
About Litentry
This page discusses the general functionality of the Litentry protocol.

Litentry is a decentralized, cross-chain identity aggregator that enables users to link their identities
in a privacy-preserving context. We aim to give users full control over their personal data and enable
them to gain social and economic value from it. Our protocol can be adopted in on-chain reputation,
governance, DeFi, and customized data services.

Our Mission statement
Litentry is unlocking verifiable personal data in a private and secure way, to pave the way for
identity-based social and economic innovations.

Guides: Jump right in

Follow our handy guides to get started on the basics as quickly as possible.
The parachain is our blockchain on the Kusama & Polkadot ecosystem.
The Identity Hub is the interface to our protocol and it allows users to interact with the parachain.

Parachain

IdentityHub

Problem & Solution
Next

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain
https://docs.litentry.com/front-end-products/identityhub
https://docs.litentry.com/about-litentry/problem-and-solution
https://docs.litentry.com/

Problem & Solution

The Problems:

Data Fragmentation. Decentralized identity differs from traditional identity in that it is
generated and managed without centralized control or oversight, using blockchains as a
permissionless, distributed, and transparent database. As web3 continues to grow, more
decentralized identity data will be generated and stored on the blockchain. However, this data is
fragmented and lives on different networks and blockchains, making it difficult to manage and
integrate.

Data Shortage for Web3 Services. People are currently unwilling to be personally identified on
the blockchain, resulting in a dearth of identity data being available for the creation of web3
products and services

The Solution: Litentry's Value Proposition

Litentry allows users to move from fragmented, individual identities to aggregated identities. An
aggregated identity creates a more comprehensive identity profile by creating an identity graph of
the account relationships of the identity owner. This aggregated identity follows W3C DID standards
and can potentially solve the problem of isolated ID registry systems that many tech companies face.

1. Litentry's decentralized identity pallet provides a secure and private way to link different Web3
wallets and Web2 accounts. This allows users to enhance their Web3 profiles, creating a more
tangible and trustworthy digital identity.

2. Litentry's Trusted Execution Environment (TEE) infrastructure adds a privacy-preserving layer
between raw blockchain data and data shared with a dApp. It also provides secure storage for
the sensitive identity graph.

3. Identity Hub by Litentry enables identity management, personal data analysis, and grants
granular access to control which data is shared with third parties.

About Litentry
Previous

High Level Functionality
Next

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/
https://docs.litentry.com/about-litentry/high-level-functionality
https://docs.litentry.com/

High Level Functionality
This page discusses a high level overview of the infrastructure and functionality
of Litentry.

The 3 layers required for decentralized identity data computation

Litentry utilizes an infrastructure where identity data progresses from a disordered and scattered
state to a structured state. The Litentry identity computation network consists of three core layers
that create a verifiable, privacy-enhancing identity computation process. They are:

1. Source data layer. This layer obtains and indexes raw data from the blockchain and other
networks, such as Etherscan, The Graph, Subquery, Onfinality, and other data providers.

2. Address analysis layer. This layer mainly serves to provide detailed data analysis or scores &
labels, such as Chainalysis and Achainable.

3. Identity aggregation layer. Litentry enables users to store address relations associated with a
single subject as an Identity Graph in a secure manner. This is achieved by encrypting the data
and using Trusted Execution Environment (TEE) for computation. Persuaded by the Identity
Graph, we obtain the corresponding address analysis results from the address analysis layer,
and generate verifiable credentials or perform a weighted score calculation.

The 3 stages of the Litentry Protocol functionality

The functionality of the Litentry protocol is divided into three main stages. These stages are
interrelated and they interact together to ensure the privacy of user data.

1. Linking sensitive identities: The Litentry Protocol starts with the creation of an aggregated
identity. In the Identity Hub, the user can prove ownership of their various accounts. The
relationships between these accounts are stored in the form of an identity graph inside a
Trusted Execution Environment (TEE). This TEE is a hardware black box where the sensitive
account relationships are stored, managed, and calculated. It cannot be tampered with and is
only visible to the root user.

2. Generating scores and credentials: When an identity score is requested from a specific user's
identity graph, the necessary web2 and web3 data is fetched in real-time. The score or
credential is calculated inside the TEE and issued as a verifiable credential without exposing any
root accounts or metadata. The verifiable credential simply states the truth. It is stored
encrypted on Litentry's parachains for verification purposes and sent to the user's local storage.

3. Issuance of verifiable credentials: Litentry uses W3C Verifiable Credential standards as the
format for sharing identity scores or labels outside the Identity Hub. This allows for privacy-
preserving, selective disclosure of identity data according to a self-sovereign identity framework.

Problem & Solution
Previous

Identity Use Cases
Next

Last modified 4mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/about-litentry/problem-and-solution
https://docs.litentry.com/about-litentry/identity-use-cases
https://docs.litentry.com/

Identity Use Cases
This page discusses some of the use cases that Litentry unlocks

Litentry's identity aggregation and privatized verifiable credentials can be useful in several
situations.

Airdrop Whitelisting
Currently projects distribute airdrops to their users based on unique addresses, but not unique
identities. The validation and contribution process is centralized and raises questions about
transparency, token claim fees, and one-time distribution. The Litentry identity verification system
allows crypto projects to identify and filter out low-quality engagement in an airdrop.

Audience Selection & Community Insights
Decentralized identities allow communities and projects to gain a better understanding of their
audience and reward them for sharing their pseudonymous identity data. By requesting specific,
narrowed down details about their users, projects can respect the privacy of their ideal users.

Soulbound Tokens or NFTs
The Litentry protocol allows projects and users to inject pseudonymous identity data into NFTs,
dApps, and other apps in a private and secure way. An NFT can start to contain a personal
"community participation score" based on various metrics of community engagement.

Web3 Native Job Markets
Anonymous or pseudonymous verifiable credentials unlock a market for talent scouting,
headhunting, and user research with highly experienced community members. Due to the increased
level of privacy, participants can be judged on their relevant skills instead of being discriminated
based on personal characteristics.

Credit Scores
By providing a complete and thorough picture of a user's trading history, asset values, and
borrowing behavior, we can provide credit scores. This increases the eligibility for under-collaterized
lending and other reputation-based benefits or provides risk insights for partners.

Cross-Platform Reputation
Litentry's identity aggregation makes it possible to transport reputation and status metrics across
platforms from Web2 to Web3 and back.

High Level Functionality
Previous

FAQ
Next

Last modified 4mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/about-litentry/high-level-functionality
https://docs.litentry.com/about-litentry/faq
https://docs.litentry.com/

FAQ
Please feel free to ask any questions on our Telegram or Discord channels to
help us refine this section with frequently asked question.

What's the history of Litentry?

Why did Litentry start with Polkadot?

What are the use cases for Litentry's protocol & front-end products?

What products of litentry are currently working?

What are the next chains that you would like to be more present on?

What's the difference between Galxe and Litentry?

Does Litentry make use of Zero Knowledge Proofs?

Can Litentry see the sensitive relationships between the accounts in my profile?

Is it possible to use the protocol without using the Identity Hub?

How are you managing identity data and 3rd partners?

Identity Use Cases
Previous

Introduction
Next - Parachain

Last modified 26d ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/about-litentry/identity-use-cases
https://docs.litentry.com/parachain/introduction
https://docs.litentry.com/

Introduction
A basic concept introduction to parachain

A parachain is an application-specific data structure that is globally coherent and validatable by
the validators of the Relay Chain. They take their name from the concept of parallelized chains
that run parallel to the Relay Chain. Most commonly, a parachain will take the form of a
blockchain, but there is no specific need for them to be actual blockchains.

Image from https://wiki.polkadot.network/docs/learn-parachains

Basically, parachains are layer-1 blockchains that connect to the relay chains (Polkadot or Kusama
for example), which validates the state transition of connected parachains, providing a shared state
across the entire ecosystem. Since the validator set on the relay chains is expected to be secure with
a large amount of stake put up to back it, it is desirable for parachains to benefit from this shared
security.

Moreover, by using heterogeneous sharding, each parachain could be easily tailored through the
 framework, optimizing them for a specific use case and running in parallel rather than the

same across all shards.
substrate

To serve as the backbone platform for various Litentry products and achieve a transparent and
decentralized user experience, we launched two parachains with customized features:

 on Kusama (onboarded on Feb 20th, 2022)Litmus

 on Polkadot (onboarded on July 4th, 2022)Litentry

The source code of our parachain can be found here:

https://github.com/litentry/litentry-
parachain

FAQ
Previous

Get Started
Next - Parachain

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://wiki.polkadot.network/docs/learn-parachains
https://substrate.io/
https://docs.litentry.com/parachain/get-started/litmus-network
https://docs.litentry.com/parachain/get-started/litentry-network
https://github.com/litentry/litentry-parachain
https://docs.litentry.com/about-litentry/faq
https://docs.litentry.com/parachain/get-started
https://docs.litentry.com/

Get Started
Details of the Litmus/Litentry Parachains

Litmus Network (Kusama)

Chain ID: 2106

Onboarded: Feb 20th, 2022

Leasing period: 48 weeks

Polkadot-js endpoint:

https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Frpc.litmus-
parachain.litentry.io#/explorer

Blockchain explorer: Statescan

Litmus Network

Litentry Network (Polkadot)

Chain ID: 2013

Onboarded: July 4th, 2022

Leasing period: 96 weeks

Polkadot-js endpoint:

https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Frpc.litentry-
parachain.litentry.io#/explorer

Blockchain explorer: Statescan

Litentry Network

Introduction
Parachain - Previous

Litmus Network
Next

Last modified 4mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Frpc.litmus-parachain.litentry.io#/explorer
https://litmus.statescan.io/
https://docs.litentry.com/parachain/get-started/litmus-network
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Frpc.litentry-parachain.litentry.io#/explorer
https://litmus.statescan.io/
https://docs.litentry.com/parachain/get-started/litentry-network
https://docs.litentry.com/parachain/introduction
https://docs.litentry.com/parachain/get-started/litmus-network
https://docs.litentry.com/

Litmus Network
Entry page for Litmus network

Litmus is a companion canary network to Litentry and connects to the Kusama ecosystem as
parachain. Litmus is expected to be fast-paced and integrated with cutting-edge technology, molding
itself into a perfect field to experiment with new ideas and products before they finally land on
Litentry parachain.

No new tokens will be issued on Litmus. Instead, we will provide a mechanism to
allow users to transfer their LIT tokens betwen Ethereum(ERC20) and Litmus.

token migration

Outlines:

Rollout Plan

Collator

Full Node

Get Started
Parachain - Previous

Rollout Plan
Next

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/token-bridge
https://docs.litentry.com/parachain/get-started/litmus-network/rollout-plan
https://docs.litentry.com/parachain/get-started/litmus-network/collator
https://docs.litentry.com/parachain/get-started/litmus-network/full-node
https://docs.litentry.com/parachain/get-started
https://docs.litentry.com/parachain/get-started/litmus-network/rollout-plan
https://docs.litentry.com/

Rollout Plan
This page describes the launch plan of Litmus parachain

 Phase 0 - Launch with Litmus genesis

Following , the Litmus parachain was launched on Feb 20th with
the genesis wasm. The initial launch will only include the minimum viable functionality to keep the
chain running. It means:

winning a Kusama parachain slot

The parachain is running under the protection of a super-user (sudo pallet).

Most of the other pallets are deactivated, including governance, balance transfer and all other
feature modules.

The users' activities are very limited in this phase.

What users can do

Users will be able to observe block production and finalization via explorer (e.g.
), and perform the read-only RPC queries to the chain state and storage.

polkadot-js
endpoint

 Phase 1 - Technical verification & Crowdloan distribution

Once Litmus goes live, we will start to keep track of the chain state and verify that everything goes
fine, including block authorization and finalization, collator status, extrinsic testing and runtime
upgradability etc.

After we confirm that the parachain sits in a stable state and is running as expected, we will start to
distribute the crowdloan rewards in LIT, with a linearly unlocked, per-block base.

What users can do

Users can start to claim their crowdloan rewards. We will have later to explain how to
claim it. Please note that the balance transfer remains deactivated, which means transferring the
crowdloan reward to another account is still disabled.

a tutorial page

 Phase 2 - Token migration & XCM

A token migration mechanism with corresponding pallets will be activated, which allows the user to
transfer ERC20 LIT tokens to Litmus parachain.

What users can do

Users can optionally migrate their ERC20 LIT tokens to Litmus parachain. will be
added later to demonstrate how to make such a transfer.

A guidance page

Initially, the token migration in this phase is uni-directional: ERC20 -> Litmus. However, we
have now expanded the functionality and migration can also be done the other way round
i.e Litmus -> ERC20.

A cross-chain mechanism based on XCM with other parachains will be active. These parachains
processing DEX features will make secondary market trading of LIT available.

 Phase 3 - Sudo removal

After we confirm that the previous phases have been successfully carried out, we will start to
activate the governance-related pallets in this phase with a subsequent sudo removal. From this
point on, Limtus parachain will be fully governed by democracy, all on-chain state transitions that
require sudo before will now have to go through a democratic process.

What users can do

When the sudo key has been completely removed from the Litmus parachain, users will be able to
observe the activation of governance features, including council information, technical committee,
and referendum. LIT token holders can then take part in on-chain governance activities.

 Phase 4 - Balance transfer activation

Balance transfer has been enabled in this phase through a democratic runtime upgrade.

What users can do

Users will be able to freely transfer their funds between accounts.

Note that Balance transfer and XCM are two independent mechanisms. So without balance transfer
enabled, our users can still use the XCM function freely.

 Phase 5 - Feature pallets onboard

More feature pallets will be gradually onboarded in this phase. They are bound up with the Litentry
products which widen the LIT token usage scenarios and bring the integrative service experience to
the users.

The feature pallets are expected to contain but are not limited to:

Credit computation service with TEE

 Identity Management Pallet

 VC Management Pallet

 Parachain Staking Pallet

NFT-based use cases

What users can do

Users will be able to take part in the various products and services firsthand and discover the
diverse LIT token utilities.

Depending on the development progress, some pallets could be experienced earlier than
planned, in the form of internal/public testing.

Litmus Network
Previous

Collator
Next

Last modified 26d ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://twitter.com/litentry/status/1487781254204657664
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Frpc.litmus-parachain.litentry.io#/explorer
https://docs.litentry.com/parachain/how-to-guides/claim-crowdloan-rewards
https://docs.litentry.com/parachain/how-to-guides/transfer-lit-from-ethereum-to-parachain
https://docs.litentry.com/parachain/pallets-and-modules/tee
https://docs.litentry.com/parachain/pallets-and-modules/identity-management-pallet-imp
https://docs.litentry.com/parachain/pallets-and-modules/verifiable-credential-management-pallet-vcmp
https://docs.litentry.com/parachain/how-to-guides/participate-in-lit-staking-on-litentry/auto-compound-staking
https://docs.litentry.com/parachain/get-started/litmus-network
https://docs.litentry.com/parachain/get-started/litmus-network/collator
https://docs.litentry.com/

Collator

Functionalities of collators

The Litmus retain all necessary information to collate and execute transactions to create an
unsealed block and provide it, together with a proof of state transition, to one or more relaychain
validators responsible for proposing a parachain block.

collators

Collators will also watch the progress of block-producing and consensus protocols in BABE and build
on what they think is the latest relay chain block that will be finalised. Collators do not directly
participate in the consensus for the relay chain and therefore never stake DOT.

To become a collator and start to author blocks, one has to possess a valid session key, which is
either set in the initial genesis config as invulnerables or by selection via the cumulus

.
collator-

selection pallet

Litmus collator model

Currently, to keep it simple and focus on product development, we are running collators with our
own nodes for Litmus. However, we are not ruling out the possibility to invite third-party or the
community to join our collator set when we think the time is right.

If you want to run a full node, please refer to the . Full Node Guide

Rollout Plan
Previous

Full Node
Next

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://wiki.polkadot.network/docs/learn-collator
https://github.com/paritytech/cumulus/tree/master/pallets/collator-selection
https://docs.litentry.com/parachain/get-started/litmus-network/full-node
https://docs.litentry.com/parachain/get-started/litmus-network/rollout-plan
https://docs.litentry.com/parachain/get-started/litmus-network/full-node
https://docs.litentry.com/

Full Node

Please refer to the chapter in Litmus.Full Node

Launching a Litentry full node is very similar to Litmus, you just need to replace the parachain type
with litentry and relaychain type with polkadot . The commands are listed here again for
reference:

using docker

docker run -d --network=host -v /var/lib/litentry:/data \
 -u $(id -u):$(id -g) \
 litentry/litentry-parachain:v0.9.11 \
 --base-path=/data \
 --name="litentry-node" \
 --chain=litentry \
 --state-pruning=archive \
 --state-cache-size 0 \
 --ws-external \
 --rpc-external \
 --rpc-cors=all \
 --execution=wasm \
 -- \
 --execution=wasm \
 --chain polkadot

using binary

./target/release/litentry-collator \
 --name="litentry-node" \
 --chain=litentry \
 --state-pruning=archive \
 --state-cache-size 0 \
 --ws-external \
 --rpc-external \
 --rpc-cors=all \
 --execution=wasm \
 -- \
 --execution=wasm \
 --chain polkadot

Collator
Previous

Pallets and Modules
Next - Parachain

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/get-started/litmus-network/full-node
https://docs.litentry.com/parachain/get-started/litentry-network/collator
https://docs.litentry.com/parachain/pallets-and-modules
https://docs.litentry.com/

Litentry Network

Litentry is a parachain that connects to the Polkadot ecosystem. As compared to Litmus, Litentry is
expected to be more stable and have longer iteration cycles.

No new tokens will be issued on Litentry. Instead, we will provide a mechanism to
allow users to transfer their LIT tokens betwen Ethereum(ERC20) and Litentry.

token migration

Outlines:

Collator

Rollout Plan

Full Node

Full Node
Previous

Rollout Plan
Next

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/token-bridge
https://docs.litentry.com/parachain/get-started/litentry-network/collator
https://docs.litentry.com/parachain/get-started/litentry-network/rollout-plan
https://docs.litentry.com/parachain/get-started/litentry-network/full-node
https://docs.litentry.com/parachain/get-started/litmus-network/full-node
https://docs.litentry.com/parachain/get-started/litentry-network/rollout-plan
https://docs.litentry.com/

Rollout Plan
This page describes the launch plan of Litentry parachain

 Phase 0 - Launch with Litentry genesis

Following on Apr 25th , the Litentry parachain was launched on
Jun 4th with the genesis wasm. The initial launch will only include the minimum viable functionality
to keep the chain running. It means:

winning a Polkadot parachain slot

The parachain is running under the protection of a super-user (sudo pallet).

Most of the other pallets are deactivated, including governance, balance transfer and all other
feature modules.

The users' activities are very limited in this phase.

What users can do

Users will be able to observe block production and finalization via explorer (e.g.
), and perform the read-only RPC queries to the chain state and storage.

polkadot-js
endpoint

 Phase 1 - Technical verification & Crowdloan distribution

Since Litentry went live, we keep track of the chain state and verify that everything goes fine,
including block authorization and finalization, collator status, extrinsic testing, and runtime
upgradability, etc. Most of Litmus features are available on Litentry, and we will make runtime
upgrade for new features constantly in the future after Litmus confirm them as fully tested and
robust.

After we confirm that the parachain is stable and running as expected, we will start distributing the
crowdloan rewards in LIT, with a linearly unlocked, per-block base.

What users can do

Users can start to claim their crowdloan rewards. We will have later to explain how to
claim it. Please note that the balance transfer has been activated, which means the crowdloan
reward can now be transferred to another account.

a tutorial page

 Phase 2 - Token migration & XCM

A token migration mechanism with corresponding pallets has been activated, which allows the user
to transfer ERC20 LIT tokens to Litentry parachain.

What users can do

Users can optionally migrate their ERC20 LIT tokens to Litentry parachain. will be
added later to demonstrate how to make such a transfer.

A guidance page

Please note the token migration in this phase is uni-directional: ERC20 -> Litentry. We will
expand it to allow the other direction in the near future.

A cross-chain mechanism based on XCM with other parachains will be active. These parachains
processing DEX features will make secondary market trading of LIT available.

 Phase 3 - Collator Staking

Unlike Litmus, Litentry will have an extended staking mechanism based on
 as well as a delegation feature, making it a Delegated Proof of Stake(DPoS) setup.

Polkadot's Proof-of-Stake
model

Collators are initially maintained by Litentry team and users make a delegation request through
staking, which allows users to participate in the block reward process.

