
Abstract

Coreum: An Enterprise Grade Blockchain
Technical White Paper

Version 2.0 - February 2023

�

Disclaimer Please read the entirety of this "Disclaimer" section carefully. Nothing herein constitutes legal,
�nancial, business or tax advice and you should consult your own legal, �nancial, tax or other professional
advisor(s) before engaging in any development and activity in connection herewith. Neither Sologenic Develop-
ment Foundation Limited, any of the project team members (the CORE team) who have worked on the Coreum
blockchain (as de�ned herein) or project to develop the Coreum blockchain in any way whatsoever, any distribu-
tor/vendor of $coretokens, including without limitation Sologenic Development Foundation Limited, nor any
service provider shall be liable for any kind of direct or indirect damage or loss whatsoever which you may suffer
in connection with accessing this whitepaper, the website at https://coreum.com/ (the Website) or any other
websites or materials published by the foundation and the team. This whitepaper is subject to change without any
prior notice.

The advent of blockchain technology has attracted huge interest in modern
times. Through various protocols, the blockchain plays an important role in
every business vertical. Some blockchains such as Bitcoin are a great store of
value, others like Ethereum promise to verify and execute application code.
While smart contract engines such as EVM are great for numerous types of
applications, they remain non-deterministic and non-scalable.

The Coreum blockchain is distinct in many ways and incentivizes the network
participants to conduct more transactions by providing bulk fee discounts. It
is designed to solve real-world problems at scale by providing native token
management systems, such as a Decentralized Exchange (DEX), while being
fully decentralized. In addition to the built-on-chain solutions, Coreum uses
WebAssembly (WASM) to process smart contracts, and utilizes the Tender-
mint Byzantine Fault Tolerance (BFT) consensus mechanism and Cosmos
SDK’s proven Bonded Proof of Stake (BPoS).

Furthermore, Coreum is built for token ecosystems such as digital assets
issuing, stablecoins, traditional asset tokenizations, CBDCs, Smart Tokens,
and NFTs.

