
JGGL: A Social Network Where Moments

Become Music

Authors: Andy Akwa, Dimitrii Saksonov, DZM
Last Updated: January 2026

Abstract

Short-form video made sharing effortless, but creating original music and music videos

remains complex, fragmented, and time-consuming. Users who want to turn a real-life

moment—meeting friends, attending an event, traveling—into something uniquely

expressive typically need multiple tools, prompt skills, and editing workflows that don’t fit

social timelines.

JGGL is an AI music social network that compresses creation into a single, natural action.

A user records a short video, narrates the moment with their voice (up to ~1 minute), adds

optional text and mood controls, and JGGL generates a song and a short clip that’s ready

to post. The result becomes a native social object—discoverable, shareable, and reactable

through JGGLs.

To power this loop at global scale, JGGL introduces an AI stack purpose-built for

consumer media: a language-and-planning layer that converts human intent into

structured creative direction, specialized generators for music, images, and video, and a

safety-and-consent system designed for real-time creation. The platform is supported by

$JGGL, a utility token used for subscriptions, AI computation, creator rewards,

marketplaces, and governance—aligning user demand, creator monetization, and compute

costs in one cohesive system.

This document is a product + technology + economy overview. It is not legal, financial,

or investment advice.

1. Vision

The next wave of social platforms will be creation-native: instead of posting what

happened, users will post what it felt like — as music and visuals.

JGGL turns moments into shareable media with near-zero creative friction.

2. The Product

2.1 What users do

Capture a moment (short video)

Explain the context by voice (up to ~60 seconds)

Add text notes (optional)

Adjust mood sliders (energy / genre / tempo / vibe)

Generate and publish

2.2 What users publish

Track Post: an original song generated from the moment

Clip Post: track + short video (generated visuals, beat-synced edit, or both)

Remix Post (optional roadmap): derivative content built from an existing post with

attribution rules

2.3 Social primitives

JGGLs: off-chain reactions (like a “heart”, but culturally unique)

Comments, reposts, saves

Creator profiles, discovery surfaces, trending

3. User Journey (End-to-End)

1. Capture
User records a short video in the moment (friends, event, travel, etc.)

2. Narrate
User speaks what happened and what it meant (natural language, not “prompt

engineering”).

3. Direct
User adds a few keywords and mood sliders. The platform converts this into a

structured “creative spec”.

4. Generate
Audio (song) + optional voice layer + cover art + optional short video.

5. Publish & Interact
The generated content is posted to the feed. Audience reacts with (JGGLs) and

shares.

4. AI Stack Overview

JGGL uses four internal model families. The names below refer to JGGL modules (not

external models).

4.1 Thea AI — Image Generation

Role: Generate cover art, thumbnails, creator identity visuals, and video keyframes that

visually “match” the music (mood, tempo, story beats).

Technology

Thea AI is built around a text-conditioned latent diffusion architecture optimized for fast

iteration and style consistency.

Core components

Text / prompt encoder: Converts the creative brief (and optional user text) into dense

conditioning embeddings. This conditioning can include:

style presets (e.g., “cinematic neon”, “grainy documentary”),

composition intents (portrait/landscape, subject placement),

mood descriptors (warm/cold, dreamy, aggressive),

brand/identity constraints (creator palette, recurring motifs).

Latent image model (denoiser): A neural denoiser iteratively removes noise from a

latent tensor over multiple steps, guided by text embeddings.

Thea uses classifier-free guidance (CFG): it runs both conditioned and

unconditioned predictions and combines them to control how strongly the output

follows the prompt (high CFG = tighter adherence, with higher risk of artifacts).

VAE-style image codec: Images are generated in latent space for efficiency, then

decoded back into pixels. The same codec can also encode user-provided images (for

edits / variations).

Sampler & noise schedule: A sampler integrates the denoising process across

timesteps. Different samplers trade off speed vs sharpness vs stability; Thea can

select presets depending on whether the output is (a) cover art, (b) thumbnail, or ©

keyframe sequence.

