
Sei: The Sector Specific Layer 1

Specialized for trading, giving exchanges the unfair advantage

Sei Labs

1 Abstract

The history of new technologies has demonstrated

the dynamic of the apps-infrastructure cycle, where ap-

plications drive demand for better infrastructure which

enables new types of applications. General purpose

blockchains offered the initial infrastructure that led

to an explosion in decentralized applications over the

last few years. As key apps surpass the first stage of

adoption, they are confronted with scaling, speed and

reliability limitations. Akin to how web2 infrastruc-

ture specialized around major use cases as the industry

matured, blockchain infrastructure needs to specialize

around key application types to enable the largest apps

in web3 to reach mass adoption.

We present Sei blockchain, a sector-specific layer 1

blockchain that is specialized for trading. At a proto-

col level, Sei introduces novel approaches for transac-

tion ordering, block processing, and parallelization that

are specialized for exchanges. Additionally, Sei offers a

heavily optimized order placement and matching engine

that is built into the chain itself.

2 Introduction

Irrefutably, an exchange is the most widely adopted

type of application in crypto. The overwhelming ma-

jority of crypto is still exchanged off-chain through cen-

tralized exchanges. Decentralized exchanges (DEXs)

have the potential to be one of the killer applications

of crypto, akin to centralized exchanges. They are al-

ready everywhere, spanning across AMMs, orderbooks,

NFT marketplaces, and in-game exchanges. DEXes

command a large network effect, and major ecosystems

get built around them.

Ironically, DEXs are also the most underserved ap-

plication in crypto. They demand a unique set of re-

quirements for reliability, scalability, and speed unlike

any other application. The key reason why DEXs strug-

gle to compete with centralized exchanges is the lack of

proper infrastructure. In an effort to support every type

of app, general purpose blockchains are unable to pro-

vide the unique environment needed for DEXs to offer

the best user experience.

As a result, we propose Sei, which is a sector-

specific L1 blockchain that is specialized for trading,

and will bridge the performance gap between central-

ized and decentralized exchanges. At a protocol level,

Sei makes use of Twin-Turbo consensus and multiple

degrees of parallelization to help reduce latency and im-

prove throughput. Sei also has a native order matching

engine, which fills trades using frequent batch auctions,

helping with price fairness and frontrunning prevention.

This paper will also cover some of the user experience

customizations that Sei has, including native price or-

acles and transaction order bundling.



Sei: The Sector Specific Layer 1 2

Fig.1. Block proposals with transaction identifiers

3 Protocol Improvements

Sei is built using the Cosmos SDK and Tendermint

Core. At the time of writing, Sei has forked both Cos-

mos SDK and Tendermint Core and has added signifi-

cant specialized functionality and optimizations.

3.1 Twin-Turbo Consensus

3.1.1 Intelligent Block Propagation

Once a full node receives a transaction from a user,

it must broadcast that to other nodes in the network.

Full nodes will randomly gossip this transaction to

other nodes in the network. Once a transaction is re-

ceived by a validator, it verifies the validity of the trans-

action, and adds that transaction to that validator’s

local mempool.

Block proposers will look at the current state of

their mempool and propose a block to be committed.

Since most, if not all, transactions will already have

been received by validators through the transaction dis-

semination approach discussed above, proposers will in-

clude unique transaction identifiers in the block pro-

posal, along with a reference to the full block. Pro-

posers will first disseminate the proposal to other val-

idators in the network, followed by the entire block

(containing the full contents of each transaction). The

proposal will get sent as one message, whereas the en-

tire block will get broken up in parts and gossiped to

the network. If a validator has all of the transactions

from the proposal in its local mempool, it will recon-

struct the entire block from its mempool rather than

waiting for all block parts to arrive. If it doesn’t have

all transactions, it will wait to receive all of the block

parts from the network, and will construct the block

with all of its transactions.

This process significantly decreases the overall

amount of time that a validator waits to receive a block.

Once validators have all of the transactions as part of



Sei: The Sector Specific Layer 1 3

(a) (b)

Fig.2. Block processing with example times (a) Block processing after precommit (b) Optimistic block processing

the block proposal, they will follow the Tendermint

BFT consensus to agree on the transaction ordering.

In particular, there will be a prevote step, a precom-

mit step, and a commit step before the block and the

associated state changes have been committed to the

blockchain.

3.1.2 Optimistic Block Processing

As part of Tendermint consensus, validators will re-

ceive a block proposal, verify the validity of the block,

and then proceed to the prevote steps.

