Spheron: On-Demand DePIN for GPUs

Spheron Network
June 16, 2024

Abstract

The digital landscape is undergoing a profound transformation, with the surge in demand for GPU resources for Al and
machine learning applications revealing critical supply chain bottlenecks. These challenges have led to increased costs and
restricted access, impeding innovation and development in these critical technological areas. This whitepaper introduces a
groundbreaking decentralized architecture designed to revolutionize the traditional GPU compute market. By leveraging a
novel incentive mechanism for the sharing of GPU resources, this framework aspires to democratize access to
computational power, mitigate costs, and stimulate innovation across the Al and machine learning sectors. This
architecture not only promises to alleviate current market constraints but also paves the way for a more inclusive and
efficient computational ecosystem. Through the decentralization of GPU resources, we envision a future where developers,
researchers, and innovators have unfettered access to the computational resources needed to drive progress and
breakthroughs in Al and machine learning. This initiative marks the inception of the first Ethereum Virtual Machine
(EVM)-based GPU and compute marketplace, leveraging the EVM Chain to introduce a novel economic model that
incentivizes both suppliers and users. This work:

e Presents a comprehensive overview of the proposed decentralized architecture, detailing its operational
mechanisms and the benefits it offers to both GPU resource providers and consumers.

e Discusses the integration of smart contracts for transaction management, escrow services, and reward distribution,
ensuring a transparent and equitable ecosystem.

e Explores future research directions aimed at expanding the network’s capabilities, including the integration of
underutilized compute resources from smaller devices and enhancing network security and reliability.

e Formalizes the concept of decentralized GPU resource sharing and its potential to disrupt traditional compute
markets, offering a new paradigm for resource allocation and utilization in the digital age.

e Examines potential use cases and the broader implications of the architecture for the development and deployment
of Al and machine learning applications.

By charting a course toward the decentralization of GPU resources, this whitepaper lays the foundation for a more
accessible, cost-effective, and innovative computational landscape, heralding a new era of development in Al and machine
learning technologies.

Note: Spheron is a work in progress. Active research is underway, and new versions of this paper will appear at

https.//spheron.network. For comments and suggestions, contact us at jnfo@spheron network.

https://spheron.network/
mailto:info@spheron.network

1. Introduction

The rapid evolution of Artificial Intelligence (AI) and Machine Learning (ML) technologies has brought to light the
critical need for scalable and accessible computational resources. In response to this demand, we introduce the Spheron
protocol, a groundbreaking decentralized architecture designed to revolutionize the allocation and utilization of GPU and
compute resources. This protocol, leveraging blockchain technology, aims to democratize access to these resources,
mitigate supply chain bottlenecks, and establish a transparent and equitable economic model for all participants. Through
the Spheron protocol, we envision a future where computational power is not a bottleneck but a catalyst for innovation
and growth in Al and ML domains.

1.1 Elementary Components

The Spheron protocol is underpinned by four innovative components, each contributing to the robustness and efficiency of
the Decentralized Compute Network (DCN).

1. Decentralized Compute Network (DCN): The DCN forms the backbone of the Spheron protocol, offering a
distributed framework where independent providers supply GPU and compute resources. This network ensures
resilience, scalability, and accessibility, catering to the diverse needs of Al and ML projects.

2. Onchain Supply Market: Central to the protocol is the Onchain Supply Market, a platform where compute and
GPU resources are listed, traded, and allocated. This market operates transparently on the blockchain, facilitating
fair and open access to computational power.

3. Transparent Economy: The Spheron protocol introduces a transparent economy underpinned by a native token
system. This economy ensures clear and fair compensation for resource providers and straightforward expense
management for users, fostering a trust-based ecosystem.

1.2 Protocol Overview

1. Decentralized Network Infrastructure: At its core, the Spheron protocol is built as a Decentralized Compute
Network (DCN) on a blockchain framework, complete with a native token. This structure enables clients to utilize
tokens for accessing vital compute and GPU resources, while providers earn tokens by contributing these resources
to the network.

2. Node Operation and Deployment Orchestration: The protocol's efficiency is driven by the Matchmaking Engine
and Provider nodes, which execute crucial functions to orchestrate deployments seamlessly via onchain
transactions. This permissionless operation ensures that deployments are managed efficiently and transparently.

3. Onchain Payment Mechanism: Payments within the Spheron protocol are executed onchain, ensuring timely
compensation for providers and maintaining the transparency economy's integrity. This system streamlines the
financial interactions within the network, providing clarity and trust in transactions.

4. Incentivization and Rewards: A key feature of the protocol is the incentivization of Provider nodes. By
contributing compute and GPU resources, and facilitating efficient provider selection through matchmaking engine,
providers earn rewards, encouraging active participation and investment in the network's growth.

The Spheron protocol, with its innovative components and operational framework, sets a new standard for decentralized
compute networks. By addressing current limitations and providing a scalable, secure, and transparent platform, it paves the
way for the next generation of Al and ML development.

2. Background and Motivation

As Attificial Intelligence (AI) and Machine Learning (ML) continue to evolve, the demand for high- powered Graphics
Processing Units (GPUs) surges, revealing stark inefficiencies in the current supply and cost structure. These challenges
disproportionately affect smaller entities and independent researchers, hindering innovation due to the scarcity and high
expense of essential computational resources. This whitepaper introduces the Spheron protocol, a decentralized network
designed to revolutionize GPU resource allocation. By enabling efficient distribution, Spheron aims to democratize access
and foster an ecosystem ripe for Al advancements.

The Computational Resource Dilemma faced today is characterized by:

e Limited Availability: Access to necessary hardware through cloud services like AWS, GCP, or Azure is often
delayed, with high-demand GPU models frequently unavailable.

® Restricted Options: Users are confined to the limited selections provided by centralized services, affecting their
ability to tailor projects to specific needs.

e Prohibitive Costs: The financial burden of acquiring quality GPUs for Al tasks is significant, potentially running
into hundreds of thousands of dollars monthly.

Spheron's decentralized computing network proposes a solution by aggregating underutilized GPUs from diverse sources,
forming a Decentralized Physical Infrastructure Network (DePIN). This initiative promises scalable, customizable, and
cost-effective access to computational power, addressing the critical challenges of availability, choice, and expense.
Envisioned as the "digital oil" of technology, Spheron aims to make $SPON the currency of compute, creating a new

paradigm for accessing and leveraging computational resources. This decentralized approach seeks to break down barriers
to innovation, making GPU resources more accessible and enabling a new era of Al and ML development.

3. Architecture Overview

3.1. Overview

In developing a robust and fully functional decentralized compute and GPU network, our deliberations have focused on
various critical components such as provider registration, order matching, provider incentivization, and payment
settlements. A key aspect of our discussion also revolves around the classification of providers within the network, which
comprises two primary types: Fizz Node and Provider Nodes. The subsequent sections will detail the architecture
involved in deployment and matching orders specifically for Provider Nodes.

3.2. Deployment Order Workflow without Eigen AVS based matching engine

Deploymen‘t order with centralised watiching engine

~)

SIS —
{ £ \
Order Smart Contract | Matching Engine Server |
5. Fetch Order relatesl | 1
L2 seq ~ Bvit deplogment order evert Date ard associated bids | - Ewit deployment order event |
______________ 1
A - Jecests watehed order from e (| Aseptc matched onler from !
eployment c@atniix_ed watiching engine centralized matching engine I
-
Order Tx AP E: 1 afir |
|
|
- Create lease with the wmatahed I - Create lease with the watched 1
order 6. Signedd Motahed Order | order 1
\
&
1. New N L L L L L
Deployment !
Ordler 1
1
|
1
1
L 3+ Emit new order event =3 87T T T a
’ 7 | \
) 4. Provide bids 1
v - ! 1
s —=>| Spheron cLT > : 1 |
‘) . Create lease [} 1
NGt ! el p2 o3 M
* L ‘\ ’
U < ™ e VAL L L L L -
ser %. Serel deployment monifest Brsiiers

Figure 1: Deployment order with a centralized matching engine

This architecture is centered around a matchmaking engine, a pivotal component within the network. This engine
processes order details and provider bids, selecting the optimal provider for each deployment based on specific parameters
outlined in Section 4.2.3. After a match is made, the order smart contract initiates a lease with the selected provider.
Subsequently, the user transmits the deployment manifest to initiate workload deployment on the designated provider over
MTLS connection. Upon completion, the user can verify the deployment status and access all relevant deployment details
such as connection URLs and port mappings.

Although this architecture offers an efficient order-matching mechanism, its major drawback is its centralized nature. The
matchmaking engine, introduces potential points of failure—any server downtime or scaling issues could result in a
backlog of stagnant deployment orders. To address this vulnerability and achieve true decentralization, Section 3.3
introduces an Eigenlayer AVS-based architecture for the matching engine.

3.3. Deployment Order Creation with Eigen AVS based matching engine

Order Creation AVS Flow

1 :
I 3. Emit new order event

! R e o e i i Order:Smart Contract 7. Fetch Order related

! i Data and associated

! | * Accepts matched order bids

: _____ I signed by avs operator ras = i
|

: 1

i 1

* Emits an event to mark
order creation

id 2.New Order
Providers ™ * create lease
P —i
1 Eigen AVS \
|
4. Provides Bid ! ‘I
i 18, Signed [
L2/L1 seq 5.updates bid for the aated il | e :
order order ! I
1
1.deployment :
user 1
3 order v opl op2 op3
6. New matching oy e i S s e I ¢
. Task F\ ----------
(] s,
2 7. Emits New
spheron SDK Eigen Task Manager ! Task Event
Contract A

9. Matched Order

Figure 2: Deployment Order creation with Eigen AVS architecture

This architecture represents a fully decentralized evolution of the previous system, incorporating a matching engine built
with the Eigen AVS architecture. This system not only provides economic efficiency but also integrates Ethereum-based
trust into the network of matching engine operators.

The matching engine extends the previous architecture with operators who join the Spheron Matching AVS. When a new
matching task arises, these operators activate the matching algorithm, which is derived from the parameters mentioned in
Section 4.2.3. The algorithm evaluates bids from various providers against the deployment order and selects the most
suitable provider based on user requirements. Once a quorum is achieved within the AVS, the validated matched order is
sent back to the Order Smart Contract, which then establishes a lease with the provider on behalf of the user. The user then

sends the deployment manifest via MTLS to initiate workload deployment on the cluster. Following completion, the user
confirms the deployment status and retrieves all necessary deployment details such as connection URLs and port mappings.

