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Abstract—Connecting hundreds of billions of devices, the
Internet of Things (IoT) has become a technology with large
influence in people’s life. However, the future of IoT is threatened
by frail connectivity, poor scalability, absent trust, cracked
security and broken business model. Researchers have proposed
Service-centric Networking (SCN) to provide reliable connectivity
and global scalability, while the trust, security and incentive
of services in such approaches are hard to be guaranteed.
Another direction is to use the blockchain technology to achieve a
trust, secure and incentive IoT. However, most of those solutions
are based on the assumption of a stable and well connected
underlying network, which is often luxury in mobile and dynamic
IoT scenarios.

In this paper, we describe a new approach that combines the
advantages of SCN and blockchain to empower IoT. We propose
a service-centric blockchain architecture, which leverages a
service-driven communication paradigm to support mobility and
scalability. We design a new consensus mechanism and en efficient
ledger structure to provide trust, security and incentive in a
decentralized manner. Finally, we develop a service pricing and
distribution mechanism that fairly protects the profits of both
service providers and users of the network.

I. INTRODUCTION

With a predicted 20 billion devices by 2022 [1], the Internet
of Things is increasingly a platform for accessing services
that run anywhere. Applications such as smart healthcare, vir-
tual and augmented reality, vehicle telematics, self-navigating
cars/drones and multi-user ultra-high-definition telepresence
are envisioned to be common in the near future (Table I).
Unfortunately, the dream of a smart, safe and efficient future
is being threatened. Inherited from the internet design, today’s
IoT architecture is facing great challenges by frail connectivity,
poor scalability, absent trust, cracked security and broken
business model [2]–[4].

A number of researchers propose a Service-centric Net-
working (SCN) to address the above problems [5]–[15]. SCN
is a future internet technology that provides a service-aware
network stack, where applications communicate directly on
service names instead of addresses. In this way, SCN provides
a clean-slate solution for interface failover, device mobility,
and global scalability [15]. However, SCN is frail in terms
of trust, security and economic incentive at the service level
[16]. Another problem of SCN is the lack of compelling and
sustainably profitable business models, which is at the same
time, holding it back.

Many studies use a blockchain to provide IoT with trust,
secure and economically incentive properties [17]–[20]. The
blockchain is the first technology that provides everyone with
a working proof of a decentralized trust [21]. It also provides

TABLE I: IoT UNITS INSTALLED BASE BY CATEGORY
(MILLIONS OF UNITS)

Category 2016 2017 2018 2022
Business: Cross-Industry 1,102.1 1,501.0 2,132.6 4,381.4

Consumer 3,963.0 5,244.3 7,036.3 12,863.0
Business: Vertical-Specific 1,316.6 1,635.4 2,027.7 3,171.0

Grand Total 6,381.8 8,380.6 11,196.6 20,415.4

Source: Gartner (January 2017)

a frictionless Internet-native currency that allows for the first
time to empower a sensor to take part in a world-wide
service market and immediately earn profit, which strongly
incentivizes the sensor to provide services to the network
[22]. However, blockchain is an application-layer overlay
whose functions rely on the underlying network. Unless the
underlying network provides stable connectivity and sufficient
scalability, the blockchain cannot play a positive role in real
IoT scenarios, which are highly mobile and dynamic.

We present Blockcloud, a new approach that combines
the advantages of SCN and blockchain to empower IoT. In
Blockcloud, SCN forms the underlying physical network that
provides connectivity, mobility and scalability. The blockchain
logically operates on top of SCN to provide decentralized trust,
security, fairness and economic incentive. The above design
concept is shown in Figure 1.

Combining SCN and blockchain as an unified system and
making it fit for IoT is a challenging task, with little previous
work for reference. There are 5 aspects of our approach to
address this challenge. (i) We design a layered structure to
embed blockchain into SCN. (ii) We leverage a Service Access
Layer (SAL) [15] to enable service-based communications.
(iii) We design a Proof-of-Service (PoS) mechanism to reliably
verify services. (iv) We develop a Compacted Directed Acyclic
Graph (CoDAG) structure to effectively record transactions.
(v) We devise a truthful continuous double auction (TCDA)
mechanism to fairly distribute services.

We note that Blockcloud model is compatible with today‘s
Internet and has a clear, simple evolutionary strategy. Like
IP, Blockcloud is a “universal overlay”: Blockcloud can run
over anything, including IP. Thus Blockcloud’s advantages in
service distribution, application-friendly communication and
naming, robust security, mobility and broadcast can be realized
incrementally and relatively painlessly. The contribution of this
paper is as follows.

• We design Blockcloud, a new service-centric blockchain
architecture to systematically address mobility, scalabil-



Fig. 1: Empowering IoT Through a Service-centric
Blockchain

ity, trust, security, fairness and incentive problems of IoT.
• We design proof-of-service consensus for reliable verifi-

cation of IoT services.
• We develop CoDAG for fast recording of IoT transac-

tions.
• We devise TCDA for fair pricing and matching of ser-

vices.
The remainder of this paper is organized as follows. Sec-

tion II presents the reason of leveraging a service-centric
blockchain approach. Section III illustrates the architecture
of the proposed approach. Section IV provides the detailed
description of the service-centric communication paradigm.
Section V shows the novel proof-of-service consensus for reli-
able service verification. Section VI presents the design of the
Compacted DAG and prove its effectiveness. In Section VII,
we describe the TCDA mechanism and prove that it is strategy-
proof for both service providers and service users.

II. BACKGROUND AND MOTIVATION

A. Why a Service-centric Approach?
IoT is exposed to more challenges than traditional internet.

This is largely a result of the design of today’s internet design,
where communications are expected to happen between fixed
entities [8]. However, in the IoT world, the scale and dynamic
property of the connected sensors are facing great challenges
in the sense of mobility, security, scalability, network man-
agement and business model [23], [24]. Unless executives
make big strategic changes, they are set to be disappointed as
they seek to scale today’s IoT solutions to support tomorrow’s
hundreds of billions of things [2].

Service-centric Networking (SCN) is a promising approach
to evolve the Internet infrastructure away from a host-centric
paradigm based on perpetual connectivity, to a network ar-
chitecture in which the focal point is “named service”. In this
paradigm, connectivity may well be intermittent, end-point and
in-network service can be capitalized upon transparently. The
expected benefits are improved efficiency, better scalability,
better mobility and better robustness in challenging communi-
cation scenarios [25]. For example, by placing an environment
monitoring service near to the user, it may become possible

Fig. 2: Service-centric Networking Overview

for the user to access it locally when backhaul Internet
connectivity is not available (e.g., after an earthquake).

The Blockcloud team proposes to improve IoT by the
service-centric paradigm. This simple change to the hourglass
model, allowing the thin waist to use service names instead
of IP addresses for service achievement, makes service rather
than its containers a first-class citizen in the IoT architecture.
The service names in Blockcloud can be used to name a chunk
of data in a conversation, as the TCP/IP transport signature
plus sequence number does today, but they can also name a
streaming service from YouTube directly, rather than forcing
it to be embedded in a conversation between the consuming
host and youtube.com.

Figure 2 shows three interconnected Autonomous Systems
(ASes), each has one or more data centers acting as service
execution environments. A service has been instantiated in two
locations. From a service management and placement perspec-
tive, the orchestrator logic needs to decide in which service
execution environment a service should be instantiated. Given
this rich set of resources, SCN aims to optimize the location
of individual service component instances according to the
performance requirements of the application, the location of
its users and according to the experienced demand.

1) Improving Mobility: In Blockcloud, the mobility of
devices is inherently supported by adopting a service-based
communication paradigm introduced by Serval [15]. The
centerpiece of Serval architecture is a new Service Access
Layer (SAL) that sits above an unmodified network layer,
and enables IoT devices to communicate directly on service
names. The SAL provides a clean service-level control/data
plane split, enabling policy, control, and in-stack name-based
routing that connects clients to services [15]. From the service
subscriber’s perspective, service is provided by the network
and she does not need to manage the direct communication
with the exact end-point who provides the service. In such a
manner, end-points can seamlessly change network addresses,
migrate flows across interfaces, or establish additional flows
for efficient and uninterrupted service access (explained further
in Section III).

To the best of our knowledge, Blockcloud is the first



blockchain-based technology to comprehensively address the
mobility problem of IoT.

2) Enhancing Scalability: In traditional IP network, most
of the IoT platforms provide a centralized server to aggregate
all IoT devices, data and services, publish them to the web
portal, and manage the subscription membership. While such
a centralized architecture ensures data/resource availability, it
renders poor scalability and high bandwidth consumption due
to the high volume of control and data exchange. Scalabil-
ity in the IoT spaces will be more challenging than web-
scale or Internet-scale applications. The bisection bandwidth
requirements for a centralized cloud solution are staggering, as
the amount of data generated will easily exceed the reported
trillion objects in Amazon S3 [26].

In Blockcloud, the distributed nature of services with peer-
to-peer technology makes scalability possible. Service regis-
tration and discovery become the key features of Blockcloud,
which can be easily achieved from the adoption of a Dis-
tributed Hash Table (DHT) network [27] (explained further in
Section III).