Rather than waiting till after the precommit step

to begin transaction processing (figure 2a), validators

will start a process concurrently to optimistically pro-

cess the first block proposal they receive for any height

(figure 2b). The optimistic block processing will write

the candidate state to a cache.

If that block gets accepted by the network, then the

data from the cache will get committed. If the network

rejects the block, then the data from the cache will get

discarded, and future rounds for that height will not

use optimistic block processing.

The theoretical improvement in latency due to op-

timistic block processing is

min(Tprevote + Tprecommit, N ∗ T )

where Tprevote is the prevote latency, Tprecommit is the

precommit latency, N is the number of transactions and

T is the average latency of a single transaction.

3.2 Parallelization

As part of the Cosmos SDK, when validators receive

a block and start processing it to update the state of the

network, they will initially run BeginBlock logic, fol-

lowed by DeliverTx logic, followed by EndBlock logic.

Each of these are completely configurable, and Sei has

configured DeliverTx and EndBlock to parallelize trans-

action processing, as shown in figure 3.

Sei first processes all transactions in a block during

the DeliverTx phase. This results in state changes for

most types of transactions (sending tokens, governance

proposals, smart contract invocations, etc.). However,

central limit order book (CLOB) related transactions

only go through basic processing during the DeliverTx



Sei: The Sector Specific Layer 1 4

Fig.3. Block processing with and without parallelization

phase, and have most of their state changes get applied

during the EndBlock logic. This is done to support

frequent batch auctions, where orders are aggregated

and a uniform clearing price is calculated at which to

execute orders (see section 4.1.3 for more information).

Sei has added in parallelization to both DeliverTx

and EndBlock to get optimal performance.

3.2.1 DeliverTx Transaction Parallelization

Rather than processing transactions sequentially

during DeliverTx, Sei processes transactions in paral-

lel (see figure 4). This allows multiple transactions to

be processed simultaneously, which leads to improved

performance. Data for Sei is persisted in a key-value

store. To prevent race conditions and nondeterminism,

Sei needs to ensure that multiple parallel processes are

not updating the same key.

This is achieved by maintaining a mapping of trans-

action message types to the keys they need to access

(dependency mappings). Messages that are updating

different keys can be run in parallel, but messages up-

dating the same key will need to be run sequentially and

in a deterministic order (the ordering is determined by

the ordering of transactions in the block).

Prior to executing transactions for a block, any de-

pendencies between transactions are identified by con-

structing a directed acyclic graph (DAG) of dependen-

cies between the different resources that each message

in each transaction needs to use.

An example of a basic dependency mapping is for

messages related to an example X module. All mes-

sages to this module update the same key ABC, so all

of these messages will need to be run sequentially in the

same branch of the access DAG.

In many cases the contents of the message are used

to give further parallelism. For example, transfers of

tokens from (1) account A to B and (2) account C to D

can be run in parallel since they update different keys.



Sei: The Sector Specific Layer 1 5

Fig.4. Access DAG for parallel processing

However, only defining the mapping based on the mes-

sage type (and ignoring message contents) will result in

these two transfers running sequentially.

To give flexibility around this type of parallelism,

dependency mappings can be defined as templates,

which will get filled with more granular resources at

runtime. In this token transfer example, the sender

and receiver accounts will be passed into the template

to yield more granular parallelism.

For message types that are defined by the chain

(staking, oracle updates, bank sends, etc.), mappings

are set at blockchain genesis, and can be updated via

a governance proposal. There is one special case for

the message type related to gas fee collections, which

affects every transaction. This is handled by writing

data to an in-memory datastore that is flushed at the

end of the DeliverTx logic.

For message types that are set by developers build-

ing on Sei, smart contracts will need to define their

own resource dependencies. These will be set at con-

tract initialization and can be updated by the smart

contract admin through update transactions. If the de-

pendencies are properly written, then smart contracts

will benefit from parallelism and pay cheaper gas fees.

If no dependencies are defined, then smart contracts

will run sequentially and block other transactions from

running. Since they are blocking the rest of the net-

work, transactions to those smart contracts will need to

pay greater gas fees. If the dependencies for a specific

smart contract are incorrectly defined, then messages

for that particular smart contract will fail and greater

gas fees will be charged, but the network overall will be

unaffected and other messages will succeed.

3.2.2 Market Based Parallelization

At the end of the block, all CLOB related orders

will be processed by the native order matching engine.