3.4. Matching engine with Eigen AVS

Matching Engine AVS

3 N
. Task aggregator
Eigen Layer Registery Get Info on Operator opted in
Contract When task was generated
Push Aggregated Task response L
if qourumn reached
Order Smart Contract Elgan, Tasic Hanagen
new matching task Contract
* Creates a new task at * Accepts a new task
the Eigen AVS smart (Order to be macthed) Sends Task
contract to match an Response
order + Accepts task result
thed ord from the aggregator and
* Accepts a matched order . updates the order smart
) kcentract
G e =~
\
{ I
I‘ 1
Task Details | 1
el] [T} |
(user requirements and bids) ! |
[
1
1
'\ opl op2 op3
R o I s e T kBT e i e 4
operator opt in for this AVS J

Figure 3: Matching engine architecture in AVS

This detailed architecture showcases the decentralized matching engine operating under the Eigen AVS framework. The
Eigen Task Manager Contract receives a new task, which is a deployment order that needs to be matched with a provider,
and emits an event for all operators who have opted into this AVS to start the matching algorithm. Once a match is made,
the task response is sent to the Task Aggregator. The aggregator gathers all relevant information on the opted-in operators
from the Eigen Layer Registry when the task was generated, and checks if the quorum has been met. If the quorum
threshold is achieved, the aggregated task response is pushed back to the Eigen Task Manager Contract, which then
updates the Deployment Order smart contract with the matched provider for the corresponding deployment order.

3.5. Overview of Spheron Protocol Architecture and Component Interactions

[S‘nhefon Protocol ‘\
8 I < 3. Bid and get matched to tasks Provider/ Node “«-—mm
F-=——======-= >
I 2. Bmit contract A
4. Record matched : events
provider to o(eeloymen‘t
request

I
I
[}
I
I
I
I
I
7. Establish connection &
listen for o(e‘cloymen‘ts]
I

[}

I

[}

]

I

I

I

I

I

5. CM“ewge for
1. Create pmoP of compute
Transactions
I o
Slark Node

6. Record challenge results

.)

Figure 4: Spheron Protocol - Full flow & components

This section outlines the complete workflow and interaction of all components within the Spheron Protocol. These
components work in synergy to ensure the protocol functions effectively. Users or application builders interact with the
Spheron Chain to initiate transactions for deployment or payments. Provider Nodes, listening on the chain, respond by
executing the necessary actions within their Kubernetes clusters.

Slark nodes play a critical role in maintaining the quality of service and uptime for Provider Nodes and their associated Fizz
Nodes. This oversight ensures that users experience no disruptions with their deployments, encouraging continuous use of the
protocol.

The matchmaking process is pivotal in pairing deployments with the most suitable Provider Node. The matchmaker ensures
that the selected provider is the best fit for the deployment, enhancing the user’s experience by ensuring that their deployment
is managed securely and efficiently. This system is fully automated and abstracted, allowing users to concentrate solely on
their deployment needs and specifications adjustments.

Fizz Nodes, a lightweight version of Provider Nodes, form an essential part of the network. Anyone with a smaller device,
such as a laptop or a small server, can operate as a Fizz Node. These nodes establish connections with Provider Nodes to
receive deployments and workloads from users. Multiple Fizz Nodes can link to a single Provider Node, forming a subnet.
Each subnet can develop its own economy, govern itself, and earn rewards from the network, thereby contributing to the
overall dynamism and scalability of the Spheron Protocol.

4. Detailed Component Analysis

4.1. Decentralization and Blockchain Infrastructure

4.1.1. Overview

The advent of blockchain technology heralds a transformative era for computing networks, marked by an unequivocal shift
towards decentralization. This paper outlines the architectural foundations of an EVM based GPU supercompute network,
employing the EVM chain to deliver a lower gas fees, increased gas limits, and significantly higher TPS. Furthermore, we
are building a novel decentralized matching engine utilizing the Spheron protocol with Actively Validated Services (AVS)
allows for both economic efficiency and the decentralized trust inherent in Ethereum Restaking.

4.1.2. Integrating DePIN within an EVM-based Ecosystem

The foundational aspiration to forge a sovereign, permissionless blockchain, underpinned by the security guarantees of the
Ethereum ecosystem, is actualized through the integration of a Decentralized Public Infrastructure Network (DePIN)
protocol. This integration not only epitomizes our commitment to fostering a decentralized network architecture but also
leverages the intrinsic advantages of EVM compatibility, thereby facilitating seamless interoperability with extant
decentralized applications (dApps) and infrastructure. This strategic amalgamation is anticipated to catalyze network
expansion, engendering a fertile ground for liquidity augmentation through diverse dApps.

4.1.3. Network Operational Dynamics

At the operational core of the network are base modular contracts, deployed at genesis, which afford a foundation for the
development of modular dApps, specifically tailored for compute and GPU resource allocation within the network. These
contracts encapsulate essential functionalities, notably Provider Proposal & Registry, Deployment Order, Staking Manager,
Payment, and Rewarder modules, each meticulously engineered to address distinct facets of network operations:

e Provider Proposal: These contracts are responsible for the initial proposal and subsequent registry of new
providers within the network. They act as the gatekeeper, ensuring that only qualified providers are accepted into
the network based on assessments conducted by the governance body, DAO, or Admins. This mechanism helps
curate the provider base, preventing bad actors from entering the network.

Note: Initially, to lower entry barriers and encourage network growth, all provider proposals will be automatically
approved. This policy may be revisited and adjusted via governance proposals once a sufficient number of providers
are bootstrapped and capable of performing curation roles.

® Provider Registry: This contract serves as a comprehensive repository for all provider-related information within
the network. It meticulously records essential details such as the provider's capacity, geographic region, availability,
type, and service tier, among other attributes. This structured storage of provider data ensures that the network can
efficiently manage and access critical information needed for the optimal matching of resources with user requests.

e Staking Manager: This module facilitates the staking of $SPON tokens within the network. While primarily
utilized by providers, its functionality could be extended to support other significant staking activities within the
ecosystem.

o Deployment Contracts: These contracts manage the logistics of deployments, including the preservation of state
and records of user ownership on the blockchain. They are equipped with event emission capabilities, which are
crucial for synchronizing nodes and initiating deployments.

e Payment Contracts: Serving as the financial backbone, these contracts manage all financial transactions related to
deployments. They ensure a transparent and efficient allocation of funds, predicated on compute resource
utilization, thereby safeguarding against premature deployment termination due to insufficient funds.

e Challenge Contracts: These contracts serve as records of all the challenges and their outcomes conducted by Slark
Nodes and Provider Nodes within the network. Based on these record, the rewards and slashes will be performed
every Era.

o Rewarder Contracts: These are intrinsically linked to the Escrow Fund contracts and are responsible for the
equitable distribution of rewards, in the form of $SPON tokens or alternative currencies, to providers and
matchmakers. This mechanism incentivizes network participation and contribution, with an automated reward
calculation system facilitated by Oracle integration.

4.2. Matchmaking Mechanism: Facilitating Decentralized Resource Allocation

4.2.1. Overview

Within the ecosystem of a decentralized compute network, the Matchmaker Mechanism stands as a crucial component,
orchestrating the dynamic allocation of compute resources between demand (deployment requests) and supply (provider
nodes). This mechanism is underpinned by an EigenLayer’s Actively Validated Services (AVS) framework, which
incorporates a sophisticated matchmaking consensus algorithm designed to selectively pair each deployment request with
the most suitable provider. This paper details the operational dynamics, economic incentives, and the complex consensus
parameters that define the functionality of the Matchmaking Engine.

4.2.2. Operational Dynamics of the Matchmaker Operator

Matching Engine with AVS

. .

Ordler Swmart Contract | e e m e mm e ————————— "
1. New

\
De@lnyment - Emit deployment order evert 4. Fetch Order related | .
Order Dato ard asseciated bids | f
____% ~ Accepts motened order from | = m = m m i — — — — — — — — — — — - ——————— >| ;
AVS operators ; :

-~ Create lease with the matiched ~ 4
order

E‘wgt’_n Task Mamo«gef
Cortract

1

1

1

1

| 5. Send response of
I the matehing Task
1

1

]

2. Wew order matehing task

< Ewit deplogment order evert

- Accepts motched order From]
AVS operators
7. Signed Mot Order 6. Matched Order
el Hathed - Create lense with the mataned
e Aggregotor

Figure 5: Matchmaking engine full workflow

The Matchmaker Mechanism is vital for facilitating the deployment of computing resources on the network. While there
are various approaches to constructing decentralized matching engines on EVM chains, significant challenges include
limitations in TPS, scalability, and the time constraints associated with deployment orders. To address these issues, we
have adopted an AVS-based architecture for our matching engine, leveraging the Economic and Ethereum Inclusion
Trust afforded by the Eigen Layer AVS protocol. This protocol is trusted economically due to ETH restaking and offers
decentralization through a broad network of ETH validator operators.

When a user initiates a new deployment request on our protocol, they execute a function on the Deployment Order Smart
Contract which then emits a PROVIDER LOOKUP event. Providers listen for this event and submit their bids to the
Deployment Order Smart Contract. After all bids have been collected, the contract initiates a matching task that captures
the attention of all operators who then begin the process of selecting a provider based on predefined matching parameters.
Once a quorum is reached, the aggregator consolidates the matching information from all operators and updates the
matched order in the Task Manager contract. This contract then returns the signed matched order back to the Deployment
Order contract which will create a lease for the matched order and emit CREATE _LEASE event.

The user can then verify the lease and then send the Deployment Manifest (containing all the configurations and secrets)
to the matched provider, which the provider listens for and begins the server deployment on their cluster.

Note: As proponents of progressive decentralization, our initial approach involves a simple version of the fully
decentralized matching engine. Initially, a single matching engine will process orders and identify the optimal provider for
each order. As our network of Providers and Fizz Node matures, we plan to advance towards a fully decentralized matching
engine, enhancing the network's autonomy and self-sufficiency.

4.2.3. Matching Parameters for Provider Selection

The consensus mechanism at the heart of the Matchmaker Node is engineered to evaluate a myriad of parameters to ascertain
the optimal provider node for each deployment request:

e Region / Availability Zone: Prioritizes geographical proximity to minimize latency and adhere to data residency
regulations.

