
1

YELLOW PAPER OF
FOREST PUBLIC BLOCKCHAIN

2

Table of Contents
1. Overview of Projects..3

1.1. Review of Existing Blockchain Projects...3
1.1.1. MimbleWimble.. 3
1.1.2. Grin and Beam.. 3
1.1.3. TrustNote public blockchain...4
1.1.4. Brief Introduction to Forest... 5

2. Design of the Technical Architecture of Forest... 5
2.1. Overview of Forest Public Blockchain...5
2.2. Overview of the System..6
2.3 Architecture of the System
2.3.1. Architecture design of the system...6
2.3.2. Description of main modules.. 7

3. List of Upper Software Modules of Forest...14
4. Development Environment.. 14
5. Description of Key Technologies...15

5.1.1. Combination of MimbleWimble transaction and DAG ledgers.......................................15
5.1.2. Design and implementation of DAG consensus algorithm...15
5.1.3. Framework of mining system..16
5.1.4. The hiding of IP address in the P2P protocol..16
5.1.5. Description about cut-through in Forest..18
5.1.6. Description about lightning network..19
5.1.7. Wallet service module..20

6. Implementation Path and Milestones... 21

3

1. Overview of Projects
1.1. Review of Existing Blockchain Projects
1.1.1. MimbleWimble remains to be improved compared
with Bitcoin
The Downside of Bitcoin
In Bitcoin, every account corresponds to a wallet address. A full node needs to store
UTXO (unspent transaction output) data signed under all addresses, thereby endorsing
UTXO under each address. By the end of 2018, a full node had needed to download
about 200GB of complete historical ledger data, in order to check all historical
transaction data of Bitcoin, which greatly raised the threshold to become a full node of
Bitcoin. And lowering the threshold of a full node is very crucial to guarantee the
decentralization of Bitcoin. What is more, the size of historical ledger will grow over
time. In the future, it will be difficult for ordinary PCs to support the operation of a full
node of Bitcoin. Then is there a way to dispense with the download of all historical
ledger data by a full node, yet still guarantee the legitimacy of UTXO set and the
security of blockchain? Apart from to the over-large size of historical ledger data, the
anonymity and privacy of Bitcoin are also worse than expected. In accounting, UTXO
model is used to record the transfer of UTXO. Since the account address and transfer
amount are open, it is possible to analyze the identity corresponding to the address,
according to the transfer history, using complex data analysis technology. The privacy
of user and the anonymity of transaction are threatened. How to ensure that the
transaction is legal and trustworthy without recording the transaction address and
amount?
MimbleWimble is a powerful technology that can solve the above problems with
Bitcoin. A user called Tom elvis Jedusor (pseudonym) published a technical paper on
MimbleWimble on #Bitcoin-wizards IRC channel on July 2016. This paper proposed an
optimization method to encrypt Bitcoin transaction data with elliptic curve cryptography,
which can enhance the privacy of transaction, while saving the storage space of
blockchain ledger.
1.1.2. Br ief Introduction to Gr in and Beam
MimbleWimble was created to improve the scalability and privacy of Bitcoin. But from
political and technical perspectives, MimbleWimble cannot be integrated into the
current Bitcoin system, for it involves a large number of modifications and attribute
transaction-offs. For this reason, two teams have begun to try to launch a stand-alone
MimbleWimble blockchain system. A developer with the pseudonym of Ignotus
Peverell proposed an open source project called Grin. Grin took a similar approach to
Bitcoin and was completely funded by community donations. There was no ICO, pre-
mining or mining tax. Another open source project was called Beam, which took a
similar approach to Zcash, established a formal company and set up mining tax for the
project team to fund development and reward the founders. Beam was led by an Israeli
entrepreneur named Alexander Zaidelson.