Control & consistency features

Negative prompting / constraint list: Thea accepts explicit “avoid” constraints to
reduce common failure modes (extra limbs, mangled text, unwanted objects, etc.).

Structural guidance (optional): Thea can condition on lightweight structural signals

(e.g., edges, depth-like maps, pose hints, or layout grids) when consistency matters —

particularly for video keyframes.

High-resolution refinement: For covers and hero visuals, Thea can generate at a base

resolution and then run a refinement pass for sharper details and cleaner textures.

Style adapters: Lightweight adapters can specialize the base model into distinct

aesthetics without retraining the full system (useful for creator identity packs and

marketplace styles).

Safety & policy

Prompt sanitization: policy rules + keyword and intent filtering before generation.

Output screening: image classifiers and similarity checks post-generation to block

disallowed content and prevent repeated abuse patterns.

Provenance hooks: metadata tags and internal tracing IDs to support moderation,

reporting, and auditability across the pipeline.

Output formats

1. Cover images (hero visuals)

2. Template elements (reusable identity assets)

3. Keyframes (beat-aligned frames used to anchor video generation)

pipeline (voice → song → visuals)

Publishing

Thea AI - Image Generatio

n

Audio Generation

Orchestration Layer

Client

User records voice narrati

on (~60s) + optional video

Optional text notes + moo

d sliders

Speech-to-text (voice to t

ranscript)

Intent parsing + safety gat

ing

Creative Spec Builder (str

ucture, mood, style, const

raints)

Music Generator (song + a

rrangement)

Render + mix (mastered tr

ack)

Audio analysis (BPM, secti

ons, beat grid, energy cur

ve)

Visual Brief Composer (sce

ne prompts + palette + co

mposition)

Latent Diffusion Sampler

(CFG + negative constrain

ts)

VAE Decode (latent to pix

els)

Safety + quality checks (p

olicy + artifact filters)

Outputs: cover / thumbna

il / keyframes

Assemble post: track + cli

p + cover

Publish to feed (engagem

ent via JGGLs)

4.2 Perseia AI — Language & Creative Reasoning

Role: Convert human intent (voice + text + sliders) into a machine-readable creative plan
that reliably drives downstream generation (music, visuals, video) without requiring

prompt engineering.

Technology

Perseia AI is a transformer-based language and planning system designed for real-time

creative workflows. It functions less like a “chatbot” and more like a creative operating
layer that compiles user intent into structured, enforceable instructions.

Core responsibilities

Intent extraction & normalization

Parses voice transcript + user text + sliders into normalized signals (mood, genre

direction, tempo band, intensity, narrative arc).

Resolves ambiguity by inferring defaults and asking minimal clarifying prompts

only when needed.

Constraint-aware planning

Produces a deterministic Creative Spec with fields like:

song structure (intro/hook/verse/bridge),

tempo range + energy curve,

instrumentation palette,

lyrical theme + rhyme density + vocabulary constraints (optional),

visual art direction (palette, motifs, composition notes),

video direction (scene prompts, pacing, cut points).

Maintains hard constraints (e.g., “no explicit lyrics”, “no faces”, “no violent

themes”).

Tool orchestration

Calls downstream generators (music/image/video) with parameterized requests

(not raw prompts).

Handles retries, fallbacks, and “reroll with constraints” flows (e.g., keep melody,

change instrumentation).

Safety and policy gating

Pre-generation filtering (disallowed requests, impersonation and abuse vectors).

Post-generation checks (sanity validation on specs; policy compliance metadata).

Personalization layer

Builds a user preference profile (opt-in) from interaction history:

favored genres/tempos,

typical lyrical density,

visual style presets,

preferred output length and pacing.

Uses this to reduce friction and improve consistency over time.