® Price Delta: Ensures economic efficiency by matching deployment budgets with competitive provider bids.

e User Feedback: Feedback given by the user regarding the provider, calculated in average of 10.

e Resource Availability: Assesses the current capacity of providers to fulfill the deployment requirements.

e Slashes: Considers any penalties incurred by providers for previous contract violations or failures.

o Trust Tier: The higher the trust tier of Provider Node, the greater the likelihood of securing a deployment lease.

e Stakes: The higher the stake amount, the greater the likelihood that a provider will be selected for deployments.
This mechanism ensures that those who commit more significantly to the network are rewarded with increased
opportunities for engagement and revenue.

e Randomness: Incorporates an element of unpredictability to safeguard against deterministic biases in the selection
process.

These parameters are synthesized through a robust algorithm, culminating in the selection of a provider node that aligns
with the deployment's stipulated criteria. Following this, the Matchmaker Node executes an on-chain transaction

6

matchOrder, that creates a lease between order request and the provider selected, officially documenting the allocation
and commencing the deployment process.

4.2.4. Economic Model and Incentive Structure

Matchmaking operators within the network currently engage in restaking to bolster economic trust among participants. To
further enhance the trustworthiness and security of the network, we propose the introduction of dual staking involving the
$SPON token. This dual staking mechanism will leverage both the existing restaking framework and $SPON tokens,
thereby integrating an additional layer of commitment and reliability from the operators.

Moreover, the Spheron network recognizes the need to incentivize active participation in the matchmaking process. While
the current system effectively rewards participation, there is an absence of a penalty mechanism for non-compliance or
malperformance. To address this, we plan to implement a slashing mechanism for matchmaking operators once it becomes
available. This slashing mechanism will serve to ensure that operators not only benefit from their active participation
through rewards but also adhere strictly to network protocols to avoid penalties. This balance of incentives and penalties
will promote a more robust and reliable matchmaking process within the Spheron network.

4.2.5. Network Event Synchronization and Transactional Integrity

Matchmaker Operator will have access to public Spheron Sequencer RPC node, enabling real-time synchronization with

blockchain events such as OrderCreated & BidPlaced emitted by the Order Request & Bid contract. This ensures the
Matchmaker Operator’s decisions are informed by the most current data, thereby upholding transactional integrity and
facilitating the execution of on-chain transactions.

The Matchmaker Operators represents a cornerstone of the decentralized compute network, embodying the principles of
fairness, decentralization, and efficiency. Through its nuanced operational framework and consensus algorithm, it ensures
that compute resources are allocated judiciously, fostering an environment where innovation and collaboration thrive. As
the network evolves, the Matchmaker Node will continue to play a crucial role in building a fair market for providers and
light providers and balancing the intricate dynamics between supply and demand within the decentralized computing
landscape.

4.3. Provider Node: The Network's Computational Backbone

4.3.1. Overview

At the core of the decentralized compute network lies the Provider Node (PN) Node, a pivotal entity responsible for
contributing both CPU and GPU resources to a communal pool. This section explores the architecture, operational
mechanics, and incentive framework designed to sustain high network integrity and reliability. Through a combination of
staking, rewards, tier system and a sophisticated deployment orchestration system based on Kubernetes, Provider Nodes
are incentivized to offer their computational resources, thereby ensuring the network's robustness and scalability.

4.3.2. Architectural Overview

Provider Nodes form the backbone of the network, offering essential GPU and compute resources vital for powering a wide
array of applications. Utilizing Kubernetes, these nodes orchestrate deployments, enabling the network to scale dynamically
according to fluctuating computational demands. This orchestration capability not only streamlines deployment management
but also significantly enhances the network’s overall efficiency and responsiveness. Kubernetes, an open-source system at its
core, provides a comprehensive range of tools that facilitate seamless service deployment and connectivity, and offers a
composable system that enhances the protocol with advanced features.

We leverage the full potential of the Kubernetes system to manage user services in a multi-tenant environment. This includes
numerous security measures and isolation between different user services. Although Kubernetes inherently addresses many of
these concerns, extensive customizations have been implemented to perfect the system. The Provider Node binary interacts
with the Kubernetes API to manage tasks such as creating pods with reserved resource specifications, restarting pods if a
service fails, terminating pods, or updating them. These actions are all facilitated through the Kubernetes API. Moreover, the
provider binary manages pricing details and interacts with the blockchain to record bids or close leases when services are not
running or are restarting abnormally.

The provider binary also addresses challenges posed by Slark Nodes. It responds to these challenges by creating a pod with
the specifications outlined in the challenge and then shares the results with the Slark Node.

With the introduction of the Fizz Node, a Provider Node (PN) can function as a subnet gateway for the Fizz Node (FN),
beyond just managing deployment requests from the network. Any FN can establish a connection with an PN by delegating a
minimum amount of $SPON tokens as determined by the PN, enabling it to receive deployment requests. Further details will
be discussed in the Fizz Node section. The PN and all connected FNs will collectively be referred to as a Subnet.

4.3.3. Provider Registration

For providers to join the network, they must undergo a comprehensive verification process. This procedure is designed to
ensure that only legitimate providers with adequate compute resources and no malicious intent are integrated into the
network. The verification process involves several steps and is overseen by the decentralized autonomous organization
(DAO) or governance body through a voting system.

1. Provider Registration Proposal: Providers interested in joining the network must first submit a registration
proposal. This proposal includes detailed specifications about the provider’s resources, such as region, compute
capacity, tier, and type of compute.

2. Governance Review: The governance body reviews the proposal. Upon approval, the provider’s details are
registered in our Provider Registry smart contract. This registration triggers the creation of a new smart contract
specific to the provider, updating the proxy address in the registry contract.

3. Staking Requirement: Following registration, providers are required to stake SSPON tokens. This stake activates
the provider’s bidding engine, allowing them to start submitting bids for new deployments. The stake depends on
the Tier requirement.

Note: Initially, provider registration proposals will be automatically approved to lower barriers to entry and accelerate
network growth. However, once the network reaches a certain level of maturity, we plan to introduce a curation process by
submitting a governance proposal to disable the automatic approval mechanism.

4.3.4. Provider Verification Challenges

A persistent challenge within Decentralized Physical Infrastructure Networks DePIN is verifying that providers are
genuinely offering the resources they claim rather than exploiting the system to farm tokens. This issue is particularly acute
in compute and GPU networks, where providers might spoof resource availability to mine tokens without actually providing
the promised hardware.

To protect our network against fraudulent activities and ensure that providers genuinely contribute the advertised compute
and GPU resources, we propose implementing proof of capacity mechanisms with the help of Slark Node Network that we
will be discussing in the next sections. The Slark nodes are responsible for challenging the Provider Nodes to verify the
quality and reliability of their service. The Provider Nodes have to respond to the Slark nodes challenges and respond with a
signed proof of capacity. These proof of capacity challenge is small random task with a specific spec for deployment in the
provider and if the deployment failed then provider fails the challenge and the Slark get a chance to earn from the liveness
reward slashing.

4.3.5. Tiering System for Provider Node

In our decentralized compute network, providers are categorized into two complementary tier systems: Provider Attributes
Tiers and Trust and Performance Tiers. These systems are designed to ensure that the Matchmaker can select the most
appropriate providers for user requests based on high trust and reliability, efficiency in service delivery, and the type of
compute resources offered. This approach helps to allocate better liveness reward multipliers based on the provider’s trust
level within the network and the type of compute resources they provide.

By incorporating these tiering systems, the network creates an incentive structure that encourages providers to achieve better
results, move up the tier ladder, and earn more rewards. This system also ensures that providers can recover their capital
expenditure (CapEx) invested in hardware and maintain their infrastructure over the long term.

All the multipliers from both tier systems stack up together to calculate the rewards for each Era. However, these multipliers
are not compounded. For example, if the attribute multiplier is 1.5x and the trust multiplier is 2x, the total reward calculation
will be based on (1.5 + 2.0)x.

4.3.6. Provider Attributes Tiering

In our decentralized compute network, providers can specify various attributes that assist the Matchmaker in selecting an
appropriate provider based on user requests. During the initiation phase, providers are encouraged to detail these attributes to
optimize the matchmaking process. Here is a systematic breakdown of the different types of attributes that providers can
declare:

4.3.6.1. Compute Tier

Providers categorize their compute servers into distinct tiers based on CPU performance scores, enabling a precise match
with the computational demands of user projects:

® High Performance Compute (HPC) Tier: These are robust servers equipped with modern next- generation EPYC
processors, characterized by CPU scores exceeding 50,000.

® General Purpose Tier: This tier includes older generation servers with CPU scores below 50,000, widely available
and capable of handling a variety of general computing tasks.

® Basic Tier: Comprising servers with no more than 48 threads and CPU scores below 20,000, these units offer
essential computing power at a lower cost.

4.3.6.2. Storage Tiers

Focused on data storage capabilities, this category is subdivided into:
® HDD Storage Tier: Servers predominantly equipped with Hard Disk Drives.
® SSD Storage Tier: Servers predominantly equipped with Solid State Drives.

® NVME Storage Tier: Servers outfitted with Non-Volatile Memory Express drives, offering faster data transfer
rates.

4.3.6.3. GPU Tiers

GPU providers specify the performance tier of their hardware, which influences their suitability for different computational
tasks:

® Entry Tier: Suitable for basic model inferencing, these GPUs are priced below approximately $1,000 and offer
modest performance.

® Low Tier: Priced under approximately $2,000, these units are adequate for less demanding machine learning tasks
and inferencing.

® Medium Tier: Commonly used in commercial applications for distributed training and model inferencing, with a
price point under $5,000.

® High Tier: These premium GPUs, priced above $7,500, are scarce and predominantly utilized for training large
language models (LLMs) and other intensive tasks.

® Ultra High Tier: These premium GPUs, priced above $15,000, are high capital intensive and predominantly
utilized for training large language models (LLMs) and other intensive tasks.

There are ten distinct tiers for the GPU, based on the effectiveness of the Al workloads. These are further subdivided from
five high-level tiers into more specific categories such as Entry 1, Entry 2, Low 1, etc., each with its own reward boost
multiplier.

4.3.6.4. Connectivity Tier

Providers can also declare their connectivity capabilities, which are crucial for data-intensive tasks:
® Low Speed: Download speeds less than 100 Mbps and upload speeds less than 75 Mbps.
® Medium Speed: Download speeds less than 500 Mbps and upload speeds less than 400 Mbps.
® High Speed: Download speeds less than 1 Gbps and upload speeds less than 800 Mbps.
o Ultra High Speed: Download speeds exceeding 5 Gbps and upload speeds exceeding 5 Gbps.