Gr in Beam
Block Interval 1 min 1 min
Inflation Rate 60 Grin coins will be

generated by each
block

263 million coins in total

Mining Tax N/A 20% of the mining income in the
first five years

4

A Compar ison between Grin and Beam

The monetary policy of the Grin project is quite different from most blockchain projects
in that there is no upper limit for the total number of Grin coins. Grin coins are released
continuously at a rate of 60 Grin coins per block, 1 block per minute. This makes Grin a
digital currency with persistent inflation. In the above two projects of MimbleWimble,
both of them use a network routing proposal called Dandelion. Nodes send transactions
through several hops, aggregate transactions randomly after receiving them, send them
to miners and then package into blocks. This makes it more difficult for monitoring
nodes in the network to figure out how the transactions happen.
1.1.3. DAG ledger technology and TrustNote public
blockchain
The ledger data structure used by Bitcoin is blockchain-based. Each block records
transactions that occur over a period of time and each block references the hash value of
the last block, thus forming a blockchain. The blockchain technology represented by
Bitcoin has been developed for 10 years. Although it has gradually become mature, the
problem of insufficient concurrent processing capacity has been exposed, too. For
example, the theoretical concurrent processing capacity of Bitcoin network is only 7TPS,
the concurrent processing capacity of Grin network is 10TPS, and the concurrent
processing capacity of Beam network is 17TPS. Such low concurrent processing
capacities are far from satisfying the needs of global users. For example, the daily
processing capacity of VISA is 2,000 TPS and the average daily peak is 4,000 TPS. It is
obvious that the concurrent processing capacity of blockchain networks still seriously
lags behind VISA.
Directed acyclic graph (DAG) ledger technology can solve the problem of insufficient
concurrent processing capacity of a distributed ledger system, using a schematic ledger
structure and asynchronous parallel accounting. First of all, data are recorded using a
DAG structure so that each node can record data to different forks of the DAG in
parallel. Secondly, DAG allows point-to-point cross-check in the wallet client. This
kind of check is parallel. Suppose that there are 10,000 transactions occurring on the
earth at the same time. All of these 10,000 transactions can be cross-checked according
to the transaction relationship. If this number is bifurcating, different transactions will
be recorded on different forks of different wallets on the earth. Thirdly, the accounting
unit of DAG becomes more granulated. The accounting unit is not block, but transaction.
Once a transaction occurs, it will be written in immediately, at a higher speed than the
conventional system. In a conventional system, it needs to wait for writing with other
transactions, until the whole block is finished. Fourthly, DAG dispenses with “double
spend” detection in the process of accounting. All of the transactions will be recorded.
The “double spend” detection is done after the trunk of DAG is identified. On the other

Consensus
Algor ithm

PoW: Cuckoo

Cycle PoW: Cuckoo Cycle PoW: Equihash
Language Rust C++

5

hand, DAG also has another characteristic. That is, it relies on the cross-check between
neighboring nodes, the greater number of wallets in the entire network, the greater
number of transactions, the greater variation amount will be supported. So the
concurrent processing capacity of DAG ledger technology will increase with the
increase of the number of nodes.
TrustNote public blockchain is a DAG public blockchain positioned in the token
economy of the IOT era. Using high-speed asynchronous DAG ledger technology, this
project implements a two-layer consensus system of TrustME+DAG. The TrustNote
project has made great modifications and innovations in the implementation of DAG
database, DAG consensus algorithm and smart contracts. Compared with Bitcoin, the
transaction confirmation speed of TrustNote is very high. A transaction can be verified
in 2~3 seconds. The transaction can be stable in 1~2 minutes. After the transaction is
stable, it can be immediately used for the next transfer. The concurrent processing
capacity of TrustNote is greater than 2000TPS and continues to grow with the
expansion of network.
In conclusion, the token policy of TrustNote project is 1 billion in total, 50% for pre-
mining and the remaining 50% to be mined within 30 years. The mining reward will
decrease year by year. 10% of mining tax should be implemented for the mining reward,
which will be reserved by the team to cover development expenditure.
1.1.4. Br ief Introduction to Forest

Forest public blockchain is an open source blockchain platform specially
developed for high-speed private payment. This platform integrates a large number of
latest technologies in the field of blockchain technically. To be specific, it includes the
abovementioned MimbleWimble privacy protection technology, high-speed
asynchronous ledger technology based on DAG, anti-ASIC mining work algorithm
based on Equihash and lightning payment network technology. The application
scenarios of Forest public blockchain mainly include cross-border payment, cross-
border e-commerce, offline retail and offline digital currency ATM, etc. with high
privacy requirements.