Please refer to for more informationLitentry collator model

 Phase 4 - Sudo removal

After we confirm that the previous phases have been successfully carried out, we will start to
activate the governance-related pallets in this phase with a subsequent sudo removal. From this
point on, Litentry parachain will be fully governed by democracy, all on-chain state transitions that
require sudo before will now have to go through a democratic way.

What users can do

When the sudo key has been completely removed from the Litmus parachain, users will be able to
observe the activation of governance features, including council information, technical committee,
and referendum. LIT token holders can then take part in on-chain governance activities.

 Phase 5 - Balance transfer activation

Balance transfer has been enabled in this phase through a democratic runtime upgrade.

What users can do

Users will be able to freely transfer their funds between accounts.

Notice that Balance transfer and XCM are independent two mechanisms. So without balance
transfer enabled, users can still use the XCM function freely.

 Phase 6 - Feature pallets onboard

More feature pallets will be gradually onboarded in this phase. They are bound up with the Litentry
products which widen the LIT token usage scenarios and bring the integrative service experience to
the users.

The feature pallets are expected to contain but are not limited to:

 Crowdloan Distribution (Linear Vesting Unlock)

A bidirectional token bridge between ERC20 LIT tokens and Litentry parachain (first
unidirectional, then extend to both directions)

 cooperation with available Defi-hub (e.g. /) to liquidate and invest LIT in
their financial products
XCM Moonbeam Acala

 support between Litmus and LitentryXCM

 (Please note this is for the Litentry
parachain only, not on Litmus)
Activation of PoS collation and collator-related staking

Cooperation with PNS ()Polkadot Name Systems

LIT utility: and tip/bounty programOn-chain governance

LIT utility: Privacy-preserving identity aggregation service

LIT utility: Privacy-preserving airdrop distribution and claiming service

Privacy-preserving anti-fraud scoring service

Credit computation service with TEE

 Parachain Staking Pallet

 VC Management Pallet

 Identity Management Pallet

NFT-based use cases

What users can do

Users will be able to take part in the various products and services firsthand and discover the
diverse LIT token utilities.

Depending on the development progress, some pallets could be experienced earlier than
planned, in the form of internal/public testing.

Litentry Network
Previous

Collator
Next

Last modified 26d ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://twitter.com/polkadot/status/1518581083679383558?s=21&t=TML6vo7TzlnZzIpJx8ydsg
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Frpc.litmus-parachain.litentry.io#/explorer
https://docs.litentry.com/parachain/how-to-guides/claim-crowdloan-rewards
https://docs.litentry.com/parachain/how-to-guides/transfer-lit-from-ethereum-to-parachain
https://wiki.polkadot.network/docs/learn-consensus
https://docs.litentry.com/parachain/get-started/litentry-network/collator#litentry-collator-model
https://docs.litentry.com/parachain/how-to-guides/claim-crowdloan-rewards
https://docs.litentry.com/parachain/pallets-and-modules/token-bridge
https://docs.litentry.com/parachain/partner-documentation/establishing-xcm-communication-with-litentry
https://moonbeam.network/
https://acala.network/
https://docs.litentry.com/parachain/partner-documentation/establishing-xcm-communication-with-litentry
https://docs.litentry.com/parachain/how-to-guides/participate-in-lit-staking-on-litentry/auto-compound-staking
https://www.pns.link/
https://docs.litentry.com/parachain/how-to-guides/participate-in-litentry-governance
https://docs.litentry.com/parachain/pallets-and-modules/tee
https://docs.litentry.com/parachain/how-to-guides/participate-in-lit-staking-on-litentry/auto-compound-staking
https://docs.litentry.com/parachain/pallets-and-modules/verifiable-credential-management-pallet-vcmp
https://docs.litentry.com/parachain/pallets-and-modules/identity-management-pallet-imp
https://docs.litentry.com/parachain/get-started/litentry-network
https://docs.litentry.com/parachain/get-started/litentry-network/collator
https://docs.litentry.com/

Collator

Functionalities of collators

The Litentry retain all necessary information to collate and execute transactions to create
an unsealed block and provide it, together with a proof of state transition, to one or more relaychain
validators responsible for proposing a parachain block.

collators

Collators will also watch the progress of block-producing and consensus protocols in BABE and build
on what they think is the latest relay chain block that will be finalised. Collators do not directly
participate in the consensus for the relaychain and therefore never stake DOT.

To become a collator and start to author blocks, one has to possess a valid session key, which is
either set in the initial genesis config as invulnerables or by selection via the

.
parachain-staking

pallet

Litentry collator model

Litentry uses a Delegated Proof of Stake(DPoS) collation model, where users of the network vote
and elect delegates to author the next block. Using DPoS, instead of running a collator to earn
rewards, you can vote on delegates by staking your tokens to a particular delegate. When the
selected delegate manages to produce blocks, you will share the block production reward as well.

Litentry takes a phased approach to roll out the collator setup. Basically speaking, there're 5 phases:

1. migrate the collator selection mechanism and the genesis collators (replace collator-
selection pallet with parachain-staking pallet)

2. initial collator set expansion: open a few extra collator slots and observe the block production

3. adjust tokenomics to prepare for the staking functionality

4. enable delegation with staking

5. extend the collator set size (to 16 or 32 collators, depending on the network status)

You can follow the rollout progress in this .Github issue

Block production rewards

To resonate with the collator staking model, we to allow the
collators and their backed users to share the block production rewards.

reworked the tokenomics model

A short summary:

Target a 1.5% annual inflation rate in the first 1,296,000 blocks (~= 6 months) after staking is
enabled on chain, 0.5% goes towards incentivizing collators, 1% is for users that stake their LIT
tokens

After block 1,296,001 a 2.5% annual inflation rate will be applied, 0.5% goes towards incentivizing
collators, 2% is for users that stake their LIT tokens

568,750 LIT will be burnt from the ecosystem wallet each quarter and continues for eight
quarters (two years)."

The new tokenomics model was discussed and voted on Litmus because Litentry hadn't
enabled governance by that time, but the result will be enacted on Litentry manually.

Requirements to run a collator

hardware requirements

Same as the polkadot validator reference hardware

bonding requirements

There's a minimum (self)-bond to join the collator candidate pool and be eligible to get selected to
author blocks. Currently it's set to 5000 LIT, you'll have to specify the bond amount when joining the
candidate pool via parachainStaking.joinCandidates

whitelisting

Before we fully activate the DPoS model, the collator set is managed by the whitelist from the
Litentry team. It means you'll need to get your collator account whitelisted to be able to join the
candidate pool. Please refer to for more details.Litentry collator model

How to run a collator

using docker (preferred)

1. create a local directory to store the chain database:

mkdir /var/lib/litentry
or use sudo if you don't have permission
sudo mkdir /var/lib/litentry

2. make sure the permission and ownership of the local directory are correctly set:

sudo chown -R $(id -u):$(id -g) /var/lib/litentry

3. run the following docker command, you can replace the --name="litentry-collator" with
your own node name:

docker run -d --network=host -v /var/lib/litentry:/data \
 -u $(id -u):$(id -g) \
 litentry/litentry-parachain:v0.9.11 \
 --base-path=/data \
 --chain=litentry \
 --name="litentry-collator" \
 --collator \
 --execution wasm \
 --state-cache-size 0 \
 -- \
 --execution wasm \
 --chain polkadot

litentry/litentry-parachain:v0.9.11 is used as an example, please check
 for the up-to-date releases

github
release page

The command will run the docker container in the background and the container ID will be printed
in the console. With docker logs -f <container-id> you should be able to see the node starts
to sync:

node syncing

Wait until syncing is done, depending on the hardware and network status it could take
several days to fully sync the parachain and relaychain database.

4. generate a session key by sending an RPC call to the http endpoint of the parachain with the
author_rotateKeys method:

curl http://127.0.0.1:9933 -H \
"Content-Type:application/json;charset=utf-8" -d \
 '{
 "jsonrpc":"2.0",
 "id":1,
 "method":"author_rotateKeys",
 "params": []
 }'

An exemplary result:

{"jsonrpc":"2.0","result":"0x56066a71efc51e4a6f0f838cac959a08b238e22d478bd5dc0cdc2ac5b40

Note down the result, this is your session key. In this case
0x56066a71efc51e4a6f0f838cac959a08b238e22d478bd5dc0cdc2ac5b40d2e66

Alternatively you could use author_insertKey to insert the pre-generated session key.
The session key for litentry-parachain is a sr25519 key.aura

5. bind your collator account to the generated session key, this includes:

prepare a litentry-parachain account. This account will be registered to receive block production
rewards.

bind this account to the session key generated in step 4 by submitting extrinsic
session.setKeys from the collator account:

session.setKeys

parameters:

keys: the hex string key from step 4

proof: 0x

6. request to join the collator candidate by submitting extrinsic
parachainStaking.joinCandidates from the collator account:

join the candidate pool

To be able to successfully join the collator candidates, you have to:

stake the minimum bonds

get added to the candidate whitelist by the admin (whitelisting will be removed once
the DPoS is fully activated, please refer to Litentry collator model

7. check your node actually starts to collate

Once the extrinsic is sent without errors, wait until the next begins and you should be able to
see your node starting to produce blocks:

round

new collator produces a block

You should see your node gets chosen from time to time to author blocks according to the emitted
events:

the new collator is chosen

If the collator doesn't produce blocks after a long time (~12 hours) while you believe
everything is correctly set, please try to restart the node.

Congratulations! You have managed to run a collator node that starts to produce blocks
for the litentry parachain!

using binary

Running a collator node with the raw binary is very similar to the docker setup above, it only differs a
bit in the command line arguments. So instead of steps 1-3 above, run:

./target/release/litentry-collator \
 --chain=litentry \
 --name="litentry-collator" \
 --collator \
 --execution wasm \
 --state-cache-size 0 \
 -- \
 --execution wasm \
 --chain polkadot

By default, the database is stored at ~/.local/share/ , you can override it by using --base-
path=<your-path> .

To get the binary, you could either download it directly from Litentry's
(Linux x86-64 only), or it from the source.

Github release page
build

The remaining steps to configure the session key and join the collation are the same as the docker
method, so it's not repeated here.

How to update the client

Litentry constantly works on improving the parachain client and following the upstream changes.
Therefore, it's not uncommon to update the client to have the newest features and security patches.
Updating the client is simple:

If using docker:

1. docker container stop <container-id>

2. run the docker command in step 3 in , with the desired docker
image version

using docker (preferred)

If using binary:

1. stop/kill the litentry-collator process

2. download the desired binary

3. start the new binary using the commands in using binary

Rollout Plan
Previous

Full Node
Next

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://wiki.polkadot.network/docs/learn-collator
https://github.com/litentry/litentry-parachain/blob/dev/pallets/parachain-staking/src/lib.rs
https://github.com/litentry/litentry-parachain/issues/760
https://litmus.subsquare.io/democracy/referendum/2
https://wiki.polkadot.network/docs/maintain-guides-how-to-validate-polkadot#requirements
https://github.com/litentry/litentry-parachain/releases
https://docs.substrate.io/reference/glossary/#authority-round-aura
https://github.com/litentry/litentry-parachain/blob/47386434b0743a6723b29dbd50a45dd86596891d/runtime/litentry/src/lib.rs#L652
https://github.com/litentry/litentry-parachain/releases
https://docs.litentry.com/parachain/developer-documentation/build-parachain#build-parachain-manually
https://docs.litentry.com/parachain/get-started/litentry-network/rollout-plan
https://docs.litentry.com/parachain/get-started/litentry-network/full-node
https://docs.litentry.com/

Full Node

Litmus RPC nodes

By default, Litmus has a few self-hosted, load-balanced RPC nodes which provide public service.
Contrary to , the RPC nodes don't produce blocks but only sync the chain states and provide
RPC/Websocket services to the users.

collators

You can find the Litmus RPC entrypoint on polkadot-js.here

With the service, the end-users can query the chain state, inspect the constant and storage, and
execute extrinsics.

Run your own full nodes

using docker (preferred)

1. create a local directory to store the chain database:

mkdir /var/lib/litentry
or use sudo if you don't have permission
sudo mkdir /var/lib/litentry

2. make sure the permission and ownership of the local directory are correctly set:

sudo chown -R $(id -u):$(id -g) /var/lib/litentry

3. run the following docker command, you can replace the --name="litmus-node" with your own
node name:

docker run -d --network=host -v /var/lib/litentry:/data \
 -u $(id -u):$(id -g) \
 litentry/litentry-parachain:v0.9.11 \
 --base-path=/data \
 --name="litmus-node" \
 --chain=litmus \
 --state-pruning=archive \
 --state-cache-size 0 \
 --ws-external \
 --rpc-external \
 --rpc-cors=all \
 --execution=wasm \
 -- \
 --execution=wasm \
 --chain kusama

litentry/litentry-parachain:v0.9.11 is used as an example, please check
 for the up-to-date releases

github
release page

The command will run the docker container in the background and the container ID will be printed
in the console. With docker logs -f <container-id> you should be able to see the node starts
to sync.

Wait until syncing is done, depending on the hardware and network status it could take several days
to fully sync the parachain and relaychain database.

After it's fully synced, you should be able to access the chain via local ws endpoint in polkadot-js:
 https://polkadot.js.org/apps/?rpc=ws%3A%2F%2F127.0.0.1%3A9944#/explorer

using binary

Running a full node with the raw binary is very similar to the docker setup above, it only differs a bit
in the command line arguments. So instead of step 1-3 above, run:

./target/release/litentry-collator \
 --name="litmus-node" \
 --chain=litmus \
 --state-pruning=archive \
 --state-cache-size 0 \
 --ws-external \
 --rpc-external \
 --rpc-cors=all \
 --execution=wasm \
 -- \
 --execution=wasm \
 --chain kusama

By default the database is stored at ~/.local/share/ , you can override it by using --base-
path=<your-path> .

To get the binary, you could either download it directly from Litentry's
(Linux x86-64 only), or it from the source.

Github release page
build

Collator
Previous

Litentry Network
Next

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/get-started/litmus-network/collator
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Frpc.litmus-parachain.litentry.io#/explorer
https://github.com/litentry/litentry-parachain/releases
https://polkadot.js.org/apps/?rpc=ws%3A%2F%2F127.0.0.1%3A9944#/explorer
https://github.com/litentry/litentry-parachain/releases
https://docs.litentry.com/parachain/developer-documentation/build-parachain#build-parachain-manually
https://docs.litentry.com/parachain/get-started/litmus-network/collator
https://docs.litentry.com/parachain/get-started/litentry-network
https://docs.litentry.com/

Pallets and Modules
A detailed description of feature modules in parachain

This chapter portrays the feature pallets and modules that are used in parachain in more detail.

At the moment it includes:

Verifiable Credential Management Pallet (VCMP)

Identity Management Pallet (IMP)

Teerex Pallet

Token Bridge

TEE

Litentry Identity Registrar

More subchapters will be added as we onboard more feature pallets.

Full Node
Previous

Verifiable Credential Management P…
Next

Last modified 3mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/verifiable-credential-management-pallet-vcmp
https://docs.litentry.com/parachain/pallets-and-modules/identity-management-pallet-imp
https://docs.litentry.com/parachain/pallets-and-modules/teerex-pallet
https://docs.litentry.com/parachain/pallets-and-modules/token-bridge
https://docs.litentry.com/parachain/pallets-and-modules/tee
https://docs.litentry.com/parachain/pallets-and-modules/litentry-identity-registrar
https://docs.litentry.com/parachain/get-started/litentry-network/full-node
https://docs.litentry.com/parachain/pallets-and-modules/verifiable-credential-management-pallet-vcmp
https://docs.litentry.com/

Verifiable Credential Management
Pallet (VCMP)
The Verifiable Credential Management Pallet (VCMP) enables the creation,
management, and verification of verifiable credentials.

Introduction

The VCMP provides a way for users to manage the lifecycle of their verifiable credentials, including
creating, issuing, revoking, and updating them. It also enables individuals to store and manage their
own verifiable credentials, granting them more control over their personal data and the ability to
selectively disclose it to others.

The VCMP interoperates with the Litentry IdentityHub (IDHub) which incorporates features such as
secure storage, user authentication, and audit logging to enhance the security and trustworthiness
of the credentialing process.

Overall, it is an important component of the identity ecosystem, providing a standardized way for
users to create and manage verifiable credentials that can be trusted and verified by others.

Since the VCMP manages VCs, it is important to discuss what VCs are - Verifiable credentials (VCs) are
stored as clear text JSON files, which use the JavaScript Object Notation (JSON) format for storing and
exchanging data. JSON is a text-based format that uses human-readable text to represent data
objects consisting of attribute-value pairs and array data types. It is often used for transmitting data
over networks or storing data in NoSQL databases because it is lightweight and easy to read and
write.

In a JSON file, data is organized into key-value pairs, with keys represented by strings enclosed in
quotation marks and values represented by strings, numbers, booleans, arrays, or other data types.
In the case of Litentry VCs, the JSON files are composed of three main parts:

1. The issuer’s enclave attestation metadata — Verifiable Credentials often include metadata
about the issuer, which is the entity that issues the VCs. This metadata is called the issuer’s
enclave attestation metadata and it provides information about the security of the issuer’s
enclave. An enclave is a secure, isolated environment within a computer or device that is used to
protect sensitive information, such as cryptographic keys and private data. The issuer’s enclave
attestation metadata includes details about the type of enclave used by the issuer, the security
measures and capabilities of the enclave, and any relevant security certifications or attestations.
This information allows credential verifiers to assess the security of the issuer’s enclave and
determine the trustworthiness of the VCs issued by the issuer. In a verifiable credential system,
the issuer’s enclave attestation metadata may be included as part of the VC or stored separately
and referenced by the VC. This allows credential verifiers to easily access and verify the
metadata when verifying the authenticity of a VC.

2. The Assertions — Verifiable Credentials often include assertions, which are statements made
by the credential issuer about the information contained in the VC. Assertions specify the
subject of the credential, the type of information being asserted, and the value of the
information being asserted. They are written in a domain Specific Language (DSL) that contains
a set of steps to describe how to fetch and calculate data. The DSL is a type of code that can be
automatically generated into Parachain runtime codes or TypeScript SDK codes. It enables
flexibility, isolation, and standardization of data, as well as improves the verifiability of
assertions (data, values, information, etc.) through trustless, automatically generated codes.
Assertions have their own execution flow that defines how they are executed based on data that
matches the VC registry. They are used to define the standard of the Litentry context based on
the data provided by data providers. In other words, assertions help ensure that VCs contain
accurate and trustworthy information that can be easily verified.

Assertions

3. The signature proof — this is provided by the issuer enclave’s private key and it is a type of
digital signature that is used to authenticate the identity of the issuer and the integrity of the
issued document. In essence, the signature is a cryptographic function that takes the issuer’s
private key and the document’s content as inputs and produces a unique signature as output.
This signature can then be verified using the issuer’s public key, which is typically shared with
the recipient of the document. This allows the recipient to confirm that the document has not
been tampered with and that it was indeed issued by the issuer.

Each of the JSON file components is shown below:

Components of a VC JSON file

Pallets and Modules
Parachain - Previous

Parts of a VCMP
Next

Last modified 4mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules
https://docs.litentry.com/parachain/pallets-and-modules/verifiable-credential-management-pallet-vcmp/parts-of-a-vcmp
https://docs.litentry.com/

Parts of a VCMP
Explanation of the different components that makes up the VCMP

VC Registry

The VC registry is a component of the VCMP that allows users to store and manage their verifiable
credentials, and make them available to others who need to verify their identity or other attributes.

The VC registry is an onchain and public storage on the VCMP that maintains the VC Index <> VC
Hash so that credentials can be verified. It contains only a map from the VC index and VC hash
which is used to check the validity of the VC content. When a VC is generated, the Parachain VCMP
extrinsic vc_issued is called (one of the parameters is the generated VC, encrypted by the user’s
shielding key; and the other parameters are vc_index , vc_hash , etc), and VCMP outputs an
VC_issued event. At the same time, the VCMP inserts a new record into the VC Registry, the key
is vc_index , and the value is vc_context (this includes subject, vc_hash and vc_status). The
default vc_status is active.

The registry does not store all the content of a VC. Rather, it stores only the VC index and context to
ensure that the privacy of users is protected. It is responsible for maintaining a list or directory of
issued credentials. The registry typically includes the VC subject (the individual to whom the
credential was issued), the VC status (active, revoked, expired, etc.), and the VC hash. This
information can be accessed by verifiers to verify the authenticity and validity of a credential
presented by a holder.

