
Double-A Chain White Paper 1.0

 1 / 28

Double-A Chain

A Next-gen public chain commits to Metaverse and Web3.

Version 1.0

2022/02

Double-A Chain White Paper 1.0

 2 / 28

Content
1. Background .. 3

2. Design Principles ... 4

3. Overview ... 5

4. Manifesto & Vision ... 6

4.1 Manifesto ... 6

4.2 Vision .. 6

5. Consensus & Governance ... 7

5.1 Consensus .. 7

5.2 Validators ... 7

6. Tokenomics .. 10

6.1 Supply Mechanism .. 10

6.2 Distribution Mechanism ... 10

6.3 Function and Use ... 10

7. Performance .. 11

8. Technical Features .. 12

8.1 Technical Highlights ... 12

8.2 Smart Contract ... 12

9. Bridge... 22

9.1 Native Bridge .. 22

9.2 What should our partners do .. 23

9.3 Costs and Cross-chain fees .. 24

10. Wallet .. 25

11. Roadmap .. 26

12. Disclaimer ... 28

Double-A Chain White Paper 1.0

 3 / 28

1. Background

2021 is the start year of the Metaverse. Facebook, Nvidia, Microsoft, Apple, and many

other technology giants have announced they will participate in exploring the

Metaverse. Their participation will undoubtedly provide a more reliable hardware and

software foundation for the Metaverse ecology and accelerate the rapid development

of the Metaverse.

However, at the same time, the blockchain network, which is the underlying

infrastructure of the Metaverse, has still failed to achieve large-scale acceptance due

to scalability and unsatisfactory user experience, which seriously affects the

development of the Metaverse. Even on Ethereum, the most widely used smart

contract, there are not many Metaverse projects and DAPPs widely adopted. On the

other hand, some Metaverse applications can gain a large number of users in a short

time but will cause network congestion and high latency or even lead to the paralysis

of the entire network, resulting in poor user experience. Furthermore, the increasingly

high gas fee also seriously hinders the expansion of the Metaverse user base.

Whether Metaverse or Web3, one of the biggest features is decentralization. Although

the PoW consensus mechanism can well ensure the decentralization of the network,

it has been criticized more and more because it is not environmentally friendly enough,

which shows that the PoW consensus mechanism is not the best choice for the

Metaverse and Web3. On the other hand, a few public chains have higher transaction

throughput but compromise on decentralization to increase transaction speed.

Certainly, the high throughput, high transaction speed, low cost, and reasonable

degree of decentralized blockchain network determine the development speed and

market breadth of the Metaverse and Web3.

Double-A Chain White Paper 1.0

 4 / 28

2. Design Principles

In the future, Metaverse and Web3 applications will face users on a global scale and

generate a massive amount of data and digital assets far exceeding the current

Internet generation. Therefore, as a next-gen chain focusing on Metaverse and Web3,

Double-A Chain has been committed to developing functions such as high transaction

speed, high throughput, and low fees as main objects. In addition, it also adheres to

the following design principles:

1. Independent blockchain: Technically speaking, Double-A Chain is an independent

blockchain, not a second-layer solution.

2. Ethereum Compatibility: Ethereum is still the most practical and widely used smart

contract. To make better use of Ethereum's relatively mature applications and

communities, Double-A Chain chose to be compatible with the existing Ethereum

mainnet. Compatible with the existing Ethereum mainnet means that most of the

DApps, ecosystem components, and tools in the blockchain world will be interoperable

with Double-A Chain. This strategy can make it possible for Double-A Chain to catch up

with Ethereum in performance, ecology, and other aspects.

3. Consensus and Governance: To be more environmentally friendly and leave a more

flexible governance mechanism for the community, Double-A Chain will adopt a

consensus mechanism based on Staking. Based on DPoS and combined with other

governance methods, Double-A Chain will achieve better network performance and

complete community governance while achieving faster transaction speed and higher

transaction capacity.

4. Cross-chain communication: Double-A Chain will support cross-chain

communication between different blockchains in the future. The communication

protocol of the Double-A Chain is bidirectional, decentralized, and trustless. It will

focus on the circulation of digital assets between the Double-A Chain and other

blockchains.

Double-A Chain White Paper 1.0

 5 / 28

3. Overview

Double-A Chain is a next-gen public chain featuring decentralization, high transaction

speed, and low handling fees. Double-A Chain is compatible with smart contracts and

supports high-performance transactions. Its token is AAC, and it adopts the APoS

consensus mechanism. Double-A Chain focuses on building a high-performance

blockchain, empowering the Metaverse and Web3.0 ecosystem, and promoting the

rapid implementation and sustainable development of GameFi, NFT, and other

application scenarios.