In the design of the technical architecture of Forest public blockchain, we will
adhere to the principles of concise, efficient and available to a vast majority of users.
And we firmly believe that only a concise technical architecture can truly realize high
throughput and high-speed transfer.

In this paper, we will briefly introduce the technical architecture, module
composition and implementation of Forest public blockchain, so as to make readers
understand the implementation scheme in the development of Forest public blockchain.

2. Design of the Technical Architecture of
Forest
2.1. Key Features of Forest Public Blockchain
The design of the technical architecture of Forest public blockchain focuses on the
realization of high-speed private transfer. To sum up, it has the following key features:
1. On the function of private transaction, it implements the latest MimbleWimble
protocol;
2. The ledger database implements high-speed asynchronous parallel accounting using
DAG;
3. It implements a PoW consensus algorithm under the architecture of DAG and realizes
a perfect combination of PoW consensus and DAG ledger;
4. Based on MimbleWimble privacy protocol, it constructed a script function similar to
Bitcoin, on which basis it implements a lightning network for private transactions.

6

The token policy of Forest public blockchain is:
1. The total number of tokens is constant. The upper limit is 2.1 billion；
2. . Each token can be correct to the eighth decimal place.
3. Forest tokens will be gradually mined out within 60 years, and the mining
reward will decrease year by year;
4. There is no pre-mining or ICO for Forest tokens. All tokens must be obtained
through mining;
5. Forest project team reserves 10% of the mining income, as the project fund, in
order to cover project expenditure.

2.2. Systematic Architecture of Forest
Forest public blockchain system adopts a layered modular architecture. The whole
system is divided into network layer, data layer, consensus layer, protocol layer and
application layer, etc. Among them:
• The network layer includes P2P network communication module and IP address
hiding module, etc.;
• The data layer includes encryption module, MimbleWimble module, in-memory DAG
data engine and DAG database module, etc. ;
• The consensus layer includes reference and confirmation consensus, PoW and
GhostPlus trunk consensus and other modules;
• The protocol layer includes MimbleWimble conditional contract, master node API,
wallet API, Stratum API, lightning network and other modules;
• The application layer includes wallet App, DAG browser, mining pool and mining
program, etc.
In view of the tight deadline, given the open source culture in the field of blockchain, in
the development of Forest public blockchain, we will make full use of the achievements
of current open source blockchain projects and use as many software source codes that
have already been verified as possible. In doing so, a lot of coding time can be saved
and the developers in the open source community can be fully integrated and gathered,
to lay a foundation for spontaneous contribution of the community and code
maintenance in the later stage of project.
2.2.1. Architecture diagram of Forest
The architecture diagram of Forest is as follows:

7

P2P Network

Wallet API

Forest Wallet Service

Wallet Client and Other Application Layer Software

Architecture Diagram of Forest

2.2.2. Descr iption of main modules
1. P2P network communication module
The blockchain system is in the first place a distributed decentralized communication
network. Therefore, for all blockchains, P2P network communication module is an
underlying key module. Forest public blockchain is no exception. To implement a high-
performing P2P network communication module is one of the core tasks of this project.
After each node of Forest begins to run, it is necessary to start the P2P network
communication module, communicate by the peer list and add yourself to the
blockchain network. After nodes join in, they will first perform a handshake protocol,
verify version compatibility and other problems and then maintain a long connection
through PING/PONG heartbeat protocol. The interactive data of P2P module can be
roughly divided into four types: peer-to-peer interactive messages, broadcasting of
transaction data, loading or updating of ledger data, consensus and mining data.
2. Transaction pool management module
 On the implementation of Forest transaction pool, we plan to improve and perfect

the transaction pool management module of Grin and integrate the transaction pool
and the confirmation and reference module of DAG ledger as a whole.

