
Alephium: a scalable and reliable blockchain based
on BlockFlow

by Cheng Wang�

rev. 0.1

www.alephium.org

Abstract
Since Bitcoin's success as the first widely used digital currency, cryptocurrency has attracted
tons of attention. Although there are thousands of different digital currencies existing nowa-
days, many open problems and challenges are still remaining. Particularly, the scalability
issue is of great importance in the field of cryptocurrency. We propose a new blockchain
protocol to solve this critical issue.

Firstly, we propose a novel sharding algorithm supporting single-step cross-shard transac-
tions that would improve the system throughput dramatically. We call our new technology
blockflow, as an improvement of the well-known blockchain technology. With blockflow, it is
possible to handle a thousand times of the transaction throughputs compared to traditional
blockchain algorithms.

Secondly, we decompose smart contract into token protocol and data protocol to enable
developers to build scalable blockchain applications easily. With our new protocol, appli-
cation data and computation could be either totally decentralized or partly centralized.
Developers have the flexibility to choose the tradeoff that matches the best their specific
scenario.
Keywords: cryptocurrency, blockchain, blockflow, scalability

1 Introduction
Scalability is still one of the major problems of blockchain nowadays. Both Bitcoin[2] and Ethereum
[1] encountered scalability issues as we have observed from network congestion in the past. On-chain
scaling has been researched for quite a few years in the Ethereum community. People proposed
a very complicated approach for Eth2.0 sharding, however, there are still many open problems
left. While all the current layer-1 scaling solutions are in favour of PoS consensus, we believe that
sharding + PoW is still the most robust and decentralized way to build a scalable blockchain. In
the paper, we will introduce a new blockchain protocol that is scalable based on PoW and UTXO
model.

Our algorithm stands somewhere between single-chain algorithms and DAG algorithms. DAG
algorithms for cryptocurrency usually have security issues as it's especially hard to reach depen-
dency consistency among participants while ensuring reasonable scalability, e.g. IOTA [3] only
works with probability or relies on a centralized coordinator at the time of writing. Our algorithm
uses a scalable UTXO model to achieve scalability and consensus at the same time. In our algo-
rithm, there are a number of parallel chains. Each chain is a group of transactions with certain
requirements. All these parallel chains are dependent on each other. We design an algorithm to
resolve the dependencies among all chains and to add new blocks onto these chains. Nodes in our
system only need to keep part of the transactions of these chains, which contributes to scalability.

Another challenge of sharding algorithms is the design of smart contracts. First of all, we agree
that smart contracts are very useful and result in many useful applications. However, like evolving
from single threading programming to multithreading programming, scaling smart contract to work
with multiple shards would rely on locks or methods similar to locks which would make applica-
tions complicated and inefficient. We propose a practical solution to this issue by decomposing
contracts into a token part and a data part. The token part is fully scalable thanks to BlockFlow
algorithm, while the data part is partially scalable. Then we extend Bitcoin scripts to improve the
expresiveness of our protocol. With our new script system, we could bring DeFi to crypto space
based on UTXO model.

The rest of the paper is organized as follows. In Section 2, we introduce and discuss our new
blockflow algorithm. In Section 3, we introduce and discuss our protocols and applications. In
Section 4, we provide a high-level description of Alephium system. We discuss future researches
in Section 5.

�. Note that this technical paper is released prior to the launch of the MainNet of the project. It is therefore
subject to correction, completion and amendment without notice.

1

http://www.alephium.org
http://www.alephium.org
http://www.alephium.org
http://www.alephium.org
http://www.alephium.org
http://www.alephium.org

2 Blockflow
Ideally, for a currency system, we only need to care about the flow of currency among all the
participants. If we use the unspent transaction output (UTXO) model like bitcoin where each
transaction is a pair of inputs and outputs, then we only need to maintain the dependencies of
transactions such that all the inputs and outputs match. A transaction t1 depends on transaction
t2 if one of the inputs of t1 depends on one of the outputs of t2. All the transactions with such
dependencies form a directed acyclic graph (DAG) with transactions as nodes and dependencies
as edges. We call such graph transaction flow, inspired by network flow.