Table of content

Disclaimer

Abstract

1 Architecture

1.1 Tendermint & Cosmos SDK

1.2 Interoperability with Other Blockchains

1.3 Side Chains

2 Proof of Stake

2.1 Staking

2.2 Validators

2.3 Delegating

2.4 Validator Rewards

2.5 Slashing

3 Transaction Fees

3.1 Fee Model

3.1.1 Green Region

3.1.2 Violet Region

3.1.3 Yellow Region

3.1.4 Blue Region

4 Governance

5 Smart Tokens

5.1 Introduction

5.1.1 Speed

5.1.2 Cost-ef�ciency

5.1.3 Predictability

5.1.4 Security

5.1.5 Extendibility

5.2 Features

5.2.1 Issuance

5.2.2 Minting

1

1

4

4

5

6

6

7

8

8

9

9

10

10

11

11

12

12

12

13

13

14

14

15

15

15

16

16

17

5.2.3 Access Control List (ACL)

5.2.4 Burning

5.2.5 Freezing

5.2.6 Whitelisting

5.2.7 Blacklisting

5.2.8 Burn Rate

5.2.9 Send Fee

5.2.10 IBC (Inter Blockchain Communication) Compatibility

5.2.11 Smart Contract Integration

6 Smart Contracts

6.1 WASM

6.2 CosmWasm

6.3 CosmWasm Architecture

6.4 Contract Flow

7 Decentralized Exchange (DEX)

7.1 On-Demand Orderbook

7.2 Direct & Indirect Order Matching

7.3 Order Execution

7.4 Order Types

7.4.1 Market Orders

7.4.2 Limit Orders

7.5 Advanced Features

7.5.1 Good Till Cancel Orders

7.5.2 Good Till Time Orders

7.5.3 Immediate or Cancel Orders

7.5.4 Fill or Kill Orders

8 Decentralized Apps (dApps)

9 Use Cases

10 Token Economy

11 Allocation

12 References

�

�

Disclaimer

Abstract

1 Architecture

1.1 Tendermint & Cosmos SDK

1.2 Interoperability with Other Blockchains

1.3 Side Chains

2 Proof of Stake

2.1 Staking

2.2 Validators

2.3 Delegating

2.4 Validator Rewards

2.5 Slashing

3 Transaction Fees

3.1 Fee Model

3.1.1 Green Region

3.1.2 Violet Region

3.1.3 Yellow Region

3.1.4 Blue Region

4 Governance

5 Smart Tokens

5.1 Introduction

5.1.1 Speed

5.1.2 Cost-ef�ciency

5.1.3 Predictability

5.1.4 Security

5.1.5 Extendibility

5.2 Features

5.2.1 Issuance

5.2.2 Minting

5.2.3 Access Control List (ACL)

5.2.4 Burning

5.2.5 Freezing

5.2.6 Whitelisting

5.2.7 Blacklisting

5.2.8 Burn Rate

5.2.9 Send Fee

5.2.10 IBC (Inter Blockchain Communication) Compatibility

5.2.11 Smart Contract Integration

6 Smart Contracts

6.1 WASM

6.2 CosmWasm

6.3 CosmWasm Architecture

6.4 Contract Flow

7 Decentralized Exchange (DEX)

7.1 On-Demand Orderbook

7.2 Direct & Indirect Order Matching

7.3 Order Execution

7.4 Order Types

7.4.1 Market Orders

7.4.2 Limit Orders

7.5 Advanced Features

7.5.1 Good Till Cancel Orders

7.5.2 Good Till Time Orders

7.5.3 Immediate or Cancel Orders

7.5.4 Fill or Kill Orders

8 Decentralized Apps (dApps)

9 Use Cases

10 Token Economy

11 Allocation

12 References

17

17

17

18

18

19

19

19

19

20

20

21

21

22

22

23

23

24

24

24

24

24

24

25

25

25

25

26

26

27

28

1 Architecture

At the heart of every blockchain lies the consensus mechanism; Coreum utilizes
Tendermint - a well-established consensus engine that many blockchains rely upon.
The Cosmos SDK makes use of Tendermint to provide tooling and pre-made mod-
ules for the building of application-speci�c Blockchains with a proof of stake securi-
ty mechanism.

Coreum will be built on top of Tendermint and Cosmos SDK while making changes
whenever necessary. This will allow the new layer-1 to tap into the vast ecosystem
built around the Cosmos SDK; such as wallets, explorers, and other modules.

1.1 Tendermint & Cosmos SDK

Excerpted directly from tendermint website:
“Tendermint is software for securely and consistently replicating an application on
many machines. By securely, we mean that Tendermint works even if up to 1/3 of
machines fail in arbitrary ways. By consistently, we mean that every non-faulty
machine sees the same transaction log and computes the same state. Secure and
consistent replication is a fundamental problem in distributed systems; it plays a
critical role in the fault tolerance of a broad range of applications, from currencies,
to elections, to infrastructure orchestration, and beyond.” [1]

Although in the above paragraph from tendermint website it is said that Tender-
mint works when even up to ⅓ of machines fail, but in reality tendermint consensus
works with voting power and not number of machines, and it is up to the applica-
tion layer to decide how that voting power is determined. One might assign 1 voting
power to each machine on which the above statement is based or in the case of
Coreum voting power is assigned proportionally to the amounts of CORE staked.

“More formally, Tendermint Core performs Byzantine Fault Tolerant (BFT) State
Machine Replication (SMR) for arbitrary deterministic, �nite state machines.” [2]

Tendermint brings decades-old academic research on BFT into the world of block-
chain and facilitates high-throughput low-latency proof-of-stake blockchain, which
is not only fast but also hugely more power ef�cient than proof-of-work.

�

Tendermint has two main parts: a consensus engine and an interface to communi-
cate with the application layer. The application layer will contain all the business
logic speci�c to the blockchain and the consensus layer will facilitate networking
and consensus between all nodes. And this is where Cosmos SDK �ts in. It facili-
tates building applications on top of Tendermint by providing an architectural
pattern, tooling and other commonly used modules.

1.2 Interoperablity with Other Blockchains

Coreum will enable communication to, and, from other blockchains. Users will be
able to transfer tokens from external blockchains into Coreum and vice versa. This
interoperability works by locking or burning the tokens in the source chain and
minting or unlocking them on the target chain. Thus, when the token is transferred
back from the target chain onto the source chain, it is burned on the target and
unlocked in the source.

For Cosmos-SDK-based chains, Coreum will use the IBC protocol [3] which is avail-
able as an open-source component. IBC is an interoperability protocol designed for
communicating arbitrary data between arbitrary state machines. It consists of 2
layers:

1. Data transfer layer: establishes communication channels by creating
connections and transferring data between chains.
2. Application layer: which de�nes how messages should be encoded, decoded
and interpreted at each end of the communication channel.

The IBC protocol can be used for different use cases including but not limited to
transfers, interchain accounts (delegate calls between two chains) and oracle data
feeds.

Coreum will implement communication layers either via IBC or bridge to communi-
cate with the following blockchains with more to follow down the line:

• Bitcoin
• Ethereum
• Ripple
• Solana
• Binance Chain & Binance Smart Chain
• Cosmos Hub (ATOM)

�

1.3 Side Chains

In Computer science there is an invariable limit on how much you can scale a
software by adding more resources to it called vertical scaling. The solution to that
problem is a parallelism formally known as horizontal scaling.

Coreum is incurring heavy research and development around the use of side chains
for exponential scalability and the production of more throughput when needed. A
single chain can do up to 7000 simple transactions per second, consequently, by
adding a single side chain, the throughput is increased to 14000. Of course there are
applications that cannot run on multiple side chains, for example a DEX. For such
use cases, a dedicated chain will run individually. The image below provides an
overview of how side chains will look like.

2 Proof of Stake

As mentioned before, Coreum will use Cosmos SDK’s Bonded Proof of Stake securi-
ty scheme to build its own blockchain. A short description of the most important
parts of the BPoS will be provided here.

�

�

2.1 Staking

Staking is one of the most important components of a Proof-of-Stake Blockchain. It
ensures the network remains secure while giving validators and delegators a
passive income by staking their CORE tokens and getting rewards.