3. DAG reference and confirmation consensus module
Forest adopts DAG ledger technology, so we specifically design a consensus system
that is suitable for DAG ledgers. In this consensus system, the whole consensus process
is divided into two stages: reference and confirmation consensus stage and work
consensus stage (also known as trunk consensus stage). Reference and confirmation

Stratum
Protocol

Ledger
Data API

Forest Ledger
Browser DAG Data layer

RSMC&HTLC

DAG Consensus Layer

MimbleWimble Contract ModuleLightning Network

Forest Basic Wallet API
Forest main chain API

Mining
Pool
System

8

consensus is mainly used to account asynchronously at a high speed after receiving
transaction data, while work consensus is mainly used to identify the trunk of DAG
ledger while synchronizing ledger, sequence the whole DAG, check the legitimacy of
transaction and avoid double spend. In this section, we will chiefly introduce the
reference and confirmation consensus module.
The definition of directed acyclic graph
If there doesn’t exist a path p=(e1,e2,…) that starts from v and ends in v, ei∈E for any
vertex v∈V in a directed graph G=(V,E), G is called a DAG (directed acyclic graph).

The structure of Forest ledger chain
The structure of Forest ledger chain is shown in the following figure. Every transaction
is an accounting unit. Any unit can select one or several units as its parent unit. Each
unit verifies and confirms its parent unit and incorporates all hashes that reference its
parent unit into its own unit data, thus forming a hash chain. All units and reference and
confirmation relationships constitute a fast-growing DAG. With this DAG ledger, if any
node tries to modify the unit data, it will find that many subsequent units must be
modified and the number will cumulate. There is no way to start. This DAG ledger
ensures that Forest public blockchain is traceable, tamper-proof and irreversible.

Two-step consensus mechanism
The DAG of Forest public blockchain adopts a two-step consensus mechanism, which is
not only able to achieve high concurrency, but also able to guarantee the security of
final consensus.

9

In the first step of consensus, Forest only roughly verifies a new unit, and doesn’t
judge on the double spend. The purpose for doing this is to guarantee concurrency and
enhance the difficulty in tampering with historical units quickly, leaving no chances to
tamper. In this case, this unit is unstable and needs to be confirmed in the second step of
consensus. To be specific, in the first step, we mainly reach a consensus on unit
information and link information. As these two types of information are not allowed to
be tampered with in the subsequent ledger synchronization, the nodes will finally reach
a network-wide consensus.

In the second step of consensus, according to the overall conditions of multiple
units that are newly added, including the newly added PoW units, Forest will decide
whether some units are stable. Stable units are in a confirmed state, that is, they are
either valid or invalid. Since different nodes have a determined and consistent mining
stability promotion algorithm, and conditions the algorithm relies on (the PoW mining
trunk) are also determined and consistent, all nodes that honestly observe this consensus
protocol will also finally reach a network-wide consensus.

By adopting this two-step consensus scheme, we postpone the execution of trunk
confirmation algorithm with high computational difficulty, but solve the problem of
transaction congestion in the existing blockchain, which is similar to the practice of
changing some complex businesses from strong consistency to final consistency in
order to improve concurrency in Internet business.

How to detect double spend
Forest public blockchain detects double spend using the following procedures:

Step 1: Consensus of
DAG Graph

Step 2: Consensus of
DAG Main Chain

Every transaction is a unit and
verifies one or more transactions
before it. All transactions are
pushed forward rapidly, thus
forming an ever-growing hash
chain, ensuring that unit and unit
links are tamper-proof and finally
reaching a consensus of DAG

graph.

Use PoW proof to generate PoW
units and use GhostPlust algorithm
to determine the main chain. The
PoW units push forward the main
chain and arrange a total order for
all transactions according to the
main chain and finally reach a

consensus.

10

What is GhostPlus
algorithm?

Perform mining competition
first, generate PoW units and
then use GhostPlus to identify

the trunk

How to find the
main chain

Find the main chain, set up a
total order starting from the
genesis unit, according to the

main chain

How to set up a
total order

Set up the total order of units,
and mark units with MCI. The
unit with smaller MCI is valid,
while the other unit is invalid.