However, transaction flow is not a proper model for decentralized currency systems. The main
problem is that usually there are a lot of UTXOs (unspent transaction output) in the system. Each
UTXO does not have a successor in the flow graph, which would cause the UTXO to be altered by
attackers easily. In blockchain technology, especially the single chain approach, such transaction
flow is flattened into one single chain of transactions so that every transaction would have output
dependencies. While such a system is simple to implement and easy to prove safe, it suffers from the
drawback of introducing too many unnecessary dependencies on transactions. It is forcing a total
ordering on all transactions, while in fact they only form a partial ordering. The main drawback
of totally ordered transactions is that they discourage parallel-transaction confirmation, which
decreases the throughput and increases the latency of the whole system.

We propose a new consensus algorithm called BlockFlow to attack the scalability problem
of blockchain. In our approach, all the users are divided into G separated groups. For each i;
j 2G, there is a transaction shard which consists of all the transactions from group i to group j.
Therefore, there are G�G transaction shards in total. In our cryptocurrency system, we require
that each transaction shard should be constructed as one blockchain so that all the transactions in
the same transaction shard would be totally ordered. Transactions in different transaction shards
could be committed in parallel as long as the order does not violate all the basic dependencies in
the transaction-flow graph. We use PoW to reach finality for all shards in this paper, but any other
finality algorithm could be adjusted to work with BlockFlow.
Scalable UTXO model. There is an issue to apply the conventional UTXO transaction model
with our transaction sharding mechanism. Let us check out the following simple example. Suppose
Alice (of Address i) has a UTXO with 100 coins. She wants to send 90 coins to Bob (of Address j).
This would result in two new UTXOs: one for Bob and another one for Alice containing the rest
of the coins. If Alice is from group i and Bob is from group j, then there are two ways to create
the transaction as shown in the following graph. Alice could either use her current address for the
new UTXO, or use a new address in group j for the new UTXO. For privacy and security reasons,
a new address is recommended.

With this sharded UTXO model, we could divide all transactions into G�G shards. Therefore,
in our consensus algorithm, there areG�G chains in total. Each chain takes care of one transaction
shard. For simplicity, let us use Chaini;j to denote the chain consisting of transactions from Gi to
Gj. Chaini;j depends on the transactions in Chaink;i for all k2G as a result of the UTXO model.
For a user in group i, it only needs to download all the data for Chainj;i for all j 2G and Chaini;k
for all k 2G to know all the related transactions. That is 2G − 1 chains for each user instead of
all the G�G chains. This contributes to the scalability of our algorithm because each user only
has to process part of the overall network data. Blocks in different chains could be committed in
parallel to each other. This would also make mining more efficient. There are two crucial points
to make our UTXO model correct.

Input/Output Dependency. Every transaction input should come from a UTXO. In our
case, every transaction in Chaini;j should depend on several UTXOs from Chaink;i (k2G).

2 Section 2

No Double Spending. Every UTXO should be used in at most one transaction. In our case,
it's not allowed that one UTXO from group i is used in both Chaini;j and Chaini;k.

If we could achieve these two properties for our G�G chains, then we could create an efficient and
scalable ledger.

Definition. (blockflow) A blockflow is G � G forks with one fork for each Chaini;j (i; j 2 G)
such that these forks have correct input/output dependencies and no double spending.