The registry can also provide additional services, such as allowing holders to manage their
credentials, enabling issuers to publish and share information about their credentials, or
withdrawing access to the credential.

Summarily, the cycle of the sequence of events in a verifiable credential ecosystem is as follows:

1. Issue. The first event in the sequence is the issuance of a VC. This involves an issuer issuing a
verifiable credential to a holder.

2. Transfer. Once received by the holder, the holder may transfer one or more of its VC to another
holder or may optionally present its VC(s) to a verifier.

3. Verify. The verifier determines the authenticity of the VC and this includes a status check for
revocation of the verifiable credential.

4. An issuer might then decide to revoke a verifiable credential; or

5. A holder might delete a verifiable credential.

Although the order of the actions above is not always fixed, the most common sequence of action is
usually:

An issuer issues to a holder

The holder presents to a verifier

The verifier verifies.

Map, VC Index, and VC Context

The VC registry is made up of a Map and it consists of Index as a key, and Context as a value. The
map is typically represented as a JSON object that contains a key-value pair for each context aim in
the credential.

The VC Index is the key that provides a way for issuers and verifiers to find and share credentials
with each other in a secure and efficient manner.

The VC Context is an important component of the registry it helps to ensure interoperability and
consistency in the creation, verification, and management of VCs. It doesn’t contain any original VC
content to protect user privacy but it acts as the value and is made up of the following three fields;
Subject, Hash, and Status.

Subject

A subject is an entity to which the VC is issued and the VC is about. The subject can be an individual
person, an organization, or any other entity that can be described using a set of claims or contexts.

Blake2_256 Hash of VC:

The Blake2_256 hash of a verifiable credential is a cryptographic digest generated using the
Blake2_256 hashing algorithm. This hash can be used to verify the integrity and authenticity of the
credential, as any tampering with the contents of the credential will result in a different hash value.

Status

Status refers to the current validity or state of the VC registry. The status can indicate whether the
credential of a user is active, disabled, or revoked. The status of a verifiable credential can change
over time, depending on various factors, e.g, if the issuer revokes or suspends the credential for
some reason.

The status of a verifiable credential is an important aspect of its validity and can be used by relying
parties to make informed decisions about whether to trust and rely on the claims contained in the
verifiable credential.

Verifiable Credential Management P…
Previous

VCMP Extrinsic, Events, and Error Ev…
Next

Last modified 4mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/verifiable-credential-management-pallet-vcmp
https://docs.litentry.com/parachain/pallets-and-modules/verifiable-credential-management-pallet-vcmp/vcmp-extrinsic-events-and-error-events
https://docs.litentry.com/

VCMP Extrinsic, Events, and Error
Events

VCMP Extrinsics

VCMP extrinsic is critical to ensuring the security, privacy, and usability of verifiable credentials. The
common VC management extrinsic includes request, issuance, verification, revocation, and
management. Below are the Litentry VCMP extrinsics and their callers:

request_vc - VC is requested onchain- called by the user

disable_vc - VC is disabled onchain- called by the user

revoke_vc - VC is revoked onchain- called by the user

vc_issued - VC is issued - called by the TEE

VCMP event

VCMP events are the different events that occur during the lifecycle of a verifiable credential, such as
its creation, issuance, revocation, and update. These events are important for ensuring the integrity
and trustworthiness of the VC.

By tracking these events, issuers and credential holders can ensure that their verifiable credentials
are up-to-date and accurate. Here are some of our VCM events:

VCRequested

VCDisabled

VCRevoked

VCIssued

Account

VCIndex

VC (by AES encrypted with User Shielding Key)

VCMP error event

A VCMP Event can be explained as any unexpected situation or issue that occurs during the process
of issuing, managing, and using a VC.

It is crucial to address these errors to ensure the integrity and security of the VC management pallet.
This can be achieved through implementing proper error handling mechanisms and protocols and
regularly monitoring and updating the system to prevent errors from occurring in the first place.
Some of the VC errors that can be encountered include:

VCNotExist - the ID doesn't exist

VCAlreadyExists - the VC already exists

VCSubjectMismatch - The requester doesn't have permission (because of subject mismatch)

VCAlreadyDisabled - The VC is already disabled

HttpRequestFailed - { reason: ErrorString }

RequestVCHandlingFailed

ParseError

Assertion1Failed,

Assertion2Failed,

Assertion3Failed,

Assertion4Failed,

Assertion5Failed,

Assertion6Failed,

Assertion7Failed,

Assertion8Failed,

Assertion10Failed,

Assertion11Failed,

Parts of a VCMP
Previous

Assertion definitions and parameters
Next

Last modified 4mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/verifiable-credential-management-pallet-vcmp/parts-of-a-vcmp
https://docs.litentry.com/parachain/pallets-and-modules/verifiable-credential-management-pallet-vcmp/assertion-definitions-and-parameters
https://docs.litentry.com/

Assertion definitions and
parameters

An Assertion is a DSL(Domain Specific Language) that contains a set of steps to describe how to
fetch and calculate the final data. The DSL itself is code and can be auto-generated to Parachain
runtime codes or TypeScript SDK codes.

pros

enabling flexibility, isolation, and abstract module of assertions;

standardizes the data fetch and assertion calculate/validate logic;

it can cover most use cases for the issuer;

improve the verifiability of assertions with trustless auto-generated codes.

cons

has a higher barrier for issuers to organize or write assertions;

has a larger Json file size.

The supported src , op and dst in each Rule are described as follows:

Data type of src and dst

NULL

Boolean

Number: int / long / float / double/decimal

String

Object

Array[Boolean/Number/String/Object]

Operator op

+(add), -(subtract), *(multiply), /(divide)

%, round()

, >= , <, <= , ==, !=

in, not in

contains, not contains

includes one

size, sum, average

owns

Data type and Operator Binding

Boolean: >, >= , <, <= , ==, !=, in, not in

Number: >, >= , <, <= , ==, !=, in, not in

String: >, >= , <, <= , ==, !=, in, not in

Object: (if comparable) >, >= , <, <= , ==, !=,

Array: ==, !=, in, not in, contains, not contains, includes one, size, sum, average

VCMP Extrinsic, Events, and Error Ev…
Previous

Identity Management Pallet (IMP)
Next

Last modified 4mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/verifiable-credential-management-pallet-vcmp/vcmp-extrinsic-events-and-error-events
https://docs.litentry.com/parachain/pallets-and-modules/identity-management-pallet-imp
https://docs.litentry.com/

Identity Management Pallet (IMP)

Introduction

The Identity Management Pallet (IMP) is a powerful tool designed to facilitate the management of
users’ web2 and web3 identities. There are two types of IMP. is located on the Parachain and it
is the user portal with no storage functionality. It has extrinsics and events (normal and error events)
and all input and output data are encrypted by user’s shielding key. The one is on the
Trusted Execution Environment (TEE). It maintains the storage of users’ shielding keys and IdGraphs
and runs the actual identity verification business logic.

One

second

The pallet located in the TEE (enclave) is integrated in SGX-runtime, and the extrinsics are called by
the enclave. When requesting identity linking (Web2 <> Web3, or cross-chain wallets linking) or
verifiable credential generation in the IdentityHub, all data involved to complete the request will be
stored and computed in the TEE environment. This includes the request itself, the relationship
between different wallets, data fetched from a specific wallet that supports the claim in a VC, etc.

The TEE is secured by an isolated, cryptographic electronic structure that is resistant to malicious
attacks and unauthorized access. The hardware manufacturer guarantees that no one — not even
the system administrator or the operating system — has access to the keys or can read the memory
stored within the TEE. This makes it a great choice for executing confidential tasks. Check here for
more information about the .TEE

The IMP provides a set of functionalities that enable users to create, manage, and revoke identities,
as well as perform various other operations related to identity management. With the Identity
Management Pallet, users can easily manage their identities, control access to their data, and ensure
the security and integrity of their information. This technology transforms users’ identities, enabling
individuals and organizations to take greater control of their digital identities in a more secure and
decentralized manner.

Assertion definitions and parameters
Previous

Components of the IMP
Next

Last modified 26d ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://github.com/litentry/litentry-parachain/tree/dev/pallets/identity-management/src
https://github.com/litentry/litentry-parachain/tree/dev/tee-worker/litentry/pallets/identity-management/src
https://medium.com/litentry/privacy-in-litentry-ii-trusted-execution-environment-explained-7c47d76df18c
https://docs.litentry.com/parachain/pallets-and-modules/verifiable-credential-management-pallet-vcmp/assertion-definitions-and-parameters
https://docs.litentry.com/parachain/pallets-and-modules/identity-management-pallet-imp/components-of-the-imp
https://docs.litentry.com/

Components of the IMP
This section explains the different components of the Identity Management
Pallet

Since the Identity management pallet directly interacts with the front end, it is made up of different
components. These components include:

Identity Struct

An Identity Struct is a JSON data structure that contains information about an individual's identity.
This data structure is used to represent and manage the attributes and characteristics of a user’s
digital identity within the hub.

The IdentityHub supports linking, unlinking, and verifying multiple identities in batches to reduce the
number of needed calls. It also supports linking multiple identities to one litentry account.

In order to achieve this, multiple fields are packed into one single identity struct and multiple
identities as an array in the identity field. A typical example of a single identity struct in the
pallet is shown below:

{
"type": "..",
"address": "..",
"webtype": "..",
"metadata": "..",
"needVerification": "..",
"web2ValidationData": {

"link": ".."
},
"web3ValidationData": {

"message": "..",
"signature": "..",
"timestamp": ".."

}
}

Only identity type and address in the fields are required, other fields are optional:

type - Types of identities to be linked, e.g. Twitter, GitHub, discord, substrate, EVM

address - concrete address or handle, e.g. 0x1234 , twitterHandle

webtype - web2 or web3

metadata - placeholder for potential metadata, it makes it more extensible as well.

needVerification - By default, the optional fields are false and only used when linking the
identities. if the stated identity type and address need verification. When it’s false, the given identity
information will still be stored in TEE, but marked as “untrusted/unverified”; when it’s true, a
challenge code will be generated and broadcasted as events for further verification.

web2ValidationData - This is only used when verifying web2 identities e.g. the URL link to the
public post where an encrypted message is included.

web3ValidationData - This is only used when verifying web3 identities, e.g calling extrinsincs.

ID Graph

An identity Graph is a data structure that represents the relationships between different identities
that belong to the same individual. It represents the relationship between a user’s different accounts
and can be used to map out a user’s aggregated identity through any of the associated identity data.
The IdentityHub aims to provide the tool to generate an identity graph for the use of generating a
user's verifiable identity data for both Web2 and Web3 data.

At its core, it is a collection of information that links together all of the different identities that belong
to a single individual. This information includes the identity information in the Identity Struct
such as identity type, address, web2 and, web3 data, and other identifying information. By linking all
of this information together, an Identity Graph provides a comprehensive view of an individual's
digital identity.

An identity graph is retrieved from multiple associated identity pairs with verifiable identity
verification proofs. An identity pair is a pairing of two web3 addresses or a pairing of a web3 address
and a web2 account, it proves the joint ownership of the two associated accounts.

Data structure

An ID graph is composed of a list of the Web3 and Web2 accounts owned by the owner and their
corresponding proofs.

Identity pair

Each ID graph is extracted by ID pairs. An ID pair is made of two decentralized verifiable ownership
claims. Each ID pair claims the joint ownership of two accounts, it can be a pairing of two web3
addresses or a pairing of a web3 address and a web2 account. Everyone can verify and trust the ID
pair.

Merging

An ID pair is the smallest combination of an ID graph. For ID graphs that have a common address,
one ID graph will be merged into the other ID graph and keep only one.

Shielding Key

A shielding key is a 256-bit AES-GCM cryptographic key pair that is generated randomly and
protected by the user password. Its public key is used by the Litentry TEE worker to encrypt user-
sensitive information when passing back the data. It is used to encrypt all the data in the
communication between the user and the Litentry Parachain. The shielding key is generated in the
user’s local environment and used by the IDHLS to isolate sensitive user data from the IDH server
and all other third parties.

Overall, it is an extra layer of security on top of your Substrate private key (Account) used exclusively
to encrypt your data for transmission and ensure only you or the Enclaves can decrypt it.

It is important to note that there are two types of shielding keys;

User shielding key - This key is applied to the on-chain data returned by TEE. TEE shielding key- is
used in the other direction (user -> TEE) and is publicly visible.

Identity Management Pallet (IMP)
Previous

IMP Extrinsic, Events and Error Events
Next

Last modified 26d ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/identity-management-pallet-imp
https://docs.litentry.com/parachain/pallets-and-modules/identity-management-pallet-imp/imp-extrinsic-events-and-error-events
https://docs.litentry.com/

IMP Extrinsic, Events and Error
Events

Extrinsic (called by user/extension)

IMP extrinsics refer to the set of instructions that can be executed on the parachain to update the
IdentityHub. These extrinsics can include actions such as creating a new identity, linking a new
identity, updating existing identity attributes, revoking access to an identity, or delegating identity
management privileges to another user or entity. These extrinsics are called by the user or the
IDhub and they are encrypted with a TEE shielding key. Below are the Litentry IMP extrinsics and
their callers:

linkIdentity([payload]) - Request to link the given identities to the call origin (user). The
payload is forwarded and packed in a trusted call of call_worker extrinsic in pallet-teerex.

unlinkIdentity([payload]) - Request to unlink(delete) the given identities from the call
origin. Here, the payload is serialized JSON bytes.

verifyIdentity([payload]) - Request to verify the identities using the included validation
data (within the identity struct). The payload here is also serialized JSON bytes.

No events will be emitted for these extrinsics, or something like callForwarded() at its maximum
because the real business logic will be handled inside TEE which is carried out asynchronously.

IMP Events

An Identity management pallet event is a message that is emitted by the pallet when a specific
action related to identity management is performed on the pallet. An event may be triggered when a
user creates a new identity, updates their identity attributes, or revokes access to an identity. These
events typically include information such as the identity account involved, the type of action
performed, and any associated metadata or attributes. The event emissions are triggered by the pub
fn which is called by the pallet-teerex/enclave. The events are encrypted with the user’s shielding
key.

UserShieldingKeySet - user shielding key is set { who: T::AccountId, key:
UserShieldingKeyType }

ChallengeCodeSet - challenge code is set { who: T::AccountId, identity: Identity,
code: ChallengeCode }

ChallengeCodeRemoved - challenge code is removed { who: T::AccountId, identity:
Identity }

IdentityCreated - an identity is created { who: T::AccountId, identity: Identity
}

IdentityRemoved - an identity was removed { who: T::AccountId, identity:
Identity }

IMP Error Events

Pallet error events are messages or notifications that are emitted by the pallet when errors or
exceptions occur during the execution of an identity management action. Error events typically
include information such as the type of error, the identity account or action involved, and any
associated metadata or attributes.

For example, an Identity management pallet error event may be emitted if a user attempts to
update their identity attributes with invalid or unauthorized information or if an identity already
exists.

ChallengeCodeNotExist - challenge code doesn't exist

IdentityAlreadyVerified - the pair (litentry-account, identity) already verified when
creating an identity

IdentityNotExist - the pair (litentry-account, identity) doesn't exist

IdentityNotCreated - the identity was not created before the verification

IdentityShouldBeDisallowed - the identity should be disallowed

VerificationRequestTooEarly - a verification request comes too early

VerificationRequestTooLate - a verification request comes too late

RemovePrimeIdentityDisallowed - remove prime identity should be disallowed

Components of the IMP
Previous

Teerex Pallet
Next

Last modified 26d ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/identity-management-pallet-imp/components-of-the-imp
https://docs.litentry.com/parachain/pallets-and-modules/teerex-pallet
https://docs.litentry.com/

Teerex Pallet

Introduction

Teerex pallet is the remote attestation registry and verification pallet for integritee blockchains and
parachains. Attestation is the means for a remote user to ascertain that an application runs on real
hardware in an updated Trusted Execution Environment (TEE) with the expected initial state. It
proves the trustworthiness of the SGX enclave and remote attestation is defined when a user
certifies a TEE running on a remote physical machine.

The Teerex pallet is a pallet for Integritee that acts as a verified registry for SGX enclaves. Its goal is
to provide public auditability of remote attestation of SGX enclaves. Given deterministic builds of
enclave code, this pallet closes the trust gap from source code to the MRENCLAVE of an enclave
running on a genuine Intel SGX platform.

Without the need for a license with Intel, everyone can verify what code is executed by registered
service providers and that it is executed with confidentiality. Since Litentry integrates this pallet, it,
therefore, acts as a public registry of remote-attested services.

The Teerex pallet also supports the upgrade of enclaves. A new enclave can be upgraded at a
specified height while preserving the integrity of the original data. Apart from this, it supports
Enhanced Privacy Identifier (EPID) and Data Center Attestation Primitives (DCAP) remote attestation.

EPID is the attestation protocol originally shipped with SGX where the user application runs in an
SGX enclave on a remote untrusted machine whereas the end user waits for the attestation evidence
from this enclave on a trusted machine. The DCAP is a software infrastructure provided by Intel as a
reference implementation for remote attestation. It is a special SDK that allows for launching
enclaves with Intel’s remote infrastructure and it is backed by the DCAP-enabled SGX driver.

The pallet also functions as an indirect-invocation proxy for calls to the confidential state transition
function executed in SGX enclaves off-chain.

Overall, the Teerex pallet is mainly responsible for packing the payload into trustedCall in
call_worker e.g calling link_eth, which is extrinsic from the SGX account linker pallet. Or query the
encrypted data in SGX.

For each extrinsic call in the Identity Management Pallet (IMP), a trustedCall needs to be
constructed with the caller’s address and payload, e.g.

call_worker([TrustedCallSigned::Identitylink(caller-address, payload)])

The caller-address is the caller’s parachain account address, it’s:

used as the primary key for storing ID-graph in TEE

used to verify the web2/web3validationData as the correct owner when verifying identities

It is important to note that payload is already encrypted, so it’s double-encrypted (but with the
same TEE’s shielding key)

The IMP has extrinsics/pub functions that only serve the purpose of broadcasting events. For
every such method, an extrinsic in the Teerex pallet is required to call it. This extrinsic should have
identical parameters and internally it only calls its counterpart in the IMP. However, it should only
allow privileged origin, which is the enclave signing origin.

This means that only the enclave calls these methods even if they are declared as “extrinsics”. These
extrinsics include:

codeGenerated(<user-account>, <code>)

identityLinked(<user-account>, <identity-type>, <identity-address>)

identityUnlinked(<user-account>, <identity-type>, <identity-address>)

identityVerified(<user-account>, <identity-type>, <identity-address>)

In conclusion, the Teerex pallet in Parachain enables TEE workers to register, discover, and
communicate with one another. Its main features are:

Acting as a verified registry that allows remote verification of SGX enclaves — providing public
auditability.

Designed with confidentiality at its core to bridge the trust gap between the enclave and enable
anyone to verify the codes that are executed.

Acting as an indirect proxy for off-chain confidential state transition calls executed by SGX
enclaves.

Supports upgrade of enclaves

Supports EPID and DCAP remote attestations.

IMP Extrinsic, Events and Error Events
Previous

Token Bridge
Next

Last modified 3mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/identity-management-pallet-imp/imp-extrinsic-events-and-error-events
https://docs.litentry.com/parachain/pallets-and-modules/token-bridge
https://docs.litentry.com/

Token Bridge
Entry page for token bridge

Overview

The is deployed by the Litentry team to allow the transfer of LIT tokens between
Ethereum (ERC20 tokens) and Litmus/Litentry parachains.

token bridge

Outlines

Tokenomics revisit

Architecture model

Token Bridge Commission

Teerex Pallet
Previous

Tokenomics revisit
Next

Last modified 5mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://apps.litentry.com/transfer
https://docs.litentry.com/parachain/pallets-and-modules/token-bridge/tokenomics-revisit
https://docs.litentry.com/parachain/pallets-and-modules/token-bridge/architecture-model
https://docs.litentry.com/parachain/pallets-and-modules/token-bridge/token-bridge-commission
https://docs.litentry.com/parachain/pallets-and-modules/teerex-pallet
https://docs.litentry.com/parachain/pallets-and-modules/token-bridge/tokenomics-revisit
https://docs.litentry.com/

Tokenomics revisit
This page revisits the tokenomics of LIT

LIT token is the native cryptocurrency of the Litentry network and is issued by the Litentry
Foundation. Litentry tokens LIT would be the driving force in the circulation in the DID ecosystem.
LIT is currently issued as ERC-20 token and BEP-20 token.

 describes the LIT tokenomics and allocation.
The Binance project research about

Litentry

After Litentry launches a parachain(Litmus) on the Kusama network, Litmus will have LIT natively,
alongside the rest on the Ethereum blockchain, which means partial LIT token migration will be
executed.