4.3.6.5. Compliance

Providers should disclose their compliance with industry standards and regulations, enhancing trust and security for
end-users:

Providers can indicate whether they meet standards such as SOC2, HIPAA, or GDPR. Choosing a compliant provider
offers users enhanced security and data protection, and compliant providers receive incentives through a better utilization
multiplier.

These attributes are integral to the protocol, guiding the allocation of resources and incentivizing providers based on their
hardware capabilities and compliance status. The detailed provider attribute tier system and associated multipliers, which
will be elaborated in phase one of our network deployment, are designed to reward providers proportionately to their
investment in quality and compliance, thereby enhancing the overall efficiency and reliability of the network.

4.3.7. Trust and Performance Tiers

Provider Nodes are categorized into 7 tiers, with each tier representing a higher level of service quality and reliability. The
Trust and Performance Tiers classify providers based on their reliability, performance, and trustworthiness. Higher tiers
indicate greater trust and performance, leading to higher prioritization and rewards.

4.3.7.1. Tier 1 - Most Trusted Providers

o Requirements:
o Maintain a 99% uptime every FEra.
o Maintain a 98% task completion rate every Era.
o Maintain a avg. of < 100 ms response time every Era.
o User Feedback should be > 4.5 (when implemented)
o Staking requirement is > X1 (e.g., 500 tokens).
o Required to submit valid compliance (SOC II) and audit reports of the servers.

o Benefits:
o Highest priority in resource allocation
o Liveness reward boost: Highest (2.0x)
o Rebate in fees for transactions.

4.3.7.2. Tier 2 - Highly Trusted Providers

e Requirements:

o Maintain a 98% uptime every Era.
Maintain a 96% task completion rate every Era.
Maintain a avg. of < 150 ms response time every Era.
User Feedback should be > 4.2 (when implemented)
Staking requirement is > X2 (e.g., 400 tokens).

O O O O

o Benefits:
o High priority in resource allocation
o Liveness reward boost: High (1.7x)

4.3.7.3. Tier 3 - Trusted Providers

e Requirements:
o Maintain a 97% uptime every Era.
o Maintain a 94% task completion rate every Era.
o Maintain a avg. of <200 ms response time every Era.
o User Feedback should be > 4.0 (when implemented)
o Staking requirement is > X3 (e.g., 300 tokens).

o Benefits:
o Moderate priority in resource allocation
o Liveness reward boost: Medium (1.5x)

4.3.7.4. Tier 4 - Somewhat Trusted Providers

Requirements:
o Maintain a 95% uptime every Era.
o Maintain a 90% task completion rate every Era.
o Maintain a avg. of <250 ms response time every Era.
o User Feedback should be > 3.8 (when implemented)
o Staking requirement is > X4 (e.g., 200 tokens).
Benefits:
o Moderate priority in resource allocation
o Liveness reward boost: Low (1.2x)

4.3.7.5. Tier 5 - Less Trusted Providers

Requirements:
o Maintain a 90% uptime every Era.
o Maintain a 85% task completion rate every Era.
o Maintain a avg. of < 300 ms response time every Era.
o User Feedback should be > 3.5 (when implemented)
o Staking requirement is > X5 (e.g., 150 tokens).
Benefits:
o Lower priority in resource allocation
o Liveness reward boost: Low (1.1x)

4.3.7.6. Tier 6 - Untrusted Providers

Requirements:
© Maintain a 85% uptime every Era.
o Maintain a 80% task completion rate every Era.
o Maintain a avg. of <400 ms response time every Era.
o User Feedback should be > 3.2 (when implemented)
o Staking requirement is > X6 (e.g., 100 tokens).
Benefits:
o Low priority in resource allocation
o Liveness reward boost: No boost (1.0x)

4.3.7.7. Tier 7 - Most Untrusted Providers

e Requirements:
o Maintain a 75% uptime every Era.
o Maintain a 75% task completion rate every Era.
o Maintain a avg. of < 500 ms response time every Era.
o User Feedback should be > 3.0 (when implemented)
o Staking requirement is > X7 (e.g., 50 tokens).
o Benefits:
o Lowest priority in resource allocation
o Liveness reward boost: No rewards
Provider Tier Table
Tier Total Staked Uptime (%) Task Response User Feedback | Rewards
Amount Completion Time (ms) (Rating) Multiplier
Rate (%)

1 >X1 >99 > 98 <100 > 4.5 2.0

2 >X2 >98 > 96 <150 >4.2 1.7

3 >X3 >97 >94 <200 >4.0 1.5

4 > X4 >95 >90 <250 >3.8 1.2

5 > X5 >90 > 85 <300 >3.5 1.1

6 > X6 > 85 >80 <400 >3.2 1.0

7 > X7 >175 >175 <500 >3.0 0.0

10

4.3.6. Tier Transition Mechanism
e Promotion:

o Provider Nodes can move up to a higher tier by consistently meeting or exceeding the requirements of the
desired tier over 3 consecutive eras and then meeting the staking requirements.

e Demotion:

o Provider Nodes can be downgraded to a lower tier if they fail to meet the requirements of their current tier
for 5 consecutive eras or fail to maintain the required staking amount.

4.3.7. Incentive and Staking Mechanism

To actively participate in the network, Provider Nodes are mandated to stake $SPON tokens. This staking mechanism
fulfills several critical roles: it secures a vested interest in the network's prosperity, establishes a method for penalizing
misconduct, and synchronizes the objectives of providers with the overarching goals of the network. Acts of malfeasance
such as prolonged downtime, delays in system upgrades, or misuse of user deployments incur penalties, including the
slashing of stakes. This robust accountability framework is instrumental in bolstering network security and maintaining
trust among participants.

4.3.7.1. Reward System for Provider Nodes

e Utilization compensation: Provider Nodes receive compensation based on the utilization of their computational
resources by the users. These amounts are paid any token that Provider Node and User agreed upon during lease
creation.

o Liveness Reward: The providers are rewarded with liveness rewards based on tiers and multipliers to ensure that
providers remain active within the network, thereby preventing potential exits due to insufficient returns on
investment (ROI) or inability to cover operational expenses (OpEx).

e Bonus Reward: The providers are incentivized to achieve certain lease hours milestones which will be given in the
Era. For e.g. 100 Lease Hours / Era.

4.3.7.2. Foundation Delegation and Incentivization

To attract new providers, especially those with high-tier compute and GPU capabilities, foundation delegation serves as an
initial incentive. This strategy is particularly impactful for providers who may require support to scale operations or achieve
profitability. The delegated funds can be reclaimed by the foundation once the provider achieves a threshold of network
utilization, effectively offsetting the initial support provided.

4.3.7.3. Delegation of $SPON Tokens and Rewards

The system also enables the delegation of $SPON tokens to Provider Nodes by token holders and Fizz Node aiming to
strengthen network security. This mechanism increases a node’s likelihood of being selected for deployments and also move
them to higher tiers, enhancing potential earnings. The rewards given to the provider will be distributed between all the
delegators based on their delegation on the provider . The Annual Percentage Rate (APR) for stakers is dynamic, influenced
by factors such as the provider's liveness rewards during a given Era, and the network's inflation rate.

This comprehensive incentive and staking mechanism ensures that Provider Nodes are not only motivated to maintain high
standards of operation but are also financially supported to sustain participation in the network, thereby aligning individual
success with the network's overall health and longevity.

4.3.8. Slashing Mechanism

Providers are subject to penalties for any misconduct within the network, such as user data misuse or spoofing, as identified
by the Spheron Team or the broader ecosystem. In such instances, the provider's $SPON collateral—which includes both
staked and delegated funds—along with any accrued rewards, will be slashed. This measure is intended to provide restitution
for any data breaches or other damages inflicted upon consumers.

Liveness Reward Slashing occurs under 2 different conditions of operations for nodes on the network. Either the node has
degraded performance and failure to meet uptime guarantees during the deployment period for an end user or the node has
uptime failure during the standby mode of operation. To prevent nodes from constantly connecting, disconnecting, and
earning Liveness Rewards without committing resources (an indirect denial of service), there is a 1-hour cooldown period on
Liveness Reward earnings whenever a node is terminated or paused and subsequently reconnected.
Whereas, when a user workload has been assigned to the node, and the user experiences downtime or breach of service
conditions, the node operator loses the Liveness rewards for the time period and is also subject to slashing equivalent to the
fee income/hour of the workload from the collateral posted.
Simply explained, the Slashing conditions and amounts can be expressed as follows:

o During Standby Mode

o Less than 100% uptime during an hour leads to losing liveness rewards for that hour

o If the node goes offline for more than an hour, the equivalent of one hour's liveness reward is slashed from
the stake

o During Task Deployment Mode

o Slash the node for the higher value of - one hour of liveness rewards or one hour of Fee income associated
with the users’ compute requirements.

11

4.3.9. Operational Dynamics
The operational life cycle of a Provider Node encompasses several key stages:

® Registration and Bidding: Initially, Provider Nodes register their compute specs, region, tier, etc on the Provider
Registry. Utilizing a bid engine, these nodes can compete for deployments by submitting bids to the Order contract
against each deployment that reflect their capacity to deploy the order and pricing model for the compute specs.
Successful bids lead to user choosing the provider to deploy their workloads, with all pertinent details shared
on-chain, marking the beginning of payment settlement based on the pricing set by the provider.

® Deployment and Management: Provider Nodes are responsible for the continuous management of deployments,

including the initiation (OrderCreated), update (UpdateLease), and termination (LeaseClosed) of
services. Each action is meticulously recorded on the blockchain, ensuring transparency and traceability.

® Synchronization and Reliability: To maintain operational alignment with the network, Provider Nodes can run a
dedicated RPC nodes to listen to the contract events. This synchronization is critical for participating in the bidding
process and for ensuring the timely and successful execution of deployments.

The Provider Node is instrumental in achieving the decentralized compute network's vision of an accessible,
scalable, and secure computational resource ecosystem. Through a balanced approach combining technological
sophistication with an incentivized participation model, Provider Nodes ensures the network remains adaptive and
resilient. As the network evolves, the continuous refinement of Provider Node operations and governance
mechanisms will be paramount in sustaining the growth and vitality of the decentralized computing landscape.