B. Why Blockchain?
While the service-centric approach supports ubiquitous ser-

vice mobility and good scalability, it does need some kind
of centralized infrastructures for service registration, up-to-
date service resolution and routing [15], [16]. Although these
infrastructures can be provided by Internet Service Providers
(ISPs) or using existing systems like DNS, the centralized
operation is exposed to potential risks of malicious attacks
and intrusive surveillance. Also, the published service cannot
be credibly verified, which greatly harms the profits of end
users when malicious services are subscribed.

Another serious problem is the incentive model, where
service providers have no incentive to publish service to the
network. This is because: 1) the quantity of profit for providing
a service cannot be predicted; 2) the achievement of profit
for providing a service cannot be guaranteed. The reason is
that there is no means to build a fully trusted party (either
centralized of distributed) to perform the global accounting
and profit distribution in current SCN or traditional internet
technologies.

The above problems can be well solved by a blockchain
approach. One of the important contributions of blockchain
is to enable the formation of a trust-generating mecha-
nism in a decentralized manner, which makes the network
a trust-generating machine. Another important contributors
of blockchain is the decentralized governance and incentive
mechanisms for ecosystem growth. Service providers get to-
kens with the help of smart contracts, with the certainty of
getting profits protected by distributed consensus mechanisms.

By adopting a blockchain approach to enhance the service-
centric network, we achieve the following gains.

1) Getting Trust: In Blockcloud, devices form a blockchain
network where the system runs in a fully decentralized manner.
We propose a novel Proof of Service (PoS) consensus mech-
anism to solve problems about guaranteeing truthful service.

The facticity of services provided to the network is automati-
cally checked and guaranteed by the PoS consensus. Cheating
providers will be punished or even kicked out from the system.
Successful decentralization of the IoT, however, will lie not
just in being peer-to-peer, but also in being trustless: an
environment in which there is no need for participants to be
trusted and no centralized, single point of failure.

2) Protecting Security: In Blockcloud, the blockchain sys-
tem and a peer-to-peer network known as Coral [27] form the
secure backbone of the Blockcloud network. Communication
operations between devices are embedded in the blockchain
and service information is stored in Coral, routed by peer
nodes (called service miners) and guaranteed by the Proof-of-
Service consensus (explained future in Section III). The system
therefore has no central point which is exposed to attackers
and security is guaranteed by the consensus mechanism of
distributed miners who are economically motivated to be
honest.

3) Achieving Fairness: In Blockcloud, services are pub-
lished/subscribed to/from the network. Service providers and
subscribers are atomically matched by Blockcloud. The match-
ing process is performed by a smart contract which cannot
be controlled any end-point or a centralized party. The smart
contract runs a Truthful Continuous Double Auction (TCDA)
that prevents cheating and maximizes social welfare of the
entire community. TCDA is mathematically strategy-proof,
where there is no incentive for any of the traders to lie about
or hide their private information from the other traders.

To the best of our knowledge, this is the blockchain-
based technology to approach to the global fairness of service
distribution in IoT.

4) Strengthening Incentive: By identifying and matching
supply and demand for services in real-time, Blockcloud will
create new marketplaces. These complex, real-time digital
marketplaces will build upon the foundation established by
IoT devices and blockchain networks to expand the reach of
this transformation very quickly. They will enable new peer-
to-peer economic models and foster sharing economies. In the
end, the IoT is expected to make the physical world every bit
as easy to search, utilize and engage with as the virtual world.
Note that people from countries and regions where token sale
is prohibited are not allowed in Blockcloud’s token sale, or
supported by Blockcloud’s token service.

III. THE BLOCKCLOUD ARCHITECTURE

A. Architecture Overview
Blockcloud introduces new functionality on top of

blockchains by defining a set of new operations that are oth-
erwise not supported by the blockchain. By carefully learning
the lessons from the design philosophy of the TCP/IP network
[28], and exploring the successful experience of superior
blockchain research result [29], the Blockcloud team decide
to build a layered structure. Blockcloud has four layers, with
two layers (transactionchain layer and servicechain layer) in
the control plane and two layers (routing layer and service
layer) in the service plane.



Fig. 3: The Blockcloud Architecture

B. Blockcloud Layers

1) Transactionchain Layer: The transactionchain occupies
the lowest tier. Blockcloud operations are encoded in transac-
tions on the underlying transactionchain. The transactionchain
stores the transactions of the network as a global ledger and.
While Blockcloud holds an evolving concept that provides the
feasibility and compatibility of different underling blockchain
technologies, due to the characteristic of IoT, the chosen
technology for the transactionchain layer must be elastic,
efficient, secure, scalable and cost-effective.

Currently, the Blockcloud team proposes to use Compacted
Directed Acyclic Graph (CoDAG), which can be mathemati-
cally proved to be efficient for large-scale and dynamic IoT
scenarios [30]. CoDAG improves the traditional DAG [31]
structure to guarantee fast confirmation time and liveness
property. In Section VI, we describe the design of CoDAG
and prove its properties.

Agnostic of the Underlying Transactionchain: The de-
sign of Blockcloud does not put any limitations on which
blockchain technology can be used with the Transactionchain,
as long as the security and reliability properties are directly
dependent on the underlying blockchain. We believe that
the ability to migrate from one technology to another is an
important design choice as it allows for the larger system to
survive, even when the underlying blockchain is compromised.

2) Servicechain Layer: Above Layer 1 is a servicechain,
which defines new operations without requiring changes to the
underlying blockchain. Only Blockcloud nodes are aware of

this layer and underlying blockchain nodes are agnostic to it.
Blockcloud operations are defined in the servicechain layer
and are encoded in valid blockchain transactions as additional
metadata. Blockchain nodes do see the raw transactions, but
the logic to process Blockcloud operations only exists at the
servicechain level.

The rules for accepting or rejecting Blockcloud operations
are also defined in the servicechain. Accepted operations are
processed by the servicechain to construct a database that
stores information on the global state of the system along with
state changes at any given blockchain block. Servicechains
can be used to build a variety of state machines. Currently,
Blockcloud defines two state machines - a global service man-
agement system and a service matching and pricing system.

3) Routing Layer: Blockcloud separates the task of rout-
ing requests (i.e., how to discover service) from the actual
providing of service. This avoids the need for the system to
adopt any particular management service from the onset, and
instead allows multiple service providers to coexist, including
both commercial entity and peer-to-peer systems.

Blockcloud uses service files for storing routing informa-
tion, which are similar to DNS zone files in their format. The
servicechain binds names to respective hash (service file) and
stores these bindings in the control plane, whereas the service
files themselves are stored in the routing layer. Users do not
need to trust the routing layer because the integrity of service
files can be verified by checking the hash(zone file) in the
control plane.



4) Service Layer: The top-most layer is the service layer,
which serves the actual services for the network. All service
names are signed by the key of the respective owner of a
service. By providing services outside of the transactionchain,
Blockcloud allows arbitrary IoT services that a provided by a
variety of IoT devices. Users do not need to trust the service
provider because they can verify the authenticity of the service
by proof-of-service in the control plane.

Blockcloud is designed to be a service oriented platform,
whose design was motivated by the team’s experience of years-
long research and development of Service-centric Networking
[15], [32], [33]. Communication in Blockcloud is driven by
service names rather than addresses. A service name corre-
sponds to a group of (possibly changing) processes offering the
same service. Applications can use names to directly express
their intent to publish or access specific services. This elevates
services to first-class network entities (distinct from hosts or
interfaces).

At the core of Blockcloud is a new Service Access Layer
(SAL) that sits between the transport and network layers [15].
The SAL maps service names in packets to network addresses,
based on rules in its service table managed by a blockchain
(explained further in Section IV). Unlike traditional “service
layers” which sit above the transport layer, the SAL’s position
below transport provides a programmable service-level data
plane that can adopt diverse service discovery techniques. The
SAL can be programmed through a user-space control plane,
acting on service-level events triggered by active sockets (e.g.,
a service instance automatically registers on binding a socket).
This gives network programmers hooks for ensuring service-
resolution systems are up-to-date.

In Section IV, we provide details of the clean service-centric
network stack.

C. Proof of Service
In practice, service publishers must convince their cus-

tomers that they truly provide the service. In Blockcloud,
we introduce a novel class of proof-of-service schemes that
allows proving that a particular service is physically provided
to the network as it is announced. In Section V, we describe
the operations and prove the properties of proof-of-service in
detail.

D. State Machines
Blockcloud supports smart contacts by running state ma-

chines in the servicechain layer. Blockcloud can construct an
arbitrary state machine after processing information from the
underlying transactionchain. A servicechain treats transactions
from the underlying blockchain as inputs to the state machine
and valid inputs trigger state changes. At any given time,
the state machine can be in exactly one global state. Time
moves forward as the underlying blockchain evolves and the
global state is updated. A servicechain can introduce new
types of state machines without requiring any changes from
the underlying blockchain. Currently, Blockcloud introduces
two state machines: 1) A service machine that represents the

global state of the service management system, dealing with
who provides a particular service. 2) A market machine that
matches service publishers and subscribers, through a truthful
continuously double auction algorithm that is explained further
in Section VII.