In fact, staking is the backbone of every proof-of-stake consensus. A proof-of-stake
network is secured when stakeholders lock their tokens and are granted voting
power in exchange, power that can be used to vote on each block. The assumption
is that it is to the bene�t of the stakeholders to secure the network since the value
of their assets depends on the security of the network itself.

It can be deduced that the more tokens are locked as stake, the more secure the
network is. For example if the total value locked (TVL) as stake is about 1% of the
entire token value, then if an attacker controls one third of that 1%, they can halt
the network, but if 75% is locked as TVL then they need to control 25% of the total
value to halt the network. So a proof of stake network must encourage its partici-
pants to stake and reach a reasonably high TVL percentage.

Given the fact that the only incentivization mechanism in proof-of-stake is block
rewards, if there are enough transactions in each block, more fees will be collected
and more people will stake their tokens. But if there are not enough transactions
happening then the rewards will be too low and the TVL will go down, bringing risk
to the network.

To accommodate for that problem, variable inflation is introduced. Meaning that
some tokens will be minted in each block, added to block rewards (alongside fees),
and passed to the validators and delegators to incentivize them to provide more
stake, and the amount of in�ation rate is inversely proportional to TVL. If TVL is
equal to or higher than the target value then the in�ation rate goes down to its
minimum and if it is not, it will go up but there is an upper limit to the in�ation rate.

These tokens will be minted in a manner that a maximum yearly in�ation rate is
observed. It is evident that the minting will introduce in�ation to the system, which
will further incentivize non-stakers to effectively stake their tokens so their assets
don’t lose value. It must be noted that if there are enough transactions in each
block, and enough incentivization is produced from transaction fees so that stakers
are locking enough tokens to meet the target TVL, then the in�ation will not be
necessary and will automatically go down to zero.

�

2.2 Validators

In Tendermint, validators are responsible for the seamless operation of the network
by ensuring that blockchain invariants are enforced and consensus is reached.
They do so by putting their assets at stake, which grants them voting power
proportional to the amount of their stake. Delegation is another source of getting
voting power which will be discussed later.

The exact procedure of Tendermint consensus is described in the Tendermint
whitepaper [1] and their website [2].

Everyone may create a validator by bonding the minimum self-delegated stake
required by the network (20,000 CORE tokens). But it does not necessarily mean
that the validator will become a part of the consensus. Only 32 validators with the
highest stake form the consensus. This mechanism incentivizes network parties to
bond more tokens, making the TVL higher, bringing security to the network.

At the genesis block, precon�gured validators will have some voting power allow-
ing the blockchain to start.

2.3 Delegating

Users who do not wish or do not have the means to become a validator can become
delegators. In short, delegators can choose a validator and stake their CORE tokens
by paying a commission to the validator. Delegators will also get punished if the
validator misbehaves, so they must carefully choose who they delegate to, to avoid
punishments.

Delegators can also choose to delegate to multiple validators by consigning a
portion of their stake to each one. This will help reduce the �nancial risk of getting
slashed if one of the validators misbehaves so not all of their assets would be
subject to a single slashing.

Moreover, delegators are also expected to actively participate in governance. A
delegator’s voting power is proportional to the size of their stake with the validator
and if they don’t engage in community voting, their power is shifted to the valida-
tors.

�

2.4 Validator Rewards

Block rewards will be split between active validators, proportionally to their stakes,
to incentivize their participation in the consensus. These rewards consist of trans-
action fees that go into the block plus additional rewards minted by the blockchain
itself. Given the fact that a POS system is secured via its own stake, the minted
amount is meant to encourage token holders to stake their tokens in case there are
not enough CORE tokens locked in as stake. So the minted value will go up if TVL
is less than the target TVL (up to a maximum yearly in�ation) and will go down if
TVL is higher than the target TVL (and it may even go down to 0).

2.5 Slashing

As important as it is to incentivize the contribution of validators by rewarding
them, it is important to punish them on certain occasions for bad behaviour; this
protocol is called slashing. The mechanism for slashing is taken directly from the
Cosmos SDK module with the same name and readers can refer to that for more
details. But a general description will be provided here as well.

Punishments related to slashing include disqualifying a validator from the commit-
tee board, capturing or burning some of the validator stakes or disabling a validator
for a brief period of time.

There are two main types of penalties when it comes to slashing:
1. Jailing: The misbehaving validator is immediately put into “jail”, meaning

that they cannot participate in next block’s voting until some time has
passed and they un-jail themselves by issuing a speci�c transaction.

2. Slashing: a percentage of the staked assets of the validator (alongside the
delegators who delegated to that validator) will be deducted and burned.

There are two main types of misbehavior:
1. Liveness misbehaviour (i.e not showing up to vote on blocks)
2. Counterfactual signing misbehaviour (e.g double signing, rejecting a valid
block, etc ...)

The liveness of misbehaviour is taken to be unintentional. In this case, the validator
is slashed and put into jail to prevent it from taking part in consensus and being

�

slashed again. After a de�ned period of time, the maintainer may unjail the valida-
tor bringing it back to the consensus process.

On the other hand, the counterfactual signing is assumed to be a malicious one,
meaning that the validator is slashed much more aggressively. Moreover, this
validator is tombstoned, meaning that it cannot rejoin the consensus anymore.