Output artifact

A compact Creative Spec that is:

machine-readable (JSON-like structure),

versioned (for reproducibility),

auditable (for moderation and debugging),

portable across modules.

how Perseia orchestrates creation

Publisher/FeedPromethea AI (Video)Thea AI (Images)Orphea AI (Music)Policy/SafetyPerseia AISpeech-to-TextJGGL App

Publisher/FeedPromethea AI (Video)Thea AI (Images)Orphea AI (Music)Policy/SafetyPerseia AISpeech-to-TextJGGL App

alt [Allowed]

[Needs changes]

[Blocked]

User

Record moment + voice (<=60s)\nAdd text + sliders

1

Send voice for transcription

2

Transcript

3

Transcript + text + sliders + context

4

Pre-check intent + constraints

5

Allowed / require changes / block

6

Draft Creative Spec + optional clarifying question

7

(Optional) quick confirm (tone/genre/lyrics)

8

confirm / adjust

9

user adjustments

10

Music request (spec params)

11

Track + metadata (BPM, sections)

12

Visual request (style + motifs + palette)

13

Cover + keyframes

14

Video request (beat grid + scene plan + keyframes)

15

Short clip

16

Final bundle (track + visuals + clip)

17

Publish post

18

Live post in feed

19

Explain constraint + safe alternatives

20

Block response (policy)

21

User

4.3 Orphea AI — Music Generation

Role: Generate complete, short-form ready songs (music + optional vocals) that feel

coherent, “mix-ready,” and aligned with the user’s moment, narration, and mood controls.

Technology (more detailed)

Orphea AI is a neural music generation system that composes and renders audio end-to-

end while preserving musical structure (hooks, sections, dynamics) and production quality

suitable for social sharing.

Core building blocks

Creative Spec → Music Plan compiler

Converts Perseia’s Creative Spec into a musical blueprint:

tempo range + groove,

section map (intro / hook / verse / bridge / outro),

energy curve (where intensity rises/falls),

instrumentation palette,

lyrical settings (if lyrics are enabled),

vocal style + timbre settings (if vocals are enabled).

Composition model (structure-first)

Produces high-level musical decisions:

chord progression and harmonic rhythm,

melodic motifs + hook emphasis,

rhythmic patterns and section transitions,

arrangement density over time.

Enforces section boundaries so the output has recognizable “song form” rather

than an endless loop.

Audio rendering model (fidelity-first)

Converts the composition into high-quality audio using learned audio

representations.

Rendering can be conditioned on:

genre timbre priors,

instrument embeddings,

mix and mastering targets (loudness, dynamics, clarity).

Vocal layer (optional)

If lyrics are enabled, Orphea can generate vocals aligned to phrasing and rhythm.

If voice cloning is enabled, the vocal timbre can be conditioned to the user’s

registered voice profile (consent-based).

Mixing & mastering stage

Loudness normalization and spectral balancing to avoid “muddy” results.

Peak limiting and dynamic control for consistent playback in a social feed.

Optional stereo widening and transient shaping based on style presets.

Control surface
Orphea is designed to be controllable without prompt engineering:

hard constraints (tempo band, explicit content off, no aggressive vocals, etc.)

soft preferences (more “uplifting,” “more punchy drums,” “less dense mix”)

iterative edits (keep structure, change genre; keep melody, change instrumentation;

shorten intro)

Stems / segments (optional)
When enabled, Orphea can output:

stems (vocals / drums / bass / harmony / leads),

segments aligned to sections (hook / verse / bridge),

which unlock remix workflows and future marketplace mechanics.

Output: A complete, mixed track ready to publish (plus optional stems and section

markers).

Low-level pipeline (spec → composition → render → master)

Creative Spec (tempo ban

d, mood, genre cues, stru

cture, lyric settings)

Music Plan Compiler (secti

on map, energy curve, ins

trumentation palette)

Composition Model (chord

s, melody, rhythm, arrang

ement per section)

Lyric & Phrasing Planner

(optional)

Vocal Conditioning (option

al: style / user voice profi

le)

Audio Rendering Model (hi

gh-fidelity synthesis)

Stem Separator / Multi-re

nder (optional stems)

Mixing & Mastering (norma

lize, EQ balance, dynamic

s, limiter)

Metadata Extractor (BPM,

beat grid, sections, key m

oments)

Output: master track (opti

onal stems) + section mar

kers

4.4 Promethea AI — Video Generation

Role: Generate short-form videos that are musically synchronized (beats, sections, energy

changes) and visually consistent enough to feel “edited,” not random frames.