Rather than processing orders sequentially, Sei will pro-



Sei: The Sector Specific Layer 1 6

cess independent CLOB related orders in parallel at the

end of the block. Two orders are independent if they do

not affect the same market in the same block. By de-

fault, the chain will assume all orderbook transactions

touching different markets are independent, unless de-

velopers explicitly define dependencies between differ-

ent markets. These dependencies will be defined when

a smart contract is deployed. If these dependencies are

defined incorrectly, then transactions to the dependent

smart contract will fail.

3.3 Native Price Oracles

Sei has a native price oracle to support asset ex-

change rate pricing. Validators are required to partici-

pate as oracles in order to ensure the most reliable and

accurate pricing for assets. In order to maintain fresh-

ness of oracle pricing, voting windows can be configured

to be as small as 1 block long, resulting in rapid price

updates and fresh asset pricing.

In the vote step for a voting window, the validator

provides their proposed exchange rates for that window.

At the end of the voting period, all of the exchange

rate votes are accumulated and a weighted median is

computed (weighted by validator voting power) to de-

termine the true exchange rate for each asset.

There are penalties for non-participation and par-

ticipation with bad data. Validators have a miss count

that tracks the number of voting windows in which a

validator has either not provided data or provided data

that deviated too much from the weighted median. In

a given number of voting periods, if a validators miss

count is too high, they are slashed as a penalty for mis-

behaving over an extended period of time.

4 Native Order Matching Engine

Sei offers the functionality of a general purpose

blockchain (i.e. allowing users to transfer assets and

deploy smart contracts). In addition to that, Sei has

created an order placement and matching engine (re-

ferred to as the ”matching engine” for the remainder of

the paper) that can be used by any exchanges building

on top of Sei.

4.1 Deploy CLOBs with Sei

The matching engine allows decentralized exchanges

that are building on top of Sei to deploy their own

CLOBs. The matching engine maintains their respec-

tive order books at a chain level, and provides function-

ality to create markets and allow users to trade.

4.1.1 Creating Markets

Creating a new orderbook (equivalent to creating a

new market) can be done by a two-transaction process:

1. Deploying a smart contract onto Sei

2. Submitting a transaction to add a new order book

to the registered smart contract. A new order

book proposal needs to include the asset, the base

denomination of pricing, and the minimum price

interval

4.1.2 Order Types

The matching engine supports the following order

types

• Limit orders: This is an order to buy/sell an asset

at a specified price or better. When a limit or-

der is submitted, it is generally (see section 4.1.3

for more information) added directly to the order

book and will be matched against market orders

that come in.

• Market orders: This is an order to buy or sell an

asset at the best available price. Market orders

will get executed immediately if there is any liq-

uidity in the order book (i.e. there are any limit



Sei: The Sector Specific Layer 1 7

Fig.5. Lifecycle of a transaction

orders to match the market order that is submit-

ted). To prevent orders getting filled at prices

that are wildly different from what users expect,

users placing trades can also submit a max slip-

page parameter.

• Fill-or-kill order: This is a special market order

type in which either the entire order gets executed

immediately if there is enough liquidity in the or-

der book, or the order gets canceled. There is no

partial execution with fill-or-kill orders.

• Stop-loss order: This is an order to close out a po-

sition by buying or selling a security at the market

price when it reaches a certain price known as the

stop price. The stop prices of these orders will be

visible on chain.

• Cancel order: This will remove an order from the

order book.

Partial executions, where only part of the overall order

is executed, are possible for limit, market, and stop-loss

orders if there is not enough liquidity to fill the entire

order.

4.1.3 Lifecycle Of An Order

All CLOB related transactions will be executed

atomically in the scope of a block (as opposed to other

architectures, such as Serum, that require 3 separate

transactions to handle order matching/execution).

Transactions related to the matching engine will be

sent to the dex module, as shown in figure 5.

One transaction may be composed of one or more

orders (see section 4.4.1 for more information). Upon

submission, the transaction handler processes the trans-

action by adding the orders included from each transac-

tion into the dex module‘‘s internal MemState (Figure

5.1).

While processing each block, the dex module has

an EndBlocker hook that processes orders recorded

in the MemState in bulk (Figure 5.2). Specifically,

when dex module EndBlocker hook is invoked, orders

across transactions will be aggregated by market (i.e.

all orders for a BTC perpetual), and combined into

one smart contract call for that particular market (see

section 4.4.2 for more information about chain level

bundling).