3 Transaction Fees

Coreum uses fees for transaction processing to secure the network by paying
validators, disincentivizing attacks, etc. The fee is determined by the following
formula:

fee = gasPrice * gas

Gas is a measure of how much computational power each transaction needs. The
gas variable is invariant for almost all the supported transaction types. Gas
consumed by a transaction calling a smart contract may slightly differ between
executions.

The gasPrice parameter may change frequently, depending on the load, which will
result in having different fees at different times for that transaction.

3.1 Fee Model

Coreum implements the mechanism of automatic gas price adjustment depending
on the current transaction load handled by the chain. It is called “fee model”. All the
parameters of the fee model are managed via on-chain governance.

The �gure below demonstrates the relationship between gas price and gas
consumed by the latest blocks:

��

Axis “x” is de�ned as “Short Average Block Gas”. This is the moving average com-
puted after every block, based on the gas used by some number (it is a parameter)
of the latest blocks.

3.1.1 Green Region

If there are no transactions being executed for some time (or blockchain has just
been started) The “Short Average Block Gas” is 0. At that point we set gas price to
the value de�ned by the “Initial Gas Price” parameter.

Then, once transaction load grows, the gas price drops until it reaches the mini-
mum de�ned by “Maximum Discount”. The maximum discount is reached when
“Short Average Block Block Gas” is equal to “Long Average Block Gas”. Long aver-
age is computed the same way, the only difference is the much larger number of
past blocks being considered.

3.1.2 Violet Region

In this region gas price keeps at the minimum unless the block load reaches a point
(“EscalationStartBlockGas”), close to the moment where full capacity of the block-
chain throughput is utilized.

��

10M
0.02

0

0.04

0.06

0.08

0.10

0.12

0.14

0.16

20M 30M 40M 50M

Short Average Block Gas

Lo
ng

 A
ve

ra
ge

 B
lo

ck
 G

as

E
sc

al
at

io
nS

ta
rt

B
lo

ck
G

as

M
ax

B
lo

ck
G

as

3.1.3 Yellow Region

Once we get closer to the saturation point, gas price escalates rapidly to prevent
potential attackers from blocking the chain from processing the legit transactions.

3.1.4 Blue Region

In this region full capacity of the chain, de�ned by “MaxBlockGas” parameter, has
been reached. Gas price is set to constant high level until the number of transac-
tions drops back to safe values.

4 Governance

Coreum's Proof of Stake (BPoS) consensus mechanism enables an innovative
on-chain governance ecosystem that empowers stakeholders to vote on important
decisions aimed at upgrading and improving the chain over time. This approach to
governance sets Coreum apart from blockchains like Ethereum, which do not offer
any form of on-chain governance.

By involving the community in key decisions, Coreum ensures that its chain is
always evolving to meet the needs of its users. A wide range of proposals can be
submitted for voting through the on-chain governance system, including fee model
parameters, slashing, staking, delegation, number of validators, block times, grants,
and more.

The following is a life cycle of proposals on the Coreum blockchain:
1. Proposal submission: Stakeholders submit proposals with a fee. Once a

proposal reaches a certain deposit, the proposal enters into a voting period.
2. Voting: Participants can vote on proposals that reached minimum fee

requirements and are active for voting.
3. Inheritance and penalties: Delegators inherit their validator’s vote if they

don’t vote themselves.
4. Claiming deposit: Users that deposited on proposals can recover their

deposits if the proposal was accepted OR if the proposal never entered the
voting period.

To achieve this, Coreum will inherit Cosmos SDK’s gov module [5].

��

5 Smart Tokens
5.1 Introduction

Smart tokens are natively issued tokens on the Coreum chain that are wrapped
around smart contracts. They are highly customizable and are designed to be light-
weight and �exible.

These tokens exist on the chain’s storage and memory, hence, interacting with
them does not require calling smart contract functions. We can refer to Smart
Tokens as objects and classes that inherit a set of characteristics and functions
from the global de�nition of a token. All tokens have a set of features that are
known to the chain. Developers can extend the set of provided functionality and
add non-deterministic smart contract-like functions to achieve greater �exibility
when developing speci�c use cases into a token.

Regardless of their type, all tokens share common functions such as minting, send-
ing, burning and so on. The list of default functions is picked from the real use
cases of the current DeFi systems and as the chain progresses this list will expand
to support more features.

Currently, the following set of features is available for all Smart Tokens:
• Issuance (Minting)
• Access Control List (ACL)
• Burning
• Freezing and Global freezing
• Whitelisting
• Blacklisting
• Burn Rate
• Send Fee
• IBC (Inter Blockchain Communication) Compatibility
• Smart Contract integration

Upon token issuance, the issuer must con�gure the behaviour of the token and set
speci�c �ags that will determine which functions can be triggered at a later stage.
These �ags are set using the ACL and are as follows:

• can_mint
• can_burn
• can_whitelist

��

• can_blacklist
• can_partial_freeze
• can_global_freeze
• can_send
• token_transferrable_using_ibc

These �ags remain immutable after token issuance and cannot be changed at a
later stage. Depending on the token type, these �ags can be used to customize
what asset needs to be represented by the token. For example, Stablecoins,
Crypto, NFT, Stocks, CBDCs and so on.