How to solve
double spend

The GhostPlus algorithm is that
when forks appear in mining, the
fork with the most descendant
PoW units will be the trunk

How to detect double spend
 Identify the PoW trunk of DAG using GhostPlus
Forest public blockchain identifies the trunk of DAG formed by PoW units using
GhostPlus. GhostPlus can be described as the following rules:
“Star ting from the genesis unit, select a unit on the next trunk from descendant
PoW units of the last PoW unit of the trunk iteratively, and select a PoW unit with
the most descendant PoW units as the trunk unit.”
In Forest’s DAG ledger, in most cases, PoW units are not adjacent to one another. There
will be one or more ordinary transaction units in between. When selecting a trunk,
GhostPlus will ignore ordinary transaction units, but still count the number of PoW units.
This is because in DAG ledgers, only PoW units are generated by consuming a large
amount of computation. After ignoring ordinary units, we will get a PoW-DAG similar to
Block Tree in Ghost.

 Example of double spend detection:

11

To take an example, as shown in the above figure, units with bold frames are main chain
units. While two orange units, A and B, are double spend units.
According to this principle, the MCI of Unit A is the MCI of the first main chain unit
that contains it. The MCI of the first main chain is 10, so the MCI o Unit A is 10.
Similarly, the MCI of Unit B is 8. From this, we can identify that Unit B is valid, while
Unit A is invalid. To sum up the double spend detection principle from another
perspective, units referenced and confirmed by mining transactions early take
precedence over units referenced by mining transactions late. Being referenced and
confirmed by mining transactions is an act of “credit enhancement” to a transaction
unit.
4. In-memory DAG data engine
The purpose for Forest for using DAG is to tap the high performance potential of DAG
ledger technology, while the management of in-memory DAG data structure is one of
the key performance-sensitive modules. The management of in-memory DAG data
structure is particularly important when the blockchain network has a high TPS (greater
than 1,000). In the previous implementation and performance optimization of DAG
chains, the Forest development team had tested and verified that the in-memory DAG
data engine can significantly affect the TPS performance of public blockchains. For
example, if the reading and writing of DAG data in memory were completely in series,
then when a large number of transaction requests were received, Forest nodes needed to
put all requests into a queue and cannot modify DAG data structure in parallel using
multiple threads. If we are able to implement a new in-memory DAG engine that allows
operating non-conflicting forks on multiple DAGs simultaneously, then we can improve
the concurrency of DAGs. During development, the Forest public blockchain will
implement a high-performing DAG data engine independently using the Rust language
and lay a good foundation for Forest to reach a concurrency of 10000TPS.

5. DAG database
In order to guarantee high-speed storage of DAG ledgers, Forest also needs to
implement and optimize a high-performing schematic database in order to record data
on disks. But this feature is not well implemented in the current DAG chain project. In
the current DAG public blockchain, the implementation of database includes the
following solutions: the first solution is to store DAG data using SQL database. The
second solution is to store DAG data using key-value NOSQL database. This solution
enables the addition, deletion, modification, checking and query of schematic data
structures using key-value database. Forest public blockchain will implement a database
module using the second solution. Considering that both Grin and Monero use LMDB
to store blockchain data, LMDB has many remarkable features. It is a database based on
binary tree. The whole database is memory-mapped. In all data acquisitions, all of the
data are directly returned from the mapped memory, so no malloc or memcpy occurs
during data acquisitions. It doesn’t require a page cache layer, so it is very efficient and
memory-saving. Meanwhile, LMDB is completely in line with ACID in semantics
(atomicity, consistency, isolation and durability). When the mapped memory is read-
only, the integrity of database won’t be spoiled by the stray pointer of application. So
the Forest public blockchain will store block data using LMDB at the bottom layer. On
the other hand, to guarantee efficient reading and writing of DAG data on LMDB, the
Forest project will also implement a high-performing graph data management module
on LMDB to ensure that the DAG data in memory can be efficiently stored in LMDB.
6. The PoW consensus module of trunk of DAG
When introducing the reference consensus module, we have already introduced that