We design a novel consensus algorithm for all participants in the network to reach agreement on
the same blockflow eventually. In our algorithm, each block has multiple dependencies. First, like
blockchain, each new block in Chaini;j contains a block hash representing a tip of each Chaini;k
(k 2 G). Second, each new block in Chaini;j needs to contain a block hash representing one tip
from one of fChaink;lgl2G for all k 2 G and k =/ i. These block hashes could not be arbitrary.
They must be chosen in a way to produce valid blockflow. Let us introduce some formal notations
and then describe the rules. Let Hi;j be the hash of a new block in Chaini;j. We assume i =/ j
in the following discussion without loss of generality (we leave the case i= j to the reader). The
dependencies of Hi;j is d(Hi;j) = fHi;j

0 g [fHi;rgr=/ j [fHk;lkgk=/ i where Hi;j
0 is Hi;j's previous

block in Chaini;j. The total number of dependencies is 2G−1. For simplicity, we use Hi;j!Hi;j
0 ,

Hi;j!Hi;r and Hi;j!Hk;lk to denote the block dependencies. We use H1<H2 to denote that H2

is a hash of a descent block of the block corresponding to H1 in the same chain, use H16H2 to
denote that either H1<H2 or H1=H2. Assume that Hk;lk!Hk;l (k=/ i; l=/ lk) by definition. Let
D(Hi;j)=d(Hi;j)[fHk;lgk=/ i;l=/ lk. D(Hi;j) contains one hash from each chain. D(Hi;j) is supposed
to decide a blockflow under certain conditions. We say D(H1)<D(H2) if for all Ha;b2D(H1) and
Ha;b
� 2D(H2) we have Ha;b<Ha;b

� . Let Output(H) be all the transaction outputs from the chain
ended with block hash H. Let Input(H) be all the UTXOs used as transaction inputs in the chain
ended with block hash H. The rules for checking d(Hi;j) are as follows.

Admissibility.

1. If Hi;j
� <Hi;j and Hi;j

� !Hi;r
� , then Hi;r

� 6Hi;r.

2. If Hi;j
� <Hi;j and Hi;j

� !Hk;mk

� (k=/ i), then Hk;mk

� 6Hk;mk where Hk;mk2D(Hi;j).

3. If Hi;r!Hi;l
� in d(Hi;r) for r=/ j, then Hi;l

� 6Hi;l.

4. If Hi;r!Hk;mk

� in d(Hi;r) for r=/ j ;k=/ i, thenHk;mk

� 6Hk;mk whereHk;mk2D(Hi;j).

5. If Hk;lk!Hs;ms

� in d(Hk;lk) for k=/ i; s=/ k, thenHs;ms

� 6Hs;ms whereHs;ms2D(Hi;j).

Input/output dependency. Input(Hi;j)� ([k2GOutput(Hk;i)).

No double spending. Input(Hi;j)\ Input(Hi;k) =?.

In our algorithm, every node only accepts new blocks that are validated by these rules. These rules
guarantee that every valid new block implies one valid blockflow. Let us prove this important fact.

Lemma 1. D (Hi;j
0)<D(Hi;j).

Proof. We only need to show that D (Hi;j
0)6D(Hi;j) since Hi;j

0 <Hi;j. Let us prove it for three
different cases.

1. If Hi;j
0 !Hi;r

� in d(Hi;j
0), then Hi;r

� 6Hi;r by rule 1 of admissibility checking.

2. If Hi;j
0 !Hk;mk

� in d(Hi;j
0) for k=/ i, then Hk;mk

� 6Hk;mk by rule 2 of admissibility checking.

3. If Hk;mk

� !Hk;m
� in d(Hk;mk

�) for m=/ mk, then by rule 1 of admissibility checking and case
2 in this proof, we have Hk;m

� 6Hk;m
� 2d(Hk;mk). Again, by rule 3 of admissibility checking,

we have Hk;m
� 6Hk;m

� 6Hk;m. �

Lemma 2. D(Hi;r)<D(Hi;j) for r=/ j.

Blockflow 3

Proof. We only need to show thatD(Hi;r)6D(Hi;j) sinceHi;r
0 <Hi;r. Let us prove it by induction

for three different cases.