We'd like to revisit the LIT tokenomics:

Litentry's economic model and initial supply will be retained (100,000,000 LIT).

Litentry plans to burn a portion of ERC-20 LIT and issue the same amount of native LIT on the
parachain to keep the initial supply unchanged.

Litentry will launch a token bridge between ERC-20 LIT and Litmus LIT, ERC-20 LIT holders can
decide whether to migrate tokens to Litmus or not.

The migration ratios shall be 1 ERC-20 LIT = 1 Litmus LIT.

Token Bridge
Previous

Architecture model
Next

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://research.binance.com/en/projects/litentry
https://docs.litentry.com/parachain/pallets-and-modules/token-bridge
https://docs.litentry.com/parachain/pallets-and-modules/token-bridge/architecture-model
https://docs.litentry.com/

Architecture model

Since the LIT token was already issued as ERC-20 token and BEP-20 token at the beginning of 2021, a
token bridge is required to transfer LIT token across different chains: between Ethereum and Litmus
parachain in this case.

To achieve it, Litmus takes use of the solution, a modular multi-directional blockchain
bridge built by and designed to interact with multiple networks including Ethereum,
Ethereum Classic and Substrate-based chains.

ChainBridge
ChainSafe

The workflow of the token bridge is demonstrated in the following diagram:

workflow of token bridge

In the diagram above,

ChainBridge relayer contains a bridge smart contract that is deployed by the official Litentry
team on the Ethereum network.

Bridge pallet is a pallet configured in the Litmus runtime. It will verify the message from the
relayer and mint tokens if required.

Imagine Alice wants to transfer LIT tokens from ERC20 on Ethereum to Litmus parachain:

Alice calls the smart contract in the ChainBridge relayer with her Litmus parachain address and
the number of LIT tokens she wants to transfer.

Alice transfers the desired amount of LIT tokens to the specified smart contract address

After successful verification of the transaction above, the ChainBridge Relayer issues an
acknowledgment to Bridge-Pallet on Litmus parachain, with all the needed information as
parameters.

Bridge-pallet gets the approval message and mints the same amount of LIT tokens to Alice
provided address on parachain.

More technical details will be added later.

We also added a to illustrate the whole process.step-by-step guide

Tokenomics revisit
Previous

Token Bridge Commission
Next

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://github.com/ChainSafe/ChainBridge#installation
https://chainsafe.io/
https://docs.litentry.com/parachain/how-to-guides/transfer-lit-from-ethereum-to-parachain
https://docs.litentry.com/parachain/pallets-and-modules/token-bridge/tokenomics-revisit
https://docs.litentry.com/parachain/pallets-and-modules/token-bridge/token-bridge-commission
https://docs.litentry.com/

Token Bridge Commission
This treatise explains the Litentry crosschain bridge token commission fee to
give our users an understanding of how it works.

Introduction

Cross-chain bridge serves as a neutral zone that enables users to deploy assets for fast and easy
transactions irrespective of the blockchain network. It also reduces operational difficulties by
allowing access to multiple blockchains through the same network.

Litentry has developed a Crosschain Bridge that works in the same way and all its components are
built in a standardized fashion to help unlock the superior liquidity in the DOTSAMA ecosystem. The
crosschain bridge allows users to seamlessly send and receive LIT tokens between Polkadot and
Kusama (Parachain LIT) and the Ethereum network (ERC-20 LIT).

To achieve this, Litentry uses a ChainBridge Relayer model that calls smart contract functions based
on the transaction direction (LIT ⇌ ERC-20 LIT) and allows the Bridge Pallet to mint or burn LIT for
the appropriate transaction to be carried out.

Bridge Transfer Fee Calculation(Parachain LIT → Erc20-LIT)

For every Bridge transaction that occurs within the Litentry protocol, there are three ChainBridge
relayers that are responsible for the approval or rejection of the transaction.

Litentry Relayer Network/Address Info

We use 3 relay servers to submit and execute proposals for smart contracts and a proposal needs to
get 2/3 votes to get executed. The reason for it is to prevent a single point of failure and minimize
the risk of hacking and malicious attacks

So basically cross chain transactions from parachain(both Litmus and Litentry) to ERC20-LIT would
result in 6 transactions on Ethereum, that's where the commission comes from. For every
transaction, there are six relayer executions and at least two of the relayers must successfully
execute the following two triggers (a total of 4 executions) for a transaction to be approved:

Vote Proposal

Execute Proposal

While the opposite is the case for failed transactions.

The remaining two triggers (to make 6 executions) are:

Failed Vote Proposal

Failed Execute Proposal

It is important to note that the smart contract charges different fees for each of the triggers
executed by the Relayers as evident below:

Title Cost Execution status

Initial Gas Price on Ethereum 25 Gwei

Success VoteProposal Fee 0.002552 ETH 2 times

Failed VoteProposal Fee 0.0005425 ETH 1 times

Success ExecuteProposal Fee 0.00123 ETH 1 times

Failed ExecuteProposal Fee 0.000559ETH 2 times

LIT/ETH Ratio 0.000773 LIT/ETH

Fee based on LIT 10.34253 LIT

The Commission Fee is calculated based on the following methods:

CommissionFee = (SucessVoteProposalFee x 2 + FailedVoteProposalFee + SucessExecutePropos

The total fee charged by the smart contract for each of the Relayer triggers is then divided by the
LIT/ETH ratio provided by Binance which amounts to approximately 10 LIT for Crosschain Bridge
transactions.

 IMPORTANT: Token Bridge Commission Fee Varies with Network Congestion

Our Token Bridge commission may vary based on network congestion. We strive to keep it
reasonable and transparent. You may want to plan transactions during low-activity periods for
smoother transfers.

Architecture model
Previous

TEE
Next

Last modified 21d ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/token-bridge/architecture-model
https://docs.litentry.com/parachain/pallets-and-modules/tee
https://docs.litentry.com/

TEE
Entry page for TEE

Overview

A Trusted Execution Environment (TEE) is an environment for executing code, in which those
executing the code can have high levels of trust in the asset management of that surrounding
environment because it can ignore threats from the “unknown” rest of the device.

Trusted applications running in a TEE have access to the full power of a device's main processor
and memory, whereas hardware isolation protects these components from user installed
applications running in the main operating system. Software and cryptographic isolations inside
the TEE protect the different contained trusted applications from each other.

To achieve identity aggregation, Litentry has a requirement of storing sensitive user data, like user's
Ethereum account and computed credit score. And the TEE has been chosen as a fundamental
approach to guarantee the security of data storage and data processing. Litentry builds a side chain,
which is composed of multiple TEE equipped nodes, to make sure of storing and processing data in a
distributed way, without exposing user's private data.

This chapter:

introduces the background knowledge of TEE

explains the architecture of Litentry solution via diagrams

depicts the core components that are involved in the architecture

provides a guide to building and executing code examples (WIP)

Outlines:

Background

TEE - FAQ

Architecture diagram

Core components

Token Bridge Commission
Previous

Background
Next

Last modified 4mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/tee/background
https://docs.litentry.com/parachain/pallets-and-modules/tee/tee-faq
https://docs.litentry.com/parachain/pallets-and-modules/tee/architecture-diagram
https://docs.litentry.com/parachain/pallets-and-modules/tee/core-components
https://docs.litentry.com/parachain/pallets-and-modules/token-bridge/token-bridge-commission
https://docs.litentry.com/parachain/pallets-and-modules/tee/background
https://docs.litentry.com/

Background
Brief introduction to TEE background

To perform the account linking from various providers and an aggregated DID solution in a secure
and privacy-preserving way, TEE is used to wrap around the core computational service.

TEE (trusted execution environment) is a secure area of the main processor which guarantees code
and data loaded inside to be protected with respect to confidentiality and integrity. In Litentry, TEE
also represents the whole solution for data protection in parachain, the encrypted data processing
in the side chain and all Dapps.

The most important technology stacks among them are:

(Software Guard Extension)
A new instruction set in Skylake Intel CPUs since autumn 2015. Every node in the side chain must
support SGX

Intel SGX

The TEE device is bare metal, so the SDK is different from SDK based on OS, which provides
services like a system-level library, file system and so on. A dedicated rust SDK was provided by
rust community and now it is open source and becomes the Apache incubated project.

Rust SDK

A next-generation framework for blockchain innovation. Substrate takes a modular approach to
blockchain development and defines a rich set of primitives that allows developers to make use
of powerful, familiar programming idioms.

Substrate

The most scalable public blockchain solution for securely processing sensitive business or
personal data. It harnesses the speed and confidentiality of trusted execution environments,
combined with the trust of a decentralized network.

Integritee

In the next chapter, we will present the overarching architecture and workflow for the Litentry
solution.

TEE
Previous

TEE - FAQ
Next

Last modified 4mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://github.com/apache/incubator-teaclave-sgx-sdk
https://substrate.io/
https://integritee.network/
https://docs.litentry.com/parachain/pallets-and-modules/tee
https://docs.litentry.com/parachain/pallets-and-modules/tee/tee-faq
https://docs.litentry.com/

TEE - FAQ
Common questions about the use of Trusted Execution Environments

Why does Litentry Use TEE’s?

To allow users to aggregate their fragmented identity, Litentry has a requirement of storing sensitive
user data, such as a user's Polkadot or Ethereum account, Twitter account and credit scores. Trusted
Execution Environments have been chosen as a fundamental approach to guarantee the security of
data storage and data processing.

What is a TEE?

A Trusted Execution Environment is a secure area or enclave on a computer's processor, separate
from the main operating system. It stores and processes data with complete integrity and protects
data from any possible tampering from the outside. Computation within a TEE is totally invisible
from the outside.

How does a TEE protect data privacy?

Litentry provides these closed environments or enclaves (TEE’s) in which only the user has control
over their data and sharing authorisations. Besides the specific hardware design of a TEE, any input
and output, such as a user's sensitive account relationships or their credentials, are encrypted with
cryptographic keys.

How does a TEE create trust?

The trusted execution environment is known as a secured machine running a known piece of open
source code. Everyone can verify the TEE's functionality and results. It functions as an independent
3th party. Everyone can also verify that the inputs and outputs of a TEE act according to the open
source code.

How do you make sure that a TEE can be trusted?

Every TEE goes through an attestation process to ensure the code is running on a genuine and
secure TEE from the hardware manufacturer. This process verifies the TEE’s code is untampered and
verifies the dedicated cryptographic keypair of the specific TEE. These keys allow the TEE to sign its
own messages as a means of verification that a specific credential was issued by a specific TEE.

How does Litentry use’s TEE’s?

Litentry uses Trusted Execution Enclaves to protect the sensitive relations of identity owner. A user
can store & communicate the relationships between their web2 & Web3 accounts safely since it is
protected by the TEE and encrypted during communication. Our TEE’s also verify the on-chain
information that is related to those accounts as an independent trustworthy observer and help
users practice selective disclosure of their credentials.

How does the TEE allow for ‘Selective Disclosure’ of credentials?

Since the TEE acts as an independent trustworthy and verifiable observer it can issue claims and
credentials about the accounts being stored inside its enclave. This privacy preserving middle layer
allows the user to manage the amount of information they select to disclose or allows to share. A
user might prefer to share the possession of a token but not its amount or purchase date.

Background
Previous

Architecture diagram
Next

Last modified 4mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/tee/background
https://docs.litentry.com/parachain/pallets-and-modules/tee/architecture-diagram
https://docs.litentry.com/

Architecture diagram
A diagram representation of the main architecture

overall architecture

In the diagram, there are three layers of blockchains, each layer has different responsibilities:

Layer 0 - The main net of relay chains, for example Kusama or Polkadot.
It is responsible for providing the shared security of the whole relayer chain and parachain
network, also works as a router for XCM messages.

Layer 1 - Litmus or Litentry parachain.
In this scenario, it serves as an application-specific blockchain, which connects to the relay chain
by fitting itself into the parachain slot. The relay chain will validate its blocks and handle the XCM
messages.

Layer 2 - The TEE side chain that is supported by Integritee.
It provides an environment for the runtime to be executed in the SGX (secure run environment).
It deviates from the Layer 1 parachain where every state and extrinsic are public and known.

The most magical part of the architecture is that all three layers of blockchain are all based on the
Substrate framework. By adapting to different runtime configurations and execution logics, the
customized blockchain can play different roles.

There are 5 major software components, SGX runtime, teerex pallet, application-specific pallets or
sgx pallets, worker client and worker server. Their interaction is shown below in the component
diagram:

component diagram in TEE

TEE - FAQ
Previous

Core components
Next

Last modified 4mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/tee/tee-faq
https://docs.litentry.com/parachain/pallets-and-modules/tee/core-components
https://docs.litentry.com/

Core components

The chapter elaborates on all the important components in the previous diagram and as well as
features we have implemented so far:

 Pallets in parachain

 SGX runtime

 Worker client

 Worker server

Pallets in parachain

Teerex pallet

To communicate with the side chain, the parachain must include this pallet. Teerex has two
important interfaces.

1. verify Intel's SGX node and accept the registration if verification is done.

2. get the request to call some extrinsic in SGX runtime in SGX. call sgx-runtime extrinsic includes a
parameter, the type is Call that could be any byte code encoded with pallet id, extrinsic index,
and parameters from SGX runtime.

Note: In the development environment, we can skip the verification via a compilation feature:

cargo build --features skip-ias-check

Credit score pallet

Litentry provides the service to compute customer's credit score based on the linked accounts and
data related to these accounts. All accounts are stored in the SGX, the data fetch and score
computing happened in SGX to avoid information leakage. This pallet is responsible to get the score
from SGX side chain, the result may be encrypted by customer's public key, or used by Dapp based
on Litentry SDK.

SGX runtime

We define the runtime executed in the SGX in this repo. SGX runtime is similar to Substrate runtime,
composed of pallets. The runtime can be compiled to a WASM blob or binary. The difference is SGX
runtime depends on tee-sgx-sdk as mentioned before.

For Substrate runtime execution, we need two packages. First one is sp-externalities which provide
the execution environment. Another one is sp-io for runtime to access the db, file systems,
blockchain state and so on. Because SGX runtime is executed in the SGX, so both packages from
Substrate not applicable in the SGX.

There are two packages from SGX runtime , are sgx-runtime/sp-io and sgx-runtime/sp-
externalities, with the same name sp-io and sp-externalities. They make it possible for runtime
executed in the SGX.

repo

SGX pallets

If the pallet includes some privacy data that need to be stored in the SGX node, we should put it in
the SGX runtime. For example, Litentry first pallet account linker, the users links their Ethereum or
Bitcoin addresses via link-eth and link-btc extrinsic. It may expose all these privacy data if we put the
account linker in parachain.

So we put the account linker pallet into SGX runtime now, the code is not changed. Then all extrinsic
parameters and linked addresses will be encrypted in the parachain, only SGX nodes know the
private key, decrypts the data in the SGX, and dispatch the call to SGX runtime.

In the future, we will migrate more pallets from parachain to side chain.

Worker client

The client interacts with both parachain and side chain via RPC / WSS connections. According to
destination, we have different call types.

1. Untrusted call: client interacts with parachain node, it is similar to js client. Client includes some
default pallets like teerex, we can use untrusted call to send transactions or some queries. For
example, a user can call balance transfer via the client, it is an untrusted call.

2. Trust call: client interacts with worker server, which is counterpart to parachain node. The server
also provides the RPC service. For example, a user can call link_eth, which is a extrinsic from sgx
account linker pallet that is part of SGX runtime. Or query the encrypted data in SGX.

3. Direct call: client can call the extrinsic defined in the SGX runtime. the same use cases as trust
call.

4. Indirect call: client wrappers the SGX runtime call, then send it to teerex pallet in parachain.
worker node sync up the blocks from parachain, then identify the specific call_work extrinsic,
parse the call from parameter and dispatch it to SGX runtime. The details could be found in the
diagram in Litentry solution section.

Worker server

The server is the most complicated part of whole solution, the major features are as follows:

1. get the verification report from Intel verification service and register itself to parachain

2. provide the execution environment for SGX runtime in the trusted node

3. sync up the blocks from parachain, decrypt and parse the data from call_work

4. generate side chain's block, sync up and consensus between nodes

5. provide RPC and WSS service

6. send the response to parachain via extrinsic

From a software running point of view, the server has a boundary between trusted and untrusted
parts. Trusted code is executed in the SGX. Untrusted code includes start-up the process, RPC server,
initializing the enclave, and so on.

The sharding is supported from the beginning of side chain design. The server node joins one shard,
each call both direct and indirect has a default parameter shard identity. The server node just
execute the call with the same shard that it joined. the benefit of shard is as follows

the state for the different shard is isolated, the different shard nodes can't see each other
private data

shard nodes can skip the call from another shard, it saves the resource, makes it faster to
execute less extrinsic in the block

sharding make it possible to use our solution at a large scale, at the same time protecting the
data

Architecture diagram
Previous

Litentry Identity Registrar
Next

Last modified 4mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://github.com/integritee-network/sgx-runtime
https://docs.litentry.com/parachain/pallets-and-modules/tee/architecture-diagram
https://docs.litentry.com/parachain/pallets-and-modules/litentry-identity-registrar
https://docs.litentry.com/

Litentry Identity Registrar
Explanation of Litentry (Kusama) identity registrar - a service that leverages
cryptographic design to provide judgment on user identity while preserving
privacy.

Registrar Background

Decentralized Identity (DID) consists of a triangle of Trust. The attester (registrar), the credential
holder, and the verifier. The attester (verifies/attests/judges) that the credentials for the identity are
correct. Credentials could be email addresses, Twitter accounts, or any other data that could be used
as identity credentials. The credential holder is the person, business, or IoT device that controls the
credentials. The verifier is the entity to whom the credentials are being presented.

For example, if you want to use a Dapp or service and they would like to verify that you are identified
by your email address and/or Twitter account. They could ask for these credentials. As a user that
needs to use this service, you could choose to hand these credentials over to them. Because the
credentials are attested by a trusted attester, the verifier will accept the presented credentials and
allow you to use the Dapp or service.

Litentry is a registrar in the Polkadot ecosystem (an attester in self-sovereign identity). This means
that Litentry can attest to (issue a judgment) the validity of your email address, Twitter account, and
any other identifying information. This section covers How to verify your identity with Litentry and
the implementation details of Litentry.

Litentry and Polkadot

Polkadot provides a service that allows participants to add personal information such as email
addresses and Twitter accounts to their on-chain accounts. The user can then ask for verification of
this information by a registrar. Litentry is a registrar. A user can request a registrar to make a
judgment on their claims. The user can select a fee that they are willing to pay. Registrars are
accepted by submitting proposals to the democratic process in Polkadot and Litentry has been
accepted as a Registrar for Kusama.

Implementation Details

GitHub Repository: https://github.com/litentry/litentry-registrar

This document highlights the implementation details of how Litentry works as a Polkadot/Kusama
registrar.

Context

When a user has set their identity in Polkadot or Kusama they can request judgment from a
registrar. In Polkadot, the registrar can support up to six levels of confidence in their attestation. At
the moment Litentry supports four judgment levels and in the future, we would like to support
KnownGood by integrating with well-known KYC organizations in the future. The LowQuality level
will never be supported by Litentry.

In the implementation details section, the Litentry Registrar Architecture consists of Validators, Event
Listener, ProvideJudgement Service, and Database Service. We also introduce a secure method using
JWT (JSON Web Token) to construct the verification protocol.

Judgment Levels & Criteria

Registrars on Kusama can provide their judgment according to six levels of confidence for users’
identity:

Unknown : The default value, no judgment made yet.

Reasonable : The data appears reasonable, but no in-depth checks (e.g. formal KYC process)
were performed.

KnownGood : The registrar has certified that the information is correct.

OutOfDate : The information used to be good, but is now outdated.

LowQuality : The information is low quality or imprecise, but can be fixed with an update.

Erroneous : The information is erroneous and may indicate malicious intent.

There is another temporary confidence level used by Polkadot/Kusama.

FeePaid : The judgment has been requested by a user and the information verification is in
progress.

In Litentry we add additional clarification for each of these levels.

Reasonable : If a user’s display name , email , and twitter identity are verified. Litentry will
update the user's identity as Reasonable

OutOfDate : Litentry registrar keeps track of the user's identity to see whether it’s out of date or
not updated regularly enough. If a user doesn’t update his identity timely, his identity will degrade to
OutOfDate .