Once a token is issued and depending on the �ags, network participants such as
issuers or users can interact with these tokens using the features provided. It is
imperative to understand the importance of natively issued tokens and default
functions in terms of speed, cost-ef�ciency, predictability and security, and
extendibility.

5.1.1 Speed

Interacting with smart contract functions can often be challenging due to their
dependence on the parent smart contract's execution, which can be unpredictable.
However, with, the code execution is known to the chain, providing predictability
and stability to transactions. This makes sending smart tokens faster and more
ef�cient, without the need to deal with the uncertainties associated with smart
contract execution. The predictability of natively issued tokens ensures that trans-
actions on the Coreum chain are fast, reliable, and secure.

5.1.2 Cost-efficiency

Interacting with Smart Tokens costs much less than interacting with Smart Con-
tracts. The fees are always set according to a “known” computational complexity.
These transactions are no longer dependent on the amount of gas offered by the
caller, but rather are �xed, resulting in a more robust and predictable interaction
and management.

When fees are always known, users such as institutions, governments and other
DeFi applications can predict how to handle batches of transactions. In addition,
the Coreum blockchain offers a discount for bulk transaction submissions, similar
to how SaaS-based APIs work with a fee per API call and usage.

��

5.1.3 Predictability

When execution time, cost and responses are known for a transaction, users can
develop much more robust, bug-free and stable applications. Responses from the
chain, whether successful or unsuccessful are known and can be handled properly
by the developers.es.

5.1.4 Security

One of the main aspects of issuing tokens natively on the Coreum Blockchain is
security. When using Smart Contracts, a developer must audit the code of the
contract to ensure there are no security vulnerabilities. Over the past few years,
hundreds of exploits have been found and abused in Smart Contracts resulting in
billions of dollars of losses to the operators and users.

Smart Tokens are not prone to these exploits because the code is known to be the
same for all tokens on the chain. The code for the main implementation is audited
several times and is open by the public as open-source code to be inspected and
audited. Although, an extension to the Smart Token which comes in the form of a
smart contract must still be audited by the user. But the majority of the current use
cases on the Blockchain such as fungible tokens and basic NFTs can remain
risk-free.

5.1.5 Extendibility

Smart Tokens can be exposed to smart contracts for greater customization. Other
than the basic features such as sending coins and minting which are provided by
the chain by default, the smart contract functions attachment can de�ne a set of
new logic and features for a token. For example, one can develop dividend func-
tions in a token that represents shares of a company. Or an NFT can be extended
to become interactive with the owner, such as an NFT that can act like a game.

Since Coreum uses WASM as its smart contract engine, developers can easily port
and add functionalities developed in several languages and attach them to their
digital assets.

Figure 1 displays how all Smart Tokens inherit a set of default functionalities and
can be extended by custom smart contract logic.

��

5.2 Features

5.2.1 Issuance

Asset issuance is the initial phase of the asset lifecycle. On issuance, the issuer
de�nes the asset settings, initial amount, allowed features, and default ACL. After
the creation, the initial amount will be minted for the provided recipient and sent
to the corresponding account.

The allowed features are the asset features, which can be used with the asset but
can't be changed after the issuance. Meaning, if you set no features, you won't be
able to use any of them.

The ACL in the issuance is the default ALC con�guration. The ACL may include all
initially de�ned features or less.

��

5.2.2 Minting

Token issuance on Coreum offers versatility and �exibility, with the ability to mint
tokens during asset instantiation or on-the-�y if the "can_mint" feature �ag is
enabled at the issuance level. This feature is useful for a variety of use cases,
including CBDCs, Stablecoins, Tokenized Securities, Wrapped Cryptocurrencies,
and more.

It is important to note that once a token has given up its ability to mint at the time
of issuance, it can never mint more tokens, and the total supply of the token will
remain constant. This ensures that the total supply of tokens is predictable and
known to all participants, providing stability and security to the Coreum ecosys-
tem.

5.2.3 Access Control List (ACL)

The ACL provides a �exible way for asset administration and is the relationships of
the chain accounts and allowed features set on the asset issuance. The administra-
tors might be set in the same ACL.

Example of the ACL:
• can_administrate: account1
• can_partial_freeze: account2
• can_mint: account3, account4
• can_burn: all

5.2.4 Burning

When this feature is enabled on a token, then the holders of the token who have the
right permission will be able to burn some of the tokens they hold to reduce the
total supply of that token. To give an example use case, if shares of a company are
tokenized, then the total supply will represent the total shares of the company on
the chain. And burning those tokens would mean those shares are now moved out
of the blockchain and total supplies will correctly represent that fact.

5.2.5 Freezing

If this feature is enabled when the token is �rst issued, freezing allows the adminis-

��

trator of the token to freeze a portion of or the balance of the token held by a user.
There are many use cases that are enforced by law to freeze a token. An example
use case is when the token administrator sends tokens to an address but does not
want the user to spend them until some time has passed such as clearing a cheque.

The token might also be frozen globally, meaning, nobody would be able to transfer
that token until it is unfrozen back.