Technology (more detailed)

Promethea AI is a text- and audio-conditioned latent video generator designed for short

clips. Its core challenge is not single-frame quality, but temporal coherence: keeping
subjects, style, and motion stable across time while still producing dynamic visuals.

Core components

Video brief composer

Converts the Creative Spec + audio metadata into a shot plan:

scene prompts per section (intro/hook/verse),

pacing rules (cut frequency, motion intensity),

style constraints (palette, grain, lighting),

“do / don’t” constraints (faces off, text avoidance, etc.).

Latent video model

Generates in latent space for efficiency, then decodes to pixel frames.

Maintains temporal consistency via internal motion representations (so

identity/style doesn’t drift frame to frame).

Beat & structure alignment

Uses the track’s beat grid and section markers to:

trigger scene transitions on musical boundaries,

modulate motion intensity with energy curve,

place visual accents on kicks/snares/drops.

Keyframe anchoring (optional)

Thea AI outputs can be used as:

opening frame anchors,

section keyframes,

style references to reduce drift.

Lip Sync (optional)

When Promethea generates clips featuring performers or speaking/singing faces, it can

apply a dedicated lip-sync stage so mouth motion matches vocals.

How it works (conceptual):

Phoneme timing extraction: the vocal track is analyzed to estimate phoneme

boundaries and timing (aligned to words/lyrics where available).

Face / landmark tracking: the system detects and tracks facial landmarks across

frames to preserve identity and reduce jitter.

Mouth-region synthesis: a specialized model renders mouth shapes conditioned on

phoneme timing while respecting:

head pose,

lighting and skin tone,

temporal continuity (avoid frame-to-frame “popping”).

Compositing: the synthesized mouth region is blended back into frames using

feathered masks and temporal smoothing.

Why it matters:

makes “performer-style” clips feel intentional and human,

improves perceived quality for vocals-heavy tracks,

reduces uncanny artifacts that break immersion.

Safety note: lip-sync is gated behind policy rules to prevent impersonation and misuse

(e.g., unauthorized identity mimicry).

Post-processing stack

Temporal smoothing and stabilization (reduce flicker/shimmer).

Optical-flow-aware interpolation (optional) to improve motion continuity.

Lip-sync refinement smoothing (when enabled).

Format presets: aspect ratios, safe zones, bitrate targets for feed playback.

Output: Short video clips optimized for scrolling feeds (consistent look, beat-matched

pacing, platform-ready formatting).

Low-level pipeline (track + spec → shot plan → latent video → lip-sync → post-
process)

5. Voice Cloning

JGGL supports voice cloning as an opt-in capability that allows users to generate vocals

(or spoken segments) in a voice that matches their registered voice profile. The feature is

designed to be consent-driven, auditable, and restricted to prevent impersonation and

misuse.

5.1 Consent

Voice cloning is enabled only after explicit opt-in during registration.

What consent should cover

Scope of use: voice cloning is used only to generate content inside JGGL (e.g., vocals

for songs, spoken intros/outros), not as a generic “voice export” tool.

Data handling: clarify whether the platform stores a persistent voice

profile/embedding or derives it from recordings; the user should understand what is

retained and for what purpose.

Revocability: users should be able to disable voice cloning in settings at any time.

Disabling should stop future generation using the voice profile (existing published

content is governed by platform policy and terms).

Transparency: whenever voice cloning is applied to an output, the UI should clearly

indicate it (e.g., a label on the generation screen and on the published post’s metadata

panel).

Operational controls

In-product toggle: a simple on/off control that updates eligibility instantly.

Re-consent on material changes: if the feature expands materially (e.g., new use

cases like third-party model marketplace usage), prompt users to re-consent.

Age / regional gating (if required): the platform can restrict availability depending on

legal requirements.

5.2 Safety expectations

Voice cloning has a higher abuse surface than standard music generation, so safety is

enforced across policy, product design, and technical controls.