E. Marketplace

Blockcloud is an incentive-driven marketplace for IoT Ser-
vices. Anyone can publish a service to Blockcloud, and anyone
can subscribe a service from Blockcloud. There is no central
party to stop someone from doing so. Service providers who
contribute to the network will be rewarded with tokens to form
a positive, self-growing platform that continues to evolve on
its own.

The Blockcloud Marketplace is a decentralized blockchain
application built on Blockcloud platform itself. Service
providers publish services to the Marketplace and users sub-
scribe services from the Marketplace. It is also responsible for
maintaining public feedback about the quality of services and
the reputation of their providers, as well as other information.
This information will help users evaluate reusable services.

A market mechanism for the efficient determination of
service trades must address the following tasks [34]. First,
the buyers and sellers who would benefit from trade must be
identified. Second, these buyers and sellers must be matched
so as to maximize total gains to trade. Third, a specific price
must be determined for each matched buyer-seller pair.

In Blockcloud, we propose a novel truthful double auction
mechanism, where multiple buyers and sellers compete with
on another to buy and sell services. Continuous Double Auc-
tions (CDAs) are one of the most common forms of market-
places and have emerged as the dominant financial institution
[35]. The CDA is used because it exploits the dynamics of
the free market to balance demand and supply efficiently in a
highly responsive and decentralized system. The Blockcloud
team develops a truthful continuous double auction (TCDA)
mechanism that allows users to bid for service. TCDA has the
following properties:

• Defending against price cheating. Cheating traders can
not increase the profit so that they do not have incentives
to cheat.

• Guaranteeing fairness. TCDA treats sellers and buyers
equally, where sellers and buyers have the same oppor-
tunity to earn profits.

• Minimizing trading maintenance cost. TCDA opti-
mizes the trading maintenance cost to scale the system
to support a large number of tradings simultaneously.

The preliminary work of TCDA was first used to support
service trading in mobile networks, with the theoretical result
published in [36]. In Blockcloud, we generalize the problem
and use the core algorithm of [36] to build the service trading
component of the Marketplace. In Section VII, we describe
TCDA in detail.



Fig. 4: Publishing and Subscribing Services in Block-
cloud

IV. THE SERVICE-CENTRIC NETWORK STACK

Researchers have conducted a number of studies on service-
centric networking (or information-centric networking) since
10 years ago [7], [8], [10]–[15]. Among the SCN designs,
Serval [15] provides a service-aware network stack, where
applications communicate directly on service names instead
of addresses and ports. The SAL provides a clean service-
level control/data plane split, enabling policy, control, and in-
stack name-based routing that connects clients to services via
diverse discovery techniques.

By carefully investigating different SCN/ICN technologies
and combining with previous work of the Blockcloud team in
this research field [32], [33], we decide to use the Serval net-
work stack to implement Blockcloud’s service-based commu-
nication. Distributed applications (DAPPs) running the Serval
stack can publish/subscribe services to/from Blockcloud, with
the logic shown in Figure 4. In this paper, we briefly introduce
the Serval network stack, with most of the descriptions coming
from the Serval publication.

The Serval stack offers a clean service-level control/data
plane split: the user-space service controller can manage
service resolution based on policies, listen for service-related
events, monitor service performance, and communicate with
other controllers; the Service Access Layer (SAL) provides a
service-level data plane responsible for connecting to services
through forwarding over service tables. Once connected, the
SAL maps the new flow to its socket in the flow table, ensuring
incoming packets can be demultiplexed. Connectivity can be
maintained across physical mobility and virtual migrations.
DAPPs interact with the stack via name-based sockets that
tie socket calls (e.g., bind and connect) directly to service-
related events in the stack. These events cause updates to
data-plane state and are also passed up to the control plane
(which subsequently may use them to update resolution and
registration systems). Figure 5 shows the above logic.

As such, Blockcloud gives service providers more control
over service access, and clients more flexibility in resolving
services. For instance, by forwarding the first packet of a
connection based on service name, the SAL can defer binding
a service until the packet reaches the part of the network

with fine-grain, up-to-date information. This ensures more
efficient load balancing and faster failover. The rest of the
traffic flows directly between end-points according to network-
layer forwarding. The SAL performs signaling between end-
points to establish additional flows (over different interfaces or
paths) and can migrate them over time. In doing so, the SAL
provides a transport-agnostic solution for interface failover,
device mobility, and virtual-machine migration.

To handle a wide range of services and deployment sce-
narios, the controller disseminates serviceID prefixes (hashed
names) to Blockcloud, while the SAL applies rules to packets,
sending them onward - if necessary, through service routers
deeper in the network— to a remote service instance. The
SAL does not control which forwarding rules are in the service
table, when they are installed, or how they propagate to other
hosts. Instead, the local service controller (i) manages the
state in the service table and (ii) potentially propagates it
to other service controllers. The Blockcloud is responsible
for registering, resolving and routing services, which supports
different service deployment scenarios.

Due to page limit, we do not introduce more details about
the Serval stack. To comprehensively understand the Serval
architecture, we highly encourage the readers to read the
Serval paper [15].

Fig. 5: Serval network stack

A. Service Registration

Blockcloud maintains a service naming system as a separate
logical layer on top of the underlying transactionchain on
which it operates. Blockcloud uses the underlying blockchain
to achieve consensus on the state of this naming system and
bind services to providers. Specifically, it uses the underlying
transactionchain as a communication channel for announcing
state changes, as any changes to the state of name-value pairs
can only be announced in new blockchain blocks. Relying
on the consensus protocol of the underlying transactionchain,
Blockcloud can provide truthful manner for all operations
supported by the naming system, like service registration,
updating and matching.

Separation of the Control and Service Plane: Blockcloud de-
couples the security of name registration and name ownership



from the availability of data associated with names by separat-
ing the control and data planes. The control plane defines the
protocol for registering services (identified by service names),
creating (service, hash) bindings, and creating bindings to
owning cryptographic keypairs, which is a logically separate
layer on top.

The service plane is responsible for storing service informa-
tion, mainly the service-hash pairs. It consists of (a) service
files for discovering service by hash or URL, and (b) external
storage systems for storing service information [27]. Service
names are signed by the public keys of the respective service
owners. Devices receive services from the service plane and
verify their authenticity by checking that either the services
hash is in the service file, or the service includes a signature
with the name owner’s public key.

Our design not only significantly increases the data storage
capacity of the system, but also allows each layer to evolve
and improve independently of the other.

B. Service Resolution

As mentioned in §III-B3, services are resolve through alter-
native resolution networks, such as DHT-based ones. In such
cases, a hash-based serviceID is forwarded through service
tables, ultimately registering or resolving with a node respon-
sible for the serviceID. This DHT-based resolution can coexist
with an IANA-controlled resolution hierarchy, however, as
both simply map to different rules in the same service table.

Currently, the Blockcloud team decide to use Coral [27]
DHT. Coral is a peer-to-peer content distribution network
that offers high performance and meets huge demand. It is
completely decentralized and self-organizing, which enables
people to publish content that they previously could not or
would not because of distribution costs. It is also fit for mobile
and dynamic networks, where a simple composition of previ-
ous solutions cannot achieve [27]. Due to space constraints,
we omit most details of Coral from this paper.

We believe that the blockchain industry is still relatively
young and evolving, and it is too early to pick a winning
DHT technology. It is hard to predict which DHT technology
will be operational and reliable five years from now. The
layered structure of Blockcloud provides fully compatibility
with new DHT technologies, which enables the system to be
self-evolved.

C. Service Routing

The service files stored in Coral serves as pointers to the
device who provides the service. The route to the service
is returned by the servicechain to the subscriber. When the
previous service provider moves or gets offline (can be quickly
discovered by the Serval stack [15]), the route for the particular
service is redirected to an alternative provider with the help
of Serval. Meanwhile, the service file of the previous service
provider is updated. In such a manner, Blockcloud supports
ubiquitous mobility and service migration, which frequently
happen in most real IoT scenarios.

The Coral network only stores service files if the service
was previously announced in the transactionchain. This effec-
tively whitelists the service that can be stored in the Coral.
The key aspect relevant to the design of Blockcloud is that
routes (irrespective of where they are fetched from) can be
verified and therefore cannot be tampered with. Further, most
production servers that can be used by service miners maintain
a full copy of all service files since the size of service files is
relatively small (roughly 4KB per file). Keeping a full copy
of routing data introduces only a marginal storage cost on top
of storing the blockchain data.

V. PROOF OF SERVICE

To provide services to massive users, the whole network has
to contribute resources, including storage, computation, band-
width, routing and data. Evaluate the contributing resources is
historically a tough problem [37]. In this document, we pro-
pose a flexible model to formalize the service, and a solution
that incentivizes correct behaviors among all participant.