Double-A Chain is committed to leveraging the existing developer community and

ecosystem to solve the scalability and usability issues blockchains currently face

without compromising decentralization. Double-A Chain will enable developers to

design, implement and migrate DApps built on platforms such as Ethereum to

Double-A Chain by providing more wallet support, payment APIs and SDKs, products,

identity solutions, and other support in the future.

Double-A Chain has always been committed to providing Metaverse, Web3

application development, and ecological landing solutions, providing scalability and

excellent user experience for DApps and Web applications in Metaverse, Web3.

Double-A Chain White Paper 1.0

 6 / 28

4. Manifesto & Vision

4.1 Manifesto

To assist developers to participate in every construction stage of Metaverse and Web

3.0.

4.2 Vision

Technological innovation is the ongoing mission of the blockchain industry, and it is

also the driving force behind the digitalized world. We have witnessed the explosion

of NFTs and the beginning of the Metaverse. When Ethereum and other chains face

problems such as network congestion and rising gas fees, Double-A Chain believes that

establishing an efficient and friendly blockchain infrastructure will accelerate the

success of the Metaverse, Web3.0, and other digital revolutions. Therefore, the

mission of Double-A Chain is not only to be a public chain but also to focus on

discovering and supporting high-potential Metaverse, Web3.0 developers, and

innovative projects. Relying on the Double-A Chain ecosystem, Double-A Chain is

committed to becoming the birthplace of blockchain innovation, especially around

Metaverse and Web3.0. Furthermore, to build a complete ecological cycle of

technology development, application promotion, and asset trading.

Double-A Chain White Paper 1.0

 7 / 28

5. Consensus & Governance

5.1 Consensus

Double-A Chain adopts the APoS consensus mechanism combining PoA+DPoS, jointly

governed by verification nodes and voters. As a result, it has the characteristics of

democracy, efficiency, low transaction cost, low transaction delay, and high transaction

concurrency.

Although Proof of Work (PoW) has been recognized as a practical mechanism to

implement a decentralized network, it is not environmentally friendly. It requires

participants to invest a lot of hardware, capital, etc., to maintain network security.

Ethereum and other networks are also experimenting with Proof of Authority (PoA) or

its variants in different scenarios, including testnets and mainnets. PoA provides some

defense against 51% attacks, improving efficiency and tolerance for certain levels of

Byzantine players.

At the same time, PoA protocols have been questioned for being less decentralized

than PoW since validators, the nodes which take turns producing blocks, have all

authority and are prone to corruption and security attacks. Some blockchains have

introduced a different type of Delegated Proof of Stake (DPoS) to allow token holders

to vote and elect validators (supernodes). This mechanism achieves decentralization

and facilitates community governance.

Double-A Chain proposes to combine DPoS and PoA to achieve a new consensus, the

APoS consensus mechanism. It has the characteristics of low transaction cost, low

latency, high transaction concurrency, and supports up to 21 validators (validation

nodes).

5.2 Validators

5.2.1 Definition

Double-A Chain's validators (also known as supernodes) refer to the nodes that govern

and obtain rights and interests of Double-A Chain and are responsible for producing,

validating blocks, and processing transactions to drive the normal operation of the

blockchain. Validators also participate in Double-A Chain governance and enjoy

income distribution. Becoming a validator requires staking a specified amount of AAC

and voting by the community.

5.2.2 Type and Amount

Double-A Chain White Paper 1.0

 8 / 28

Double-A Chain has two types of nodes, validators and validator candidates. The

specific rules and rights are as follows：

Type Amount Responsibilities Token

Validators 21 Handling fee+Prize pool

reward for nodes

AAC

Candidates
11（In the future, it will

be decided whether to

increase the number of

candidates based on

community voting）

Prize pool reward for nodes. AAC

5.5.3 How to become a validator?

(1)Stake AAC to qualify for node election

Any address can stake more than 10 million AAC and get votes from more than 100

other voting addresses to qualify for validator election (become a candidate). When

the node gets the top 21 votes, it will become an active validator for the next epoch.

Votes ranked 22-32 become candidate nodes.

If less than 21 nodes meet the conditions, all valid nodes become validators.

If less than 11 nodes meet the conditions, the contract will select nodes according to

the actual number.