12

DAG consensus system is divided into two parts, the “best parent unit” part that
identifies the reference relationship between transactions and the “trunk stability part”
that identifies the trunk of DAG. In public blockchains such as IOTA and Byteball, all
of the trunk identification algorithms are realized by centralization or semi-
centralization. Thus, these public blockchains lose the characteristic of decentralization
trust. As a result, the credibility of digital currency generated by these public
blockchains will decline. In the Forest public blockchain project, we will insist on using
PoW algorithm as the most essential consensus algorithm and determining the mining of
Forest tokens using PoW competitive mining. Meanwhile, the Coinbase transaction
that mines out tokens will also become a GhostPlus transaction that identifies the trunk
of DAG. We use GhostPlus to choose a fork with the most PoW transactions, thereby
identifying a trunk advancing along the time shaft. The use of GhostPlus in Forest
makes us fully return to Nakamoto’s PoW algorithm and identify the winner per unit
time, using the PoW competition algorithm. The winner will have the power to issue a
Coinbase transaction as the candidate “trunk transaction”. Once a Coinbase transaction
is identified as a “trunk transaction,” this Coinbase transaction will take effect and the
winner will be rewarded a certain number of Forest tokens.
7. Token management module
With P2P network layer, ledger data layer and consensus layer, Forest will have the
basic functions of distributed ledgers. But in order to make Forest into a digital currency
that supports high-performing private transaction, we also need to determine a token
specification for Forest digital currency, specify a way to represent the input and output
of money and a way to represent a Coinbase transaction (a transaction in which new
tokens are mined). At the same time, we need to specify the total number of tokens and
the time interval and mining speed for generating all tokens.
Generation rate of mining transactions
The generation rate of mining transactions in Forest is theoretically determined, which
is approximate to 1 mining transaction every 5 seconds (provisional).The specific rate
shall be adjusted dynamically according to the network-wide computing power and
mining difficulty.
Adjustment of mining reward
The mining reward of Forest should be adjusted once a year (provisional). It should be
controlled in such a way that the Forest tokens will be mined out after 60 years.
8. The overall development of DAG main chain
During the development of Forest, in addition to the independent core modules stated
above, we also need to develop a lot of auxiliary modules. These core modules and
auxiliary modules must be constantly integrated and deployed as the test chain network
of Forest at each stage. Also, the development of the above core modules must be done
on an active and dynamic Forest test chain. Only in this way can the functions and
performance required be truly developed and verified.
9. Mining program and fork upgrade tool
Similar to Bitcoin, Grin and other public blockchains, Forest will also implement an
independent mining program. But considering the need to resist ASIC mining and
increase the sales of a certain type of mining machine, during the development of Forest
mining program, we will isolate the work algorithm during the mining process as a
separate and easy-to-upgrade module. At the same time, to facilitate users’ subsequent
fork upgrade, as well as resistance to ASIC mining, currently Forest selects equihash as
the mining algorithm.
10. Mining pool service
In the ecology of public blockchain, mining pool service can lower the mining difficulty
of miners, enhance the engagement in mining and facilitate the decentralization of