4.4. Fizz Node: The Community Compute

4 Fzz Node Architecture \

6. Serd manfest to the gateway For deployment
1l. Get deployment ports and exposesd u:f; For any deployment

l Provider Node
4. Create bid wth the mataned gt cliext
— Matchmaker < Provider Binary
 Gatenny
t
5. Record motched == == == 1P| Biddling Engine Tumel Com oot
goteway & light client I
1
i 7y
| create | |
deplogment 1 i
order ! |
i T
-
I 2. Emit CreateOrder evert a Cresk for . 1
1 Qe N 17, Bt deployment mariest
1 0. Create new tumel for ports exposed &
| : share the deployment. details
1
I F client Fom—m——-- - -
A I !
1 |
! 4. Send deploymert details & create v v
< 1 port comection
: >
Deployment Order 1 Tumel Prici
Contract ' Orchestrator @ > et:js
1
\ <
! % deglogmert;
€. Start le with
—————————— E maibess

Figure 7: Fizz node full architecture

4.4.1. Overview

The concept of a light node introduces a Fizzweight version of a provider node that can be operated on small devices,
enhancing the network's flexibility and accessibility. This document outlines the development, challenges, and operational
mechanisms of light nodes within our decentralized network, which are designed to run efficiently on less powerful
devices such as personal computers and laptops.

Fizz nodes can collaborate to form a subnet within the network. A subnet consists of a Provider Node and multiple Fizz
Nodes. This structure allows subnets to create their own economies, improving their performance in the network and earning
better rewards. Additionally, subnets can establish their own governance systems to make decisions about their operations,
further empowering them to optimize their contributions to the network.

Note: Fizz nodes can be operated by community members, offering a scale of compute or GPU resources that is
unprecedented, fully decentralized, and highly scalable. However, the expansion of this network introduces certain
challenges that potential users must be aware of. Those utilizing this global network for extensive computations, distributed
computations, or training should understand that workloads should not contain any sensitive data or secrets. Since these
nodes operate on external computers, there is a possibility that the data could become visible to the host. While we cannot
guarantee absolute security for community-run providers, we are continuously developing methods to enhance privacy and
restrict unauthorized access to private information from both the host and user sides. This ongoing effort is crucial to
maintaining the integrity and trustworthiness of our decentralized network.

4.4.2. Fizz Node Architecture and Challenges

Fizz nodes are streamlined versions of full provider nodes and are designed to run in environments with limited
computational resources:

e System Architecture: We are developing a Docker-based light node system where each node operates in a new
Docker container per user request. This approach minimizes the computational overhead on small devices compared
to more resource-intensive systems like Kubernetes.

12

o Connectivity Challenges: Addressing the connectivity issues involves managing dynamic IP addresses and NAT
routing. These nodes often reside on networks using DHCP, which complicates consistent access and
communication.

e Isolation and Security: Ensuring the isolation of individual Docker containers (pods) is critical. We must
implement robust security practices to prevent resource exhaustion on the host system and ensure that containers do
not interfere with each other's operations.

e Maintenance and Updates: Regular updates are essential for maintaining security and functionality. The light node
architecture must support seamless upgrades to address vulnerabilities as they arise.

A significant challenge for light nodes is accessing deployed services. This architecture addresses these challenges while
ensuring decentralization. The main components of the light node system are:

o Fizz Client: Run by individuals on small devices (e.g., laptops or small servers) to provide underutilized compute
resources to the network for monetary rewards.

e Gateway Service: Managed by providers, it facilitates user interactions with light clients and handles most
communication.

4.4.3. FN Client Overview

The light client comprises three components working together for deployments, orchestration, and creating tunnel
connections:

1. Pricing Configuration: Fizz clients require a pricing script or configuration provided by the user at startup. This
configuration determines the cost of the resources the light node offers to the network and can be adjusted anytime
through the portal or locally from the configuration file. This setup ensures flexibility and responsiveness to market
conditions or resource availability.

2. Orchestrator: Once a deployment bid is successful, the orchestrator within the light client takes over to manage the
deployment process. This involves spinning up a Docker container to handle the deployment. The orchestrator
handles the requests to start deployments, manages the lifecycle of each deployment, and ensures that the service is
running smoothly. It coordinates with the service tunnel to establish necessary connections and expose the deployed
service.

3. Service Tunnel: The service tunnel functions as a crucial connection between the gateway server and the light
client. Given that light clients do not have public IP addresses, exposing services running within them to the internet
presents a challenge. To overcome this, the system uses a tunnel mechanism inspired by ngrok. This mechanism
establishes a TCP connection between the light client and the gateway server, enabling the forwarding of requests to
the internal server running on the light client. The service tunnel listens for client-related requests, such as retrieving
server details or deploying manifests, and creates new tunnels for any services deployed on the light client.

Fizz clients need to specify the pricing for their resources and the extent of exposure they are willing to provide to the
network. Only the specified resources are tracked and utilized for new tasks or deployments in the system.

4.4.4. FN Gateway Overview

The gateway service acts as the interface for all light clients connected to a provider. It ensures security by mediating user
access and offers provider selection based on trust levels. The gateway service continuously polls light clients for pricing and
resource availability and handles deployment requests from users.

1. User Interaction: Users interact with the gateway service to send manifests, deploy services, and access services
running inside light clients. The gateway manages these requests and communicates with light clients to initiate and
manage deployments. It ensures that users do not directly access host machines, thereby maintaining security and
providing an optional layer of trust by selecting providers.

2. Pricing and Capacity Monitoring: The gateway service includes a component dedicated to continuously checking

the current pricing and capacity of connected light clients. This ensures that the gateway has up-to-date information
on available resources and their costs, facilitating efficient and fair deployment decisions.

3. Proof of Capacity: The gateway service coordinates with light clients to aggregate proofs of compute capacity
when challenged. Upon receiving a challenge, the gateway requests all its connected light clients to submit their
proofs of compute for a specific task. Once collected, the gateway aggregates these proofs and submits them to the
Slark. Successfully handling these challenges rewards the provider cum gateway with liveness rewards.

4.4.5. Deployment Flow

The deployment flow in the light node system involves the following steps:

1. Initiate Deployment: The user starts a deployment by making a contract function transaction.

2. Listening to Requests: All gateways listen to the new deployment order request.

13

3. Selecting Fizz Client: Gateways, which always know the current state of light client pricing and capacity, choose a
light node based on several factors:

e Number of successful challenges performed within the subnet
e Total delegation on the subnet

e Pricing set by the client

® Remaining resource capacity

4. Acknowledgment: The gateway selects a light client based on these parameters and gets an acknowledgment from
the light client.

5. Bidding Process: The gateway then makes a bid for the deployment, and after 2 blocks of waiting, the matchmaker
engine starts the process.

6. Manifest Submission: Once the light client and gateway are chosen by the matchmaker, the user can send the
manifest to the gateway.

7. Deployment Initiation: The gateway receives the manifest and passes it to the light client to start the deployment.

8. Orchestration: The light client takes the manifest from the tunnel connection (simple TCP connection) and starts
the deployment orchestration.

9. Completion: Once the deployment is done, the light client shares the URLs with the gateway.

10. Monitoring and Management: The user can then ask the gateway client to get status, logs, events, shell access,
etc., directly from the light client through the gateway client.

11. Disconnection Handling: If the light client disconnects, the gateway cannot connect to it, and all running tasks on
the light client will be temporarily turned off. The gateway needs to track the system status of all light clients so
users can check it anytime.

12. Duration and Payment: The user specifies how many hours or days the task needs to run. If the task is closed
prematurely, the locked amount is adjusted based on compute hours used and transferred to the light client.

13. Extension: The user can extend the duration by locking more amount in escrow, equivalent to the bid price times
hours.

14. Data Sensitivity: Users should not provide very sensitive data during deployment, as the task/server runs on
someone else’s device and can be accessible to the host.

4.4.6. Delegation, Incentives & Governance
The system incentivizes both providers and light clients through a mix of delegation, liveness rewards, and task earnings:

1. Delegation: Fizz nodes delegate to Provider Node which it want to establish connection with. The Provider Node
may have their own delegation requirements. The rewards given to the provider are distributed among light nodes
based on their delegation amount. This mechanism not only secures the network but also incentivizes light clients to
remain active and reliable.

2. Task Earnings: Fizz nodes earn from tasks and leases initiated by users. When a user deploys a task, the light node
performing the task receives a portion of the fee. This direct earning mechanism ensures that light nodes are
compensated for their compute resources and efforts.

3. Subnet Performance: The collective performance of light clients and their provider affects the subnet's tier and
rewards. High performance across consecutive Eras can lead to the subnet moving up tiers, resulting in increased
rewards. Conversely, poor performance or the presence of bad actors can result in lower tiers and reduced rewards,
motivating the subnet to perform well and maintain integrity.

4. Subnet Governance: Subnets can form decentralized autonomous organizations (DAOs) to manage incentives,
economy, and collective decision-making. This governance model allows subnets to self-regulate, remove bad
actors, and optimize their performance and rewards. DAOs provide a democratic framework for subnet members to
propose and vote on changes, ensuring that the subnet's interests align with its members.

By fostering collaboration and efficient resource utilization, the Fizz Node System aims to create a decentralized, scalable,
and rewarding network for light nodes and providers alike. This comprehensive approach ensures that light nodes can
participate meaningfully in the network, providers can manage and support their light clients effectively, and users can deploy
and access services seamlessly.

4.4.7. Node Registration

To become part of the network, Fizz Nodes (FNs) need to join an existing subnet or create a new subnet with a Provider Node
(PN). Users start by installing a binary on their local systems, during which they configure pricing and specify the compute
and GPU resources they intend to offer.

Once the setup is complete, the node registers this information, including a unique peer ID, with the network. It then
establishes a connection with the Provider Node gateway to accept deployment tasks and create a gateway for the services it
will run. After completing the setup, users can register their details in the Fizz Node Registry under the associated Provider
Node. They must also delegate $SPON tokens to the Provider Node to activate their node, enabling it to accept workloads
from users.

14

4.4.8. Conclusion

The light node mechanism within our decentralized network aims to expand the accessibility of computational resources by
enabling small device owners to participate as providers. By addressing the outlined challenges and leveraging a structured
lifecycle for registration, deployment and traffic management, light nodes can significantly contribute to the network's

resilience and scalability. This system not only enhances the network's capability but also ensures that resource allocation is
efficient, secure, and user-friendly.