Exit mechanism: If a validator decides to stop maintaining the network and no longer

wants to be a validator, it can request exit from the governance contract. The validator

staked tokens will be automatically unlocked after 15 days, thereby exiting.

(2)Voting

Chain users can vote for validator candidates by staking AAC to a Double-A Chain

address designated by the node. Each node candidate must obtain at least 100 user

votes to qualify for election (i.e., 100 voting addresses).

The top 21 votes become validators, and the 22nd to 32nd is the candidate nodes.

-Voting prerequisite

The minimum number of votes for a user to vote for a validator candidate is 10,000

AAC.

Voting rules

- One AAC, one vote, the more AAC staked, the more votes candidate get.

- One address can only vote for one node

- Addresses of validator candidates cannot participate in voting

- To vote, you must first convert AAC to AACV (AAC Vote), AACV can be converted back

to AAC when you withdraw (you need to wait five days)

(3)Exit the voting mechanism

- The AAC staked by users for voting can be retrieved after this round of the election.

- If the user retrieves the vote, the contract will reduce the number of votes obtained

Double-A Chain White Paper 1.0

 9 / 28

by the corresponding node. The actual number of votes obtained by the node is

calculated based on the snapshot of the current round of election deadline.

- After retrieving the vote, the user can continue to vote AACV to other nodes or apply

to exchange AACV back to AAC. It takes five days to retrieve back to AAC.

5.5.4 Block

All active validators (validation nodes) are ordered according to predefined rules and

take turns to package blocks. Suppose the validator fails to pack a block in time in its

round. In that case, the active validator who did not participate in the past n/2 (n is

the number of active validators) blocks will randomly execute the block. The normal

operation of Double-A Chain requires at least n/2+1 active validators to function

properly.

5.5.5 Node Reward

（1）Handling fee

The fees for packaging transactions are all charged by the validator of the packaging

blocks.

（2）Prize pool

All AACs supplied every year are set up as a prize pool for nodes.

49% of the pool will be distributed to node owners according to the proportion of

votes obtained by validators;

40% of the pool will be distributed to voter according to the proportion of votes

obtained by validators.

11% of the pool, divided equally among all candidate nodes and users. If there are less

than 11 candidate nodes, the total reward for this part will be reduced to { prize pool

amount x 1% x the actual number of candidate nodes }. (To prevent only one candidate

node available and the node takes all 11%)

Double-A Chain White Paper 1.0

 10 / 28

6. Tokenomics

6.1 Supply Mechanism

The total supply of AAC is 12 billion initially. After that, the contract will supply an

additional 5% (600 million) every year on top of 12 billion coins.

AAC's additional supply mechanism adopts a hard fork; that is, at a certain point

(specified block height), 600 million coins are added to the staking contract. To

separate a hard fork requires more than half of the nodes to agree.

6.2 Distribution Mechanism

1. Project party will use the initial supply of 12 billion AAC to exchange old tokens, as

follows

（1）Huobi users exchange at 1:10, and the total supply is about 5.45 billion.

（2）OKx users exchange at market price, and the total supply is about 2 billion.

（3）Supply about 4.55 billion to other exchanges and holders of the Ethereum.

 2. The 600 million AAC that increases the supply every year will be set up as a node

reward pool, and the specific distribution mechanism is following the rules in "Node

Rewards."

6.3 Function and Use

AAC is the token of Double-A Chain, which can be used for staking, voting governance,

and a future payment method within the ecosystem. AAC provides gas and secures the

network. When users send AAC or use Double-A Chain applications, users pay a small

fee in AAC, which motivates nodes to process and validate user transactions.

In addition, AAC will serve as a medium for transactions in the future on-chain

ecological market. AAC will be used as a settlement tool for Double-A Chain's future

Metaverse, Web3.0, GameFi, and other scenario applications and circulation markets.

Double-A Chain will set up an AAC Incubation Fund to support the development and

operation of Metaverse projects through investment, technical and market support.

Double-A Chain White Paper 1.0

 11 / 28

7. Performance

• TPS：1000+

• Average block interval：3s

• Gas fee：3gwei

Double-A Chain White Paper 1.0

 12 / 28

8. Technical Features

8.1 Technical Highlights

• An open and decentralized network to maintain the security of the network

and assets.

• Faster transaction speed, lower transaction fee.

• Supports EVM programmability smart contract compatibility to reduce

migration costs for developers.

• Support cross-chain asset transfer to optimize users' experience.