A. Syntax Model

For a single registered service, many network entities are
related in the process, including routers, end servers, internal
cache servers, various middle boxes. For each entity, the
contributed resources are composed of storage, computation,
bandwidth, routing and data, etc. We illustrate the resources
as following,
• Storage: Storage of end users [38], servers, or even

intermediate nodes can be used as disks or caches [39].
• Computation: According to the contract scripts, a device

(or a set of devices) with enough capacity could be
chosen to execute the scripts. The system designate a
group leader, which will assign jobs to each node (group
member), each node computes the intermediate results to
the leader,

• Relay: The intermediate nodes that help deliver data to
the destination, including the last-hop delivering devices,
e.g., Wifi, 5G, VANET, and hop-by-hop delivering de-
vices, e.g., WSN (Wireless Sensor Network), routers,
VPN middle-boxes, etc. which will assemble the final
results. For example, we can design a distributed firewall
or intrusion detection system, where each node along the
path can defend part of the attacking traffic [40].

• Bandwidth: Services may need to download or upload
data to the network, a connection will be setup between
devices storing the data and end users, data will flow
along the connection. Bandwidth from different devices
can be aggregated to promote the total bandwidth, espe-
cially in the multi-homing scenario [41].

We use e to denote an network entity, Pt to denote the total
proved resources, and P es , P ec , P eb , P er , P ed to represent the
proved storage, computation, bandwidth, relay, and data on
entity e.

Thus, the total contributed resources can be seen as a
combination of different resources on devices across networks.



Pt =
∑
e

(P es + P ec + P eb + P er + P ed ). (1)

To prove the reality and contribution of services, several
great challenges should be addressed, including, 1) the devices
that act as a service provider should provide services correctly
as promised, and the services could be verified by other de-
vices; 2) the devices that provide services, and verify services
should be properly incentivized and penalized, such that the
whole network can provide “common good” services to users,
avoid “verifier dilemma”, including resource exhaustion DDoS
attack and incorrect transaction attack [42].

Recently, many work have been devoted to prove contribu-
tions in a decentralized network. In [42], the authors proposed
the concept of “consensus” computer, on which miners are
expected to execute correctly. In [38], filecoin is used to reward
those store data correctly, and penalize those do not. In [43],
a new protocol called “verification game” is devised to verify
the computation results and incentivizes correct behaviors.
However, these work focus on storage and computation, which
is not enough for a IoT network where many devices have
limited storage and computation resources. While we draw
lessons from previous work, we build a new protocol that can
be extended to the IoT world.

To address the challenges, we define the following roles in
the proof model.

Definition 1. To provide service correctly, there involves three
parties, service provider, subscriber and verifier.
• Subscriber (S): who needs and subscribes a service.
• Provider (P): who provide the service.
• Verifier (V): who verifies the service.

As shown in Equation 1, proof of service can be decom-
posed into proof of several basic elements, including storage,
computation, bandwidth and relay. Among these elements,
proof for storage and computation have been addressed, thus
we focus on bandwidth and relay in this document. However,
different with computation and storage, which return a deter-
ministic results, bandwidth and relay are more probabilistic.
We define approximate QoS (Quality of Service) to help prove
relay and bandwidth.

Intuitively, the service provider promises its QoS when it
registers the service initially. And verifiers will repeatedly try
to check the service. We call a service is δ-approximate, if
verifier try n times, and more than δ times success.

Definition 2. The DHT table in the routing layer will maintain
a approximate QoS record, which is
∆ = {Γ = {0, 1}n, {Vi}n, counter}, where Γ denotes current
verification results table (0 represents success and 1 represents
fail), counter loops forth and back from 0 to n−1 indicating
current position in the verification results table, and {Vi}n
denotes the verifiers set. We say ∆ satisfies δ-approximate
QoS if

∑
i i ∈ Γ ≥ δ.

With the concept of δ-approximate service, a service
provider will not be penalized once it fails to meet QoS

requirements. Verifiers will try many times, and the state or
results will be stored in the DHT table in a decentralized way,
thus other verifiers can read the table before trying and write
into it after trying. When the counter loop back (reset to 0), the
system will decide whether reward or penalize the provider,
and reward the verifiers. Finally, the specific incentive for
rewarding can be set according to [42].

VI. COMPACTED DIRECTED ACYCLIC GRAPH

A. A simple survey on related ledger structure

To achieve consensus, many ledger structures have appeared
recently. They can be categorized into the following classes.
• Permissioned protocol: Achieving consensus through

permissioned protocol is extensively studies in the past
30 years [44]. A new node needs to apply for permission
before joining the network and transacting with other
permitted nodes.

• Permissionless protocol: Different with permissioned
protocol, nodes can freely join or leave the network in
permissionless protocol, thus it is totally decentralized.
It can be classified into on-chain model and off-chain
model. In the off-chain model, part of the nodes can make
transactions with each other privately, and summarize &
upload all transactions to the whole network periodically
(or eventually). While in the on-chain model, each trans-
action is directly submitted to the network.
Off-chain model: To accelerate the transaction speed,
many off-chain solutions have been proposed. Among
them, lightning network [45] improves the scalability
through setting up micropayment channels between users.
Blockstream proposes sidechains [46], where independent
sidechains could be devised with desired flexibility, and
the sidechains can communicate with the main chain
through a two-way peg. Other off-chain solutions rely
on credit between transaction parties, or another trusted
third parties, however, at the cost of sacrificing decentral-
ization.
On-chain model:

1) Linear Chain-based: Bitcoin [47] is the first per-
missionless protocol that is widely deployed and
every transaction could be carried out on-chain.
Bitcoin uses “proof of work” as “key-less digital
signatures” to prevent double-spending and guaran-
tee safeness. Since bitcoin, many improved solutions
were springing up, like GHOST [48], Bitcoin-NG
[49], these solutions tried to improve bitcoin through
different aspects, e.g., efficiency, fairness and usabil-
ity. Among them, Ethereum [50] was considered to
be most promising, it increases the transaction speed
while supporting flexible smart contracts based on
EVM (Ethereum Virtual Machine), on which users
can develop decentralized application rather than
crypto-currencies only.
Although continuously being improved, the linear
chain-based solutions are limited by their efficiency,



for example, bitcoin only supports 7 transactions per
second and Ethereum supports 20 transactions per
second, while VISA supports 24,000 transactions
per second. In [51], it was proved that the speed
is constrained by the maximum network delay to
guarantee security.
DAG-based model: To break through the limit of
linear chain-based solutions, an alternative struc-
ture based on Directed Acyclic Graph (DAG) was
proposed [52]. Unlike linear chain-based solutions,
which allows only one block to be attached at
the end of the chain, DAG-based solutions allow
multiple blocks to be attached simultaneously. Many
current projects are using DAG-based ledger struc-
ture, such as IOTA [53] and Byteball [54]. Al-
though IOTA is famous due to its better scalability
and lower transaction fee, some researchers find
that it sometimes has non-deterministic confirmation
time and huge flooding traffic [55], [56]. Byteball
maitains a main chain, which is selected by wit-
nesses to establish total order between blocks. The
witnesses are reputable users that could be elected
by other users. Byteball makes a tradeoff between
deterministic criteria and decentralization.
In the academic area, PHANTOM [57] and SPEC-
TRE [56] were proposed, and their performances
were proved more strictly. SPECTRE enjoys high
throughput and fast confirmation, but it can not be
extended to support full linear ordering over all
blocks. PHANTOM keeps full ordering, but at the
cost of slow confirmation process.

• Hybrid Consensus: Hybrid consensus protocol [58]
combines the advantage of both permissioned and per-
missionless protocol, and tries to achieve the best of
both worlds. Nakamoto himself first proposed in a forum
that bitcoin can be used as a backbone protocol for
solving Byzantine agreement [59]. In a project called
Thunderella [60], hybrid consensus is used to support
instant transactions.

Above all, the permissioned protocol is faster, but works in
a centralized manner. Permissionless protocol allows miners
to join or leave freely, but sacrifices efficiency and works
much slowly. Although off-chain solutions can improve it,
these patch-like solutions may cause new problems. Hybrid
consensus protocol combines the benefits of both worlds, but it
still relies on permissionless protocol as the backbone protocol
for solving Byzantine agreement. In this document, we adopt
the hybrid consensus while improving the underlying back-
bone protocol, for the IoT world with much faster transaction
speeds.

B. CoDAG Framework

In the IoT network, IoT devices are usually constrained by
battery, computing power, communication bandwidth, etc. To
solve the problem, we design a framework shown in Figure
6. In the framework, besides the miners and devices, there is

Fig. 6: CoDAG Ledger Framework

an additional role called gateway, which ubiquitously exists
in the IoT world.
• Miner: It is responsible for maintaining the ledger, which

represents the consensus over the network, through an
improved DAG structure that will be illustrated in the
following section. Like [58], miners have slow and fast
modes: 1)slow mode using a DAG-based ledger structure,
slow mode is also responsible for electing members for
fast mode; 2) fast mode use Byzantine agreement, where
the members are elected by slow mode in a decentralized
way, rather than a centralized way [61].