Erroneous : If any attempt is made by the user to attack the Litentry registrar, e.g. DDOS attack, the
Litentry registrar will provide judgment with Erroneous and refuse to provide a new judgment for
him in a specific period.

LowQuality : The Litentry registrar will never provide a judgment of LowQuality

The Litentry registrar will automatically provide hints to guide the user to update his identity. After
all the information is correctly verified, the user will receive a Reasonable judgment. In this way, a
user can not only save fees (since we only provide one judgment for him) but also save time (since
the Litentry registrar will point out an imprecise or low-quality identity as and when it is captured).

At the current phase, the Litentry registrar does not support providing a KnownGood judgment level
since this would require the cooperation of third-party KYC services. We are working on partnering
with the appropriate organization so that we can support this level in the future.

Registrar Architecture

Figure 1.1 The Architecture of the Litentry Registrar

The Event Listener listens to all events coming from the Kusama chain. Once a JudgementRequested
event is triggered on Kusama and the JudgementRequested indicates to use the Litentry registrar,
the Event Listener service will invoke Validators starting the verification process.

At the current stage, the Validators consist of three verification services, Email, Element, and Twitter
verification. After receiving the verification request from the Event Listener, the Validator will invoke
those verification jobs. They will send a verification link to the users’ provided accounts and wait for
user confirmation from their accounts. The email address and Twitter account will be verified by
Litentry by sending a challenge message that the user must pass to prove their control of the
account. As soon as the user confirms all verification links, the ProvideJudgement service will
complete the final step by providing judgment for the user. The implementation details will be
introduced in the next section.

Once the user proves the ownership of the Email and Twitter accounts, the ProvideJudgement
service will send a JudgementGiven transaction on Kusama to confirm the ownership of the
accounts that the user provides.

The Database service will temporarily store users’ data, e.g. Kusama account, email, and Twitter
account so that we can recover services from an unpredictable crash. After completing the
verification service, those data will be removed from the server permanently.

Figure 1.2 The main Workflow of the Verification process

Security and Availability

We use JSON Web Token (JWT) to construct the verification protocol. A nonce and an ObjectID
(from MongoDB) are used to generate the JWT token to ensure the security of the Litentry registrar.
In this implementation, only the user who requests identity judgment, which implies his/her
ownership of this Kusama account, will receive this encrypted token. Malicious users cannot
construct this token because of an unknown encryption secret, since nonce and ObjectID are
encrypted. And the malicious user has no way to replay the attacks.

On the other hand, the WebSocket (TCP connection) can be easily reset by the remote peer due to
long-time idle. In this situation, the events from Kusama would never be captured due to the
disconnection between Kusama and Litentry. To prevent this situation, we capture the events from
the underlying WebSocket connection and reconnect to the Kusama automatically whenever the
connection is reset by a peer.

Core components
Previous

Developer Documentation
Next - Parachain

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://github.com/litentry/litentry-registrar
https://docs.litentry.com/parachain/pallets-and-modules/tee/core-components
https://docs.litentry.com/parachain/developer-documentation
https://docs.litentry.com/

Build parachain
How to build our parachain manually

Similar to polkadot, different chain-specs/runtimes are compiled into one single binary. In our case
it's:

litmus-parachain-runtime (on kusama)

litentry-parachain-runtime (on polkadot)

rococo-parachain-runtime (on rococo)

build parachain manually

1. make sure is installed, preferably via cargo rustup

2. git clone https://github.com/litentry/litentry-parachain

3. cd litentry-parachain

To build the litentry-parachain raw binary manually:

make build-node

To build the litentry/litentry-parachain docker image manually:

make build-docker

To build the litentry-parachain runtime wasm manually:

make build-runtime-litentry

The wasms should be located under target/release/wbuild/litentry-parachain-
runtime/

Similarly, use make build-runtime-litmus to build the litmus-parachain-runtime.

pre-built docker images

You can find all the parachain images on the github or directly on . Among
them, litentry/litentry-parachain:latest is pushed by our and should always
contain the latest stable build from the .

release page docker hub
github CI

default branch

pre-built binary releases

You can find all the pre-built binary releases on the github .release page

The binary releases are only built for x64 Linux platforms, to get a binary for other
platform, you have compile it manually.

Developer Documentation
Parachain - Previous

Launch a local network
Next

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://doc.rust-lang.org/cargo/getting-started/installation.html
https://rustup.rs/
https://github.com/litentry/litentry-parachain
https://github.com/litentry/litentry-parachain/releases
https://hub.docker.com/r/litentry/litentry-parachain/tags
https://github.com/litentry/litentry-parachain/blob/dev/.github/workflows/build_and_run_test.yml
https://github.com/litentry/litentry-parachain/tree/dev
https://github.com/litentry/litentry-parachain/releases
https://docs.litentry.com/parachain/developer-documentation
https://docs.litentry.com/parachain/developer-documentation/launch-a-local-network
https://docs.litentry.com/

Launch a local network
How to get our parachain running on localhost

A minimum local dev network consists of 2 relay chain nodes and 1 parachain node. To launch it,
there're two ways (taking litentry as an example, litmus is similar):

using docker images (preferred)

1. make sure docker and yarn are installed

2. git clone https://github.com/litentry/litentry-parachain

3. cd litentry-parachain

4. make launch-docker-litentry

Both parity/polkadot and litentry/litentry-parachain images will be pulled from
upstream automatically. Additionally, will be installed and used to generate chain-
specs and docker-compose files.

parachain-launch

The generated files will be under docker/generated-litentry/ .

Wait a while until you see such logs:

logs showing that the network is launched successfully

Up to this point the network is launched successfully.

You should be able to connect to the chain websocket via browser:

 for
relay chains
https://polkadot.js.org/apps/?rpc=ws%3A%2F%2F127.0.0.1%3A9944#/explorer

 for
parachain
https://polkadot.js.org/apps/?rpc=ws%3A%2F%2F127.0.0.1%3A9946#/explorer

When finished with the dev network, run make clean-docker-litentry to stop the
docker containers and tidy things up

using raw binaries

Only when option 1 doesn't work and you suspect the docker-image went wrong. In this case we
could try to launch the dev network with raw binaries.

On Linux host:

you should have the locally compiled ./target/release/litentry-collator binary.

run make launch-binary-litentry

On Non-Linux host:

you should have locally compiled binaries, for both polkadot and litentry-collator

run ./scripts/launch-local-binary.sh litentry <path-to-polkadot-bin> <path-
to-litentry-parachain-bin>

Likewise, when finished with the dev network, run make clean-binary to stop the
processes and tidy things up.

Note this command should work for both litentry and litmus.

extend the leasing period

The default leasing duration for parachain is 1 day, in case you want to extend it (even after it's
downgraded to), simply do a forceLease via sudo , it should be upgraded to
parachain soon again and start to produce blocks.

parathread

polkadot-js extrinsic to extend the leasing period

You can also refer to README on https://github.com/litentry/litentry-parachain

Build parachain
Previous

Run tests
Next

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://github.com/litentry/litentry-parachain
https://github.com/open-web3-stack/parachain-launch
https://polkadot.js.org/apps/?rpc=ws%3A%2F%2F127.0.0.1%3A9944#/explorer
https://polkadot.js.org/apps/?rpc=ws%3A%2F%2F127.0.0.1%3A9946#/explorer
https://wiki.polkadot.network/docs/learn-parathreads
https://github.com/litentry/litentry-parachain
https://docs.litentry.com/parachain/developer-documentation/build-parachain
https://docs.litentry.com/parachain/developer-documentation/run-tests
https://docs.litentry.com/

Run tests

You might want to try out the pre-written tests locally.

run ts-tests locally

To run the ts-tests (the test under ts-tests/ folder) locally, similar to launching the networks, it's
possible to run them in either docker or binary mode:

make test-ts-docker-litentry

or

if on Linux
make test-ts-binary-litentry

otherwise
./scripts/launch-local-binary.sh litentry path-to-polkadot-bin path-to-litentry-parachai
./scripts/run-ts-test.sh

Be sure to run the clean-up afterwards.

The make test-ts-* command above will also launch the dev network before running
the test, so you don't have to do it again.

If you already have a running network, simply run ./scripts/run-ts-test.sh to
execute ts-tests.

run runtime integration test

There're also integration tests for Litmus and Litentry runtime which are written in rust. To run
them:

for Litmus
cargo test --release -p litmus-parachain-runtime --lib

for Litentry
cargo test --release -p litentry-parachain-runtime --lib

Launch a local network
Previous

How-to guides
Next - Parachain

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/developer-documentation/launch-a-local-network
https://docs.litentry.com/parachain/how-to-guides
https://docs.litentry.com/

Interact with parachain

Main Litmus RPC endpoint:

 https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Frpc.litmus-parachain.litentry.io#/explorer

Litmus RPC endpoint

Users can query chain state, execute read-only RPC calls and perform extrinsics to read or wirte the
chain state.

Polkadot{.js} Browser Plugin

Litentry parachain use the Substrate-based chain address format SS58.

The quickest way for generating a Litmus/Litentry account is by Polkadot{.js} .browser extension

Blockchain Explorers

 - Litentry console dashboard block explorer, can be configured to
connect to other remote or local endpoints.
Polkadot Explorer Explorer

 - Blockchain explorer for Polkadot, Kusama, and other related chains.Polkascan

 - Blockchain explorer for Substrate chains, including Limtus/Litentry.Statescan

More commonly used interactions will be added later

How-to guides
Parachain - Previous

Claim crowdloan rewards
Next

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Frpc.litmus-parachain.litentry.io#/explorer
https://polkadot.js.org/extension/
https://polkadot.js.org/apps/#/explorer
https://polkascan.io/
https://litmus.statescan.io/
https://docs.litentry.com/parachain/how-to-guides
https://docs.litentry.com/parachain/how-to-guides/claim-crowdloan-rewards
https://docs.litentry.com/

Claim crowdloan rewards

Litmus and Litentry crowdloan rewards claims are now online. Please claim your vested LIT
following the claim guide below.

There are two approaches to claiming your crowdloan rewards. The first is via Polkadot.JS and the
other one is via the Litentry webapp.

Using Polkadot{js} Extension

1. Navigate to the Website. Connect your Polkadot{js} Extension, using the same
account that participated in the crowdloan event, and follow the prompts to complete the
process.

PolkadotJS

2. Select the account that was used in the Litmus/ Litentry crowdloan and check the vested LIT.

3. Click the hamburger icon (three dots) on the right side of the account and submit the Unlock
vested amount button.

4. Enter your password to sign the transaction and you have successfully claimed your reward.

You’ll be charged a small fee to execute the transaction, so make sure you have some balance in
your wallet.

5. To confirm, check vesting() in the transaction history on and click the corresponding
Extrinsic ID .

Statescan

Using the Litentry Webapp

1. Visit the Litentry Webapp via and sign in by connecting your wallet on
the top right-hand corner of your screen.

https://apps.litentry.com

Connect wallet

Note: Ensure you connect the wallet you used to participate in the crowdloan.

2. Next, click the "Claim" button right in front of the "Available to unlock" balance and click "Claim
tokens" in the pop-up window as shown below:

Claim tokens

3. Sign your transaction by entering your wallet password and your crowdloan reward will be
added to your balance.

Sign transaction

Note: You’ll be charged a small fee to execute the transaction, so make sure you have some balance
in your wallet.

Interact with parachain
Previous

Transfer LIT from Ethereum to para…
Next

Last modified 26d ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://apps.litentry.com/
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Frpc.litmus-parachain.litentry.io#/accounts
https://litmus.statescan.io/
https://apps.litentry.com/
https://docs.litentry.com/parachain/how-to-guides/interact-with-parachain
https://docs.litentry.com/parachain/how-to-guides/transfer-lit-from-ethereum-to-parachain
https://docs.litentry.com/

Transfer LIT from Ethereum to
parachain
The token bridge allows you to transfer your LIT token from the Ethereum
network into the Litentry Network.

You can access our token bridge functionality by visiting https://apps.litentry.com/transfer

An Introduction to the Token Bridge

Please refer to Token Bridge

Step-by-Step

This video guide takes Ethereum => Litmus parachain as an example, it also applies to Ethereum
=> Litentry parachain token bridge usage. You only need to switch to the corresponding network in
the web app.

Watch on

Litentry & ERC20 Bi-directional Token Bridge User GuideLitentry & ERC20 Bi-directional Token Bridge User Guide
ShareShare

Alternatively, you can follow the step-by-step guide below:

1. Switch to the desired network in the upper left corner of the webapp:

2. Connect using the Polkadot.{js} Extension to start using our app

You can cancel this modal and do this anytime. However, please note that you must connect to a Polkadot account else most app
functionality will not be available to you

3. Select the Polkadot Account you wish to connect to

Select and press Confirm

4. Navigate to the Token Bridge screen

5. Choose which account you wish to transfer LIT from and connect to your Ethereum Wallet. Please
note that your browser MetaMask or Binance extension will open ask you to sign in.

You can select connect to your Ethereum wallet on MetaMask or Binance

6. You can change the Destination and which Polkadot account you wish to transfer the LIT into by
using the Polkadot account select control in the top right of your screen

Just

7. Select the amount of LIT token you wish to transfer. You will be prompted and required to
authorize the amount prior to being able to transfer it.

8. Press on Preview and Submit and you will be shown the Transaction Summary modal. Carefully
review the information displayed and then press Transfer tokens

9. Depending on where you are transferring from. You will now be presented with a MetaMask or
Binance modal. Please sign and approve the transaction and then wait for the transaction to be
confirmed.

Congratulations! You have successfully transferred your LIT token from Ethereum to Litmus.

You can check if the transaction was successful by checking on Etherscan () and
the Polkadot Network Explorer ().

https://etherscan.io/
https://polkadot.js.org/apps/#/explorer

Claim crowdloan rewards
Previous

Transfer LIT from parachain to Ethe…
Next

Last modified 1mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://apps.litentry.com/transfer
https://docs.litentry.com/parachain/pallets-and-modules/token-bridge
https://www.youtube.com/watch?v=90jbpRaF8Mc&embeds_referring_euri=https%3A%2F%2Fcdn.iframe.ly%2F&feature=emb_imp_woyt
https://www.youtube.com/watch?v=90jbpRaF8Mc
https://etherscan.io/
https://polkadot.js.org/apps/#/explorer
https://docs.litentry.com/parachain/how-to-guides/claim-crowdloan-rewards
https://docs.litentry.com/parachain/how-to-guides/transfer-lit-from-parachain-to-ethereum
https://docs.litentry.com/

Transfer LIT from parachain to
Ethereum
The token bridge allows you to transfer your LIT token from Litmus Network into
the Ethereum network as well.

You can access our token bridge functionality by visiting https://apps.litentry.com/transfer

An introduction to the Token Bridge

Please refer to Token Bridge

Step-by-Step

This guide takes Litmus => Ethereum parachain as example, it also applies to Litentry =>
Ethereum parachain token bridge usage. You only need to switch to the corresponding network in
the webapp.

Watch on

Litmus Parachain Token Bridge GuidanceLitmus Parachain Token Bridge Guidance
ShareShare

Congratulations! You have successfully transferred your LIT token from Litmus to
Ethereum.

You can check if the transaction was successful by checking on and the
.

Etherscan
statescan blockchain explorer

Notes:

1. Currently, the commission is set to be 10 LIT. It's calculated based on the average gas
fee on Ethereum and the number of Ethereum transactions required for a token
bridge transfer. It can be queried via chainBridge.bridgeFee from polkadot-js.
The has more information about how the fee is
calculated.

Token Bridge Commission page

2. The waiting time normally takes around 5-10 minutes but varies depending on the
network traffic condition of the Ethereum network.

Transfer LIT from Ethereum to para…
Previous

Transfer LIT to other parachains wit…
Next

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://apps.litentry.com/transfer
https://docs.litentry.com/parachain/pallets-and-modules/token-bridge
https://www.youtube.com/watch?v=-C3VdUfsb7I&embeds_referring_euri=https%3A%2F%2Fcdn.iframe.ly%2F&feature=emb_imp_woyt
https://www.youtube.com/watch?v=-C3VdUfsb7I
https://etherscan.io/
https://litmus.statescan.io/
https://docs.litentry.com/parachain/pallets-and-modules/token-bridge/token-bridge-commission
https://docs.litentry.com/parachain/how-to-guides/transfer-lit-from-ethereum-to-parachain
https://docs.litentry.com/parachain/how-to-guides/transfer-lit-to-other-parachains-with-xcm
https://docs.litentry.com/

Transfer LIT to other parachains
with XCM
The XCM allows you to transfer your LIT token from Litmus into a remote sibling
parachain. You may visit the remote chain's XCM guidance for transferring them
the other way around.

Step-by-Step

1. Connect using the Polkadot.{js} Extension to start using our app

You can cancel this modal and do this anytime. However, please note that you must connect to a Polkadot account else most app
functionality will not be available to you

2. Select the Polkadot Account you wish to connect to

Select and press Confirm

3. Navigate to the Token Bridge screen

4. Choose the origin chain as Litmus and the target remote chain you wish to transfer LIT to.

5. You can change the Destination and which Polkadot account you wish to transfer the LIT into by
using the Polkadot account select control in the top right of your screen

6. Select the amount of LIT token you wish to transfer. You will be prompted and required to
authorize the amount prior to being able to transfer it.

7. Press on Preview and Submit and you will be shown the Transaction Summary modal. Carefully
review the information displayed and then press Transfer tokens

8. Depending on wallet extension you use, you will get a wallet transaction pop-up. Please sign and
approve the transaction and then wait for the transaction to be confirmed.

Congratulations! You have successfully transferred your LIT token from Litmus to a
remote sibling parachain.

You can check if the transaction was successful by checking on
.

statescan blockchain
explorer

Transfer LIT from parachain to Ethe…
Previous

Participate in LIT staking on Litentry
Next

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://litmus.statescan.io/
https://docs.litentry.com/parachain/how-to-guides/transfer-lit-from-parachain-to-ethereum
https://docs.litentry.com/parachain/how-to-guides/participate-in-lit-staking-on-litentry
https://docs.litentry.com/

Participate in LIT staking on
Litentry
LIT staking is currently only available on Litentry - Polkadot parachain.

Overview

Litentry uses a Delegated Proof of Stake (DPOS) consensus mechanism that allows LIT holders to
stake their assets and delegate their desired collators through its parachain staking pallet. The
staking pallet is designed to permit delegators and collators to share risks and rewards.

How to stake

1. Cumulon (Previously "Web3Go")

The easiest way to participate in LIT staking is through .Cumulon

Upon opening Cumulon, click the Connect button at the top-right-hand corner to connect your
Polkadot or Metamask wallet

After connecting your Polkadot wallet, select Litentry from the "Choose chain" drop-down options as
shown below:

Then click on Litentry to access the staking interface.

Next, you can delegate your desired collator from the numbered list. It is important that you check
the details of each collator such as the total stake, total rewards, APR, etc. before proceeding to
delegate your LIT.

To delegate, enter the amount of LIT you wish to stake and hit the confirm button.

Note: The minimum amount is 50 LIT.

With this, you have successfully delegated your desired collator and staked your asset.

You can view your current staking position and reward history by clicking "My Stake" on the
Cumulon dashboard.

Please refer to Cumulon's for more staking dashboard features.Official Website

2. Polkadot.js

The second option is to use Polkadot.js.

PolkadotJS remains the right point of call if you want to perform any potential Litentry parachain
function.

For first-time users that wish to perform delegation staking, you will go through the
parachainStaking.delegate route.

However, if you are an already existing user and intend to perform more delegation staking, you'll
use the parachainStaking.delegatorBondMore method.

Both parachainStaking.delegate and parachainStaking.delegatorBondMore digests the inputs
of your target collator account address and your target staking amount in 10^12 form. (i.e. If your
input amount is 100 0000 0000 0000, it means you want to stake 100 LIT).

How to unstake

1. Cumulon

Upon opening your , you will see two following buttons on the right side of the
collators that you staked into:

staking dashboard

Delegate - to add more staking

Unstake - to unstake the previous staking

When you click the unstake button, the following pop-up window showing the cool-down period will
appear. Click the OK button and you have successfully unstaked your asset.

2. PolkadotJS

You can also use Polkadot.js for any unstaking/stake-less action with more technical flexibility.

You can unbond/undelegate your LIT at any time. However, it will take 7 days for your funds to
become transferable. However, it is essential to note that, as a result of longer block times due to an
issue on the relay chain, unstaking takes a bit longer than 7 days.