8.2 Smart Contract

8.2.1 ARC-20 Token Standard

ARC-20 is an API that implements tokens in smart contracts. It provides multiple

functions. For example, transfer tokens from one account to a different account,

thereby obtaining the current balance of the account and the total supply of tokens

available on the network. In addition to this, it has other features like approving the

spending of tokens into third-party accounts.

If a smart contract implements the following methods and events, it can be referred

to as an ARC-20 token contract, which, once deployed, will be responsible for tracking

tokens created on the Double-A Chain.

Method

1 function name() public view returns (string)

2 function symbol() public view returns (string)

3 function decimals() public view returns (uint8)

4 function totalSupply() public view returns (uint256)

5 function balanceOf(address _owner) public view returns (uint256 balance)

6 function transfer(address _to, uint256 _value) public returns (bool success)

7 function transferFrom(address _from, address _to, uint256 _value) public

returns (bool success)

8 function approve(address _spender, uint256 _value) public returns (bool

success)

9 function allowance(address _owner, address _spender) public view returns

(uint256 remaining)

Double-A Chain White Paper 1.0

 13 / 28

Event

1 event Transfer(address indexed _from, address indexed _to, uint256 _value)

2 event Approval(address indexed _owner, address indexed _spender, uint256

_value)

3

Example

Let's see how the ARC-20 standard enables us to check any ARC-20 token contract on

the Double-A Chain. We only need the contract's application binary interface (ABI) to

create an ARC-20 token interface. Next, we will use a simplified ABI to make an

example.

Web3.py example

First，confirm you have installed Web3.py library
1 $ pip install web3

2

1 from web3 import Web3

2

3

4 w3 = Web3(Web3.HTTPProvider("https://cloudflare-eth.com"))

5

6 dai_token_addr = "0x6B175474E89094C44Da98b954EedeAC495271d0F"

DAI

7 weth_token_addr = "0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2"

Wrapped ether (WETH)

8

9 acc_address = "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11"

Uniswap V2: DAI 2

10

11 # This is a simplified Contract Application Binary Interface (ABI) of an ARC-20

Token Contract.

12 # It will expose only the methods: balanceOf(address), decimals(), symbol()

and totalSupply()

13 simplified_abi = [

14 {

15 'inputs': [{'internalType': 'address', 'name': 'account', 'type': 'address'}],

16 'name': 'balanceOf',

17 'outputs': [{'internalType': 'uint256', 'name': '', 'type': 'uint256'}],

18 'stateMutability': 'view', 'type': 'function', 'constant': True

19 },

20 {

21 'inputs': [],

https://web3py.readthedocs.io/en/stable/quickstart.html#installation

Double-A Chain White Paper 1.0

 14 / 28

22 'name': 'decimals',

23 'outputs': [{'internalType': 'uint8', 'name': '', 'type': 'uint8'}],

24 'stateMutability': 'view', 'type': 'function', 'constant': True

25 },

26 {

27 'inputs': [],

28 'name': 'symbol',

29 'outputs': [{'internalType': 'string', 'name': '', 'type': 'string'}],

30 'stateMutability': 'view', 'type': 'function', 'constant': True

31 },

32 {

33 'inputs': [],

34 'name': 'totalSupply',

35 'outputs': [{'internalType': 'uint256', 'name': '', 'type': 'uint256'}],

36 'stateMutability': 'view', 'type': 'function', 'constant': True

37 }

38]

39

40 dai_contract =

w3.eth.contract(address=w3.toChecksumAddress(dai_token_addr),

abi=simplified_abi)

41 symbol = dai_contract.functions.symbol().call()

42 decimals = dai_contract.functions.decimals().call()

43 totalSupply = dai_contract.functions.totalSupply().call() / 10**decimals

44 addr_balance = dai_contract.functions.balanceOf(acc_address).call() /

10**decimals

45

46 # DAI

47 print("===== %s =====" % symbol)

48 print("Total Supply:", totalSupply)

49 print("Addr Balance:", addr_balance)

50

51 weth_contract =

w3.eth.contract(address=w3.toChecksumAddress(weth_token_addr),

abi=simplified_abi)

52 symbol = weth_contract.functions.symbol().call()

53 decimals = weth_contract.functions.decimals().call()

54 totalSupply = weth_contract.functions.totalSupply().call() / 10**decimals

55 addr_balance = weth_contract.functions.balanceOf(acc_address).call() /

10**decimals

56

57 # WETH

58 print("===== %s =====" % symbol)

59 print("Total Supply:", totalSupply)

Double-A Chain White Paper 1.0

 15 / 28

60 print("Addr Balance:", addr_balance)

61

8.2.2 ARC-721 Non-Fungible Token Standard

What is ARC-721?

