initiating the grouping of the nodes and storing the group information. The grouping process
is essentially a DKG process. A “coordinator” smart contract is deployed ad-hoc to coordinate a
subset of nodes through the different phases of the DKG process, then submits the proof of DKG
completion to the “controller” for verification.

The “controller” also acts as an API endpoint which provides BLS signature services to other
DApp clients. The DApp client requests the BLS signature by calling their smart contract extending
our “consumer” smart contract, which in turn calls the underlying “controller” APIs. The “con-
troller” assigns the BLS signature task to a specific group. Each grouped node monitors the BLS
signature task event emitted by the “controller” and starts a BLS signature task if it belongs to the
assigned group, then submits the signature to the “controller” upon completion. The “controller”
then returns the results to the caller DApps. A backup mechanism is also in place if the assigned
group fails to fulfill the request within a reasonable time.

6 Randcast

The ARPA Network can be leveraged to build a variety of applications. A distributed random number
generator (DRNG) is one possible use case. Like the physical world, where the whole universe is built
upon random motions of molecules, random numbers are ubiquitous and essential in cyberspace.
A trustworthy and reliable pseudo-random number generator is a cornerstone to both blockchain
infrastructures as well as the applications built upon it. In this section, we present Randcast, a
randomness generation application of the ARPA Network.

An easy approach to generating a random number is through a trusted third party. However,
centralized randomness generation suffers from trust degradation with a concern for the backdoors.
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Figure 1: A high-level architectural view of the ARPA Network (this architecture diagram may need
a change)

When used in a distributed system, a DRNG is desirable, and the threshold BLS signature is a
cryptographic primitive to build one. Randcast leverages the ARPA Network to provide randomness
service. Once the network receives a seed for a random number generation task, one group is called
to generate a signature on the seed. The signature can then be used as a deterministic, verifiable,
unforgeable random number. Inheriting from the threshold signature network, Randcast has the
following features.

e Decentralization: Randcast produces random numbers in a decentralized manner. Entropy
is gathered from multiple entities located in different regions running individual nodes. This
manner offers unpredictability and fairness at the physical level.

e Uniqueness: Randcast generates random numbers depending only on request messages and node
secrets. Given certain signing group and user input, the randomness is unique and tamper-
proof, which mitigates corruption inside the network.

e Verifiability: Randcast allows everyone to check the validity of the random number. By virtue
of underlying cryptographic primitive, The random number is unlikely to be forged or manip-
ulated.

e Non-interactive: Randcast avoids heavy synchronous communication in the random generation
phase. A non-interactive procedure guarantees a better service status.

e High availability: Randcast has a high availability thanks to its decentralization and non-
interactivity. As the network grows, downtime will reduce accordingly.

e Multi-Chain Support: Randcast is designed to adapt to multiple chains, allowing developers
from multiple ecosystems to cast “randomness” spells. Our underlying threshold signature
network will keep consistency between the different data replicas.
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BLS 12-381 specification

BLS12-381 is a specific curve of a pairing-friendly curve family. It has an embedded degree as 12 and
a 381-bit field prime. The public parameters are outlined as follows[4].

u = -0x d2010000 00010000
= 12
q= 0Ox la0l1lea 397fe69a 4blba7b6 434bacd7 64774b84 £38512bf 6730d42a0
f6b0£f624 leabfffe b1b3ffff bOfeffff ffffaaab
r= 0x 73eda7b3 299d7d48 3339d808 09a1d805 53bdad02 fffebbfe ffffffff

00000001
E(Fy) := yvi=x>+4
Foe = Fqli]/(x* + 1)
E(Fg) := y2=x>+4(i+1)
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