4.5 Slark Node: Proof of Compute Capacity & Uptime

4.5.1. Overview

We are implementing an advanced Proof of Compute system that features the introduction of Slark Nodes, a tier-based
system for providers, reward delegation mechanisms, and a comprehensive licensing system for Slark Nodes. These Slark
Nodes play a critical role in maintaining the integrity and performance of both Providers and Fizz Nodes within the Spheron
network. Their primary function is to verify the specifications of providers and light nodes to uphold the network’s Quality of
Service (QoS).

The verification focuses on key parameters such as Liveness, Capacity, and overall Quality of Service, which are crucial for
ensuring that the network operates efficiently and reliably. To effectively assess these parameters, the system employs a
variety of checking methods. These include:

o Heartbeat Collection: Regularly checks the “heartbeat” or signal from nodes to ensure they are active and
responsive.

e Benchmark Testing: Measures the performance capabilities of nodes by putting them through rigorous
computational tests to assess their processing power and efficiency.

e Link Data Collection and Analysis: Gathers and analyzes data transmitted over the network to evaluate the
stability and speed of connections, further contributing to assessments of network quality and service reliability.

These methods provide a robust framework for continuously monitoring and validating the operational standards of all
participating nodes, thereby safeguarding the network against inefficiencies and potential vulnerabilities.

4.5.2. Challenge Mechanism

4.5.2.1. Slark Nodes

o Role: Challenge Provider Nodes to verify the quality and reliability of their service.
o Responsibilities:

o Regularly challenge PNs to ensure compliance.

o Provide proof of successful challenges.

o Receive economic incentives based on the outcomes of challenges.

e Earnings: Slark nodes will earn from the slashing of the provider node rewards and receive a reward for each
successful challenge completed. These rewards will be pooled and distributed among all participating Slark nodes in
an Era.

4.5.2.2. Challenge Process
1. Challenge Initiation:
o Slark nodes will randomly select providers to challenge.
o Slark nodes will specify a simple task with specific requirements, including CPU, RAM, Disk, and GPU.

2. Random Task Allocation:

o If the challenged provider has resources totaling (x) CPU, (y) GB RAM, (z) GB Disk, and (k) GPU, the
Slark will pick random values within the ranges:

m CPU:0to90% of (a-x)
m RAM:0to90% of (b-y) GB
m Disk:0to 90% of (c-z) GB
m GPU:0to 90% of (d-k)
o Wherea, b, ¢, & disCPU, RAM, Disk, GPU registered onchain

o The challenge, including the provider’s peer ID and a hash of a random puzzle, will be registered in a
smart contract to prevent collusion.

15

3. Task Execution and Verification:
o The challenged provider will perform the task and sends it back to the Slark nodes.
o After a Slark Node completes a task, it signs the results with its private key and delivers them to the

Referee. The Referee will receive 2N+1 results for each Provider, and each Node that delivered the same
result as the majority, will be rewarded.

4.5.3. Slark Nodes Subset Selection Process

(Slark Nodes Subset Selection Process R

2b. Emits the random number
received which is used in the

selection of Slack Nedes

1. Submit Pseudo Random Number > :

PRNG, > : Slark Node :
> Challenge : Not Part :

Management ; of Subset :

Swmart Contract

2a. Emits the random number received 3b. Submits the result of
which is used in the selection of Selected Slark nodes

Slark Nodes

Lease <

: E a. inate
: Slack Node. : Swort Contract Terwinate Lease
. Port of © 10, Subset “suEmi‘ts
: © Signed Chx
: Subset D e e
Yes -> 6. Create lease T
: with timeout
. ~

A | & N
1 ’ N
| No -> 6. Submit deployment Pailed result & D
] 1\ Bids =1 2
1 ~ % ’
1 ~ s
i g
1 NG
! T
1
1
1
I > L LB et remest et
\ 3a. I: 2 type of chall
| o Issue 2 type of challenges
I Deployment Provider
| Type 1: Challenge at the Time of Registration Request
1 Type A cmum during time of Deployment or Hoo!e
: Idle Timing Smart Contract
! Mertion service provider ID <
: 5. Bid on The deployment
|
! n
! 1
I_ __ 1
7. Send manifest with all the url of the committee and record the hash
2. Submit deployment / simulation result

Figure 8: Slark nodes subset selection process

Building on the concept analogous to Ethereum's beacon chain, our system incorporates Slark Nodes that may either employ
an inbuilt consensus mechanism similar to the Beacon Chain or use a smart contract to achieve consensus, akin to a sequencer
in Layer 2 technologies.

4.5.3.1. Proposed System Overview

In this system, a pseudo-random number is either generated by the sequencer or submitted to the sequencer using systems
such as Chainlink VRF or the RANDAO mechanism or with a verifiable server. This number is transmitted to the Challenge
Management Smart Contract as a transaction for each designated slot, which typically spans a 1-hour window. Utilizing this
pseudo-random number, the Challenge Management Smart Contract emits an event which includes the random number. This
event informs various Slark Nodes whether they have been selected for that particular slot. The selected Slark Nodes then
commence their challenges to the respective nodes based on user feedback, utilizing the same random number that was
submitted to the smart contract.

Nodes that are not selected for a slot are responsible for calculating which Slark Nodes have been chosen and subsequently
sign this subset before submitting it to the Challenge Management Smart Contract. This submission ensures that the
Challenge Management Smart Contract maintains a comprehensive list of selected Slark Nodes for the epoch.

4.5.3.2. Epoch and Node Selection

An epoch is defined as a collection of multiple slots, specifically 24 slots, designed to ensure comprehensive coverage of all
provider nodes at least once throughout the entire epoch.

The selection of Provider Nodes for challenging is prioritized as follows:
1. New registrations of Provider Node Nodes.
2. User feedback on existing Provider Node Nodes.

3. The pseudo-random number submitted to the smart contract.

16

Slark Nodes submit their signed results using the BLS signature scheme to the Challenge Smart Contract, signaling the
completion of challenges for selected Provider Node Nodes.

The Challenge Smart Contract then verifies all the submitted signatures and seeks to reach a quorum on the results. If a
quorum is achieved, the smart contract marks the challenge as completed for the specific Provider Node node. This process
not only ensures the integrity and reliability of the network but also enhances the accountability of the Provider Nodes
through transparent and verifiable challenges.

4.5.4. Slark Node Tier System

Slark nodes also have a tier system, with tiers up to Tier 6. The tier of a Slark node determines the range of provider tiers it
can challenge and the reward and incentive it can get for successful challenges:

4.5.4.1. Tier 1 Slark Node

o Requirements:
o Maintain a 90% verification accuracy every Era.
o Maintain a avg. of <350 ms response time every Era.
o Buy amount decided during Node Sale

o Benefits:
o Can challenge providers from Tier 6 to Tier 7 and earn from Slashing
o Reward multiplier: 1.0x

4.5.4.2. Tier 2 Slark Node

o Requirements:
o Maintain a 92% verification accuracy every Era.
o Maintain a avg. of <300 ms response time every Era.
o Buy amount decided during Node Sale

e Benefits:
o Can challenge providers from Tier 5 to Tier 7 and earn from Slashing
o Reward multiplier: 1.2x

4.5.4.3. Tier 3 Slark Node

o Requirements:
o Maintain a 95% verification accuracy every Era.
o Maintain a avg. of <250 ms response time every Era.
o Buy amount decided during Node Sale

o Benefits:
o Can challenge providers from Tier 4 to Tier 7 and earn from Slashing
o Reward multiplier: 1.4x

4.5.4.4. Tier 4 Slark Node

o Requirements:
o Maintain a 97% verification accuracy every Era.
o Maintain a avg. of <200 ms response time every Era.
o Buy amount decided during Node Sale

o Benefits:
o Can challenge providers from Tier 3 to Tier 7 and earn from Slashing
o Reward multiplier: 1.6x

4.5.4.5. Tier 5 Slark Node

o Requirements:
o Maintain a 98% verification accuracy every Era.
o Maintain a avg. of < 150 ms response time every Era.
o Buy amount decided during Node Sale

o Benefits:
o Can challenge providers from Tier 2 to Tier 7 and earn from Slashing
o Reward multiplier: 1.8x

4.5.4.6. Tier 6 Slark Node

o Requirements:
o Maintain a 99% verification accuracy every Era.
o Maintain a avg. of < 100 ms response time every Era.
o Buy amount decided during Node Sale

e Benefits:

o Can challenge providers from Tier 1 to Tier 7 and earn from Slashing
o Reward multiplier: 2.0x

17

Tier Summary Table

Tier Verification Responsiveness Buy Amount Provider Node Rewards
Accuracy (%) (ms) Challenge Multiplier
1 >90 <350 >Y1 >6 1.0
2 >92 <300 >Y2 >5 1.2
3 >95 <250 >Y3 >4 1.4
4 >97 <200 >Y4 >3 1.6
5 > 08 <150 >Y5 >2 1.8
6 >99 <100 >Y6 >1 2.0

4.5.5. Tier Transition Mechanism
e Promotion:
o Slark Node can move up to a higher tier by consistently meeting or exceeding the requirements of the
desired tier over 3 consecutive eras and when there is any slot is available in the higher Tier. The Slark
node owner needs to opt in to higher tier when available from the Portal.

e Demotion:

o Slark Node can be downgraded to a lower tier if they fail to meet the requirements of their current tier for
2 consecutive eras. This will happen automatically.

4.5.6. Reward Delegation Mechanism

o Challenge Reward: The Era reward is only given to the Slark node based on how many challenges it has done
during the era.

o Slashing Reward: The more it challenges the provider, the more chances it can earn from the provider reward
slashing. The higher the tier of provider is, the more amount a high tier Slark node can earn from the slashing.

o 80% of the era reward will be automatically delegated to the Slark node's chosen provider when setting it up.

® The remaining 20% will be given to the Slark node as a liquid token.
e Rewards can be undelegated, but if the delegated amount exceeds a certain threshold, there will be a vesting period.

4.5.7. Licensing System for Slark Nodes
4.5.7.1. Slark Node License (NFT)

e Ownership and Operation: Anyone can run a Slark Node Client if they hold a Slark Node License (NFT) or
receive delegation from an NFT owner.

o Resource Management: Resources scale linearly; one operator can run up to x licenses on a single machine.