ARC-721 introduces a standard for NFTs; in other words, this type of token is unique

and may have a different value than another token from the same smart contract.

All NFTs have a uint256 variable named tokenId, so for any ARC-721 contract, the pair

of values contract address, tokenId must be globally unique. A DApp can have a

"converter" that uses the tokenId to input and output some interesting images.

Overview

ARC-721 provides functions like transferring tokens from one account to another,

getting the current token balance of an account, getting the owner of a specific token,

and the total supply of the token available on the network. Besides these, it also has

some other functionalities like to approve that an amount of token from an account

can be moved by a third party account.

If a Smart Contract implements the following methods and events, it can be called an

ARC-721 Non-Fungible Token Contract and, once deployed. It will be responsible for

keeping track of the created tokens on Double-A Chain.

Method

1 function balanceOf(address _owner) external view returns (uint256);

2 function ownerOf(uint256 _tokenId) external view returns (address);

3 function safeTransferFrom(address _from, address _to, uint256 _tokenId,

bytes data) external payable;

4 function safeTransferFrom(address _from, address _to, uint256 _tokenId)

external payable;

5 function transferFrom(address _from, address _to, uint256 _tokenId) external

payable;

6 function approve(address _approved, uint256 _tokenId) external payable;

7 function setApprovalForAll(address _operator, bool _approved) external;

8 function getApproved(uint256 _tokenId) external view returns (address);

9 function isApprovedForAll(address _owner, address _operator) external view

returns (bool);

10

Event

1 event Transfer(address indexed _from, address indexed _to, uint256 indexed

_tokenId);

Double-A Chain White Paper 1.0

 16 / 28

2 event Approval(address indexed _owner, address indexed _approved, uint256

indexed _tokenId);

3 event ApprovalForAll(address indexed _owner, address indexed _operator,

bool _approved);

4

Web3.py example

First， confirm you have installed the Web3.py Python library.

1 $ pip install web3

2

1 from web3 import Web3

2 from web3._utils.events import get_event_data

3

4

5 w3 = Web3(Web3.HTTPProvider("https://cloudflare-eth.com"))

6

7 ck_token_addr = "0x06012c8cf97BEaD5deAe237070F9587f8E7A266d" #

CryptoKitties Contract

8

9 acc_address = "0xb1690C08E213a35Ed9bAb7B318DE14420FB57d8C" #

CryptoKitties Sales Auction

10

11 # This is a simplified Contract Application Binary Interface (ABI) of an ARC-721

NFT Contract.

12 # It will expose only the methods: balanceOf(address), name(),

ownerOf(tokenId), symbol(), totalSupply()

13 simplified_abi = [

14 {

15 'inputs': [{'internalType': 'address', 'name': 'owner', 'type': 'address'}],

16 'name': 'balanceOf',

17 'outputs': [{'internalType': 'uint256', 'name': '', 'type': 'uint256'}],

18 'payable': False, 'stateMutability': 'view', 'type': 'function', 'constant':

True

19 },

20 {

21 'inputs': [],

22 'name': 'name',

23 'outputs': [{'internalType': 'string', 'name': '', 'type': 'string'}],

24 'stateMutability': 'view', 'type': 'function', 'constant': True

25 },

26 {

27 'inputs': [{'internalType': 'uint256', 'name': 'tokenId', 'type': 'uint256'}],

https://web3py.readthedocs.io/en/stable/quickstart.html#installation

Double-A Chain White Paper 1.0

 17 / 28

28 'name': 'ownerOf',

29 'outputs': [{'internalType': 'address', 'name': '', 'type': 'address'}],

30 'payable': False, 'stateMutability': 'view', 'type': 'function', 'constant':

True

31 },

32 {

33 'inputs': [],

34 'name': 'symbol',

35 'outputs': [{'internalType': 'string', 'name': '', 'type': 'string'}],

36 'stateMutability': 'view', 'type': 'function', 'constant': True

37 },

38 {

39 'inputs': [],

40 'name': 'totalSupply',

41 'outputs': [{'internalType': 'uint256', 'name': '', 'type': 'uint256'}],

42 'stateMutability': 'view', 'type': 'function', 'constant': True

43 },

44]

45

4 6ck_extra_abi = [

47 {

48 'inputs': [],

49 'name': 'pregnantKitties',

50 'outputs': [{'name': '', 'type': 'uint256'}],

51 'payable': False, 'stateMutability': 'view', 'type': 'function', 'constant':