5.2.6 Whitelisting

Whitelisting is designed to support scenarios when, due to KYC/AML or any other
policy enforced by the issuer, Smart Token might be held by a limited scope of
accounts that passed the veri�cation procedure. Its possible use cases include
tokens representing stock shares, CBDC or any other rights enforced by the legal
system where the identity of the holder must be con�rmed.

If the can_whitelist �ag is enabled on the Smart Token, the issuer de�nes the list of
accounts (addresses) that are allowed to receive that token. If an account is not on
that list and someone tries to send tokens to it, the transfer is rejected. Alternative-
ly, a special �ag whitelist_everyone may be set to true to whitelist all the accounts.
If whitelisting was enabled during Smart Token issuance, the issuer may update the
list of whitelisted accounts and enable or disable the whitelist_everyone �ag at any
time.

If an account holding the token is removed from the whitelist, its current balance
stays unaffected but it cannot receive tokens anymore until whitelisted back.

5.2.7 Blacklisting

The blacklisting feature in Coreum allows issuers to prevent a speci�c account from
receiving or sending a Smart Token. This can be bene�cial in instances where a
token holder is being investigated for potentially illegal activities, such as money
laundering, fraud, or terrorist �nancing. In these situations, the account can be
temporarily blocked until the investigation is completed.

In addition, many regulators require a mechanism for promptly blocking suspicious
accounts, and blacklisting is a key component in implementing such measures. This
helps bring real-world assets to the blockchain in a compliant and secure manner.

��

If the can_blacklist �ag is enabled on the Smart Token, the issuer may blacklist any
account at any time, and it is the issuer's sole decision if and when the account is
enabled back. Until that happens, an account can neither send nor receive the
token. The balance stored on the account is not affected, meaning that existing
tokens are never revoked.

If both whitelisting and blacklisting features are active, blacklisting always takes
precedence.

5.2.8 Burn Rate

The burn rate is a parameter that can be speci�ed when a token is issued. It
represents a portion of the transferred amount that is destroyed or "burned"
during a token transfer. The burn rate is expressed as a number between 0 and 1
and is added to the original transfer amount as a charge to the sender. It is import-
ant to note that the burn rate does not apply to transfers made by the token issuer.

5.2.9 Send Fee

Similarly to the burn rate, the issuer may set a sending fee. It is a number between
0 and 1 too, which de�nes the portion of the transferred amount which is sent to
the issuer. This tax is charged to the sender in addition to the original amount.

Send fee is not applied to transfers sent or received by the token issuer.

5.2.10 IBC (Inter Blockchain Communication) Compatibility

Assets are based on the cosmos modules and extend the cosmos IBC capability.
Hence they can be transferred to and from IBC-supported chains within the
cosmos ecosystem or outside it given proper relayers are present. When an asset
is transferred to another chain, it’s represented as a tokenized version of the
underlying asset in the Coreum Blockchain.

5.2.11 Smart Contract Integration

An integral part of the Coreum blockchain is to support the deployment and

��

execution of Smart Contracts, which already bring countless possibilities. By imple-
menting Smart Tokens, Coreum is able to extend its functionalities and �exibility
through Smart Contracts.

Developers can deploy their own logic by writing Smart Contracts, being able to
issue Smart Tokens, mint and burn them, whitelist and blacklist accounts, and
freeze and unfreeze their balances.

Now the behavior of the Smart Token might be driven by actions taken by ordinary
people, departments of your organization or even different ones cooperating
together, meaning that the �nal action taken on the Smart Token might be the
result of the process involving different actors following the transparent logic
provided by the Smart Contract, leading to greater reliability.

6 Smart Contracts

The Coreum blockchain will be able to store and execute smart contracts. In
essence, a smart contract is a computer program that can be stored in a blockchain
with the purpose of later being instantiated and executed. Although the literature
on smart contracts dates back to 1994, when Nick Szabo [6] �rst introduced the
concept, Ethereum was the pioneer in making a widely adopted implementation.

While EVM (Ethereum Virtual Machine) was great at the time for smart contract
execution, it has shown some shortcomings in various aspects. Some of these short-
comings are:

• Security �aws (re-entrance attacks, Arithmetic Over/Under Flows, etc). [7]
• Lack of support for integers smaller than 256 bits, which leads to inef�cien-

cies.
• Tight coupling between contract and Solidity language.

6.1 WASM

WASM (WebAssembly) is a highly scalable and ef�cient engine for executing smart

��

contracts, developed by the W3C in collaboration with major companies like Mozil-
la and Google. It's portable, Turing-complete, and supports multiple programming
languages such as C/C++, C#, Rust, JavaScript, TypeScript, Haxe, Kotlin, and Go.

WASM is fast, ef�cient, open-source, easy to debug, platform-independent, and
memory-safe, making it an ideal choice for executing smart contracts.

6.2 CosmWasm

Since the Coreum blockchain relies heavily on the Cosmos ecosystem, CosmWasm
is the chosen platform to handle smart contracts. CosmWasm is a smart contract
engine and an important part of Cosmo's infrastructure. It is written as a module
that can plug into the Cosmos SDK. It facilitates the execution of smart contracts
in different chains using Cosmos’s Inter-blockchain communication protocol.