Insufficient resources may cause licenses to go offline or produce incorrect task results, leading to reduced rewards
or banned licenses.

4.5.7.2. Delegation Process
e NFT Owners:
o Delegation: Can choose which Slark Node Client to delegate to via a Portal.

o Self-Operation: Running the node themselves requires verification of the wallet address inside the Slark
Node Client.

o Rewards: Delegation ensures rewards for valid calculations and uptime. Delegation can be managed
anytime through the Portal.

e Node Runners:
o Acceptance: Can accept or reject delegation requests within the Slark Client.

o Termination: Can end a delegation at any time. Verifying the correct owner wallet address is crucial to
earning rewards correctly.

18

e Reward Distribution:

o Licensee Rewards: Rewards can be given to the licensee who provided the license to the node operator.

This comprehensive system ensures that all participants are incentivized to maintain high standards of performance and
reliability, fostering a trustworthy and efficient network.

4.5.8. Security Measures

To bolster the stability of the Slark node network and counteract potential misuse, the Slark Node Non-Fungible Token (NFT)
will be soulbound for a period of one year. This precaution ensures the integrity of the ecosystem by minimizing rapid
changes in node ownership, thereby maintaining a consistent and reliable network environment.

Once a Slark node begins accruing tokens, these tokens are allocated exclusively to the NFT’s owner, irrespective of who
operates the Slark node client. Moreover, during the initial setup of the Slark node client, the rewards earned by the node are
automatically delegated to a provider selected by the NFT owner. This automated delegation process not only streamlines the
distribution of rewards but also enhances token earnings through potential compounding effects.

NFT owners are granted the flexibility to redelegate their tokens as needed. In instances where an owner opts to withdraw
their tokens and the amount delegated exceeds a pre-determined threshold, a vesting period is initiated to manage the
withdrawal process smoothly and securely. This structured approach to managing rewards and withdrawals aims to encourage
sustained engagement and investment in the network, promoting its long-term growth and stability.

4.6. Payment System: Facilitating Equitable Transactions

4.6.1. Overview

The decentralized compute network introduces an advanced Payment System, underpinned by a token-based economy,
specifically crafted to ensure transparent and equitable compensation for providers of GPU resources. This section
delves into the mechanisms and structures of the payment system, highlighting its role in addressing inefficiencies within
the current market and ensuring that providers are appropriately rewarded for their contributions.

4.6.2. Introduction to the Token-Based Economy

At the heart of the network's Payment System lies a token-based economy, utilizing any token including $SPON tokens as
the medium of exchange. This innovative approach is designed to streamline transactions within the network, enabling a
seamless flow of value between users and providers. This will also enable a great ecosystem of contributors & will open a
huge opportunity for the foundations or even other player to ask them bring the utility into the network. Any token as
payment must be get enabled with the token governance model. The system's foundation on blockchain technology ensures
that all transactions are transparent, auditable, and secure, thereby enhancing trust and reliability across the network.

4.6.3. User Payment Contributions

User pagment (either during create/ in general)

Escrow Smart Contract

[
~ | s s o S - Holds user balance which are intially locked
| pheren SDK Daposit Furds in The eserow er balance e intially locked.
| Once o lease is generated the furds woved to
o locked state
User |
h\ 1
' L Eion winimum Jouns
Fefich user balance | R Coe
1 '
i V] = The Purds held i the srder controct are unlocked
Create Order and can be withdraw ot any time while order is
(Condition: Mimmum bolam d b ling the ord
sl b vy Ordler Smart Contract catehas by eancelngrBie cocer

- When areating an order; user need to mention
- Creates o new order and stores the pagment how wany day user wont 1o lock the Funds For the
oPfered by the user poyment and also the token it wart to pay to the
provider.

Lock more paygment S0 Tral order doess's expire (The initial fmr«ev\t is caleulated based on
il

previeusly available best dato)

X

- User can later inerease the locked fund for an
LT £ e LL T i, order in the future to stop the expiration

Figure 9: User payment workflow during the create order / in general

The workflow of user payment from the above Figure 7 shows that for user to start a deployment in the protocol, the user
need to first deposit their initial fund to our Escrow Smart Contract which will hold their balance (some in locked and some
in unlocked). User then can make create order to start a new deployment to the Order Smart Contract, which will fetch user
balance (which are unlocked) to verify minimum balance of the user before starting order matching process.

The user also need to mention how many days / hour it want to lock the initial fund for the deployment order and also the
token user want to pay to the provider for the workload. The locking of initial fund for the order will be calculated once the
order is matched with the provider and the contract know what bid was selected. Once lease is created the fund will be locked
in the escrow and user won’t be able to access these funds unless user closes the lease. As the lease progresses the amount in
locked state is debited from the user and assigned to the provider based on the time passed (calculated using
block.timestamp). If user close the lease prematurely, the balance of both user and provider are updated, and the final balance
is pushed to both accounts and the lease is marked closed.

In short, the system delineates a clear and flexible mechanism for user payments:

® Compute Escrow Wallets: Users establish contract wallets on the blockchain, serving as compute escrows into
which they deposit a minimum amount. This escrow system allows users to deposit an array of tokens, including
$SPON, offering the flexibility to manage their funds according to compute usage.

® Withdrawal and Fund Management: Users have the capability to withdraw any remaining funds from the
escrow wallet, ensuring they only pay for the compute resources utilized. The escrow wallet also facilitates the
transfer of instance ownership and funds between users, providing a layer of versatility and control over resource
allocation and usage.

19

® Maximum Resource Allocation Mechanism: Upon the deposition of funds into the escrow wallet, the user's
allocation of computational resources is governed by a predefined bracket system. This system systematically
determines the quantity of resources allocated based on the amount of funds deposited, ensuring a structured and
equitable distribution of computing power. For instance, a deposit of $15 entitles the user to a specific allocation
of computational resources, encapsulated as follows:

0 For standard compute allocations: The user is entitled to access 8§ CPUs, 32 GB of RAM, and 512 GB
of Disk space.

0 For GPU-intensive tasks: The allocation includes access to a mid-tier GPU (such as the A4000 or
A6000 models), complemented by 32 CPUs, 128 GB of RAM, and 1 TB of Disk space.

4.6.4. Mechanisms for Provider Compensation

Provider Accepts o matohed order

s
- Provider specifically can mention which foken it want
Order Smart Contract n Leose Swoart Controct o Take The payments on. Based on Ths, The bidding
= e e engine will only bids Por the order which poy in The Token
7 2 - Create o new lease chiect and al i
Acsopts. s jmatencd erder: mowves, the sseroved amouwdt in locked state | T UPPOCTE
]
' - Bwits a watched order event = Lonie chject wtones the blockGnestamp [Once. the escromed m...:.ﬂt c::m order moved into
: to mark the start tme of the lease edigt state, 16 coinet besirbialnain by The uter
: - X witil the lgase o cancelled
\ Accepts o ereate lease tx from the wtil the lease & cancel
] moteked predler | e e e e = Chask I the Famein
’ e sl S artt Por oty The e - ds e lease progresses the amount in locked state
v is debited from the user and assigned o the provider
&7 / A based on the Time passed
\ edl Tine. Fuundds, ¥ Lealeulatied using block timestamp).
to locked state | ¥
! = The provider can withdroaw The Pumds credited to his
i account al any point of Time
Vi
Previder > T RIT T T In cage the provider o the uter opts For cancelling o
S lease which is m active state the balance off both user
Provider Escrow Smart Contract ael providar sod veiactel, codl e Pl Lataste 1 posiid
Swart o bot accounts and the lease is marked closed
- Helds user balance which are ntially
Codbract lotked Cuce o lease 15 genarated B In case the locked fund i insuPRciant to continue the
Brinde el Do Jachd Shinte lease, the lease contract con expire the order and Order
Swart cortract will emit evert to close the server.
Accepts the matcied onder -
and starts tae create lease
SRy
LS J

Figure 10: Provider payment acceptance architecture

We will be discussing the provider payment mechanism. From Figure 8, you can clearly see that after a Deployment Order
is successfully matched with a provider, a lease is established. This lease automatically locks a portion of funds, estimated to
cover the execution fees for the duration agreed upon (days or months). These funds are then gradually debited from the
user to compensate the provider, starting from the lease's initiation timestamp. Until the lease expires or is canceled by
either party, the locked funds remain inaccessible. However, providers have the ability to withdraw funds that have accrued
in the escrow associated with their deployments. Moreover, providers are obligated to contribute 20% of the total
deployment payment to the Spheron Foundation.

In the event that either the provider or user decides to cancel an active lease, the balances of both parties are updated. The
final balances are then pushed to their respective accounts, and the lease is officially closed. Additionally, if at any point the
locked funds become insufficient to continue supporting the active lease, the Lease Smart Contract will automatically
terminate the lease. Subsequently, the Order Smart Contract will emit an event to shut down the server.

To promote the use of $SPON in transactions and enhance the network's economic efficiency, Spheron has implemented
a specific fee structure:

User Fees:

e Payments made with tokens other than $SPON attract a 2% facilitation fee.
e Payments made with $SPON are not subject to any fees.
Provider Fees:
o Liveness rewards do not incur any fees.
e For utilization payments:
o Payments to providers in tokens other than $SSPON or $SPON incur a 2% fee.
o Payments made in $SPON are free from any fees.

This fee strategy is designed to incentivize the utilization of the network’s native token, $SPON, thereby reducing transaction
costs for both users and providers while supporting the sustainability and growth of the network.

4.6.5. Compensation Model
The compensation model for providers is meticulously structured to ensure fairness and incentivize participation:

e Utilization Payments: Providers will receive payment in any token that user have used to start the deployment.
Provider can mention all the token it want to support and will be matched with order which give payments in the
token the provider supports.

Note: Foundation will be taking commission on utilization rewards from the Deployment Order. Initially it will be
20%, but it can be increased or decreased by the DAO / Governance based on utilization of the network.

e Network Rewards: Provider nodes are incentivized by the foundation to continue to be a part of the network if
there is less utilization of the provider capacity in any Era timeframe. This will make sure the providers are not
leaving the network, in case of providers are not able to make enough ROI on their hardware and wasn’t able to pay
for their OpEx charges. The rewards will be given in $SPON token, over a defined period known as an Era.

20

e Era Duration: Era occur based on use of the network, generally a 24 hour period and can be adjusted by the
Foundation with input from Governance as needed in order to respond to changes in network usage. This
mechanism ensures that rewards are distributed in a timely and predictable manner.