The chain will then call the smart contract asso-

ciated with that market (i.e. calling a perpetual ex-



Sei: The Sector Specific Layer 1 8

change smart contract), which has all of the logic de-

fined for how to interact with the matching engine (Fig-

ure 5.3). The smart contract will implement its own

custom logic, and then call the matching engine (Fig-

ure 5.4).

The matching engine will first process all order can-

cellations. This will remove the associated limit orders

from the order book store.

Then all limit orders will be added to the orderbook.

This ensures that orders are getting filled with maximal

liquidity.

Then, the matching engine will process market or-

ders. A uniform clearing price will be calculated (see

section 4.3 for more information) and all market orders

will be filled at that price. If there is not enough liquid-

ity to fill all market orders, then the orders that accept

greater slippage will be prioritized.

Then, matching limit orders will get processed. If

any limit orders can be filled, they will be filled at the

best price. For example, assume the order book store

has sell orders for P1 with quantity Q and P2 with quan-

tity Q, where P1 < P2. A buy limit order exists for P3

> P2 for quantity 1.5 * Q. In this case, the buy limit

order will get filled by purchasing Q shares at price P1

and 0.5 * Q share at price P2.

Finally, any unfilled market orders will expire. At

the conclusion of the matching engine logic, it will call

the relevant smart contract to handle asset settlement

(Figure 5.6).

4.1.4 Hook Support

Sei allows contracts to register hooks with the net-

work. The registered hooks will be invoked every block

and allow operations like flashloan payback to happen

in the same block as any associated trade settlements.

Specifically, a contract can define two hooks. The first

one is called at the beginning of a block to give contracts

an opportunity to prepare for any potential trade that

may happen in the same block. The second is called at

the very end of a block, after order matching and set-

tlement, allowing contracts to perform any post-trade

logic if needed.

4.2 Asset Agnostic Order Book

The matching engine does not require tokens to be

traded, and instead offers a flexible interface that lets

decentralized exchanges decide how to represent assets.

For example, instead of tokenizing positions, decentral-

ized exchanges can track positions as a list in their

smart contract state.

4.3 Frequent Batch Auctioning

Executing orders in a sequential order encourages

validators to order transactions in ways that can be

profitable for themselves. For example, when they see

an incoming market order, they can include their own

market order to buy that asset, and their own limit or-

der to sell that asset at a higher price before the incom-

ing transaction is processed. To discourage this form

of MEV (maximal extractable value) Sei aggregates all

market orders and executes them at the same uniform

clearing price.

For example, if the order book has two asks (sell

orders) orders for prices P1 and P2 and there are two

incoming bids (buy orders) B1 and B2, then both B1

and B2 will get executed at the uniform clearing price

P 1 + P 2

2

rather than having B1 getting executed at P1 and B2

getting executed at P2. This results in the existing limit

orders getting filled at their intended price (P1 and P2)

while the incoming market orders get a fairer price.



Sei: The Sector Specific Layer 1 9

4.4 Transaction Order Bundling

Sei offers multiple layers of order bundling to im-

prove user experience and performance, outlined in the

sections below.

4.4.1 Client Order Bundling

Sei transactions can be composed of orders going to

multiple trading markets (even those spanning smart

contracts, i.e. orders to both a BTC/USDC spot pair

and a BTC perpetual exchange). During block process-

ing, Sei will correctly route all orders to their respective

smart contracts. This will help market makers cut down

on gas costs associated with updating their positions.

4.4.2 Chain Level Order Bundling

Each orderbook related transaction will require in-

stantiating the virtual machine (VM). Rather than hav-

ing multiple VM instantiations, Sei bundles all orders

across all transactions (per market) and only performs

one VM instantiation. This reduces latency by roughly

1ms per order, which is substantial in periods of high

throughput.

4.5 Trading Fees

The matching engine will not charge any trading

fees at the chain level at launch. Governance can choose

to start applying trading fees in the future. Decentral-

ized exchanges that are building on top of Sei can add

in their own trading fees depending on the experience

they want to offer their users. This would be defined at

the smart contract level, and will be easily configurable

for developers.

4.6 Middleware

The matching engine is an extremely flexible and

composable system, so it’s anticipated that projects will

build decentralized exchange middleware on top of the

matching engine. This would be middleware that allows

certain new types of DEXes to be created. For example,

it’s anticipated that middleware will be created to allow

market makers to post offers that are not fully provi-

sioned. This would involve writing middleware smart

contracts that are built on top of the matching engine.