1. If Hi;r!Hi;l
� in d(Hi;r), then Hi;l

� 6Hi;l by rule 3 of admissibility checking.

2. If Hi;r!Hk;mk

� in d(Hi;r) for k=/ i, then Hk;mk

� 6Hk;mk by rule 4 of admissibility checking.

3. If Hk;mk

� !Hk;m
� in d(Hk;mk

�) for m=/ mk, then by rule 1 of admissibility checking and case
2 in this proof, we have Hk;m

� 6Hk;m
� 2d(Hk;mk). Again, by rule 3 of admissibility checking,

we have Hk;m
� 6Hk;m

� 6Hk;m. �

Lemma 3. D(Hk;l)<D(Hi;j) for k=/ i.

Proof. We only need to show that D(Hk;lk) < D(Hi;j) since we have D(Hk;l) < D(Hk;lk) for
l =/ lk by Lemma 2 and induction. Again, we only need to show that D(Hk;lk) 6 D(Hi;j) since
Hk;lk
0 <Hk;lk. Let us prove it by induction for three different cases.

1. If Hk;lk! Hk;l in d(Hk;lk) for l =/ lk, then Hk;l 2 D(Hi;j) followed from the definition of
D(Hi;j).

2. If Hk;lk!Hs;ms

� in d(Hk;lk) for s=/ k, then Hs;ms

� 6Hs;ms by rule 5 of admissibility checking.

3. If Hs;ms

� !Hs;m
� in d(Hs;ms

�) for m=/ ms, then by rule 1 of admissibility checking, we have
Hs;m
� 6Hs;m

� 2d(Hs;ms). Again, by rule 3 of admissibility checking, we have Hs;m
� 6Hs;m

� 6
Hs;m. �

Lemma 4. If Hi;j is the hash of a new valid block satisfying all the checking rules, then D(Hi;j)
is a blockflow.

Proof. We just need to show that D(Hi;j) has correct input/output dependencies and no double
spending. We prove this inductively.

By Lemma 1, Lemma 2 and the induction fact that D(Hi;k) is a blockflow for k=/ j, we know
Input(Hi;k)� ([k2GOutput(Hk;i)). For k=/ i, by Lemma 3 and the fact thatD(Hk;l) is a blockflow,
we know that Input(Hk;l) � ([m2GOutput(Hm;k)). Therefore, input/output dependencies are
always kept.

No double spending is easy to prove. For k =/ i, since D(Hk;lk) is a blockflow, we have
Input(Hk;l1) \ Input(Hk;l2) = ? for all l1; l2. Together with the no-double-spending check for
all the inputs of group i, no double spending is kept for all address groups. �

This important lemma shows that a valid new block actually extends one previous blockflow.
There are two problems left: the existence of valid new blocks following all checking rules; and
how to choose the best of such blocks. The existence is easy since an empty block with trivial
dependencies satisfies all the rules. The challenge is how to make the blockflow include as many
blocks and valid transactions as possible. In blockchain, the system considers the best chain or best
fork and always tries to extend that best chain. Similarly, in blockflow, we propose an algorithm
for users to find the best blockflow and then to extend it.
Mining. Suppose a miner M wants to mine Chaini;j. M should have an address in group j to
receive coinbase rewards. By the above lemma, each latest block header in each Chaini;j defines
a valid blockflow. In order to propose a new block, a miner needs to first find valid dependencies
d(Hi;j) for Chaini;j and then to calculate a valid mining nonce. Since we exploit PoW for consensus,
a miner wants to make its block proposed to accumulate as much work as possible. In general,
there are two ways to find a proper d(Hi;j): heuristic approach and optimization approach.