® Auto-Staking: To further incentivize providers, the system incorporates an auto-staking feature whereby rewards
can be directly staked, enhancing the provider's stake in the network and increasing their chances of being selected
for future deployments.

4.6.6. Wallet Infrastructure

A comprehensive wallet infrastructure supports the Payment System, enabling the creation, management, and transfer of
escrow wallets:

e Multi-Escrow Wallet Creation: Users can create numerous escrow wallets from a single liquidity wallet,
streamlining the process of funding and managing compute deployments.

e Ownership and Fund Management: Escrow wallets are designed with functionalities to deposit, withdraw, view
funds, and manage ownership, ensuring users have complete control over their resources within the network.

The Payment System embodies the decentralized compute network's commitment to fostering a fair, transparent, and
efficient marketplace for computational resources. Through its token-based economy, the system not only addresses
prevailing market inefficiencies but also ensures that all participants are fairly compensated for their contributions, thereby
reinforcing the network's integrity and promoting sustained growth and innovation.

5. Deployment Lifecycle

The deployment lifecycle within a decentralized compute network represents a cornerstone process, essential for the
provisioning and management of GPU resources. This paper elucidates the sequential steps and smart contract interactions
that govern this lifecycle, from the initial GPU resource request to the ultimate fulfillment and potential modifications of the
deployment. By dissecting the operational framework, this exposition aims to provide a deep understanding of the system's
underlying mechanics, highlighting the pivotal role of smart contracts in orchestrating transactions, managing escrows, and
distributing rewards.

5.1. Introduction

The deployment lifecycle in a decentralized compute network is a structured process that encompasses several key stages. It
begins with a user's request for server deployment and progresses through various states, including bidding, order matching,
lease creation, deployment activation, and optional updates or termination. Each step is facilitated by the network's smart
contracts, ensuring a transparent, secure, and efficient pathway from request to resource allocation.

5.2. Operational Steps of the Deployment Lifecycle

5.2.1. Initiation and Provider Lookup

e The lifecycle begins with a user initiating a server deployment request and placing it in the OrderCreated

state. This state triggers all eligible Provider Nodes to start the bidding process, actively competing to fulfill the
request.

5.2.2. Provider Selection and Bidding

e During this phase, providers that meet the deployment criteria are invited to submit their bids for the requested
resources. Bidding is allowed for a duration of 1-2 blocks, after which no further bids are accepted. The order is
then processed by the matchmaking engine, which selects the optimal provider based on the bids received. The
result is forwarded to the Order Smart Contract to initiate lease creation.

5.2.3. Lease Creation and Provider Matching
e Following the selection of a provider, the matchmaking engine will match the order with the provider and
create a lease in the smart contract alongside it, issuing an event that prompts the provider to reserve the

specified resources for the deployment. This step formalizes the agreement between the user and the provider
through the execution of the smart contract, ensuring the resources are allocated for the user's needs.

5.2.4. Deployment Activation

® Upon reservation confirmation, the Provider Node is ready for receiving the deployment manifest necessary for
server setup.

® The user then transmits the deployment manifest via an MTLS connection, enabling the provider to commence
server deployment.

® The provider configures and activates the server, ensuring it meets all specified requirements. User can then call

the provider fetch the deployment detail respective to the Lease ID (LID) like connection URL, Exposed Ports,
IP assigned, etc.

5.2.5. Termination and Closure

o Users retain the ability to terminate their deployments by calling closeLease method in the Lease Contract
which will make a LeaseClosed event. Upon listening the event, the provider node will cease the operation of
the server in the kubernetes cluster, thus concluding the resource allocation.

5.2.6. Deployment Updates

21

o The lifecycle also accommodates the modification of existing deployments. Users may request updates concerning
general configurations, specifications, or replicas via a updateLease transaction which will close the existing
lease and create a new lease with the updated specs and new prices and emit the event for Provider Node to update
the pod with the new pod specification.

At the heart of the deployment lifecycle are the network's smart contracts, which automate the management of transactions,
escrows, and rewards. These contracts not only enforce the terms of the deployment agreements but also ensure the secure
and efficient transfer of funds per resource usage. By leveraging blockchain technology, the system guarantees transparency
and trust, pivotal for the network's integrity and user confidence.

The deployment lifecycle within a decentralized compute network exemplifies the intricate orchestration required to
dynamically allocate compute & GPU resources.

Through a systematic process underpinned by smart contracts, the network achieves a harmonious balance between demand
and supply, ensuring that resources are allocated efficiently and equitably. This lifecycle not only represents a technical
achievement but also encapsulates the network's broader mission to democratize access to computational resources, thereby
fostering innovation and progress in GPU- intensive applications.

6. Future Work

The rapid advancement and increasing demands of Artificial Intelligence Al and Machine Learning ML applications present
unique challenges and opportunities for decentralized compute networks. This section outlines a forward-looking research
agenda aimed at harnessing underutilized compute and GPU resources from smaller devices. By expanding the network's
capabilities, we aspire to create a more comprehensive and scalable infrastructure that can support a broader spectrum of Al
and ML innovations. This research will delve into several critical areas, including integration strategies for smaller devices,
networking solutions, reliability and capacity proofs, GPU cluster coordination, and enhanced security protocols.

6.1 Introduction to Future Research Directions

As Al and ML applications continue to evolve, the need for diverse and scalable computational resources becomes
increasingly critical. Recognizing this, our future work is dedicated to exploring several key areas that promise to extend
the network's functionality and capacity, particularly focusing on the integration of smaller, underutilized devices. These
devices, often overlooked, hold significant potential to augment the network's computational power.

6.2 Research Areas and Objectives

6.2.1. Integration of Underutilized Resources

® Objective: Develop methodologies to seamlessly integrate compute and GPU resources from smaller devices into
the network. This involves creating a robust framework that can identify, manage, and allocate these resources
efficiently, thereby expanding the network’s overall capability.

6.2.2. Networking Solutions for Smaller Devices

® Objective: Innovate networking protocols that facilitate reliable and efficient communication between smaller
devices within the decentralized network. This includes overcoming challenges related to bandwidth, latency, and
device heterogeneity to ensure seamless resource pooling.

6.2.3. Proof of Uptime and Capacity

® Objective: Establish verification mechanisms for provider uptime and resource capacity, enhancing the Service
Level Agreements (SLAs) and automation within the network. This entails developing proof systems that
accurately reflect the availability and computational power of both providers and smaller devices, ensuring
optimal deployment allocation.

6.2.4. GPU Cluster Coordination

® Objective: Engineer advanced coordination techniques for GPU clusters, focusing on enterprise-grade training
tasks. This includes optimizing resource allocation, synchronization, and parallel processing capabilities to
support intensive Al training and inference workloads.

6.2.5. Security Enhancements

® Objective: Strengthen the security framework to protect user servers and sensitive environments from
unauthorized provider access. This involves devising comprehensive access control mechanisms, encryption
protocols, and audit trails to safeguard data integrity and privacy.

7. Conclusion

This whitepaper has introduced a novel decentralized architecture designed to address the significant challenges associated
with GPU supply and cost in the field of Artificial Intelligence (AI) development and research. By advocating for a shift
towards a decen tralized network, we envision a future where access to GPU resources is democratized, costs are significantly
reduced, and distributionis optimized for efficiency. Such advancements are poised to unlock a new era of Al innovation,
making cutting- edge research and development accessible to a broader spectrum of individuals and institutions. The
proposed framework not only promises to alleviate current supply chain constraints but also aims to foster a more inclusive
and collaborative environment for Al exploration. As we embark on this journey towards redefining the GPU marketplace,
the potential for transformative impact on Al development and the broader technological landscape is immense. This
initiative marks a critical step forward in ensuring that the computational resources necessary for driving the next wave of Al
advancements are within reach of the global research and development community.

Acknowledgment

22

This research and these ideas were conducted by Mitrasish Mukherjee and Prashant Maurya, co-founders of Spheron
(https://spheron.network/). We extend our gratitude to Aditya Rola for his valuable contributions to the ideation, discussions,
and architecture.

References
e Filecoin - https:/filecoin.io/filecoin.pdf
® Proof of aliveness - https://dl.acm.org/doi/pdf/10.1145/3359789.3359827
® Proof of spacetime : PoSt
® Proof of execution by Risc zero:The RISC Zero STARK Protocol | RISC Zero Developer Docs
e Hardware Attestation: Introducing Zero-Knowledge Proofs for Private Web Attestation with
Cross/Multi-Vendor Hardware
e Remote attestation of hardware or hardware/software hybrid - https://arxiv.org/pdf/2005.12453 pdf Cloud
e Attestation - http://palms.ee.princeton.edu/system/files/cloud attest 1c.pdf
e Constellation Confidential Kubernetes) Confidential Kubernetes | Constellation TPM
e Explainer - https://webthesis.biblio.polito.it/24507/1/tesi.pdf
e Fluence - https:/fluence.dev/docs/build/introduction
e Akash: Intro to Akash | Akash Guidebook | Akash Guidebook
® Vistara: Welcome to Vistara
e Aecthir: Home | Aethir
e Bittensor: Introduction | Bittensor
e JONet - https://developers.io.net/docs/overview
e Render - https://rendernetwork.com/
e FEigen Layer - https://eigenlayer.xyz

23

https://filecoin.io/filecoin.pdf
https://dl.acm.org/doi/pdf/10.1145/3359789.3359827
https://spec.filecoin.io/algorithms/pos/post/#section-algorithms.expected_consensus
https://dev.risczero.com/proof-system/proof-system-sequence-diagram
https://blog.cloudflare.com/introducing-zero-knowledge-proofs-for-private-web-attestation-with-cross-multi-vendor-hardware
https://blog.cloudflare.com/introducing-zero-knowledge-proofs-for-private-web-attestation-with-cross-multi-vendor-hardware
https://arxiv.org/pdf/2005.12453.pdf
http://palms.ee.princeton.edu/system/files/cloud_attest_1c.pdf
https://docs.edgeless.systems/constellation/overview/confidential-kubernetes
https://webthesis.biblio.polito.it/24507/1/tesi.pdf
https://fluence.dev/docs/build/introduction
https://docs.akash.network/
https://docs.vistara.dev/
https://aethir.com/
https://docs.bittensor.com/learn/introduction
https://developers.io.net/docs/overview
https://rendernetwork.com/
https://eigenlayer.xyz/