Anti-impersonation

Default rule: users may only clone their own voice unless an explicit, verifiable

authorization mechanism exists for additional voices.

Prohibit content intended to deceive (e.g., pretending to be another person) and

enforce this with both user reporting and automated detection signals.

Strong UX cues: prevent ambiguous “celebrity” or third-party identity flows; do not

provide templates that encourage impersonation.

Provenance and labeling

Maintain internal provenance metadata that indicates:

voice cloning was used,

which consented profile was applied (internal ID),

when and how the output was generated.

Optional outward-facing labeling for transparency in the social layer (at minimum in a

metadata panel; optionally as a subtle badge).

Watermarking

Support watermarking approaches that survive typical transformations (compression,

trimming) and allow later verification that vocals originated from JGGL generation.

Watermarking should be applied in a way that minimally impacts perceived audio

quality.

Rate limits and abuse monitoring

Apply limits on:

number of voice-cloned generations per time window,

rapid re-tries that indicate “prompt brute forcing,”

high-volume output patterns typical of abuse.

Behavioral monitoring:

anomaly detection on new accounts,

device/IP reputation,

suspicious clustering of content themes.

Content policy enforcement

Block disallowed content before generation (intent-level filters).

Post-generation checks when feasible (keyword alignment, speech-to-text on vocal

output for policy screening).

Maintain escalation tiers: soft warnings → temporary restrictions → feature lock →

account enforcement.

Takedown and dispute process

Simple user-facing reporting for “impersonation” and “voice misuse.”

Fast internal review flow for high-risk reports.

Evidence handling:

preserve generation metadata for investigations,

provide an internal verification path using provenance/watermark signals.

Remediation options:

removal of the specific post,

disabling voice cloning for the account,

account sanctions for repeat abuse.

5.3 Privacy and data minimization

Minimize retained data

Prefer storing compact voice embeddings rather than raw recordings where possible.

If raw audio is stored (e.g., for quality improvement), separate it from identity details

and enforce strict retention policies.

Access control

Voice profiles should be protected as sensitive data:

encryption at rest,

limited internal access,

audit logs for access and generation events.

User control

Allow users to:

disable the feature,

request deletion of their voice profile (subject to platform policy and legal

constraints),

view when the feature was last used (transparency).

5.4 Product-level transparency

To keep trust high, the experience should be explicit:

“Voice cloning is ON/OFF” shown at creation time.

A visible indicator on generated outputs when voice cloning was applied.

Clear explanation (one screen) of what the feature does and does not do:

does: generate vocals in your voice for your content

does not: let others use your voice; export a general-purpose voice tool; enable

impersonation

5.5 Future hardening

Stronger verification for any multi-voice support.

Third-party audits of watermark/provenance mechanisms.

Public transparency reporting on voice-related enforcement statistics.

Progressive rollouts with safety thresholds before expanding access.

6. Infrastructure: Today and the Decentralized Path

6.1 Current deployment (near-term)

Models are hosted on JGGL-controlled infrastructure for:

predictable latency

consistent quality gating

unified safety enforcement

fast iteration cycles

6.2 Decentralized compute & training (mid-term vision)

JGGL plans a shift to a decentralized architecture where external compute providers can

contribute GPU resources.

Core concepts:

Compute marketplace: independent operators register hardware and stake/lock

collateral to join.

Job routing: generation requests are dispatched to providers with performance proofs

and reputation scores.

Verification: outputs are validated through lightweight checks (hash commitments,

redundancy sampling, content integrity tests).

Economic incentives: providers are paid per job; poor performance or policy

violations reduce rewards or trigger penalties.

Decentralized fine-tuning: community or creators can train specialized adapters (e.g.,

style packs) with auditable metadata and licensing rules.

Why this matters:

elastic scaling during viral bursts

reduced dependency on a single infrastructure footprint

a path to creator-owned model customization (see Model Marketplace)

7. The $JGGL Token

$JGGL is the utility token used to power creation, monetization, and community primitives

inside JGGL.