True

52 },

53 {

54 'inputs': [{'name': '_kittyId', 'type': 'uint256'}],

55 'name': 'isPregnant',

56 'outputs': [{'name': '', 'type': 'bool'}],

57 'payable': False, 'stateMutability': 'view', 'type': 'function', 'constant':

True

58 }

59]

60

61 ck_contract =

w3.eth.contract(address=w3.toChecksumAddress(ck_token_addr),

abi=simplified_abi+ck_extra_abi)

62 name = ck_contract.functions.name().call()

63 symbol = ck_contract.functions.symbol().call()

64 kitties_auctions = ck_contract.functions.balanceOf(acc_address).call()

65 print(f"{name} [{symbol}] NFTs in Auctions: {kitties_auctions}")

66

Double-A Chain White Paper 1.0

 18 / 28

67 pregnant_kitties = ck_contract.functions.pregnantKitties().call()

68 print(f"{name} [{symbol}] NFTs Pregnants: {pregnant_kitties}")

69

70 # Using the Transfer Event ABI to get info about transferred Kitties.

71 tx_event_abi = {

72 'anonymous': False,

73 'inputs': [

74 {'indexed': False, 'name': 'from', 'type': 'address'},

75 {'indexed': False, 'name': 'to', 'type': 'address'},

76 {'indexed': False, 'name': 'tokenId', 'type': 'uint256'}],

77 'name': 'Transfer',

78 'type': 'event'

79 }

80

81 # We need the event's signature to filter the logs

82 event_signature = w3.sha3(text="Transfer(address,address,uint256)").hex()

83

84 logs = w3.eth.getLogs({

85 "fromBlock": w3.eth.blockNumber - 120,

86 "address": w3.toChecksumAddress(ck_token_addr),

87 "topics": [event_signature]

88 })

89

90 # Notes:

91 # - 120 blocks is the max range for CloudFlare Provider

92 # - If you didn't find any Transfer event you can also try to get a tokenId

at:

93 #

https://etherscan.io/address/0x06012c8cf97BEaD5deAe237070F9587f8E7A2

66d#events

94 # Click to expand the event's logs and copy its "tokenId" argument

95

96 recent_tx = [get_event_data(w3.codec, tx_event_abi, log)["args"] for log in

logs]

97

98 kitty_id = recent_tx[0]['tokenId'] # Paste the "tokenId" here from the link

above

99 is_pregnant = ck_contract.functions.isPregnant(kitty_id).call()

100 print(f"{name} [{symbol}] NFTs {kitty_id} is pregnant: {is_pregnant}")

101

8.2.3 ARC-1155 Multi-token Standard

ARC-1155 is a standard interface for managing contracts of multiple token types. A

Double-A Chain White Paper 1.0

 19 / 28

single deployed contract may include any combination of fungible tokens, non-

fungible tokens, or other configurations such as semi-fungible tokens.

What is meant by Multi-Token Standard?

The idea is simple and aims to create a smart contract interface that can represent and

control any number of fungible and non-fungible token types. In this way, ARC-1155

tokens can perform the same functions as ARC-20 or ARC-721 tokens, or even both.

Most importantly, the functionality of both standards has been improved to increase

efficiency and correct apparent implementation errors on the ARC-20 and ARC-721

standards.

ARC-1155 Functions and Feathers

Batch Transfer: Transfer multiple assets in one call.

Batch Balance: Get the balances of multiple assets in one call.

Batch Approval: Approve all tokens to one address.

Hooks: Receive token hook.

NFT Support: If the supply is only 1, it is considered an NFT.

Secure Transfer Rules: A set of secure transport rules.

Batch Transfer

Batch transfers are very similar to regular ARC-20 transfers. Let's look at the regular

ARC-20 transferFrom function:

1 // ARC-20

2 function transferFrom(address from, address to, uint256 value) external

returns (bool);

3

4 // ARC-1155

5 function safeBatchTransferFrom(

6 address _from,

7 address _to,

8 uint256[] calldata _ids,

9 uint256[] calldata _values,

10 bytes calldata _data

11) external;

12

The only difference with ARC-1155 is that we pass the values as an array and an array

of ids. For example given ids=[3, 6, 13] and values=[100, 200, 5], the resulting transfer

would be:

Transfer 100 tokens with id 3 from _from to _to.

Transfer 200 tokens with id 6 from _from to _to.

Transfer 5 tokens with id 13 from _from to _to.