CosmWasm is designed to be a multi-chain solution for building smart contracts
that allow the execution of the same contract in different chains. Just by writing a
CosmWasm contract you can run contracts on the whole Cosmos ecosystem.

6.3 CosmWasm Architecture

CosmWasm fully embraces the actor model [8], in which messages behave in a
�re-and-forget manner, they do not wait for any promises to be ful�lled, removing
the danger of race conditions. Actors send messages through a message dispatcher
as a communication mechanism.

The implementation of the Actor model pattern adds the following added value:
• Increased security: Since it prevents contracts from calling each other it

avoids reentrancy attacks. Contracts are allowed to message each other,
but not to be called directly.

• Inter-blockchain messaging: Sending cross-chain messages through the IBC
is achievable.

• Ease of serialization: Messages can be serializable to many different formats
so they can be integrated with external systems.

��

6.4 Contract Flow

The contract lifecycle has three phases:
Upload code: Once we have compiled the binary, we upload the optimized wasm
code, no state nor contract address exists at this stage.
Instantiate contract: Instantiate a code reference with some initial state and
creates the address which identi�es the contract. For example, if you were creating
a new ERC-20 token, in this stage you would set the token name, symbol, etc.
Execute contract: Each actor has exclusive access to its own internal state. This
may support many different calls, but they are all unprivileged; usage of previously
instantiated contracts depends on the contract design.

7 Decentralized Exchange (DEX)

The Decentralized Exchange is a native, built-in exchange functionality within the
Coreum blockchain. Although by using smart contracts it is possible to achieve
swapping or trading, Coreum aims to build this feature directly in the blockchain
core system to allow for a low-fee, secure and fast trading activity with support for
all modern trading features.

The DEX can facilitate the trading of any issued asset as well as CORE within its
function. Users of the Blockchain can choose any asset as base and quote pairs and
a market will automatically be created for such pairs. The DEX features a fully
functional native orderbook.

The decentralized exchange will be based on an on-demand orderbook, meaning it
allows users to create orders on any possible pair. An order consists of a currency
pair, direction, execution price, size and additional conditions for execution and
closing.

��

7.1 On-Demand Orderbook

The decentralized exchange will be based on an orderbook in which users can add
new pairs and a market will be automatically created for it. An order consists of a
currency pair, token that the user wants to buy, execution price, size and additional
conditions of execution and closing. A user that created an order will be able to
close it before it is fully executed.

Order example:
Pair: BTC-USD
Buy: BTC
Execution price: 30000 USD
Size: 100 BTC
Execution conditions: Fill or Kill, Good till time (1 hour)

On decentralized exchange users will be able to trade all the issued assets including
the CORE Token and their own issued tokens.

7.2 Direct & Indirect Order Matching

In order to ful�ll and execute an order a matching order with the same or better
price must exist in the opposite direction of the order. For example if one wants to
buy 1 BTC for 24000 USD then there must exist opposite orders selling 1 BTC for
24000 USD or less. This is called direct order matching. An indirect order matching
means that orders from an intermediary pair will be used to ful�ll the order. In the
previous example, let’s say that there does not exist an order selling 1 BTC for
24000 USD or less but there exists 2 orders in 2 different pairs, one selling 1 CORE
for 240 USD and another order selling 10 core for 1 BTC. These 3 orders from 3
different pairs can be matched to ful�ll all 3 in a single execution. Coreum will
support indirect order matching using only CORE as an intermediary asset, which
means for each order ABC-XYZ,coreum will check ABC-CORE and CORE-XYZ to
see if it can indirectly match the order.

��

��

7.3 Order Execution

An order will be executed only by an opposite order either directly or indirectly.
After a user adds a new order in the order book, the system �nds the opposite order
with a matching price which must be equal or better then the order price, and they
match with each other. Then users receive funds in the amount calculated from
their orders. When two orders match, they will be executed by the price of the
order that was created earlier.

7.4 Order Types

Basically there are 2 main types of orders which are the backbone of any orderbook;
market orders and limit orders.

7.4.1 Market Orders

A market order is an order in which the order is ful�lled with the best possible
opposite orders, regardless of their price.

7.4.2 Limit Orders

Unlike market orders, there is a price limit on which orders can be used to ful�ll the
current order. Which means that a limit order will be ful�lled using the best possible
opposite orders which are the same or better than the price speci�ed in the limit
order.

7.5 Advanced Features

7.5.1 Good till Cancel Orders

GTC orders are active until either the user manually cancels the order or it is �lled
with matching orders on the market. This means that the order will remain open
until one of these two events occurs, ensuring that the user's trade intentions are
ful�lled, whether it be through manual cancellation or execution.

��

7.5.2 Good till Time Orders

Users can set a time limit for orders of this type. ‘Good till’ time orders can be
executed only during the time period entered by the user. When the indicated time
period ends, the order will be automatically closed if it was not �lled with the oppo-
site orders.

7.5.3 Immediate or Cancel Orders

Users can create an order that must be executed immediately or it will be closed.
This order will be executed as much as there are opposite orders matching it until
it is fully executed or will be cancelled if there are no more opposite matching
orders. This order will not sit as a limit order in the order book.