As a user who wishes to unstake his LIT, you need to schedule your unstake/stakeless command and
execute it to claim your funds after the cooldown period expires. Below are the different scenarios
to unstake your asset.

1. For leaving all of your Collator Delegations at once

parachainStaking.scheduleLeaveDelegators() - This allows you to schedule a request to
leave the set of delegators and revoke all ongoing delegations. Scheduling the request does not
automatically execute it.

parachainStaking.executeLeaveDelegators(delegator) - There is an exit delay that must
be waited before you can execute the request via the executeLeaveDelegators extrinsic.

2. For adjusting one of your single existing delegations without full exit

parachainStaking.scheduleDelegatorBondLess(candidate, less) - This allows you to
schedule a request for a delegator to bond less with respect to a specific candidate. Also, scheduling
the request does not automatically execute it like in
parachainStaking.executeLeaveDelegators mentioned earlier.

parachainStaking.executeDelegationRequest(delegator, candidate) - This allows you
to bondless both existing delegator and candidate. There is an exit delay that must be waited before
you can execute the request via the executeDelegationRequest extrinsic.

3. For full exiting one of your single existing delegations

parachainStaking.scheduleRevokeDelegation(collator) — This allows you to schedule a
request to revoke a delegation given the address of a collator. Scheduling the request does not
automatically execute it. There is a wait period before it is executed via the
executeDelegationRequest extrinsic.

parachainStaking.executeDelegationRequest(delegator, candidate) - This command
help to execute any due delegation requests provided the address of a delegator and a candidate
are provided.

Important things to know if you want to unstake

If you unstake your LIT tokens from a collator, the remaining staked tokens must be at least 50 LIT.
Otherwise, you must unstake the full amount by canceling the delegation to that collator.

If you regret your unstaking command

Your tokens will not accrue rewards while unstaking is pending. You can cancel unstaking any time
during the 7 days.

The following method is for canceling your unexecuted command:

parachainStaking.cancelLeaveDelegators() for condition 1 above - With this, you can cancel a
pending scheduled request to leave the set of delegators.

parachainStaking.cancelDelegationRequest(candidate) for condition 2,3 above - This command help
to cancel delegation request for all delegations.

Transfer LIT to other parachains wit…
Previous

Auto-compound staking
Next

Last modified 1mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://cumulon.cloud/
https://cumulon.cloud/#/home
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Flitentry-rpc.dwellir.com#/chainstate
https://cumulon.cloud/#/myStake
https://docs.litentry.com/parachain/how-to-guides/transfer-lit-to-other-parachains-with-xcm
https://docs.litentry.com/parachain/how-to-guides/participate-in-lit-staking-on-litentry/auto-compound-staking
https://docs.litentry.com/

Auto-compound staking
Explaining Litentry Auto-Compound Staking feature

Users help to maintain the Litentry network by staking their LIT tokens to delegate collators through
the parachain staking pallet. By design, staking rewards are automatically deposited into the users'
wallets and the deposited token is available for the user to use based on their discretion.

However, Litentry being a protocol that is inclined towards increased capital efficiency and better
utilization rate of assets for our users recently launched the auto-compound staking feature.

With this feature, the staking rewards earned by a user is automatically returned to the staking pallet
at the click of a button so that the user can continue to earn more reward. The user determines the
total amount (percentage) of the reward that is re-staked into the corresponding reward-generated
staking position.

You may follow the guide below to explore the auto-compound staking feature.

Polkadot.JS

The auto-compound staking feature is only available on Polkadot.JS for now.

To get started, hover your mouse on the Developer button at the top of the page and select
'Extrinsics' from the drop-down options:

Once selected, choose ParachainStaking from the 'Submit the following Extrinsics' drop-down
options as shown in 1 below.

By method, select setAutoCompound from the 'Add white list of candidates' drop-down options as
shown in 2 below. It is important to note that the delegator's staking positions on every collator are
separate. As such, you should continue if there is an existing position for you on the corresponding
as shown in 3 below. Finally, set the percentage of your reward you'll like to re-delegate to the
collator in the staking pallet as shown in 4 below and submit the transaction.

Based on the information provided in the extrinsics below, the user's (delegator) auto-compounded
setting on Collator 1 will be 50% of his reward. It is effective immediately at the next reward
distribution process and half of the reward will be automatically re-staked.

You may also directly stake a new position with a specified auto-compound staking setting if there is
no existing position for you on the corresponding Collator. The method to select here under the 'Add
white list of candidates' is delegateWithAutoCompound. After this, select your desired auto-
compound percentage and submit the transaction. This will open a new staking position for you just
like the traditional delegate method but with an auto-compound staking setting.

Cumulon

As earlier mentioned, the auto-compounded staking setting is only available on Polkadot.JS and is
currently not supported by Cumulon. We will update this documentation once the option is
available.

Participate in LIT staking on Litentry
Previous

Litentry Kusama Registrar Guide
Next

Last modified 26d ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/how-to-guides/participate-in-lit-staking-on-litentry
https://docs.litentry.com/parachain/how-to-guides/litentry-kusama-registrar-guide
https://docs.litentry.com/

Litentry Kusama Registrar Guide
A step-by-step guide on how to verify your identity with Litentry (Kusama)
registrar.

Introduction

While the anonymity that Web3 provides has a great advantage in user privacy, revealing partial
personal information can help gain a higher reputation and trust in the Polkadot ecosystem. This
document introduces a registrar service that is fully automatic and leverages cryptographic design to
eliminate human interventions. The Litentry registrar focuses on providing judgment for users
display name, email, and twitter while preserving user privacy. For more information
about the registrar, visit this .page

In this treatise, we will walk you through the identity verification process step by step:

To get started, users need to set their identity information onchain; then, they may request the
registrar to verify the identity. Users will enter a maximum fee they are willing to pay for the service.
After that, the dedicated registrar can ascertain the identity.

Step 1: Set an on-chain identity

Click the 'Accounts' tab on the Polkadot-JS Apps

Make sure you're in the Kusama network by looking at the top left corner of the page. If not, click
on the toggle to switch

On the accounts list, click on the hamburger icon on the right side of your selected account and
click Set on-chain identity .

Figure 1.1 Set on-chain Identity

You'll see a popup window of 'register identity'. Click to turn on the include field of display
name, email, and Twitter , and enter your information. Once done, click Set Identity to
submit the transaction.

Figure 1.2 Submit Identity information

Now you have successfully submitted an identity! Since your information is not verified yet, you will
see a ⚪ profile icon next to your username.

Figure 1.3 Unverified Account

Step 2: Judgement Request

To request the registrar to validate your on-chain information:

Go to Developer->Extrinsic, and select your account.

Select identity under submit the following extrinsic , and
requestJudgement(reg_index, max_fee) transaction.

Enter '4' for reg_index (index of the registrar)

Enter '0.04' KSM for the service fee

As shown below:

Figure 1.4 Judgement Request

Click Submit transaction and you have successfully requested the registrar to validate your
on-chain information.

Step 3: Email Verification

You should receive a verification email from Litentry. Click on "Verify Email Now" to complete the
verification process (see figure 1.5). After that, you will receive another email that confirms that the
verification is successful.

Figure 1.5 Email Verification Example

Step 4: Element Verification (Optional)

An invitation will be sent from "litentry-bot" on Element, accept the invitation

Click on the verification link from "Litentry-Bot" to complete the verification of the element
account. Once the verification process is completed, you will receive a confirmation message
(see figure 1.6).

Figure 1.6 Element Verification Example

Step 5: Twitter Verification (Optional)

Follow @LitentryReg on Twitter

Make sure your account is open to private messages in your privacy settings. Otherwise, the
verification message will not go through.

You'll receive a verification link on DM from @LitentryReg. Click on the link to complete the
verification of your Twitter account. Once it is completed, you will receive a confirmation
message (see figure 1.7).

Figure 1.7 Twitter Verification Example

Once everything is successfully verified, your account status becomes "reasonable" with an ✅ icon.
Congratulations - Your identity is now verified on Polkadot-JS Apps!

Registrar Fee

The judgment fee of the Litentry Registrar is 0.04KSM.

It's important to notice that no KSM is sent to our registrar at any time before the judgment is
completed. You should NOT send funds to our account directly. When calling requestJudgement ,
the registrar fee will be locked and put aside. It will be transferred to the registrar only after the
registrar finishes its job.

Support

If you have any questions, contact us via Element Room or registrar-support@litentry.com

Auto-compound staking
Previous

Participate in Litentry Governance
Next

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/litentry-identity-registrar
https://polkadot.js.org/apps
mailto:registrar-support@litentry.com
https://docs.litentry.com/parachain/how-to-guides/participate-in-lit-staking-on-litentry/auto-compound-staking
https://docs.litentry.com/parachain/how-to-guides/participate-in-litentry-governance
https://docs.litentry.com/

Participate in Litentry Governance
Tutorial on how to Participate in Onchain and Offchain Litentry Governance

Introduction

Governance is one of the core features of decentralization and an important mantle of the Litentry
protocol. It allows our community members to discuss issues, ideas, and proposals that they care
about publicly and transparently and give them the power to make important decisions over the
development of the protocol using on-chain and off-chain governance.

 is powerful because it can directly change the code of the Litentry Runtime
and other storage. To ensure the quality of the governance proposal, proposers are required to
deposit tokens to propose a referendum. Thus, It requires proposers to have a thorough
understanding of their proposal, as well as to gain relatively broad support from other community
members.

On-Chain Governance

 has a low threshold so that it is more accessible and encompassing. Off-chain
decision-making can not only help a proposal gain support before going on-chain, but it can also
cover issues that shall be executed on a social level.

Off-Chain Governance

This guide will help you to understand how to participate in the two types of Litentry protocol
governance.

On-Chain Governance

With on-chain governance, you can propose making an Extrinsic Call that changes a specific part of
the code of the Litentry Runtime. There are different sections of extrinsic on Litentry:

assetManager

bridgeTransfer

chainBridge

collatorSelection

democracy

identityManagement

tokens

And others, please see polkadot.js → Litentry→Developer → Extrinsic

On-Chain Governance Process

Phase 1: Idea
Anyone is welcome to propose an initial idea and create a poll using . If an idea
receives support from other people, it can be proposed in a Referendum.

off-chain Governance

Phase 2: Propose

What you’ll need is a Litentry Wallet and some LIT

Once you’re ready, submit a proposal at on Polkadot.js by hovering your mouse on
the Governance tab and clicking Democracy from the drop-down options.

Democracy

Next, you click the Submit Proposal button as shown below:

Upon clicking the submit proposal button, find the preimage hash that corresponds to the extrinsic
call that you wish to make, depending on which section of code you are proposing changes to. You
can find a preimage hash for a specific Extrinsic Call at Extrinsic.

Extrinsics in the Developer menu

Once in Extrinsics, select your desired Extrinsic call by selecting an option from the drop-down in the
part labeled 1 below. Then copy the Encoded Call Hash as shown in the part labeled 2.

Next, go back to your submit proposal page and past your copied hash in the Preimage hash box

Finally, enter your locked LIT balance and click the submit proposal button.
Kindly note that 100 LIT are required to submit your proposal. Also, check if you have sufficient
balance to pay the gas fee (around 1 LIT per tx).

Once your proposal is submitted, change the text description of your proposal. It’s important to
write a strong rationale for others to endorse and support your proposal. If your proposal gets
highly bonded support, it moves into a referendum.

Phase 3: Vote
Once a proposal runs into a referendum, it will start an on-chain voting process where all LIT holders
can stake to vote during a 5-day period. If your referendum passed, it will automatically fulfill and
change the code in the Litentry Runtime.

Off-chain Governance

Issues
At the social level, the LIT community can govern over issues in the following aspects:

Tokenomics and slot auction campaigns

Project partnerships with Litentry products

External project incubation and onboarding to the Litentry parachain

Community growth strategies, events organization, and technology avocation

Off-Chain Governance Process
Litentry is partnering with , which provides us with a useful tool to raise off-chain
governance proposals and start a voting process.
Users can go to and create a new proposal. You can use an ETH
wallet instead of a Litentry wallet to participate. Creating proposals require you to have at least 1 LIT
token in your wallet, but you don’t need to deposit or stake any token to submit a proposal.

OpenSqaure

Litentry Voting on OpenSquare

Obtaining LIT tokens is the first step to getting involved in on-chain governance.

You can purchase LIT on the following platforms (skip this if you already have LIT):

Uniswap

Binance

Gate.io

KuCoin

And more please refer to .this list by Coinmarketcap

Next, transfer LIT from an ETH wallet to a Litmus Wallet. Go to to see how. this tutorial

If you do not have any LIT, you can still participate in soft governance using the and
Comment feature on Litmus Governance Platform.

Discussion

Litentry Kusama Registrar Guide
Previous

Partner Documentation
Next - Parachain

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Flitentry-rpc.dwellir.com#/democracy
https://voting.opensquare.io/space/litentry
https://voting.opensquare.io/space/litentry
https://polkadot.js.org/apps/?rpc=wss%3A%2F%2Flitentry-rpc.dwellir.com#/democracy
http://voting.opensquare.io/
https://voting.opensquare.io/space/litentry
https://coinmarketcap.com/currencies/litentry/markets/
https://docs.litentry.com/parachain/user-documentation/how-to-transfer-lit-from-ethereum-to-litmus
https://litmus.subsquare.io/discussions
https://docs.litentry.com/parachain/how-to-guides/litentry-kusama-registrar-guide
https://docs.litentry.com/parachain/partner-documentation
https://docs.litentry.com/

Establishing XCM communication
with Litentry
Horizontal Relay-routed Message Passing (HRMP) bi-directional communication
between Litentry and other Parachains.

Cross-Consensus Messaging (XCM) Format was first mentioned in Polkadot’s documentation. It
evolved from Cross-Chain Messaging Format to become a robust architectural style of message
transfer for more than chains but also pallets, smart contracts, bridges, and sharded enclaves. XCM
is not a protocol. As such, it cannot parse messages across consensus by itself. Rather, it is a format
for how message transfer should be performed and a language for ideas between consensus
systems.

The architecture of Polkadot and Kusama allows the interoperability of parachains, enabling the
cross-chain transfer of assets and data. To achieve this, an XCM format defines the language around
how the message between two chains should be parsed. Since XCM is now available on Polkadot
and Kusama. Litentry/Litmus being Parachains of the two relaychains have now opened XCM
channel for any parachain in the ecosystem that wishes to partner with us.

The process involves gaining access to bi-directional communication between us and the parachains.
This involves opening an outbound and accepting inbound Horizontal Relay-routed Message Passing
(HRMP) channel by the two parachains.

The following is a quick summary for partners wishing to establish XCM Channel with
Litentry/Litmus.

Parachain ParaId Sovereign account on Relay Sovereign account on Sibling
Parachain

Litentry 2013
5Ec4AhPXYUNLCp3QNT7e6bK
wKz9Xx2Svdgi7egBLzMwoXqc
D

5Eg2fntLdCZELQmYvT4jDEfkaTp
qfSW2hLMYudhqs5yNPMzV

Litmus 2106
5Ec4AhNxtC4V4TecEorgrcRt2L
JdNhRifAeGQvXFWjXN9dwk

5Eg2fnsmxvFPC4NknoomyFmhG
oyw67UpipHhft3kPTYw17UP

Below is the Litentry/Litmus Native Token LIT Multilocation information:

Multilocation {parents:1, interior: [Parachain: parachain_id, PalletInstance(10)] }

or

Multilocation {parents:0, interior: [PalletInstance(10)] }

 And the current weight we charge for each individual XCM command:

 UnitWeightCost: XcmV2Weight = 200_000_000u64;

(In Litentry/Litmus, 1 LIT in the real world= 1_000_000_000_000 Weight)

How to Establish XCM Channel with Litentry/Litmus.

The by Open Web3 Stack - the common-good collection
of libraries to accelerate application development on Substrate has explained cross-consensus
fungible asset design discussions and considerations. It also provided detailed information regarding
orml-xtokens that Litentry/Litmus and many other parachains have adopted and currently testing.

XCM Fungible Asset Implementation Guide

Each parachain has its native token and parachains that want seamless communication between
them and other parachains in terms of asset transfer, can be used as a reference
implementation in this regard. Follow the steps below to establish XCM channel between your
parachain and Litentry/Litmus:

orml-xtokens

Step 1: Communicate with Litentry Team and submit your info

We will need the exact same information as the summary provided above. Please connect with the
Litentry team via .Telegram

Step 2: Sending/Accepting HRMP Open Channel Request

Next, both partner parachain and Litentry/Litmus parachain need to send two XCM requests (Open
and Accept) to Relaychain. Once the transactions are mutually matched, the HRMP channel will be
established.

To do this, select the correct Relaychain (in this example, we use Kusama) as shown in 1 below and
select Extrinsincs from the drop-down options on the Developer tab.

Next, select HRMP from the "Submit the following Extrinsics" drop-down options and chose
hrmpInitOpenChannel(recipient, proposedMaxCapacity, proposedMaxMessageSize) in
the part labeled 1 below:

Next, enter the Parachain ID of your partner parachain in the recipient: u32 (ParaId)
dialogue box as shown below and enter a safe estimate of your channel usage limit in the
proposedMaxCapacity: u32 , and proposedMaxMessageSize: u32 dialogue boxes as shown
below and hit the "Submit Transaction" button.

Open HRMP Channel Request Sample

Next, chose hrmpAcceptOpenChannel(sender) as shown below to accept the pending open
channel request from the sender, enter the sender's parachain ID, then hit the "Submit Transaction"
button.

Accept HRMP Channel Request Sample

The transactions above should be sent through XCM to Relay by your sovereign account. Please
refer to polkadot official documents and

 for more details.
https://wiki.polkadot.network/docs/build-hrmp-channels

https://docs.substrate.io/reference/how-to-guides/parachains/add-hrmp-channels/

Step 3: Accepting/Waiting for Litentry Parachain's HRMP
transaction

The Litentry Team will also send HRMP Channel transactions and once mutually matched, the HRMP
channel will be established.

Partner Documentation
Parachain - Previous

IdentityHub
Next - Front-end Products

Last modified 6mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://github.com/open-web3-stack/open-runtime-module-library/discussions/385
https://github.com/open-web3-stack/open-runtime-module-library/tree/master/xtokens
https://t.me/Litentry
https://wiki.polkadot.network/docs/build-hrmp-channels
https://docs.substrate.io/reference/how-to-guides/parachains/add-hrmp-channels/
https://docs.litentry.com/parachain/partner-documentation
https://docs.litentry.com/front-end-products/identityhub
https://docs.litentry.com/

IdentityHub
An introduction to the Litentry IdentityHub

What is the IdentityHub (IDHub)?

The IdentityHub is the the interface to the protocol and front-end product of Litentry. It functions as
a decentralized Web3 personal data management tool. Designed for users to aggregate and
manage their personal data among blockchains and decentralized storage systems and provide data
access to 3rd party dApps to maximize personal identity value without compromising privacy &
anonymity.

The IdentityHub the platform where the user and a project can discover the value of identity data
together. Projects can define their data requirements and attract their perfect user or audience in
return for a benefit in the form of product personalisation, early access, social impact or other
identity based incentives.

The IdentityHub is also an experimental playground for new social and economic innovations based
on privatized identity data. It functions as a showcase of the Litentry Protocol, SDK and it's privacy
preserving identity technology.

3 functions of the IdentityHub

As an interface to the underlying Litentry Protocol, it offers features such as privacy-preserving
identity linking, proving account ownership, and issuing privacy-preserving verifiable credentials
based on the underlying digital data of the linked accounts.

As a gateway, it offers web3 products and services several ways and methods to guide its users
in leveraging granular identity details to unlock a better product experience.

As a platform, it provides an environment where the web3 entrepreneur and digital identity
owner meet to define the value of identity and can exchange data and benefits with one
another.

The problem the IdentityHub (IDHub) solves

IdentityHub is a solution to the violation of user data rights and privacy breaches. It allows users to
control who can access their data without revealing their personal identifiable information or root
accounts. When a dApp uses IDHub to access user data, it is following the correct process for
protecting user data rights. On the other hand, if users create identities on IDHub, they can be
assured of their personal data rights. The IDHub protects personal data rights and restores an
anonymous yet richly identifiable pseudonymous web browsing experience.

Establishing XCM communication wi…
Previous

Product Features
Next

Last modified 26d ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/partner-documentation/establishing-xcm-communication-with-litentry
https://docs.litentry.com/front-end-products/identityhub/product-features
https://docs.litentry.com/

Product Features
This page provides an overview of the Identity Hub product features.