In ARC-1155, we only have transferFrom, no transfer. To use it transfer as normal, just

Double-A Chain White Paper 1.0

 20 / 28

set the from address to the address of the calling function.

Batch Balance

The respective ARC-20 balanceOf call likewise has its partner function with batch

support. As a reminder, this is the ARC-20 version:

1 // ARC-20

2 function balanceOf(address owner) external view returns (uint256);

3

4 // ARC-1155

5 function balanceOfBatch(

6 address[] calldata _owners,

7 uint256[] calldata _ids

8) external view returns (uint256[] memory);

9

Even simpler for the balance call, we can retrieve multiple balances in a single call. We

pass the array of owners, followed by the array of token ids.

For example given _ids=[3, 6, 13] and _owners=[0xbeef..., 0x1337..., 0x1111...], the

return value will be

1 [

2 balanceOf(0xbeef...),

3 balanceOf(0x1337...),

4 balanceOf(0x1111...)

5]

6

Batch Approval

1 // ARC-1155

2 function setApprovalForAll(

3 address _operator,

4 bool _approved

5) external;

6

7 function isApprovedForAll(

8 address _owner,

9 address _operator

10) external view returns (bool);

11

Receive Hook

1 function onARC1155BatchReceived(

2 address _operator,

3 address _from,

4 uint256[] calldata _ids,

Double-A Chain White Paper 1.0

 21 / 28

5 uint256[] calldata _values,

6 bytes calldata _data

7) external returns(bytes4);

8

ARC-1155 supports receive hooks for smart contracts only. The hook function must

return a magic predefined bytes4 value which is given as:

1bytes4(keccak256("onARC1155BatchReceived(address,address,uint

256[],uint256[],bytes)"))

2

When the receiving contract returns this value, it is assumed the contract accepts the

transfer and knows how to handle the ARC-1155 tokens. Great, no more stuck tokens

in a contract!

Secure Transfer Rule

We've touched on a few safe transfer rules already in the previous explanations. But

let's look at the most important of the rules:

1. The caller must be approved to spend the tokens for the _from address or the caller

must equal _from.

2. The transfer call must revert if

_to address is 0.

length of _ids is not the same as length of _values.

any of the balance(s) of the holder(s) for token(s) in _ids is lower than the respective

amount(s) in _values sent to the recipient.

any other error occurs.

Double-A Chain White Paper 1.0

 22 / 28

9. Bridge

Double-A Chain will use two EVM-compatible blockchain asset cross-chain solutions,

including two types: Native Bridge and Peg Bridge.

9.1 Native Bridge

Native Bridge is a simple asset cross-chain solution. It does not need to convert to

intermediate assets, and it can directly map the tokens on Ethereum to Double-A Chain.

9.1.1 ETH to Double-A Chain

ETH to Double-A Chain

1. First, use the CrossLock feature on Ethereum.

2. The contract locks Token A in the contract and then emits a Lock Event. Double-A

Chain runs node 1, and Token A's team runs node 2. These two nodes will monitor Lock

Events on the Ethereum CrossLock contract.

3. The Bridge in the picture is a smart contract located on the Double-A Chain. When

node1 and node2 find a Lock Event, they will request the crossMint function of the

Bridge contract, respectively. crossMint uses openzeppelin's AcessControl for role

assignment, and only Crosser can call crossMint.

4. The contract will assign Roles to node 1 and node 2. When nodes 1 and 2 calls

crossMint, they vote on this cross-chain behavior. This behaviour needs both node1

and node2 to agree to pass.

5. After the vote is passed, the bridge will call the mint function of the Token A contract.

Therefore, the Token A team needs to deploy the contract on the Double-A Chain in

advance and allow the Bridge contract to mint or destroy Token A.

6. If the minting function of Token A is successfully performed, The contract will send

token A to the user's address on Double-A Chain.

9.1.2 Double-A Chain to ETH

Double-A Chain White Paper 1.0

 23 / 28

1. User calls the cross burn function of the Bridge contract.

2. The Bridge contract calls the destruction function of the Double-A Chain Token A

contract to destroy the user's token.

3. The Bridge contract emits a CrossBurn event.

4.Node1 and node 2 are run and controlled by Double-A Chain and Token A teams,

who monitor CrossBurn events. When node1 and node2 find a CrossBurn event, they

will call the unlock function of the CrossLock contract on Ethereum.