Let us introduce a new definition to help describe our mining algorithm. Let Hk1;l1 and Hk2;l2

be two block hashes. We say that blockflow BF1 is compatible with blockflow BF2 if fHm;n
1 gn2G<

fHm;n
2 gn2G or fHm;n

2 gn2G < fHm;n
1 gn2G for all m 2 G where Hm;n

1 2 BF1 and Hm;n
2 2 BF2. If

blockflow BF1 is compatible with BF2, we can define the union of two blockflows BF1 [BF2 be
the union of each Chaini;j. This concept of compatibility is useful because of the following lemma.

Lemma 5. If blockflow BF1 is compatible with blockflow BF2, then BF1[BF2 is a blockflow.

4 Section 2

Proof. It's easy to check the input/output dependencies and no double spending for BF1[BF2,
since BF1[BF2 is the union of each chain with the proper precondition. �

One simple heuristic approach for resolving dependencies works iteratively as follows. Miner
M first selects the best blockflow D(Hk1;l1) so far. Based on this initial blockflow, M then try to
find compatible blockflows D(Hk 0;l0) for other user groups k 0=/ k1. M also needs to find compatible
dependencies Hi;r for each r. The miner expands the initial blockflow step by step. The final
blockflow BF is the union of all these compatible blockflows. If the new block to be mined is
of hash Hi;j, then BF uniquely defines d(Hi;j). It's very easy to show that d(Hi;j) satisfies all
the checking rules using Lemma 5. After M gets BF , it could start to collect valid transactions
for BF . M puts all valid transactions together to create a new block template for mining. This
heuristic approach could be improved further, e.g. fHi;rgr2G could be resolved more aggressively
using checking rules. We do not want to go depth here so as to make the content more compact.
The optimization approach for resolving dependencies is by modeling the dependencies as an
optimization problem. Then one could use integer programming for example to calculate the best
dependencies with best-accumulated PoW work. In general, we think that the heuristic approach
is faster and usually optimal when there are not so many chain forks.

This algorithm is similar to blockchain mining, each miner tries to extend the best blockflow.
The crucial difference is that our algorithm could confirm G�G blocks in one new block. Miners
could mine and commit its block in parallel. Since our algorithm always extends the best blockflow,
it reaches consensus eventually as do blockchain. Once a set of valid dependencies are computed, it
determines tips for each chain. The mining target would be adjusted based on all the latest blocks
decided by the dependencies from all chains.

In practice, a node for group i could compute the same d(Hi;j) for different group j, since
Chaini;j (j 2 G) shares the same dependencies structure. Further, the node for group i could
maintain the state of best blockflow and dependencies D(Hi;j), and update them whenever it
receives new blocks and headers. In our mining algorithm, we also encode the group information of
each block into its hash, which brings optimizations for indexing in our reference implementation.
We could also use digests of hashes for cross-chain dependencies to save some storage space.

We are going to use simple hash functions for our mining algorithm, just like Bitcoin. While
there are memory-hard hash functions being used in other blockchain projects, we are worried
about potential unforeseen optimizations.

Analysis. With our new BlockFlow algorithm, the TPS could be improved dramatically. Let's
analyze TPS in a semi-formal way here. Let P be the value of TPS for each chain, S be the average
size in KB per transaction, D be the propagation delay of one block, T be the average mining time,
the orphan rate R could be roughly estimated as D/T . Let B be the average network bandwidth
of nodes inside our network, we have the following constraints:

D
T
6 R

(2G− 1)�P �S �
�
1+

D
T

�
6 B

On the other hand, we could estimate D

T
based on empirical observations. We could assume that the

propagation delay per KB is d when block size is not too large. Then we have D=T �P �S � d
and D

T
=P �S � d. Therefore,

P �S � d 6 R

(2G− 1)�P �S � (1+P �S � d) 6 B

If we take G to be 32, R to be 6%, B to be 10Mb, S to be 0.5KB, d to be 8ms (1.5MB broadcast
in 12s), then P could be 15. The final TPS is P �G�G= 15360 which is greater than 10000.