7.1 Utilities (official list)

1. Subscriptions
Unlock premium creation tools and capabilities with $JGGL.

Note: subscription spend can be implemented as a token sink via on-chain burning

(see 7.2).

2. AI Computation
Pay-per-generation model. $JGGL functions as “digital gas” to access premium

models and faster generation tiers.

3. Creator Rewards
A defined share of transactional activity is distributed to creators.

4. Marketplace
Buy, sell, or license creative assets (beats, templates, visual packs, sound palettes).

5. Model Marketplace
Creators can publish model adapters (e.g., style packs / fine-tunes) and earn $JGGL

when used.

6. Governance
Community voting on platform parameters (e.g., reward curves, marketplace policies,

feature priorities).

7.2 Burn Mechanism (On-Chain)

At the token level, $JGGL is burnable: the deployed contract inherits ERC20Burnable ,

which enables permanent removal of tokens from circulation (reducing total supply).

What “burnable” means in practice

Any holder can burn their own tokens.

A third party (e.g., a subscription contract) can burn tokens only if the holder has

granted an allowance first (approve → burnFrom).

This enables product-driven burns while remaining permissioned by the user.

Proof in verified code (inheritance)

Core burn functions (conceptual)

import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";

contract JgglToken is ERC20, ERC20Permit, ERC20Burnable, Ownable {

 // ...

}

// Holder burns own tokens

function burn(uint256 amount) public {

Example: “subscription = burn” pattern (illustrative)

Verified contract code

 _burn(_msgSender(), amount);

}

// Allowance-based burn (requires prior approve)

function burnFrom(address account, uint256 amount) public {

 _spendAllowance(account, _msgSender(), amount);

 _burn(account, amount);

}

// Illustrative example (not deployed)

interface IERC20Burnable {

 function transferFrom(address from, address to, uint256 amount) external retu

 function burn(uint256 amount) external;

}

contract Subscription {

 IERC20Burnable public immutable jggl;

 constructor(address jgglToken) {

 jggl = IERC20Burnable(jgglToken);

 }

 function payAndBurn(uint256 amount) external {

 // User must approve(amount) beforehand

 require(jggl.transferFrom(msg.sender, address(this), amount), "transfer f

 jggl.burn(amount); // burns from this contract's balance

 }

}

https://etherscan.io/token/0x1c9b53aaca3bb34ab1039c6308671fba173adc0e#code

8. Creator Monetization

JGGL uses two primary reward channels:

8.1 Subscription Pool

A portion of subscription revenue is aggregated and distributed to creators based on

measurable participation signals (examples):

consumption (listens / watch time)

creation impact (shares, reposts)

follower growth and retention

engagement quality signals (anti-bot filtered)

8.2 Direct Tips

Users can tip creators directly in $JGGL. Tips are explicit, creator-directed, and can be

used as a signal for discovery.

8.3 Creator share

70% of each transaction goes to creators (as specified in the token utility design).

The exact distribution policy (timing, eligibility, anti-fraud thresholds) should be

published as a living “Rewards Policy” document.

9. Economic Design Principles

9.1 Product-first utility

$JGGL is designed to be spent on real platform actions: generation, subscriptions, assets,

and creator support.

9.2 Sustainability of compute

AI generation has real costs. The economic layer aligns:

user demand (generation volume)

creator earnings

infrastructure spend

so the platform can scale with usage.

9.3 Transparent allocation

For trust, the system should keep a public policy for:

what portion of spend funds creators

what portion funds operations/treasury

what portion funds compute providers (especially on the decentralized path)

whether any portion is burned (if applicable)

10. Indicative Performance Targets (Illustrative)

These are non-binding targets meant to communicate expected UX standards (not

guarantees).

Audio generation latency: 20–60 seconds per short track (depending on quality tier)

Video generation latency: 30–120 seconds for a short clip (depending on

resolution/tier)

Median publish time: < 3 minutes from capture → post (including retries)

Daily creator activation: 20–35% of active users generating at least one post/day

(goal range)

Cost envelope (compute): managed by tiering (standard vs premium), batching, and

caching

Replace these with measured KPIs once production telemetry is stable.