• Gateway: It could be a device with enough resources to
run the protocol, like a cellphone connected by various
wearable devices, or a smart car connected by many in-
car devices, or a 5G base station connected by numerous
IoT devices. The gateway is responsible for download-
ing part of the ledger (most recently), maintaining an
encrypted communication channel with the devices, and
making transactions with other gateways. The gateway
is like an important intermediate node in the off-chain
solutions [45]. Because the gateway is usually a reliable
and trusted entity in the IoT world,

• Devices: It only needs to upload its payment and other
data to the gateway, and receive the results. If the device
has enough capacity, itself can also be the gateway.

C. CoDAG - A Compacted DAG-based Ledger structure

The IoT network has numerous devices and resources,
thus high frequency transactions between devices should be
supported. Initially, the miners enter into the slow mode, which
uses a permission-less protocol to achieve consensus and elect
members for the fast mode. The members are elected in a
decentralized way, i.e., the most recent M miners that have
found new blocks being confirmed by the ledger protocol.
After election, the miners enter into fast mode using Byzantine
agreement. when members misbehave or encounter attacks, the
system fall back to slow mode.

Although hybrid consensus [60] greatly improves the trans-
action speeds of permission-less protocol, and works in a
decentralized way. However, its underlying protocol influences
the period that it takes to enter into fast mode. More worse,



if under attack, the speeds will be lower by orders of mag-
nitude, as it fall back to slow mode. In this document, we
use DAG, which is suitable for asynchronous operations in
decentralized environments, as the ledger structure to improve
the permission-less on-chain protocol.

Besides, traffic congestion, uncertain worst-case confirma-
tion time brought new challenges to these solutions. In this
document, we design a new ledger structure called CoDAG
(Compacted Directed Acyclic Graph) structure. Transactions
are enveloped in blocks, which is organized as directed acyclic
graph (DAG). The DAG is a gossip-like structure, that fits
well in asynchronous operations. Unlike previous DAG-based
structures, the new graph is well connected between the honest
blocks, and has a limited width.

TABLE II: Summary of Notations
G Graph or DAG in this document
V set of nodes
E set of directed egdes
lv level of node v
wl width of level l
K maximum width
Cv connectivity of node v
Rv reverse connectivity of node v
Cl candidate set of level l

In the new ledger, let G = (V,E) be a DAG, where V is the
set of nodes or blocks (in the following text, we use node and
block interchangeably), and E is the set of directed edges. In
the graph, we use lv to denote the level of a node in the graph,
which is the length of the longest path from the genesis node
to the current node. For example, in Fig. 7, the level of node
8 is 3. Each level has a width, which is the number of nodes
in the level. For example, there are 3 nodes in level 3, and we
use wl to denote the width of level l. For a DAG, we call its
width is constrained by a constant K, if ∀l, wl < K, e.g., the
DAG in Fig. 7 is constrained by 3. The width represents the
maximum number of blocks the system can generate during
a round. The width could also be adjusted (or self-adaptive)
according to the transaction generation rate in the network. In
the worst case, the structure degenerates into Bitcoint’s linear
blockchain structure if the width equals to 1. The width also
influences the puzzle difficulty to guarantee the security level
of the whole system.

In the graph, each node points to K nodes in the previous
level, we call the number of paths from a node to the genesis
connectivity of the node, e.g., the connectivity of node 8 is 9,
including 9 paths:
〈8, 4, 1, 0〉, 〈8, 4, 2, 0〉, 〈8, 4, 3, 0〉,
〈8, 5, 1, 0〉, 〈8, 5, 2, 0〉, 〈8, 5, 3, 0〉,
〈8, 6, 1, 0〉, 〈8, 6, 2, 0〉, 〈8, 6, 3, 0〉.
Let Cv denote the connectivity of node v. We call the

leaf nodes tips, and the tip that has the largest connectivity
number is called the navigator of the graph. If there exist
multiple tips with equal connectivity, then any one of them
could be be the navigator. For example, node 13, 14, 15 have
the same connectivity, and node 14 is randomly selected as
the navigator. We call the number of paths from the navigator

to the a node reverse connectivity of the node, and use Rv to
express it. For example, if node 14 is the navigator, the reverse
connectivity of node 8 is 3, including 3 paths:
〈14 10 8〉, 〈14 11 8〉, 〈14 12 8〉.
The basic idea of our protocol is that the honest nodes

should be well connected (with higher probability), and has
higher reverse connectivity for the current navigator.

Fig. 7: A simple example for CoDAG

D. Protocol on CoDAG Overview

To illustrate our new protocol, we first recall the Nakamoto’s
protocol.

Nakamoto’s protocol in a nutshell: To defend against
“sybil” attack, in Nakamoto’s protocol, miners try their best
to mine a block, more specifically, solve a time-consuming
computational puzzle that depends on the history transactions.
The block is appended to a chain of blocks, and confirmed to
be stable if 6 more blocks are appended after the block. Due
to network delay, forks may appear when a miner computes a
block while another new block is about to arrive. All honest
miners choose the longest chain to append new blocks when
forks exist.

The Nakamoto’s protocol satisfies two important properties
[62], 1) consistency: all honest miners in the network have
a consistent view of the ledger; 2) liveness: if a transaction
is successfully submitted, it will appear in the ledger of all
honest miners.

Protocol on CoDAG: Like Nakmoto’s protocol, each miner
will computer blocks through solving puzzles, despite its
much faster generation rate in CoDAG. Each miner generates
blocks through solving puzzles, each newly generated block is
appended to the CoDAG as a tip, and validates two blocks in
the previous level, i.e., points to the two blocks in the graph.

For faster convergence speed, we set an upper limit K on
the width of the graph. However, due to network delay or
adversarial nodes, there may exist forks, i.e., more than K
nodes in some level. Under such circumstance, nodes with
higher reverse connectivity have higher priority compared with
those with lower reverse connectivity. The top K priority
nodes in the same level are considered to be candidates for
this level. We use Cl to denote the candidate set of level l. A
candidate is stable at some moment, if the probability of the



event where the node fails to be elected as a candidate in the
future is negligible. The miner that generates a stable block
will be rewarded by the system, like Nakamoto’s protocol. A
special case is that several nodes with the same priority belong
to the borderline candidates, in such case, all these nodes will
be classified as candidates and share the rewards.

In the protocol, the width should be set properly. If the DAG
is too narrow, the DAG node generation speed will be slow; if
the DAG is too wide, the confirmation time will be very long.

E. CoDAG Block Generation and Candidate Selection Algo-
rithm

Block Generation Algorithm: We use K to denote the
maximum level of the graph G, and 〈v, w〉 to denote a directed
edge that points from v to w. We design algorithm Generate()
to compute the blocks the places where a new generated block
x is to be appended. Algorithm Generate() first computes
the connectivity number of each node, and points to two
nodes that have the largest connectivity in the previous level.
In Generate(), we use algorithm Connectivity() as an
intermediate function, which takes a DAG and a node as the
input, and computes the connectivity from all nodes (behind
it) to it.

The input of the algorithm is the current DAG G and the
new block x, the output is a new DAG with x and two directed
edges that points from x to two previous nodes. Let L be the
maximum level of graph G.

Algorithm 1: Connectivity(G, v)

1 begin
2 Cv ← 0,∀v ∈ V
3 L← maximum level of G
4 Cgenesis ← 1
5 for lv + 1 ≤ l ≤ L do
6 for ∀v ∈ {v ∈ V |lv = l} do
7 for ∀w ∈ {lw = l − 1} do
8 if 〈v, w〉 ∈ E then
9 Cv+ = Cw

10 return {Cv|v ∈ V }

Algorithm 2: Generate(G = (V,E), x)

1 begin
2 Connectivity(G, genesis)
3 if |{vL}| = K then
4 L+=1

5 y, z ← two nodes that have the largest
connectivity in level L− 1

6 V ← V
⋃
{x}

7 E ← E
⋃
{〈x, y〉, 〈x, z〉}

Theorem 1. The computation complexity of algorithm
Generate() is O(L×K2).

Proof. Algorithm Connectivity() is based on dynamic pro-
gramming, line 5 in algorithm Connectivity() loops for
L times, line 6 loops for K times, line 7 loops for K
times. Thus the complexity of the algorithm Generate() is
O(L×K2).

Candidate Selection Algorithm: We design algorithm
Select() to select the candidate for some level in the DAG.
Select() computes the candidate node for a layer in the
DAG. It first computes the connectivity of each node, and the
node with the largest connectivity is set to be the navigator.
Secondly, for a specific layer l, Select() computes the reverse
connectivity for each node in the layers. At last, the nodes
that have top K largest reverse connectivity are selected as
the candidates. The input of the algorithm is the DAG and a
specified layer, the output is the candidate set.