As for security, our algorithm suffers from 51% attack instead of 1% attack. Thanks to the
sophisticated block dependencies, if one wants to attack one chain, it has to attack all the other
chains as well. All the mining works are accumulated into new blocks, so we don't diversify the
mining difficulty.

Blockflow 5

3 Protocols and Applications

We believe that in general it's impossible to scale smart contract to work efficiently with sharding
algorithms. However, it's possible to scale the most useful functionalities while keeping the other
functionalities still available in a non-scaling setup. In Alephium, we decompose smart contract
into token part and data part. Both tokens and data are easily scalable, but the cost is that we
lose some generality. However, we plan to support smart contracts in specific shards for the cases
where developers really need powerful contracts (e.g. turning complete contracts). We will give a
high-level description of our protocols in plain English. It's in no way to be detailed documentation.

3.1 Token Protocol

In our protocol, we support the creation and removal of customized tokens. As we have seen in
recent years, tokens are crucial for the adoption of blockchain protocols. In our design, we want to
make token creation as easy as possible, but at the same time, we don't want people to abuse token
creation leaving many null coins in the system. For each token creation, the creator needs to burn
a specific number of coins. Also, every customized token has an expiry date which depends on how
many coins were burnt during the creation, in order to further reduce storage and computation cost.

We design a token-level script language for the creation and removal of new tokens. Once a token
is created, it will follow the UTXO model, and users could exchange them. Combining our data
model with our token-level script language, we could build almost all practical DeFi applications.

3.2 Data Protocol

Most of the modern blockchain protocols have a built-in virtual machine for general computing.
With such VMs, blockchains can implement useful and complicated decentralized applications.
However, such generality also comes with a high cost. All the nodes in the network have to verify
all the computation, even though the computation might not be relevant to most of the nodes. It's
also very challenging to scale such virtual machines for sharding algorithms.

In Alephium, we shift from this code-centric approach to a data-centric approach. That is,
users only submit data to our blockflow network and get data stored decentralized. The data
submitted could be raw digital data, data digest, or code. Most of the nodes in the network do
not need to know the real meaning of the data. Only the users that are related to the data could
use specific applications to play with the specific data. By this design, we could achieve both
decentralization and computing scalability. In some sense, our philosophy is very similar to the
philosophy of TCP/IP protocol. We provide a very low-level infrastructure for decentralizing data.
The application layer would take care of the usage of data. The wisdom of Lisp indicates that data
is the same as a program, so we don't lose any generality. On the other hand, using data instead of
programs allows high-level applications to design and upgrade their own domain-specific languages,
which could reduce the security risks of our system. The other benefit of this data-centric approach
is that it could be easily integrated with UTXO model. We believe that developers could build
efficient and scalable DAPPs by combining our token protocol and data protocol in a smart way.

On the other hand, we could use the data part just like the memory of a computer. Our script
system will be able to access and parse information from data payload of UTXOs. In this way, our
script system will be as powerful as a general virtual machine.

3.3 Smart Contract

Note that in our sharding algorithm we have G specific shards which are intra-group shards
consisting of transactions from group i to group i. Each of these intra-group shards is no different
from a traditional blockchain. We plan to design a script language for these specific shards so that
we could build complicated applications. Since we have G such special shards, our system could
support more smart contracts compared to a single blockchain. Combining smart contract with
our scalable token protocol, developers could build efficient and powerful dApps.

6 Section 3

Our script will be compatible with most parts of Bitcoin script. On one hand, Alephium will
benefit from the existing Bitcoin tech stacks including wallets, lightning network, etc. On the other
hand, Alephium will bring DeFi to the users and developers who are familiar with Bitcoin tech
stacks.

3.4 Features

With our new consensus algorithm and protocols, we could achieve scalability for both data and
computation. We introduce several useful features in this section to make our system even more
practical and sustainable.