13

public blockchain. Therefore, Forest also needs to develop a mining pool software
package, as a sub-project of the Forest project. It is particularly noteworthy that
different work algorithms have different poolability. Poolability refers to the ability to
calculate the contribution of each node fairly, when the calculation of an algorithm is
done by multiple nodes in a distributed manner. For example, some people question the
“poolabilty” of Cuckoo Cycle algorithm currently used by Grin. In contrast, the
poolability of SHA256D algorithm used by Bitcoin is much better, which is guaranteed
by the mathematical characteristics of sha256 function. Hence, in the subsequent
development of work algorithm, we will pay sufficient attention to the “poolability” and
anti-ASIC mining ability of algorithm.
11. Command line wallet and wallet API
A public blockchain cannot be used by users unless it provides an interactive interface.
Therefore, our Forest project will provide a wallet module as the user interface. This
wallet module offers a set of command lines and a set of APIs to ordinary users and
software programs respectively. First of all, the Forest wallet is implemented in the
same way as Grin wallet. Butthe implementation of Grin wallet doesn’t fully support
BIP32, BIP39, BIP44 and other specifications, which makes it inconvenient for users to
generate private keys and back up. If users operate improperly, security issues will be
triggered. Later, the Forest project will improve and upgrade this defect, to make sure
the users can enjoy sufficient convenience and security when generating and managing
private keys. At the same time, if these specifications are supported, Forest can also
well support a hardware wallet of digital currency.
12. Forest ledger data browser
In the Forest public blockchain project, since every transaction is encrypted with
MimbleWimble, the ability to check, monitor, and analyze data on a browser will be
greatly weakened. The ledger browser of the Forest project is mainly used to check the
status and statistical data of network-wide mining, the display of the topology structure
of DAG ledgers, the display of transaction delay, transaction fee, concurrency and other
statistical data.
13. Conditional payment contract module
Forest is a public blockchain which protects privacy and encrypt transfer and transaction
information using MimbleWimble. Therefore, Forest doesn’t support the transaction
scripts of Bitcoin. However, transaction scripts are required by many functions, such as
multi-signature, cross-chain atomic swap, locked position transaction and lightning
network. So how to implement these functions on the basis of MimbleWimble is a
problem to solve. Our Forest project will use Andrew Poelstra’s approach and
implement the above functions using elliptic curve cryptography and Pedersen
Commitment. The Forest project will encapsulate a Contract module and offer APIs for
the upper module to call, so as to realize the four functions stated above.
14. Lightning payment module
The Forest public blockchain adopts MimbleWimble. The sender and the receiver need
to interact in real time when a transaction is created, so the creation of a transaction in
itself is an instant message based on P2P communication. This instant message is
similar to the way a payment channel is implemented in the lightning network. On the
other hand, the Forest public blockchain adopts high-performing asynchronous DAG
ledger technology and greatly improve TPS. To achieve high concurrent processing of
DAG data, all nodes in the Forest need to forward the above P2P instant message as
much as possible quickly. This is very similar to the routing and forwarding between
nodes in the lightning network. To sum up the above two points, it seems to be a better
choice to implement a built-in lightning payment module in the Forest public
blockchain. Of course, the lightning payment module of Forest is still a relatively

14

independent module. Compared with the lightning network of Bitcoin, the lightning
payment of Forest can be implemented by reusing more modules of Forest. This won’t
prevent the independent implementation of the lightning network of Forest. If someone
just wants to implement the lightning network of Forest, rather than implement the main
chain, the technical architecture of Forest will support, too.
15. Wallet service module
To better support mobile wallet and Web wallet, the Bitcoin project has already
implemented a multi-signature HD wallet technology. For details, see
https://en.Bitcoin.it/wiki/Deterministic_wallet. This technology enables the cloud
service provider to implement a Bitcoin wallet cloud service and makes it easier for
users’ mobile App and Web pages to achieve the wallet function. Under this
architecture, users can achieve the wallet function without installing full nodes. At the
same time, they can control the private keys of wallets, manage and back up the private
keys on their own. The cloud service provider is unable to threaten the security of users’
wallets. This technology is very mature on Bitcoin, but has not yet been implemented on
Grin. Since the Forest public blockchain is built on Grin, in the future, Forest must
develop and implement this function, to make it easier to develop wallet mobile App
and Web App, thereby greatly increasing the usability of Forest and facilitating the
rapid popularization of Forest.

3. List of Upper Software Modules of
Forest
1. Main program of Forest
The core module of the Forest project, which includes the implementation of main chain
and a built-in wallet interface.
2. Automatic deployment scripts of main chain
These automatic scripts can quickly call the main program of Forest using Docker and
set up a test network for Forest public blockchain.
3. Mining machine program
After determining the work algorithm (Equihash or cuckoo cycle), we also need to
develop and maintain a mining machine program that has already been used.
4. Mining pool service
To develop or fork an open source mining pool service software.
5. Forest wallet service
As mentioned above, a wallet cloud service can greatly simplify the development of
wallet App.
6. Forest wallet App
To officially develop and maintain a standard Forest wallet App. In this way, users can
easily use Forest on their mobile phone.