Algorithm 3: Select(G = (V,E), l)

1 begin
2 L← maximum level of G
3 Cl ← ∅
4 Connectivity(G, genesis)
5 N ← {v|Cv ≤ Cw,∀w ∈ V } # there may be

multiple nodes with equal connectivity
6 x← select an element from N
7 Rv ← 0,∀v ∈ V , Rx = 1
8 for L− 1 ≥ k ≥ l do
9 for ∀v ∈ {v ∈ V |lv = k} do

10 for ∀w ∈ {lw = k + 1} do
11 if 〈w, v〉 ∈ E then
12 Rv+ = Rw

13 T ← |{v|lv = l}| ≤ K if T ≤ K then
14 return Cl ← T
15 else
16 sort(T , {Cv|v ∈ T }) #sort T from highest to

lowest according to its reverse connectivity
value

17 for 0 ≤ i ≤ K − 1 do
18 Cl ← Cl

⋃
{T [i]}

19 return Cl ← Cl
⋃
{v|v ∈ T &Rv = RT [K−1]}

Theorem 2. The computation complexity of algorithm
Select() is O(L×K2).

Proof. The complexity of algorithm Connectivity() is O(L×
K2) as previously proved, the complexity of line 8-12 is
O((L − l) ×K2), thus the total complexity is dominated by
O(L×K2).



F. Well Connected Channel

The CoDAG structure is different from chain-like structure,
as it adopts a flexible structure that is more suitable for
asynchronous operations. It is also different with previous
DAG-based structure, it adopts a more compacted structure,
where nodes are more well connected. Intuitively, CoDAG
is more like a well connected channel, and the width of the
channel can be adjusted according to user demands.

We consider the scenario where an adversary tries to gen-
erate an alternate channel with higher connectivity than the
honest channel, and takes control of the navigator node. Like
bitcoin whitepaper [47], we define the following notations:
• p = the proportion of computing power that the honest

party controls
• q = the proportion of computing power that the adversary

party controls
• qz = probability that the adversary will ever catch up from

z levels behind

Lemma 1.

qz =

{
1, if p ≤ q.
(q/p)z, otherwise.

(2)

Basically, to control the navigator, the adversary needs to
produce more nodes in the alternate channel than the channel
produced by the honest miners. In each level, if both parties
start at the same time, the probability that the honest party first
finds the next w block is p, the probability that the adversary
party first finds the next w block is q. Thus, the left proof is
the same as [47].

Next, we consider how long a transaction will be confirmed.
A node in some level selected as the candidate could be taken
over by another node in the same level.

Fig. 8: Adversary starts an alternate channel

Lemma 2. If the reverse connectivity of a node v lo-
cates z level away from the largest level, then the pos-
sibility that its candidate identity could be overtaken is:

1−
z∑
k=0

λke−λ

k! (1− (q/p)z−k)

Proof. Suppose there are two nodes in level l, node a produced
by honest miners and b produce by adversary miners, suppose
Ra > Rb when the largest level of the graph L satisfies L−l ≤

Fig. 9: Adversary competes in the same channel

z, then the probability Pr(Ra > Rb) in the future equals

1−
z∑
k=0

λke−λ

k! (1− (q/p)z−k).

There are two strategies in the channel-based scenario. The
first is the adversary will start an alternate channel the level,
as shown in Figure 8. In this case, the best strategy for the
adversary party is to develop a complete separate channel,
i.e., adversary node will only point to adversary node, but not
honest node in the previous level. The model then is the same
as bitcoin.

Different with bitcoin, there is a second scenario, where
the adversary competes in the same channel with the honest
miners, that is, the honest nodes may point to the adversary
node, as shown in Figure 9. Obviously, the best strategy for
the adversary is to point to adversary nodes at first, and point
to the honest nodes with its left pointers. For the honest nodes,
it will first point to honest nodes, and point to the adversary
nodes with its left pointers.

We first prove that in any level k > l, for any two honest
nodes vi and vj , then Cvi,a = Cvj ,a and Cvi,b = Cvj ,b;
for any two adversary nodes wi and wj , Cwi,a = Cwj ,a
and Cwi,b = Cwj ,b. We prove it through induction, in level
l + 1, all honest nodes will point to a and avoid pointing
to b, thus their connectivity to a is 1 and connectivity to b
is 0; all adversary nodes will point to b and avoid pointing
to a, thus their connectivity to a is 0, and connectivity to b
is 1. For a level k > l, suppose the nodes in the level satisfy
the assumption, and there are P honest nodes and Q adversary
nodes, any honest node vk satisfies Cvk,a = X and Cvk,b = Y ,
any adversary node wk satisfies Cwk,a = X ′ and Cwk,b = Y ′.
Then in level k + 1, for any honest node vk+1, Cvk+1,a =
X ∗P +X ′ ∗ (K −P ) and Cvk+1,b = Y ∗P + Y ′ ∗ (K −P ),
for any adversary node wk+1, Cwk+1,a = X ′∗Q+X∗(K−Q)
and Cwk+1,b = Y ′ ∗Q+ Y ∗ (K −Q).

Secondly, we prove the above lemma. For a level k > l,
let R(k) =

∑
∀vk

Rvk be the total reverse connectivity of all

honest nodes in level k, and let R̂(k) =
∑
∀vk

Rwk be the

total reverse connectivity of all adversary nodes. Suppose
R̂(k)
R(k) ≥ ε should be satisfied to make the adversary party
catch up with the honest party. In level k + 1, R(k) =



R(k+ 1) ∗P + R̂(k+ 1) ∗ (K −Q) and R̂(k) = R̂(k+ 1) ∗
Q+R(k+ 1) ∗ (K −P ) indicating that all honest nodes will
point to honest nodes first and all adversary nodes will point
to adversary nodes first. Based on the above equations, we can
infer that R̂(k+1)

R(k+1) ≥
ε∗P+P−K
Q+Q∗ε−ε∗K . Because Q(K−P )

P (K−Q) ≤ 1 ≤ x2
with higher probability, because the honest party own more
computing power. Thus, R̂(k+1)

R(k+1) ≥
Pε
Q is satisfied with higher

probability. Thus, the second strategy will fall back to the first
strategy.

For the second strategy, intuitively, each node is considered
to have K votes, and the votes are given to the nodes in
the previous level. For the honest nodes, the votes are first
given to the honest nodes, the left are randomly given to the
adversary nodes in the previous level; while for the adversary
nodes, the votes are first given to the adversary nodes, the
left are randomly given to the honest nodes in the previous
level. However, if the honest party owns larger portion of
the computing power, then most votes will be given to the
honest nodes, and the votes will be accumulated with the level
growing.

VII. TRUTHFUL CONTINUOUS DOUBLE AUCTION

A. Preliminaries

In this paper, we consider buyers and sellers of services have
multi-unit capacities and differentiated revenues and costs for
auctions and their private information cannot observed directly
by traders. Moreover, each trader bids in a manner that permits
the exploitation of profit opportunities arising from the pricing
behavior of other traders. To summarize, we base the auction
on the independent, private value model.

Definition 3: The independent, private value model is the
model in which each trader knows how much he/she values
the item, he/she does not know how much others value it, and
his/her value for it does not depend on the values of others.

We require the trading system to be strategy-proof so that
traders have no incentive to lie about their price.

Definition 4: An auction strategy is said to be strategy-proof
if there is no incentive for any of the traders to lie about or
hide their private information from the other traders.

The strategy-proof property has been used in a wide range of
computer network problems [63]–[65]. A typical application
of strategy-proof is Vickrey-Clarke-Groves (VCG) mechanism
[66]–[68], in which in order to maximize the individual
welfare, a trader should seek to maximize the social welfare
of the public system. While the VCG mechanism achieves a
socially optimal allocation in an incentive-compatible manner,
it is not suitable here as it puts high computational costs to
the central organizer.

To balance supply and demand, we need to design a system
with a competitive equilibrium.

Definition 5: A competitive equilibrium in a market for a
positively valued good is a (positive) unit price P , a total
quantity supplied QS(P ), and a total quantity demanded
QD(P ) such that QS(P ) = QD(P ). That is, the total quantity
supplied must equal the total quantity demanded.

The notation QS(P ) and QD(P ) indicates that these supply
and demand quantities depend on the price P . The total supply
at each given price is simply the sum of the quantities of good
that each seller plans to sell at that price. Let qi(P ) denote the
quantity of the service seller i plans to sell at price P , then
QS(P ) takes the following form.

QS(P ) =
∑
i

qi(P ). (3)

The competitive profit Wi(P ) of seller i takes the following
form:

Wi(P ) = Pqi − piqi. (4)

The marginal price parameter pi denotes the price that the
seller expects to sell the service.

Similarly, the total demand at each bid price is the sum of
the amount of commodities at that price. Let qj(P ) denote the
quantity of the commodity buyer j wants to buy at price P

QD(P ) =
∑
j

qj(P ). (5)

The competitive profit Wj(P ) of buyer j takes the following
form:

Wj(P ) = Pqj − pjqj . (6)

The marginal price parameter qj denotes the price that the
seller expects to sell the service.

Note that a competitive equilibrium is achieved at any price
P where QS(P )=QD(P ).