PoLW To push the boundary of decentralization further for Alephium, we proposed a new algo-
rithm PoLW [5] to reduce the energy consumption of Nakamoto PoW without sacrificing security.
There are two major benefits of PoLW that would payback in the long term: 1) PoLW will be
environmentally sustainable in the long term. The energy consumption could be more adaptive and
efficient to its market cap; 2) PoLW will contribute to decentralization as it reduces the investment
in the physical world for block mining.

Scriptless Scripts Alephium will support more advanced crypto primitives, e.g. Schnorr sig-
nature, EC operators. These new primitives combined together with smart contracts will provide
better supports for scriptless scripts [4]. As a result, users of Alephium will benefit from the
functionality, privacy and efficiency improvements of scriptless scripts.

Expiry Date All the data and customized token have an expiry date which could be represented
as timestamp or block heights. If tokens or data get expired, then the network does not need to
store it anymore and could remove it from history. Expiration date provides limited functionality
of garbage collection.

Lock Time An UTXO could be locked by setting a lock time for it. We make lock time as a
built-in feature for UTXOs because it's useful in many real scenarios.

Pricing Model The whole PoW network is a game between users, miners, and protocol. In order
to keep this game in a good shape, it's crucial to design a reasonable economic model for it. In our
case, it's about how to price transactions and data. It's relatively simple, as we don't need to price
computation. Therefore, we could consider simply the size and the expiry date of the transactions
and data submitted. For transactions, we also price each input based on how long the tokens/coins
have been stored in order to reduce the number of small UTXOs.

3.5 Applications

All the classical dApps in Bitcoin and Ethereum platforms could be migrated to Alephium without
major changes given our native cross-shard transaction support. Besides that, we could enable
a new type of high-throughput applications. The workflow of this type of application using our
platform would be like this:

1. The developers develop a decentralized application (usually should be open sourced) and
publish it on the internet. The project owner creates a token for the project and publishes
the digital digest of the application to Alephium (We might implement a decentralized
application market for Alephium).

2. Users download the application from the internet and verify the digest of the application.
Then users run this application on the top of Alephium platform.

3. All the data and transactions generated by this application would be stored in the P2P
network. Nodes that do not use this application would not need to verify the content of the
data.

In this approach, the application is still reversion resistant with a single unchanging application
history, but the applications will not use the network to do all the computation.

Protocols and Applications 7

In some scenarios, the application could be semi-decentralized if decentralization could be
traded off for performance. For example, the project could have a centralized service to interact
with all its users. However, all the transactions the application made would be published to
Alephium's network, so that all the users could check by downloading all the relevant application
data.

4 System

In this section, we give a high-level description of some of the key parts of our system. We will not
go deep into details which should be covered in the reference implementation.

4.1 Network
The Alephium network consists of nodes for different address groups. Nodes from different groups
need to be connected so that blocks for Chaini;j would be propagated to both group i and group
j. We design a variant of Kademlia protocol for network discovery. Each node keeps a local
table of the currently active nodes in the network along with necessary meta information (e.g.
group id). Nodes in the network could update their table regularly by scanning the network. The
communication protocol we use is very similar to the Kademlia protocol. The main difference is
that we use hamming distance instead of xor metric to computing the distance of two nodes. The
reason we made this change is that, with xor metric, nodes with addresses starting with 0 are less
likely to be connected to nodes with address starting with 1.

4.2 Nodes
With BlockFlow algorithm, each node stores only part of the transaction/data history. For the
sake of reliability and security, a �full node� in our network would run a cluster of G nodes with
one node for each address group. All the other services of this cluster could access these G nodes
through RPC calls. When initializing connections with other nodes or clusters, this cluster will
send its network topology so that the other nodes could propagate blocks more efficiently.

In practice, a light client that handles transaction/data only related to a very small number
of addresses is very useful. In our network, we could implement light clients similar to Bitcoin by
using Bloom filters. Since a light client actually downloads history for very few addresses, it could
deal with transactions/data from different groups in a single node, unlike full nodes.