The Identity Hub Client

The ID-Hub client is the interface for the user to generate, manage and interact with their
aggregated identities. The client will also sync with the Litentry blockchain to submit the latest state
of the user's ID graph and issue verifiable credentials.

When a 3rd party dApp wants to access the user's identity data, it must make a request to the ID-
Hub client and get the user's authorization before it gets the data. The Litentry blockchain will only
allow returning identity data to the identity owner, it is up to the user to decide whether to give the
data to a 3rd party.

The ID-Hub client and interface allows the user to interact with the following product features.

Identity Dashboard

The profile Dashboard offers the Identity Owner an overview of their current decentralised identity.
The information displayed on the dashboard can range from identity insights, trends relevant to
their identities and new opportunities to leverage and use their decentralised identity across the
web3 ecosystem. As our feature roadmap evolves over time so will our identity dashboard.

Identity Graph

An identity graph records the sensitive relationships between the different accounts of a user. It is
used for mapping the user’s aggregated identity through any of the associated crypto addresses.
IDHub aims to provide the tool to generate a trustless identity graph that can be used for generating
verifiable identity data for Web3 products and services. Read more about how an identity graph is
safely stored inside the or how we TEE secure privacy.

Verifiable Credentials

By analysis of the on-chain history, IDHub is able to add credentials to the aggregated identity of the
user. e.g. The credential 'long term holder' is added or created when on-chain data proofs that the
identity owner has held a digital asset over an extensive period of time. These credentials can unlock
custom product experiences, exclusive access or other benefits. Credentials allows the Identity Hub
to offer a tailored experience to the identity owner and show dApp offerings that fit the user's
preferences.

Identity Scores

The IDhub enables scores that reflect your web3 experience, crypto engagement, and
trustworthiness as a human. A score is an identity analysis of a user’s web3 & web2 behaviour.
Scores provide a more granular assessment, filtering or segmentation of the user, but are also less
exclusive. Not everyone has the same experience but could still get access due to their effort in
different fields. Scores are more nuanced and complex than credentials. IDHub uses weighted
verifiable credentials to calculate scores, and uses these scores to match projects and their identity
benefits with their desired audience.

Exploring Identity Benefits

In the near futures projects will be able to offer 'Identity Benefits' to user who share granular access
to some of their identity data. Projects can get to know more by asking less. Instead of only having
information about 1 wallet address the projects now can request all relevant information available
across the aggregated identity of the user while respecting their privacy.

IdentityHub
Front-end Products - Previous

Direct Invocation
Next

Last modified 4mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/tee/tee-faq
https://docs.litentry.com/front-end-products/identityhub/product-features/securing-privacy
https://docs.litentry.com/front-end-products/identityhub
https://docs.litentry.com/front-end-products/identityhub/product-features/direct-invocation
https://docs.litentry.com/

Direct Invocation
Direct Invocation empowers clients to directly request the Enclave Sidechain
while ensuring data integrity by posting the results on the Parachain.

The IdentityHub has implemented the first version of Direct Invocation. This update enables users to
send requests to the TEE enclave directly and reduces waiting time when accessing the IDHub
services. This client<>blockchain request forwarding path change redirects service requests from
IDHub now to the blockchain.

Direct Invocation has streamlined the process for features like setting up a shielding key, linking
identities, and generating VCs. Users can now directly send service requests to the TEE sidechain,
eliminating the need to go through the Litentry Parachain. Despite this change, the results of these
actions will continue to be synchronized and logged on the Litentry Parachain, ensuring data
integrity and transparency.

Changes in the request workflows:

(Formerly) In Indirect Invocation: IDhub <--> parachain <--> TEE sidechain <--> parachain.

(Currently) In Direct Invocation: IDhub <--> TEE sidechain <--> parachain.

See below for the detailed request workflows.

Benefits and Tradeoffs

Benefits of this change include:

Increased speed in tasks such as setting up a shielding key, linking identities, and VC generation.

Removal of dependency on gas fees, enabling free services, and unblocking users from obtaining
LIT tokens on a substrate wallet.

Maintaining the same level of security: Identity verification, user shielding key synchronization,
and VC generation remain secure within the TEE sidechain, while VC issuance transparency
remains intact through the Litentry Parachain.

Are there any trade-offs?

Temporary removal of LIT charges mechanism from VC generation.

Certain transaction logs may become invisible.

Request Workflows

Direct Invocation Request Workflows

Here is how Direct Invocation changed the request workflow. It enables users to directly send
requests such as "set shielding key," "link identity," and "request remove identity" to the TEE Enclave.

sequenceDiagram
box Client (IDHub)

 participant Browser
end

 box Litentry Network
 participant Parachain
 participant Enclave
 end

%% Setup / Get Enclave's data
Enclave->>Parachain: Register

 Enclave->>Parachain: Get Shard and Enclave Shielding Key
 Browser->>Parachain: Get Shard and Enclave Shielding Key

activate Parachain
 Parachain->>Browser: Return Shard and Enclave Shielding Key

deactivate Parachain

 %% Client Request
Browser->>Enclave: Request set User Shielding Key
activate Enclave
Note over Browser,Parachain: Wait for UserShieldingKeySet or Error

 Enclave->>Parachain: Emit UserShieldingKeySet or Error
 deactivate Enclave
 activate Parachain
 Parachain->>Browser: Process UserShieldingKeySet or Error
 deactivate Parachain
 Browser-->>Browser: Display result

loop [could be multiple identities]
Browser->>Enclave: Request Link Identity
activate Enclave
Note over Browser,Parachain: Wait for IdentityLinked or Error

 Enclave->>Parachain: Emit IdentityLinked or Error
 deactivate Enclave
 activate Parachain
 Parachain->>Browser: Process IdentityLinked or Error
 deactivate Parachain
 Browser-->>Browser: Display result
end

loop [could remove multiple identities]
Browser->>Enclave: Request Remove Identity
activate Enclave
Note over Browser,Parachain: Wait for IdentityRemoved or Error

 Enclave->>Parachain: Emit IdentityRemoved or Error
 deactivate Enclave
 activate Parachain
 Parachain->>Browser: Process IdentityRemoved or Error
 deactivate Parachain
 Browser-->>Browser: Display result
end

Litentry NetworkClient (IDHub)

EnclaveParachainBrowser

EnclaveParachainBrowser

Wait for UserShieldingKeySet or Error

Wait for IdentityLinked or Error

loop [[could be multiple identities]]

Wait for IdentityRemoved or Error

loop [[could remove multiple identities]]

Register

Get Shard and Enclave Shielding Key

Get Shard and Enclave Shielding Key

Return Shard and Enclave Shielding Key

Request set User Shielding Key

Emit UserShieldingKeySet or Error

Process UserShieldingKeySet or Error

Display result

Request Link Identity

Emit IdentityLinked or Error

Process IdentityLinked or Error

Display result

Request Remove Identity

Emit IdentityRemoved or Error

Process IdentityRemoved or Error

Display result

Indirect Invocation Request Workflow

In the previous workflow of Indirect Invocation, users were required to send a request to the
Parachain initially and wait for block generation before it could reach the TEE Enclave.

sequenceDiagram
box Client (IDHub)

 participant Browser
end

 box Litentry Network
 participant Parachain
 participant Enclave
 end

%% Setup / Get Enclave's data
Enclave->>Parachain: Register

 Enclave->>Parachain: Get Shard and Enclave Shielding Key
 Browser->>Parachain: Get Shard and Enclave Shielding Key

activate Parachain
 Parachain->>Browser: Return Shard and Enclave Shielding Key

deactivate Parachain

 %% Client Request
Browser->>Parachain: Request set User Shielding Key

 Note over Browser,Parachain: Wait for UserShieldingKeySet or Error
activate Parachain
Parachain-->>Enclave: Emit UserShieldingKeyRequested

 activate Enclave
 Note over Enclave,Parachain: Enclave: Process Parachain blocks
 Enclave->>Parachain: Emit UserShieldingKeySet or Error
 deactivate Enclave
 Parachain->>Browser: Process UserShieldingKeySet or Error
 deactivate Parachain
 Browser-->>Browser: Display result

loop [could be multiple identities]
Browser->>Parachain: Request Link Identity

 Note over Browser,Parachain: Wait for IdentityLinked or Error
activate Parachain
Parachain-->>Enclave: Emit LinkIdentityRequested

 activate Enclave
 Note over Enclave,Parachain: Enclave: Process Parachain blocks
 Enclave->>Parachain: Emit IdentityLinked or Error
 deactivate Enclave
 Parachain->>Browser: Process IdentityLinked or Error
 deactivate Parachain
 Browser-->>Browser: Display result
end

loop [could remove multiple identities]
Browser->>Parachain: Request Remove Identity

 Note over Browser,Parachain: Wait for IdentityRemoved or Error
activate Parachain
Parachain-->>Enclave: Emit RemoveIdentityRequested

 activate Enclave
 Note over Enclave,Parachain: Enclave: Process Parachain blocks
 Enclave->>Parachain: Emit IdentityRemoved or Error
 deactivate Enclave
 Parachain->>Browser: Process IdentityRemoved or Error
 deactivate Parachain
 Browser-->>Browser: Display result
end

Litentry NetworkClient (IDHub)

EnclaveParachainBrowser

EnclaveParachainBrowser

Wait for UserShieldingKeySet or Error

Enclave: Process Parachain blocks

Wait for IdentityLinked or Error

Enclave: Process Parachain blocks

loop [[could be multiple identities]]

Wait for IdentityRemoved or Error

Enclave: Process Parachain blocks

loop [[could remove multiple identities]]

Register

Get Shard and Enclave Shielding Key

Get Shard and Enclave Shielding Key

Return Shard and Enclave Shielding Key

Request set User Shielding Key

Emit UserShieldingKeyRequested

Emit UserShieldingKeySet or Error

Process UserShieldingKeySet or Error

Display result

Request Link Identity

Emit LinkIdentityRequested

Emit IdentityLinked or Error

Process IdentityLinked or Error

Display result

Request Remove Identity

Emit RemoveIdentityRequested

Emit IdentityRemoved or Error

Process IdentityRemoved or Error

Display result

Product Features
Previous

EVM Sign-In
Next

Last modified 7d ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/front-end-products/identityhub/product-features
https://docs.litentry.com/front-end-products/identityhub/product-features/evm-sign-in
https://docs.litentry.com/

EVM Sign-In
This feature allow users to interact with the IDHub with their Ethereum Virtual
Machine wallet address

To expand the assertion of digital identity securely and privately, Litentry has extended its service
provision to include Ethereum users with our Ethereum Virtual Machine (EVM) sign-in feature. This
novel approach leverages the attribute of the Identity Hub that enables sending
direct requests without the need to send extrinsics. With this, the IDHub can accept queries from
EVM-based addresses, and users who do not own a parachain/substrate account can create
IDGraphs and request VCs with their EVM wallet addresses.

Direct Invocation

Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) is a key component of the Ethereum blockchain. It is a runtime
environment that executes smart contracts, which are self-executing contracts with the terms of the
agreement directly written into code. It is often described as a sandboxed, isolated environment that
ensures the execution of code is consistent across all nodes in the Ethereum network.

The EVM operates on a stack-based architecture, where instructions manipulate data on a stack. It is
a Turing-complete machine, meaning it can perform any computation that can be expressed
algorithmically. This allows for the execution of complex operations and the implementation of
decentralized applications (dApps) on the Ethereum network. Overall, the EVM enables the creation
of a wide range of blockchain-based services and functionalities.

The EVM sign-in feature on the IDHub empowers users to authenticate their identity using their
Ethereum addresses. In essence, it’s akin to employing your Ethereum wallet to sign into a myriad of
platforms, mirroring the convenience of using Google or Facebook for diverse website logins, with
the big difference being that you control your data.

Primary Identity of IDGraph

Upon the launch of IDHub, an IDGraph is created when the shielding key for a Litentry-parachain
address is set. Users can link, verify, or remove identities and request VCs by sending extrinsics from
that address. Now, the same can be done with an EVM address. This means that:

Each IDGraph has one primary identity, which can be a Litentry-parachain address or an EVM
address.

Only the primary identity can modify the IDGraph.

The shielding key is bound to the primary identity.

IDGraphs are not merged automatically. IDGraphs with distinct primary identities are considered
different. For example, if substrateA links substrateB, and the user later logs in with substrateB,
the IDGraph is empty and they need to link substrateA again if they want to include it in the VC
assertion building.

When users log in using an EVM address for the first time, a new account with an empty
IDGraph is created. To set up this new IDGraph, users must follow steps including creating
a shielding key, requesting a VC, and linking identities. Existing users wanting to log in with
an EVM address cannot transfer their IDGraph from their previous substrate address.

It is important to note that the primary identity is the identity that can manage (read and write) the
IDGraph. Users can designate at most one web3 address as the primary address with zero
restriction on the network type (Litentry-parachain or EVM address).

The address that the user uses to log in to the IDHub for the first time becomes the default primary
address and it can only be changed by sending a set_primary request from the old primary address.

Implementation of EVM Sign-In

The core scopes of the EVM sign-in feature are:

Ethereum signature verification - With EVM implementation, users will be able to create identity
graphs and request VCs on IdentityHub with their EVM public/private keys, instead of only substrate
keys. Users can sign in with their EVM-compatible addresses such as Ethereum and BSC to
seamlessly access the IdentityHub services. This integration allows users to link their identity and
establish an IDGraph using their EVM-compatible address as the primary account.

EVM IDGraphs - An identity graph is a data structure that represents the relationships between
different identities that belong to the same individual. It represents the relationship between a
user’s different accounts and can be used to map out a user’s aggregated identity through his EVM
address.

Identity Linking - User Identity can be linked to only 1 IDGraph. This is because the user
 is bound to the IDGraph but can only be managed by the primary identity. As a result of this, it is

the only entity that can view or update the shielding key which is required to encrypt the user data
(e.g. IDgraph, or VC payload).

shielding
key

Advantages of EVM Sign-In

Security: Leverage the built-in security protocols of your Ethereum wallet to interact with the
IDHub.

Simplicity: Bypass the hassle of juggling multiple usernames or passwords. Your Ethereum wallet
address is the foundation of your web3 identity.

Interoperability: A bridge between Litentry parachain and Ethereum is been maintained to
facilitate token flow and usage in both networks. This allows you to engage effortlessly with an
extensive array of applications within the Ethereum ecosystem (now including the IdentityHub).

Direct Invocation
Previous

Securing Privacy
Next

Last modified 1h ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/front-end-products/identityhub/product-features/direct-invocation
https://docs.litentry.com/front-end-products/identityhub/user-guide/set-up-a-shielding-key
https://docs.litentry.com/front-end-products/identityhub/product-features/direct-invocation
https://docs.litentry.com/front-end-products/identityhub/product-features/securing-privacy
https://docs.litentry.com/

Securing Privacy
This page discusses how Litentry will assure confidential identity data
aggregation and computation.

The litentry parachain carries the confidential identity data aggregation and generates trusted
identity data. The following technologies are put in place to assure the users data privacy.

Trusted execution environment

The storage of ID graphs and the entire identity data aggregation process will be implemented by
the TEE Sidechain of the Litentry network. A is an environment
for executing code, it guarantees code and data loaded inside to be protected with respect to
confidentiality and integrity.

Trusted Execution Environment (TEE)

See also TEE FAQ

Confidential storage of ID graphs

Clients will submit ID graphs to the blockchain and the blockchain will verify the ID graphs. Validated
ID graphs will be stored in an encrypted on-chain TEE storage.

Request desensitiser

The request desensitiser is executed inside the TEE, it is designed for splitting accounts into separate
queries and batching parallel requests belonging to different users aside from adding random
addresses when sending it to external data providers. The request desensitiser makes it impossible
for data providers to guess a user's ID graph based on the data requests.

Decentralized data aggregation

After sending data requests to data providers, the Litentry network will listen to the results from
data providers and aggregate the results. The data results will only include the relevant values and is
aggregated according to the request ID. The user's address does not appear in the process or is not
disclosed in the credential

Selective Disclosure

A user will have maximal control over the amount of information they want to 'disclose' to a dApp.
Litentry's verifiable credentials allow the user to only disclose the minimum needed amount of
information required for the specific use case.

EVM Sign-In
Previous

User Guide
Next

Last modified 4mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://en.wikipedia.org/wiki/Trusted_execution_environment
https://docs.litentry.com/parachain/pallets-and-modules/tee/tee-faq
https://docs.litentry.com/front-end-products/identityhub/product-features/evm-sign-in
https://docs.litentry.com/front-end-products/identityhub/user-guide
https://docs.litentry.com/

Getting Started with the IDHub

To unlock your Web3 Identity Value with IDHub, you can follow these steps and get started;

Step 1: Visit the IDHub via and click ‘Get Started’.https://idhub.litentry.io/

Step 2: Upon clicking the button, a Connect Wallet prompt will appear on your screen. Tick the
privacy policy box (once you’ve reviewed the privacy policy) and select your desired wallet and click
connect as shown below:

Note: For the purpose of this tutorial we will be demonstrating using a Polkadot.JS wallet.

Step 3: Once you click the connect button, you will see a pop-up message on your screen requesting
you to authorize IDHub. This includes a secure challenge code to sign in to the Identity Hub. Click the
"Yes, allow this application access" button.

Step 4: Next, you’ll be requested to enter your password.

Step 5: Once entered, click the confirm button and you’ll be redirected to your dashboard with the
pop-up message ‘Success! Wallet connected’ as shown below:

User Guide
Previous

Connecting your Web3 Account
Next

Last modified 3mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://idh-alpha.litentry.io/home
https://docs.litentry.com/front-end-products/identityhub/user-guide
https://docs.litentry.com/front-end-products/identityhub/user-guide/connecting-your-web3-account
https://docs.litentry.com/

Connecting your Web3 Account

To be able to access the IdentityHub further, you need to complete some onboarding quests. These
quests involve going through the onboarding tutorial and connecting your Web2 and Web3 accounts
as well as others. Completing each quest, you’ll be awarded project reward badges that you can
share with your others and brag about with your friends.

Note: To be able to link any account, users need to create a minimum 8-character password to
generate a shielding key. Please save this password locally and securely. The shielding key is used to
encrypt all user on-chain data in the Litentry Network. Click to read more about the shielding
key.

here

Step 1: To get started, click ‘Start Now’.

Step 2: Once clicked, you’ll be redirected to the interface shown below. Click the ‘Getting Started’
quest card.

Step 3: The requirement for completing this quest is to go through the onboarding tutorial and
connect your Web2 and Web3 accounts to build your Identity Profile.

Step 4: Next, click ‘Link a Web3 Address’ to connect a Web3 address. On this page, you can connect
either an EVM or Substrate Wallet address so choose to connect either Metamask or a Polkadot.js
wallet. Your connected Web3 address will be added to your primary account.

Note: For demonstration purposes, we’ll use a Polkadot.js wallet.

Step 5: Once you select Polkadot.js, click ‘Connect’ and select your desired Polkadot wallet from the
drop-down options.

Step 6: A pop-up message will appear on your screen requesting you to authorize the IdentityHub.
This includes a secure challenge code to sign in IdentityHub. Click ‘Yes, allow this application access’.

Step 7: Another pop-up message will appear on your screen with the text: ‘Success! Web3 address
connected’. You will also see your reward badge on this page.

With this, you have successfully connected your Web3 address and you can connect more addresses
in the ‘My Identity section’ of the IDHub.

Getting Started with the IDHub
Previous

Connecting your Web2 Account
Next

Last modified 3mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/identity-management-pallet-imp/components-of-the-imp#shielding-key
https://docs.litentry.com/front-end-products/identityhub/user-guide/getting-started-with-the-idhub
https://docs.litentry.com/front-end-products/identityhub/user-guide/connecting-your-web2-account
https://docs.litentry.com/

Connecting your Web2 Account

To complete the quest, you need to link your Web2 account as well. To do that, follow the steps
below:

Step 1: Click ‘Connect Twitter’ and enter your Twitter username. Click ‘Next’ to proceed.

Step 2: The IdentityHub will automatically request a challenge code and generate a proof message
for you.

Step 3: You will be requested to Tweet the generated proof message on your Twitter account as
shown below. Click the ‘Tweet it now’ to send the tweet, then return to the IDHub to proceed by
clicking ‘I’ve sent it’.

Step 4: Show proof of the Tweet by copying and pasting the link to it in the IDHub as shown below.
Next, click ‘Verify’.