5. The caller's permission needs to be checked in the unlock function. Only node1

and node 2 can call the unlock function. When the unlock function is called, node1

and node2 will vote on this cross-chain behaviour. When both node1 and node2

agree, the cross-chain is passed for this time.

6. After the previous step is completed, Token A locked in the contract is unlocked

and transferred to the user.

9.2 What should our partners do

1. Contact the Double-A Chain team for more details and request to deploy a smart

contract.

2.Deploy your ARC-20 token on the Double-A Chain, implement the IToken interface,

and give the Bridge contract the right to call mint and burn function.

1 // SPDX-License-Identifier: MIT

2

3 pragma solidity ^0.7.0;

4

5 import "@openzeppelin/contracts/token/ARC20/IARC20.sol";

6

Double-A Chain White Paper 1.0

 24 / 28

7 interface IToken is IARC20{

8 function mint(address to, uint amount) external returns(bool);

9 function burn(address from, uint amount) external

returns(bool);

10 }

3. Obtain the Smart Bridge Node program from the Double-A Chain team and inform

Double-A Chain of the Ethereum account address controlled by the node. Double-A

Chain will grant permission to call the unlock function of the CrossLock contract and

the crossMint function of the Bridge contract. At the same time, our partners must

also provide an address to charge cross-chain fees.

4. Run the Smart Bridge Node, keep the node online, and ensure that the account

controlled by the node has enough ETH and BNB to call the contract.

9.3 Costs and Cross-chain fees

Double-A Chain and partners need to run Smart Bridge Node and call-related contracts,

which will incur costs. Therefore, the Native Bridge solution will charge cross-chain

fees when users cross-chain and the charging behavior occurs in the Bridge contract.

The specific amount of the fee is determined by Double-A Chain and partners.

Double-A Chain White Paper 1.0

 25 / 28

10. Wallet

Wallet Support

AAC supports all wallets with custom networks such as Metamask, imToken,

TokenPocket, and Coinbase Wallet.

Double-A Chain White Paper 1.0

 26 / 28

11. Roadmap

【Ground】 2021 Q4——2022 Q2

The Initial version of Double-A Chain.

The system is stable and easy to use.

Developers can develop and promote DApps at a low cost.

Users can participate in DApps on Double-A Chain without hesitation.

Start Public Beta: Supported by blockchain browsers and wallets, the main chain

achieves greater throughput, lower transaction costs, and faster transaction speeds.

Ecosystem Incubation: Technical service systemization, developer SDK, convenient

asset transfer, etc.

【Sky】 2022 Q3——Q4

The protocol is further optimized.

Double-A Chain shoulder the mission of connecting Metaverse, web3.0, and Defi,

allowing more users to join and use Metaverse and web3.0 applications.

Provide developer services:

Full developers’ kit

Complete developer forum, blog, and FAQ information

The rapid development of on-chain ecological infrastructure

All-new Open ID

The personalized portal accurately matches DApps for users.

【Galaxy】 2023 Q1——Q2

Enable our Bridge and expand performance while retaining the decentralized

advantages of distributed protocols.

Bridge:

Cross-chain interoperate contract

Cross-chain interoperability protocol

More cross-chain application

DAO Governance: Governance tools are further improved

【Universe】 2023 Q3——Q4

Landing of large-scale commercial applications.

Support a variety of traditional businesses to run smoothly on the chain

Full Technical Support：

Support variety of virtual machines

Multiple zero-knowledge proofs and privacy protection capabilities

Double-A Chain White Paper 1.0

 27 / 28

Multiple signature capability

Storage compression and expansion solution

Multidimensional

Double-A Chain White Paper 1.0

 28 / 28

12. Disclaimer

Nothing in this white paper is meant to recommend or invite users to buy any tokens.

The sole purpose of Double-A Chain issuing this white paper is to receive feedback and

opinions from the public. Suppose Double-A Chain is to sell any tokens (or "Future

Token Simple Agreement") at any time. In that case, it will do so by issuing additional

documents (including disclosure documents and risk factor documents). These

authoritative documents should also include an updated version of this white paper,

differing materially from the current version.

Nothing in this White Paper shall be deemed or warranted as a guarantee or promise

of how Double-A Chain or the Tokens will develop or the utility or value of the Tokens.

This white paper outlines the current plan, which may change at its sole discretion,

and the success of its plan will depend on many factors beyond Double-A Chain's

control, including market-based factors and a variety of factors within the data and

cryptocurrency industry. Any statements regarding future events are based solely on

Double-A Chain's analysis of the issues described in this white paper, and that analysis

may prove to be incorrect.