11. Security & Integrity (What Matters Most)

Account security and anti-sybil protections (especially for rewards)

Output provenance tagging (generated-in-platform metadata)

Abuse prevention for voice/video generation

Fraud-resistant reward distribution and marketplace enforcement

Clear reporting + takedown flow

12. Roadmap & Traction

12.1 Milestones to Date

Q2–Q3 2024 (done)

Kickoff (team, vision, brand, channels)

Proprietary AI R&D; internal prototypes

App baseline assembled; content engine bootstrapped

Promo plan; first alpha/UX tests; community seeding

Q4 2024 – Q1 2025 (done)

App baseline ready; first AI artists created & released

Closed tests (load/security); analytics baseline

Marketplace concept & specs; development in progress

Promo campaign live; distribution on platforms

Q2–Q3 2025 (done)

New AI artists onboarded; ecosystem roles clarified

Distribution expanded; 1,000,000 total plays/views achieved

Marketplace v0.8 → v0.9 (pre-release); go-to-market preparation

Q4 2025 – Q1 2026 (planned)

Core model upgrades and hardening across the generation stack:

Orphea AI (music): higher coherence, faster generation tiers, improved mix

consistency

Promethea AI (video): stronger temporal stability, beat-sync accuracy, and
optional lip-sync quality

Thea AI (image): improved style consistency and keyframe reliability for video

anchoring

Perseia AI (planning): better intent-to-spec compilation and safety gating

Production readiness:

latency and cost optimization

reliability improvements (retry logic, quality gates)

safety & consent enforcement refinement (voice cloning controls)

Business and ecosystem milestones:

Seed round completion

$JGGL token launch and initial utility rollout (subscriptions, compute tiers,

rewards primitives)

Q2’26 — App Store Launch (Catalyst Milestone)

The roadmap anticipates a major distribution inflection point with the native JGGL App
launch in Q2’26 (public release via mobile app stores). This milestone is expected to

materially improve:

Acquisition efficiency: lower onboarding friction versus web/bot entry points.

Retention and frequency: better session loops (capture → narrate → generate →

publish) in a mobile-native experience.

Conversion into paid usage: smoother subscription and compute-tier upsells within

the core creation flow.

Creator economy throughput: higher content velocity and engagement density,

increasing marketplace and rewards activity.

From an ecosystem perspective, the App Store launch is positioned as the primary growth
catalyst for userbase expansion and overall platform activity, which in turn increases

utility demand for $JGGL across subscriptions, AI computation, marketplaces, and creator

rewards.

12.2 Traction Snapshot

Initial test version of the JGGL App launched ~1.5 years ago

JGGL Bot and JGGL Web are live

Platform metrics (as reported):

$20M+ invested in JGGL

11M+ users discovered JGGL

110K+ users registered and generated a track

46K+ active users

12.3 Forward Roadmap (High-Level)

Phase 1 — Creation-first social

Stable capture → narrate → generate → publish loop at scale

Feed ranking optimized for completion, replays, shares, and JGGLs engagement

$JGGL subscriptions + compute tiers live (including burn-driven subscription sink)

Phase 2 — Creator economy

Creator rewards via subscription pool + direct tips

Marketplace launch (assets + promotions)

Reward policy hardening (anti-fraud, transparent accounting)

Model Marketplace alpha (creator-published adapters)

Phase 3 — Decentralized scaling

External compute onboarding with verifiable execution and reputation

Provider incentives + penalty mechanisms for quality and uptime

Community-driven adapter ecosystem and governance for marketplace parameters

13. Glossary

Creative Spec: Structured instructions derived from user story + sliders (tempo,

mood, structure, visual style).

Latent Diffusion: Image/video generation in compressed representation before

decoding to pixels.

Conditioning: Inputs that steer a generative model (tokens, embeddings, control

signals).

Model Adapter: Lightweight fine-tune component that changes style/behavior without

retraining the full model.

JGGLs: Off-chain reaction primitive used across the social layer.