Definition 6: An equilibrium price is the price at which
quantity supplied is equal to quantity demanded.

It is possible that infinitely many competitive equilibria
and market clearing prices exist. A competitive equilibrium
ensures that demand meets supply in a free market populated
by rational and selfish agents [69]. The concept is widely
used in various economic areas, such as the New York Stock
Exchange, the NASDAQ Stock Market [70], and B2B e-
commerce websites (e.g., Free Market). In our mechanism, we
determine a uniform equilibrium price in each auction round.
We then use the equilibrium price to determine the winners
of the auction. The marginally matched buyers and sellers use
the uniform equilibrium price for all units. In such a way,
both buyers and sellers achieve the same privilege so that the
system is fair to both buyers and sellers.

In contrast to traditional auction markets such as electricity
and spectrum, the Blockcloud Marketplace may involve tens
of millions of traders. As a result, the system-level cost
of maintaining the trading may be significantly high. Gen-
erally speaking, the more transactions the system manages,
the higher trading cost it takes. Therefore, existing auction
algorithms cannot be applied to TCDA as they cannot control
the number of transactions. In this paper, we reduce the trading
cost by reducing the number of transactions. Next, we will
propose a three-stage mechanism to solve the problem. We



build a linear programming model targeted at minimizing the
number of transactions and develop an algorithm to solve the
problem that allows the matching result of buyers and sellers.

B. Algorithm overview

Figure 10 shows the TCDA framework that is based on a
multilateral and continuous double auction. TCDA consists of
traders who provide or subscribe service and a Marketplace
that manages the auction. The prices for services are specified
for each buyer and seller. The auction is anonymous and these
parameter values are private to each trader.

Fig. 10: The TCDA framework

The auction is performed in rounds. At the beginning of
each auction round, traders submit price and quantity offers
to the Marketplace. Each bid and ask consists of a single
price-quantity pair. The price can be submitted via an API
that is provided by Blockcloud. At the end of each auction
round, the Marketplace matches the price and quantity offers
received during the round in accordance with publicly known
protocols, and reports these matches back to the buyers and
sellers. The prices set by the Marketplace in each auction
round is uniform (set equal across all matched buyer-seller
pairs). Upon receiving the auction result, the matched buyers
and sellers carry out their assigned trades and get their profit
outcomes. The system is a continuous double auction. In the
real IoT scenario, traders may continuously join and leave the
system. The traders that are not matched in the previous round
and the new participants can bid in next rounds.

C. A Three-stage Double Auction Mechanism

The auction in TCDA is performed under the following
three procedures sequentially. (i) Determining the transaction
price, (ii) determining the winners of the auction, and (iii)
determining the quantity level for each matched buyer-seller
pair. We present three algorithms that handle the issues above.
Figure 11 shows the TCDA that achieves the equilibrium price.
The winners of the auction and the matched buyer-seller pairs
are determined in a sequential manner. The system is strategy-
proof and fair to both sellers and buyers, and can minimize
the trading cost in terms of the number of transactions.

1) Procedure 1 - Determining the transaction price: In
this section, we calculate the market-clearing price based on
which the winners of the auction are determined. Let m be the
number of sellers in the system, M be the total units of service
under sell (for short, supply), n be the number of buyers in

Fig. 11: The trading procedures in TCDA.

the system, and N be the total demanded service wanted by
the buyers (for short, demand). Let l denote the number of
total traders, i.e., l = m+ n. In an auction round, each trader
reports K, i.e., the units of service supplied (or demanded),
and the estimated price p to the organizer. We can have the
following definition.

p =

{
< 0, if the trader is a buyer,
> 0, if the trader is a seller.

(7)

To calculate the market-clearing price, we sort the absolute
value of the reported prices in a descending order. Let pi
denote the ith highest absolute value, Ki denotes the supply
(demand) corresponding to the trader with price pi, then the
price set P is defined as follows:

{p1, p1, · · · , p1︸ ︷︷ ︸
K1

, · · · , pi, pi, · · · , pi︸ ︷︷ ︸
Ki

, · · · , pl, pl, · · · , pl︸ ︷︷ ︸
Kl

}, (8)

where |p1| ≥ |p2| ≥ · · · ≥ |pl|.
Each listed price represents the price for each unit of

supplied (or demanded) service. The benefit of constructing
such a price set is that the organizer can change the auction
with l traders to an auction with L = M+N traders and each
trader supplies or demands a unit quantity of service. Given
the above price set, we define the price located at the (M+1)-th
position of the set as the (M+1)-th price. Algorithm 4 presents
the pseudo-code of finding the (M+1)-th price.

Note that, the upper bound of the absolute value of pi is
the carrier price, which is a definite number. In real practice,
for a practical online service trading system, the accuracy
of the price is expected to be definite. Therefore, if we
use bucket sort, p[1...L] can be sorted with a computational
complexity O(L). As a result, the computational complexity
of Algorithm 4 is O(L) as well.

Algorithm 4: Price Determining Procedure (the set of
price, i.e., p[1...L], and M supplied service)

1: for (i=1; i ≤ M; i++) do
2: p[i] = |p[i]|;
3: end for
4: sort p[1...L] in a descending order
5: return p[M+1];

Consider the value of the (M+1)-th price is ps. It means
that the (M+1)-th price is the s-th highest price among all the
prices.



2) Procedure 2 - Determining the winners: Given the
market clearing price, we then present the market clearing rule
that determines the winners. We call the set of traders who win
the auction at the end of the auction round the trading set.
We prove that the auction achieves a competitive equilibrium
under this rule.

Market Clearing Rule.
• If the trader at the (M+1)-th position is a seller, then the

trading set consists the following: (i) All the buyer prices
that are before the (M+1)-th position. (ii) All the seller
prices that are after the (M+1)-th position, and (iii) The
price at the (M+1)-th position.

• If the trader at the (M+1)-th position is a buyer, then the
trading set is the same as the above trading set except
that the price at the (M+1)-th position is not included.

Algorithm 5 shows the pseudo-code of determining winners.
The computational complexity of Algorithm 5 is O(L).

Algorithm 5: Market Clearing Procedure (The sort of
price p[1...L], and M supplied service)

1: set J = {}; //assume that p[1...L] has been sorted by
Algorithm 1

2: for each i ∈ [1, L] do
3: if pi > 0 && i ≥M + 1 || pi < 0 && i < M + 1

then
4: J = J ∪ {pi};
5: end if
6: end for
7: return J ;

Theorem 3. The trading set under Algorithm 5 achieves a
competitive equilibrium.

Proof. i) Let T denote the trading set generated by Algo-
rithm 5. Consider the trader who is at the (M+1)-th position
is a seller. Let S denote the set of prices of sellers that are in
T . According to the market clearing rule, we can obtain S by
the following equation.

S = {pi pi > 0, | rank(pi) ≥M + 1}, (9)

where rank(pi) represents the position of pi in T . Let S =
{bi > 0 | rank(pi) < M + 1}, then |S| + |S| = M ,
where |S| denotes the number of items in S and M is the
total service under sell (including the sellers who are not in
T ). Let B denote the set of prices of buyers that are in T ,
then we can obtain:

B = {pi pi < 0, | rank(pi) < M + 1}. (10)

Since S ∪ B = {pi|rand(pi) < M + 1}, and S ∩ B = ∅,
then |B|+ |S| = M . Also, because |S|+ |S| = M , therefore
we can obtain |S| = |B|. That is, the number of prices of
sellers equals the number of prices of buyers. As each seller
(buyer) in T represents one supplied (demanded) unit, then

the total supply equals to the total demand in T , which shows
that the market achieves a competitive equilibrium.

ii) Consider the trader who is at the (M+1)-th position is
a buyer, then according to the market clearing rule, the buyer
price at the (M+1)-th position is not in T . Thus the buyer
price set B is the same to that in (i). At the same time, we
can compute the seller price set S by the following equation:

S = {pi > 0 | rank(pi) > M + 1}. (11)

As the trader at the (M+1)-th position is a buyer, we can
obtain:

S ≡ {bi > 0 | rank(bi) ≥M + 1}. (12)

Similar to (i), we can show that the market achieves a
competitive equilibrium as well. This completes the proof.

3) Procedure 3 - Matching the traders: Given the trading
set generated by Algorithm 5, we now describe how to match
the buyers and sellers.

For the service trading model, there will be system-level
cost for managing the trading. The type of the cost may
vary depending on the specific technology to perform the
trading, such as the computational and storage resources of
the organizer. The trading system should minimize the trading
cost so that the system is scalable enough to manage millions
of users. Generally, we can expect that the more trading
transactions there are the higher trading maintenance cost it
will be. As a result, the system should efficiently match the
traders so as to minimize the number of trading transactions.
We now formulate this minimization problem.

Consider W is a trading set generated by Algorithm 5.
Consider there are c sellers in W , c ≤ m. Let S1, S2, · · · , Sc
denote the quantity of service that are to be traded of the
sellers.