Step 5: You’ll receive a pop-up authorization request to proceed. Click ‘Yes, allow this application
access’.

Step 6: Upon authorization, your identity will be verified on the blockchain. Wait a few moments for
the blockchain to verify your proof.

Step 7: Once confirmed, you’ll receive a pop-up message with a congratulatory message and your
reward badge.

With this, you will have successfully linked your Web2 and Web3 accounts to the IDHub. You can
click ‘My Identity’ just below the dashboard to link more accounts.

To demonstrate this, the screenshot below shows an account with two EVM addresses, a substrate
address, and a Twitter account.

Now that you have completed your first quest and linked both your Web3 accounts, the next task is
to .create your first Verifiable Credential

Connecting your Web3 Account
Previous

Creating your First Verifiable Crede…
Next

Last modified 3mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/front-end-products/identityhub/user-guide/creating-your-first-verifiable-credential-vc
https://docs.litentry.com/front-end-products/identityhub/user-guide/connecting-your-web3-account
https://docs.litentry.com/front-end-products/identityhub/user-guide/creating-your-first-verifiable-credential-vc
https://docs.litentry.com/

Creating your First Verifiable
Credential VC

Verifiable credential (VC) enables individuals to hold and share their digital identities with ease,
privacy, and security. It is based on the idea that identity attributes can be cryptographically signed
and verified through trusted parties. To generate your first VC, follow the steps below:

Step 1: Click the ‘Create your first Verifiable Credential Quest’ card and get started.

Step 2: You need to join the Litentry Discord before you generate a VC. To join the Litentry Discord,
click the corresponding button and enter your Discord username. Then, follow the steps as shown.

Step 3: Upon joining the Litentry Discord, return to IDHub and click the Generate VC button. Once
clicked, the interface below will be displayed. Enter the link to the Tweet that you’re requested to
retweet in Credential 1 and enter the credential subject type in Credential 2 then click the next
button.

Step 4: Next, you’ll be required to approve the sharing of your VCs with the Litentry Identity Hub.
The details of the VCs you’re requesting will also be displayed. Click the approve button.

Step 5: The IdentityHub will automatically request a challenge code and generate a proof message
for you.

Step 6: Once processed, your VC generation request will take effect. This process may take 1-2
minutes as the Litentry TEE worker is retrieving your data from the open web.

Step 7: Once your VC has been generated, proceed with the remaining tasks in the quest:

Display your VC and get the “ID-Hubber” role assigned

Comment in the Channel “ID-Hub”

Step 8: Once you have completed the tasks, you will have successfully completed the quest and
generated your verifiable credential.

Connecting your Web2 Account
Previous

Set up a Shielding Key
Next

Last modified 3mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/front-end-products/identityhub/user-guide/connecting-your-web2-account
https://docs.litentry.com/front-end-products/identityhub/user-guide/set-up-a-shielding-key
https://docs.litentry.com/

Set up a Shielding Key

A shielding key is a 256-bit AES-GCM cryptographic key pair that is generated randomly and
protected by the user password. Its public key is used by the Litentry TEE worker to encrypt user-
sensitive information when passing back the data. It is used to encrypt all the data in the
communication between the user and the Litentry Parachain. The shielding key is generated in the
user’s local environment and used by the IDHLS to isolate sensitive user data from the IDH server
and all other third parties.

Overall, it is an extra layer of security on top of your Substrate private key (Account) used exclusively
to encrypt your data for transmission and ensure only you or the Enclaves can decrypt it.

It is important to note that there are two types of shielding keys;

User shielding key - This key is applied to the on-chain data returned by TEE. TEE shielding key- is
used in the other direction (user -> TEE) and is publicly visible.

Set up a Shielding Key

1. User set a 8-character password as a root of their Shielding Key, this password will also be used
to unlock IDHLS

2. IDHLS will update the Shielding Key to Parachain:

1. IDHLS will use the 8-character password to generate the Shielding Key with algo 32byte AES-
GCM

2. IDHLS will initiate the set_user_shielding_key extrinsic to pass the user’s shielding key
and encrypt the extrinsic with the Parachain TEE’s Shielding Key

3. The user will sign and pay the extrinsic, the signing address must be the same as the user’s
sign-in address in the JWT, otherwise, IDHLS should forbid the user to continue.

4. IDHLS will submit the extrinsic and listen to the parachain events

5. IDHLS will find its parachain event by the user’s main address and decrypt the event to get
the result of set_user_shielding_key extrinsic

Success - finish set up, go to page My Account

Failed - show the error response and ask the user to try again

6. IDHLS will then store the Shielding Key locally as the current only valid Shielding Key of the
user

7. The Substrate address that the user used to sign the set_user_shielding_key extrinsic
will be stored as the mainAccount in the Local ID Graph**.** Also, local storage will create
separate storage spaces for each main account, and different storage spaces will only be
able to unlock with the shielding key of the corresponding mainAccount .

Creating your First Verifiable Crede…
Previous

FAQ
Next

Last modified 3mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/front-end-products/identityhub/user-guide/creating-your-first-verifiable-credential-vc
https://docs.litentry.com/front-end-products/identityhub/faq
https://docs.litentry.com/

FAQ
This page discusses frequently asked questions. Please do not hesitate to get in
touch via discord when you're running into trouble.

Can Litentry see the sensitive relationships between the accounts in my profile?

What are the next chains that you would like to be more present on?

How does the shielding key protect my data during processing and computation?

How do I send my verifiable credential to a dApp or community?

Will the IDhub's credentials be used for KYC?

Set up a Shielding Key
Previous

Litentry Foundation
Next

Last modified 4mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/front-end-products/identityhub/user-guide/set-up-a-shielding-key
https://docs.litentry.com/litentry-foundation
https://docs.litentry.com/

Tokenomics

Introduction

Litentry is a Decentralized Identity Aggregation protocol across multiple networks, it features a DID
indexing mechanism and a Substrate-based credit computation network. The protocol provides a
decentralized, interoperable identity aggregation service that mitigates the difficulty of resolving
agnostic DID mechanisms.

 is the native cryptocurrency of the Litentry, including Litmus parachain on Kusama and
Litentry parachain on Polkadot with the following utilities:
LIT token

Pay transaction fees in the network

Incentivize collators and fund promotion campaigns to support Litentry parachain

Empower governance mechanisms in the chain, including proposing referendums, the election
of council members, voting in a referendum, etc.

Serve as the utility token for identity product or service

Collator staking

LIT Token Allocation

Token Name LIT

Binance Launchpool 3.00% of the total token supply

Seed Sale 8.11% of the total token supply

Strategic Sale 11.89% of the total token supply

Team 15.00% of the total token supply

Parachain Auction & Ecosystem 45.00% of the total token supply

Foundation 17.00% of the total token supply

LIT token release schedule

Litentry Foundation
Previous

Litenry parachain inflation and colla…
Next

Last modified 5mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/parachain/pallets-and-modules/token-bridge/tokenomics-revisit
https://docs.litentry.com/litentry-foundation
https://docs.litentry.com/litentry-foundation/tokenomics/litenry-parachain-inflation-and-collator-staking
https://docs.litentry.com/

Litenry parachain inflation and
collator staking

Inflation Model

This inflation model of the LIT token aims to guarantee the security of the Litentry network
in the long run.

The newly issued LIT can incentivize collators to provide block production services and
delegators to stake to support the Litentry network. Litentry collators are run and maintained by
the Litentry team at the early stage. We hope the community can participate in running and
maintaining the collator nodes to make the identity protocol more decentralized, stable, and robust.

Besides, LIT holders can participate in building network security by staking their LIT and helping
power the collator selection process.

Generally speaking, newly issued tokens from inflation are used to pay for a parachain slot in either
Kusama or Polkadot. However, it will not be the case for Litentry. Because Litentry has reserved 45%
of the LIT for slot auctions and building the ecosystem, the Litentry team has enough tokens to
acquire slots on Polkadot and Kusama in the upcoming decade. Inflated LIT tokens will not be used
for team or ecology building.

According to the community's opinion and based on the overall market situation, if Litentry
parachain enters the inflation model, it will harm the interests of the community and LIT
holders, so we will continue to burn the equivalent amount of new issuance LITs from the
inflation model quarterly for the next two years after collator staking is deployed.

The new issuance token for the next two years will be：

newToken = 100,000,000 *[(1+1.5%*1/2+2.5%*1/2)*(1+2.5%)-1] = 4,550,000 LIT

The amount of LIT that should be burnt each quarter is：

burnLIT = 4,550,000/8 = 568,750 LIT

The following are the key parameters of the inflation model:

- Target a 1.5% annual inflation rate in the first six months
(~=1,296,000 blocks),
 0.5% goes towards incentivizing collators, 1% is for users that stake their LIT tokens
- After six months, a 2.5% annual inflation rate will be applied, 0.5% goes
 towards incentivizing collators, 2% is for users that stake their LIT tokens
- 568,750 LIT will be burnt from the ecosystem wallet each quarter and continues
 for eight quarters (two years).

 Note: The proposal to burn the planned 568,750 LIT was tabled as referendum #0 and had
 been voted and passed. You can check the details here:
 https://litentry.subsquare.io/democracy/referendum/0

The staking pallet is enabled at block height 1,075,800

Figure 1.1 shows the pre-inflation LIT token release schedule. A small portion of these released
tokens is from the team, but most of them are from crowdloan rewards of the slot auctions.
According to the existing token release plans, about 55,000,000 LITs will be in circulation by the end
of 2024.

Figure1.2 presents the inflation rate after collator staking is deployed. The inflation rate will be 1.5%
for the first 6 months and 2.5% after 6 months.

 Figure1.2 The Inflation rate of LIT token

To offset the reduced number of LITs in circulation, we introduced the inflation model, as shown in
Figure1.2. When the collator staking functionality comes online, the LITs in circulation will be lower.
We can not accurately predict the number of LITs that will be removed from circulation, but this does
not prevent us from making a hypothesis.

Assuming that the LITs participating in collator staking receive an annual reward of about 10-20%
and that 2 % of the inflation token(i.e., 2,000,000 LITs) is reserved for collator staking users. About
10%-20% of the total LITs (i.e., 10,000,000 -20,000,000LITs) will be taken out of circulation. The
estimated circulation of LIT is shown in Figure1.3. There will be about 40,000,000 LITs in circulation
by the end of 2024 after collator staking functionality is deployed.

 Figure1.3 The LIT token circulation after collator staking

Collators

Collators are full nodes for the parachain and the relay chain. They maintain parachains by collecting
parachain transactions from users and producing state transition proofs for Relay Chain validators.
Even though collator nodes do not contribute to the safety of the network, they are an integral part
of the parachain. The Litentry Network will become more stable and robust with a good number of
high-quality collators.

Opening collators to community participation is an essential step towards community governance in
Litentry parachain. In the early stages of Litentry parachain, collators are run and maintained
entirely by Litentry. After opening up to community participation, Litentry will continue to run and
maintain some of the collators and will gradually open up the number of collators to community
participation. All revenue from the collators run and maintained by Litentry will go to the
treasury, and the community will decide how to use it.

Requirements for an organizer candidate include one’s machine, bound, account, and community.
Maintaining a collator requires a certain investment of time, technology, and hardware by the
candidate, so in our inflation model, about 500,000 LIT new issuance tokens will be used to
incentivize the community to participate in the operation of the collator actively.

Staking

LIT holders are encouraged to participate as a nominator. LIT holders can select a list of collators
that they trust and stake the amount of LITs to support them. If some of these candidates are
elected as block producers, they share the block rewards or the sanctions on a per-staked-LIT basis.

From the event of unstaking, the unstaked amount remains locked for about seven days.

Rewards are received as unlocked LIT tokens and are not automatically added to the stake.

Parameters Value Description

Session duration 1800 blocks (6 hours)
a specific number of blocks
around which staking
actions are enforced.

Minimum staking per
candidate

50 LIT

the minimum amount of
tokens to delegate
candidates once a user is in
the set of delegators

Maximum delegators per
candidate

1000

the maximum number of
delegators, by staked
amount, that a candidate
can have which are eligible
to receive staking rewards

Maximum delegations 100
the maximum number of
candidates a delegator can
delegate

Reward payout delay 2 sessions (12 hours)
How long until you get the
staking rewards

Add or increase delegation
takes effect in the next
round (funds are withdrawn
immediately)

How long until your funds
will take effect

Decrease delegation delay 28 sessions (7 days)
How long until your funds
will be transferrable after
unbonding

Revoke delegations delay 28 sessions (7 days)
How long until your funds
will be transferrable after
unbonding

Leave delegators delay 28 sessions (7 days)
How long until your funds
will be transferrable after
unbonding

Tokenomics
Previous

Ecosystem Wallet
Next

Last modified 5mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/litentry-foundation/tokenomics
https://docs.litentry.com/litentry-foundation/ecosystem-wallet
https://docs.litentry.com/

Ecosystem Wallet

This page is mainly used to track and record LIT transfers from the ecosystem Wallet. The ecosystem
wallet address is :

0x9cdF4E1347328416daF17335CaF6A314201CC1Dd

and the fund will be mainly used in the following use cases:

Support both Polkadot and Kusama crowdloan rewards

Support identity Hub products, e.g. identity staking

Litentry parachain ecosystem building

Support early stage collator staking rewards

Tx Hash Comments Transferred Balance

0xc8c7b0d784badeada4e2
3990b687b846acad9878c9
bb11595980101189d6bb3
c

Move Litmus crowdloan reward
to token bridge

487,219 LIT

0xef8cc6f9035cfcb97e03b
78ccaca53a3216cecd69ea
b45f3dfa2c2a010f86b96

Move Litenry crowdloan reward
to token bridge

2,000,000 LIT

0x66fd7fde697e67f0906dd
1c02a6c716e71b4dff6e65a
05f365472e5a400c1f41

Move Litenry crowdloan reward
to token bridge

1000 LIT

0xe95a3e59c34f389a67bd
d94fdff65861d2121b4aecc
517787227e08ea8773cb6

Move Litenry crowdloan reward
to token bridge

8,443,219 LIT

Litenry parachain inflation and colla…
Previous

Team Wallet
Next

Last modified 3mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://etherscan.io/tx/0x66fd7fde697e67f0906dd1c02a6c716e71b4dff6e65a05f365472e5a400c1f41
https://etherscan.io/tx/0xe95a3e59c34f389a67bdd94fdff65861d2121b4aecc517787227e08ea8773cb6
https://docs.litentry.com/litentry-foundation/tokenomics/litenry-parachain-inflation-and-collator-staking
https://docs.litentry.com/litentry-foundation/team-wallet
https://docs.litentry.com/

Team Wallet

The Team wallet address is

0x65E4a77536d47Bf42Db6817373939A63C00A0904

and the fund's purpose is mainly used to support the development team's salary compensation.

Tx Hash Comments Transferred Balance

0x733971ef9581f6e885a57e
d59656c9bcfe5ca49b38d734
5e4af8cee454e03de5

Monthly release 250K

0xbe5ca0c80083b6660ce0a2
3f4a28c5f878cfbdfad709e91
0dcd59755ca3d0109

Monthly release 280K

0x638e04cdb0b23d143a5f7d
f17808ed745984beed31acb0
eba610ca93f4757565

Monthly release 250K

0x5cf1677f071827bcc2e65d0
d89a9393d6abe388f0d632f0
f45e083752680c87a

Monthly release 250K

0x61d9dcf744219524538c6f
5c5ca1024497d3eeb896caf4
1cb6fe21b7c4fd7eb3

Monthly release 250K

0xec948ccf6c5e9455a8e6d4
aa9e5ab999be2e55a780204
e6994f0651b0df0a4a4

Monthly release 250K

0x3244c1e83a8101f31f1b9e
34551c0eedd7a5465861298
dbc864cd32aa4ec1092

Monthly release 250K

0x5336c55f6afe6c98a0b25b
9191f0ae493343f8d6e68fcd7
2c8cc165710556d43

Monthly release 250k

Ecosystem Wallet
Previous

Foundation Wallet
Next

Last modified 1mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://etherscan.io/tx/0x5cf1677f071827bcc2e65d0d89a9393d6abe388f0d632f0f45e083752680c87a
https://etherscan.io/tx/0x61d9dcf744219524538c6f5c5ca1024497d3eeb896caf41cb6fe21b7c4fd7eb3
https://etherscan.io/tx/0xec948ccf6c5e9455a8e6d4aa9e5ab999be2e55a780204e6994f0651b0df0a4a4
https://etherscan.io/tx/0x3244c1e83a8101f31f1b9e34551c0eedd7a5465861298dbc864cd32aa4ec1092
https://etherscan.io/tx/0x5336c55f6afe6c98a0b25b9191f0ae493343f8d6e68fcd72c8cc165710556d43
https://docs.litentry.com/litentry-foundation/ecosystem-wallet
https://docs.litentry.com/litentry-foundation/foundation-wallet
https://docs.litentry.com/

Foundation Wallet

The Foundation wallet address is

0xD481E3499c8Ef073913513073C97d4d89bb9797e

 and will be used as following aspects:

Support exchange Listing

Market Maker Fund support

Community event support

Tx Hash Comments Transferred Balance

0x7258418f91a70d5aa6f1e9
62acd092ca7196553a213ac8
a1cf7458e3d3270b5e

Used as minimum staking of
the Litentry hold collators

20000 LIT

Team Wallet
Previous

Glossary of Terms
Next - Misc

Last modified 5mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/litentry-foundation/team-wallet
https://docs.litentry.com/misc/glossary-of-terms
https://docs.litentry.com/

Glossary of Terms

Term Definition

Auction (Parachain)
Parachain auctions are how non-common-
good parathreads win a slot to become a
parachain

Aggregated Identity
An identity that consists of multiple data
streams from web3 & web2 accounts and
platforms.

Bounty

A mechanism which works in some sense as
the reverse of a Treasury Proposal, allowing
the Polkadot Council to indicate that there is
a need to do some task for the Polkadot
network and allowing users to receive DOT in
return for working on that task.

Council (Polkadot)

An on-chain entity that consists of several
on-chain accounts. The Council can act as a
representative for "passive" (non-voting)
stakeholders.

Decentralised Identity

An identity that consists of multiple
decentralised data points across web3
platforms and blockchains. A D-ID is
managed and accessed by decentralised
applications.

Governance

The process of determining what changes to
the network are permissible, such as
modifications to code or movement of funds.
The governance system in Polkadot is on-
chain and revolves around stakeholder
voting.

Identity Owner
The user who has provided access to his
various accounts and in this way creates his
aggregated identity.

Identity Subject
A label added to the the users aggregated
identity determined by their on-chain
credentials. e.g. 'Longterm Holder'

NFT
A non-fungible token is a unique and non-
interchangeable unit of data stored on a
blockchain.

Referendum

A vote on whether or not a proposal should
be accepted by the network. Referenda may
be initiated by the Governance Council, by a
member of the public, or as the result of a
previous proposal.

Registrar

After a user injects their information on-
chain, they can request judgement from a
registrar.
Registrars can set a fee for their services and
limit their attestation to certain fields.

(to) Second (Polkadot)
Agreeing to a proposal by putting up tokens
equal to the original bond

TaskFI Completing tasks to earn tokens

Treasury (Polkadot)
The Treasury is an account that accumulates
funds by inflation as well as by taking a
portion of transaction fees and slashes.

Foundation Wallet
Previous

Related Links
Next - Misc

Last modified 5mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/litentry-foundation/foundation-wallet
https://docs.litentry.com/misc/related-links
https://docs.litentry.com/

Related Links
Would you like to learn more about Litentry? Great! Take a look at some of the
links below.

Title Link

Litentry Website https://www.litentry.com/

Twitter https://twitter.com/litentry

Telegram https://t.me/litentry

Discord Server https://discord.gg/WR4RPTHjAz

Medium Blog https://litentry.medium.com/

Glossary of Terms
Misc - Previous

Media Assets
Next - Misc

Last modified 5mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://www.litentry.com/
https://twitter.com/litentry
https://t.me/litentry
https://discord.gg/WR4RPTHjAz
https://litentry.medium.com/
https://docs.litentry.com/misc/glossary-of-terms
https://docs.litentry.com/misc/media-assets
https://docs.litentry.com/

Media Assets
Hi-res Litentry logos for media

PNG

SVG

Logo Litentry Icon Symbol Litmus

Related Links
Misc - Previous

Last modified 5mo ago WAS THIS PAGE HELPFUL?

Litentry Doc English Search ⌘K

https://docs.litentry.com/misc/related-links
https://docs.litentry.com/