7.5.4 Fill or Kill Orders

Order with Fill or kill conditions can be executed only entirely at a time. For orders
of this type there can be also added a time limitation during which this order can
be executed.

8 Decentralized Apps (dApps)

Since Coreum is using WebAssembly, it’s opening a new corridor for Decentralized
App developers, and DeFi applications by allowing them to write smart contracts
with their favorite programming language.

Coreum is taking the initiative to help and grow the WASM smart contract develop-
ers community and as such has 10% of the total supply of CORE tokens designated
for grants to developers.

��

9 Use Cases

Coreum provides developers and �nancial institutions with a complete essential
infrastructure to build any DeFi applications. Moreover, Coreum will incentivize
quali�ed developers to build intuitive dApps. Some of the proposed use-cases of
Coreum blockchain are:

• Tokenized Securities (e.g. Sologenic.com)
• Liquidity Providers (LPs) and Market Makers
• Cross-border Payments, Banking and Remittance (e.g. Swift)
• Stablecoin Ecosystems (e.g. USDC, USDT, …)
• Lending Platforms (e.g. Block�, Nexo)
• Wrapped Cryptocurrencies (e.g. ERC20, BEP20)
• Decentralized Exchanges (e.g. Sologenic.org, UniSwap, …)
• Metaverse Applications (e.g. Decentraland, The Sandbox, Meta)
• NFT Marketplaces (e.g. Sologenic.org, Oopensea.io, …)
• Gaming and Play-to-earn apps (e.g. Axie In�nity)
• EGB (ISO 20022) compatibility layer

10 Token Economy

Blockchain Name Coreum

Token Symbol CORE

Icon

Initial Supply 500,000,000

11 Allocation

Funds Percentage Allocation Proportion Vesting Period/
 Distribution Plan

Community 70% SOLO Community 20% 1 - 12 months
 Airdrop Distribution Schedule

 CORE Community 30% 12 - 36 months
 Airdrop Distribution Schedule

 Validators’ 10% Unlocked
 Rewards Pool

 Community d’Ap 10% Unlocked
 Developers

Operation 30% Coreum Mainte- 30% 1 - 24 months
 nance, Operations, Vesting Period

 Developers, Teams
 and Investors

��

12 References

[1] What is Tendermint
https://docs.tendermint.com/v0.35/introduction/what-is-tender-

mint.html

[2] Tendermint
https://docs.tendermint.com/v0.35/

[3] IBC Protocol
https://ibcprotocol.org/

[4] Tendermint: Consensus without Mining
https://tendermint.com/static/docs/tendermint.pdf

[5] Cosmos SDK gov module
https://docs.cosmos.network/v0.45/modules/gov/

[6] Smart contracts introduction
https://www.fon.hum.uva.nl/rob/Courses/InformationInSp
eech/CDROM/Literature/LOTwinterschool2006/szabo.best.v
wh.net/smart.contracts.html

[7] Smart contract security
https://github.com/ethereumbook/ethereumbook/blob/deve
lop/09smart-contracts-security.asciidoc

[8] Actors: A Model of Concurrent Computation in Distributed Systems
https://dspace.mit.edu/handle/1721.1/6952

��

	Disclaimer
	Abstract
	1 Architecture
	1.1 Tendermint & Cosmos SDK
	1.2 Interoperability with Other Blockchains
	1.3 Side Chains

	2 Proof of Stake
	2.1 Staking
	2.2 Validators
	2.3 Delegating
	2.4 Validator Rewards
	2.5 Slashing

	3 Transaction Fees
	3.1 Fee Model
	3.1.1 Green Region
	3.1.2 Violet Region
	3.1.3 Yellow Region
	3.1.4 Blue Region

	4 Governance
	5 Smart Tokens
	5.1 Introduction
	5.1.1 Speed
	5.1.2 Cost-efficiency
	5.1.3 Predictability
	5.1.4 Security
	5.1.5 Extendibility

	5.2 Features
	5.2.1 Issuance
	5.2.2 Minting
	5.2.3 Access Control List (ACL)
	5.2.4 Burning
	5.2.5 Freezing
	5.2.6 Whitelisting
	5.2.7 Blacklisting
	5.2.8 Burn Rate
	5.2.9 Send Fee
	5.2.10 IBC (Inter Blockchain Communication) Compatibility
	5.2.11 Smart Contract Integration

	6 Smart Contracts
	6.1 WASM
	6.2 CosmWasm
	6.3 CosmWasm Architecture
	6.4 Contract Flow

	7 Decentralized Exchange (DEX)
	7.1 On-Demand Orderbook
	7.2 Direct & Indirect Order Matching
	7.3 Order Execution
	7.4 Order Types
	7.4.1 Market Orders
	7.4.2 Limit Orders

	7.5 Advanced Features
	7.5.1 Good Till Cancel Orders
	7.5.2 Good Till Time Orders
	7.5.3 Immediate or Cancel Orders
	7.5.4 Fill or Kill Orders

	8 Decentralized Apps (dApps)
	9 Use Cases
	10 Token Economy
	11 Allocation
	12 References