Note that we could start with a small G when there are not enough participants and full nodes.
The system would gradually increase G along with time. In practice, we could set up G to be high
in the beginning, but the number of groups that are actually used internally would upgrade from
small to larger.

4.3 Application Layer
The core protocol of our network provides a very low-level infrastructure, not suited for high-level
applications design. To bridge the low-level part and high-level application, our system provides
official APIs for accessing transactions and data. We also plan to provide an application market for
developers to publish their applications. As we mentioned early that users only need to use high-
level applications that are related to them. Application market would provide a convenient way
for users to fetch useful applications. This application market could store useful meta information
about applications in a decentralized way using Kademlia protocol. For the application itself, it
could be distributed either in a decentralized or centralized fashion depending on the requirements.

5 Further research

In the following, we describe several research directions that would help to improve our system.

8 Section 5

Privacy For our data protocol, it would be relatively easy to enforce privacy by applications.
However, in our current design, all the transactions are always transparent which might cause
potential problems for some business.

Stateless client Every node in our system stores the entire UTXO set for verifying the incoming
transactions like Bitcoin. There are potential ways to alleviate the need for full state. The stateless
client concept uses an additional data structure (e.g. Merkle tree, dynamic accumulators) for
transaction membership proofs. The network updates and maintains the proofs for new blocks.
Nodes in the network could validate a transaction without the entire UTXO set. Existing stateless
technologies are not practical enough for our system by the time of writing.

6 Acknowledgment

The author thanks Aloïs Cochard for reviewing the draft version of this paper.

Bibliography

[1] Vitalik Buterin et al. A next-generation smart contract and decentralized application platform. White paper,
2014.

[2] Satoshi Nakamoto. Bitcoin: a peer-to-peer electronic cash system. 2008.
[3] Serguei Popov. The tangle. Google Scholar, 2016.
[4] Scriptless scripts. https://github.com/ElementsProject/scriptless-scripts.
[5] Cheng Wang. Proof of less work. https://github.com/alephium/research/raw/master/polw.pdf, 2019.

Bibliography 9

https://github.com/ElementsProject/scriptless-scripts
https://github.com/ElementsProject/scriptless-scripts
https://github.com/ElementsProject/scriptless-scripts
https://github.com/ElementsProject/scriptless-scripts
https://github.com/ElementsProject/scriptless-scripts
https://github.com/ElementsProject/scriptless-scripts
https://github.com/ElementsProject/scriptless-scripts
https://github.com/ElementsProject/scriptless-scripts
https://github.com/ElementsProject/scriptless-scripts
https://github.com/alephium/research/raw/master/polw.pdf
https://github.com/alephium/research/raw/master/polw.pdf
https://github.com/alephium/research/raw/master/polw.pdf
https://github.com/alephium/research/raw/master/polw.pdf
https://github.com/alephium/research/raw/master/polw.pdf
https://github.com/alephium/research/raw/master/polw.pdf
https://github.com/alephium/research/raw/master/polw.pdf
https://github.com/alephium/research/raw/master/polw.pdf
https://github.com/alephium/research/raw/master/polw.pdf
https://github.com/alephium/research/raw/master/polw.pdf
https://github.com/alephium/research/raw/master/polw.pdf
https://github.com/alephium/research/raw/master/polw.pdf
https://github.com/alephium/research/raw/master/polw.pdf

	1 Introduction
	2 Blockflow
	Scalable UTXO model.
	Mining.
	Analysis.

	3 Protocols and Applications
	3.1 Token Protocol
	3.2 Data Protocol
	3.3 Smart Contract
	3.4 Features
	Scriptless Scripts
	Expiry Date
	Lock Time
	Pricing Model

	3.5 Applications

	4 System
	4.1 Network
	4.2 Nodes
	4.3 Application Layer

	5 Further research
	Privacy
	Stateless client

	6 Acknowledgment
	Bibliography