∑c
i=1 Si = QS(P ), where P is the market clearing

price. Consider there are d buyers in W , d ≤ n,
∑d
j−1Kj =

QD(P ). The matching problem can be formalized as the
following linear programming problem:

min

c∑
i=1

d∑
j=1

ϕ(xij),

s.t.


∑d
j=1 xij = Si, i = 1, 2, · · · , c,∑c
i=1 xij = Kj , j = 1, 2, · · · , d,

xij ∈ N, i = 1, 2, · · · , c; j = 1, 2, · · · , d,

where xij denotes the quantity of service unit between seller
i and buyer j, and ϕ(xij) denotes the trading cost of selling
(buying) xij unit of service.

Given the competitive equilibrium, we have QS(P ) =
QD(P ). In order to minimize the trading cost, we need to
minimize the number of transactions. That is, we need to
minimize the number of each non-zero xij , or maximize the
value of non-zero xij . Because 0 ≤ xij ≤ min{Si,Kj}, the
minimum number of transactions can be achieved if we set



each non-zero xij to be its maximum value (min{Si,Kj}).
The following procedure gives the solution to the above linear
programming problem.

Matching Procedure. Given a trading set generated by
Algorithm 5, the system first matches the seller who has the
highest supply and the buyer who has the highest demand, the
quantity of the trading is the minimum quantity between the
seller’s supply and the buyer’s demand. This will lead to one
of the following cases: 1) Both the seller and the buyer leave
the trading set if the supply equals to the demand, otherwise
2) the trader with the larger quantity of supply or demand
remains in the trading set. If (1) happens, the organizer simply
repeats the matching process. If (2) happens, the organizer puts
the remaining trader back to the trading set and repeats the
matching process. As the trading set achieves a competitive
equilibrium, the process will terminate in finite steps and the
supply (demand) of all the traders can be satisfied.

The computational complexity of sorting sellers and buyers
is O(max(M,M)), while that of the matching process is
O(M + N). By combining the above procedures, we solve
the auction problem with a computational complexity of
O(M +N), i.e., O(L).

Note that, when M=1, the auction system is Vickrey’s
Second Price Sealed Auction. Vickrey proved it is strategy-
proof [66]. When M > 1, we prove that such an auction
model is strategy-proof for all buyers and risk averse sellers.
By risk averse we mean that the trader is reluctant to accept
a bargain with an uncertain payoff rather than another bargain
with a certain and possibly lower payoff.

The following two theorems lay the foundation of TCDA’s
property, with proofs provided in detail in Appendix A and
Appendix B.

Theorem 4. TCDA is strategy-proof for buyers.

Theorem 5. TCDA is strategy-proof for risk averse sellers.

In contrast to regular auction markets such as electricity
and stock, an IoT device may dynamically join and leave
the system. When such situation happens, Blockcloud can
use a signaling message to let the remaining trader quickly
join the next auction. The system can also use a fine-grained
accounting approach that the buyer gradually pays tokens to
the service provider. In this way, the buyer does not waste
money if the seller leaves the network before the agreed
quantity of service is consumed.

VIII. CONCLUSION

In this paper, we propose a new approach that combines the
advantages of SCN and blockchain to empower IoT. We pro-
pose a service-centric blockchain architecture, which leverages
a service-driven communication paradigm to support mobility
and scalability. We design a new consensus mechanism and
en efficient ledger structure to provide trust, security and
incentive in a decentralized manner. Finally, we develop a
service pricing and distribution mechanism that fairly protects
the profits of both service providers and users of the network.

APPENDIX A
PROOF OF THEOREM 4

Theorem 4: TCDA is strategy-proof for buyers.

Proof. Assume that the real estimated price of unit service
of buyer j is vj . Let b denote the auction price that buyer j
submits to the auction. Suppose that the price of other traders
will not change, so the result of the market clearing price y
will only relate to buyer j at the end of the auction. Let β
represent the market clearing price when buyer j submits the
real price vj (assume that vj is the sth highest price among all
submitted prices). Let β+1 and β−1 represent the (s+1)-th and
the (s-1)-th highest price when buyer j declares price vj . The
utility of buyer is considered as the difference value between
real price vj and market clearing price y.

(i) When β > vj , the relationship between the market
clearing price y and the declared price b of buyer j is
illustrated by Figure 12, where the shadow part represents the
situation that buyer j can win the auction and the area marked
with ‘-’ means that buyer j gains negative utility when he or
she wins the auction. The bold lines show the relationship of
market clearing price y and buyer j’s submitted price b when
other traders’ auction prices keep unchanged. We see that even
through buyer j wins the auction by offering a price higher
than vj , the utility will be negative, which is vj−β+1. Therefor
the best strategy of buyer j is to declare the real price even if
buyer j can not win the auction. On the other hand, declaring
a price that is lower than vj will not help the buyer to win
the auction or change the market clearing price, thus the buyer
has no incentive to do so.

(ii) When β < vj , the relationship between the market
clearing price y and the declared price b of buyer j is
illustrated by Figure 13, where the area marked with ‘+’
denotes the positive utility when buyer j wins the auction.
As shown in the figure, when buyer j declares the real price,
he or she will win the auction and get strictly positive utility,
which is vj–β. Although declaring a higher price could also
gain the same utility in this case, doing this may increase the
possibility of getting negative utility, which is shown in (i).
If buyer j declares a lower price, the market clearing price
might be reduced, but the buyer can not improve the utility as
he or she will lose the auction.

(iii) When β = vj , the relationship between the market
clearing price y and the declared price b of buyer j is
illustrated by Figure 14. In this case, the market clearing price
is determined by buyer j’s price. However, buyer j would
not lower the price even if he or she knows this situation in
advance. This is because, although declaring a lower price
could lead to a positive utility, the possibility of winning the
auction is zero (shown in Figure 6). This is not what a rational
buyer would do. Also, buyer j would not choose to increase
the declared price, because that will lead to a negative utility
even if he or she can win the auction.

Based on the above analysis, no matter what the price of
other traders are, in all cases, buyer j gains the best utility
when he or she declares the real price. At the same time, only



by declaring the real price can the buyer maximize the utility
in all the above situations. Because TCDA is based on sealed
biding, buyers can not know which situation will happen, so
the best strategy is to declare the real price. This completes
the proof.

APPENDIX B
PROOF OF THEOREM 5

Theorem 5: TCDA is strategy-proof for risk averse sellers.

Proof. Assume that seller i’s marginal (real) price is ui, and
the price that seller i submits to the auction is b. Let γ represent
the market clearing price when seller i declares the real price
ui, and γ+1 and γ−1 represent the (i+1)-th and the (i-1-th
highest prices under ui. Under the situation that other traders
do not change their price, the relationship between the market
clearing price y and seller i’s auction price b is illustrated by
Figure 15-17.

(i) When γ > ui, the relationship is shown in Figure 15. We
can see from the figure that when sellers declare their marginal
price, they will win the auction and gain strictly positive utility
γ − ui. Although they can gain the same utility by offering a
lower price, it can lead to the possibility of gaining a negative
utility. Let the overlapping part of the shadow (including the
border) represent the pricing area that the seller can gain a
higher utility than submitting the real price, namely γ ≤ b ≤
γ+1. When the seller increases the price (we only discuss the
situation in which the market clearing price is changed), a
higher utility might be achieved, but because the seller can
not accurately forecast the value of γ and γ+1, he or she may
also get a lower utility. Specifically, if the seller concludes a
wrong expectation and makes b > γ+1, he or she will not
only miss the expected higher utility, but also lose the stable
income that comes from offering the real price. This is not the
optimal strategy for a risk averse seller.

(ii) When γ < ui, the relationship is shown in Figure 16.
By declaring the marginal price the seller will not win the
auction, so the utility is zero. The seller can choose to reduce
the price to win the auction. However, even though the seller
wins the auction, he or she will gain a negative utility. Therefor
it makes no sense for the seller to reduce the price. There is
no incentive for the seller to increase the price as it does not
help the seller to win the auction.

(iii) When γ = ui, the relationship is shown in Figure 17.
In this situation, the seller could gain more utility by declaring
a higher price than ui. This is because the utility of the seller
is zero under the real price. By declaring a higher price, the
seller may either get zero utility by losing the auction (b ≥
γ+1), or get a strictly positive utility by winning the auction
(uI < b < γ+1).

Although under situation (i) and (iii), there exists the
possibility of getting a higher utility by declaring a higher
price, the seller can not make it always happen by accurately
forecasting γ and γ+1. Under a wrong estimation, there can be
the situation of γ > ui, in which the seller will not only miss
the expected excess utility, but also lose the stable income that

is brought by offering the real auction price. That is not the
optimal strategy for a risk averse seller, because the possibility
of losing the stable utility P (γ > ui) is much higher than
that of gaining a higher utility by declaring a higher price
P (γ ≥ ui)P (γ ≤ b ≤ γ+1).

Based on the above analysis, no matter what auction price
other traders declare, in order not to increasing the possibility
of winning the auction, the best strategy of a risk averse seller
is to declare the real price.

This completes the proof.
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