4. Development Environment
1. The desktop development environment for the Forest project is Ubuntu18.04 64bit
and Docker and the development language is Rust 1.31. Key modules of the mining
program are developed with C/C++, while the wallet App is developed with Object C,
Java and HTML 5, etc.
2. The deployment, maintenance and test of the main chain shall be conducted on a
cloud host equipped with 64bitUbuntu18.04. The cloud host service providers are
principally Aliyun and AWS.
3. The source codes of the project shall be managed with Github. During internal

https://en.Bitcoin.it/wiki/Deterministic_wallet

15

development, a non-public source code repository dedicated to internal developers will
be used. After each version becomes stable, we will push the source codes to an external
code repository.
4. If main chain nodes of Forest need to be built into the ATM, we can compile
Forest codes to ARM in a cross-platform manner. But so far, we cannot guarantee that
the cross-platform compilation will succeed.

5. Descr iption of Key Technologies
5.1.1. Combination of MimbleWimble transaction and DAG
ledgers

According to the technical document of MimbleWimble, MimbleWimble
transactions include the following content:

• A set of inputs, references and costs, a set of previous outputs
• A set of new outputs, including a value and a blinding factor (which is merely a

new private key), multiplied on the curve and added together as r.G + v.H.
• The range proof shows that v is non-negative.
• Explicit transaction cost
• A signature, calculated using excess value (the sum of all outputs plus costs, minus

inputs), by taking the excess value as the private key
In the implementation of the DAG chain of Forest project, each accounting unit stores a

transaction data. Each unit contains the following information:
The data to be stored. A storage unit can contain a MimbleWimble transaction as stated

above.
The signature of the storage unit.
The hash reference of one or more previous storage units (parent units).

5.1.2. Design and implementation of DAG consensus
algor ithm
Since Forest public blockchain uses to store data, the Forest consensus algorithm needs
to be further upgraded and improved on the basis of the consensus algorithm in DAG
chain. The consensus system of DAG chain is divided into two parts. If we analyze with
schematic data sorting, there two parts correspond to the side order stage and total order
stage during the sorting of schematic data structure respectively. The side order stage
doesn’t detect the double spend, but keep accounts quickly. While the total order stage
arranges a total order for all transactions, to identify illegal double spend transactions.
In a nutshell, the key to DAG’s arrangement of a total order is to identify a trunk of
DAG. Once a trunk is identified, the transaction order of other forks in DAG can also be
determined according to the units on the trunk. How to identify a trunk has become a
key problem to be solved by every consensus algorithm of DAG public blockchain.
The DAG of the Forest public blockchain can turn into a similar graph to the
BlockDAG of the abovementioned Ghost principle after simple conversion. When
identifying a trunk, we first ignore ordinary transaction in the DAG. If there are only
ordinary transactions between two mining transactions, we first assume that the two
mining transactions are directly connected. At this moment, we get the same mining
transaction graph as in the Ghost algorithm. We first identify a trunk of this simplified
DAG, so as to get a unique trunk path. After that, we identify ordinary transactions
between mining transactions on this trunk path as trunk transactions. We finally identify
the trunk of the whole DAG, in order to arrange a total order for all transactions in the
DAG. This algorithm, which ignores part of transactions first and then uses Ghost to

16

Mining Pool
Management
Background

Ming Pool Web

Forest Main Chain Node

identify the trunk, is called GhostPlus.

References to consensus algorithms:
Ghost, https://eprint.iacr.org/2013/881.pdf
ByteBall, https://obyte.org/Byteball.pdf
IOTA Coordinator, https://docs.iota.org/docs/the-tangle/0.1/concepts/the-coordinator
Ghost DAG, https://eprint.iacr.org/2018/104.pdf
Conflux, https://arxiv.org/abs/1805.03870
SPECTRE, https://eprint.iacr.org/2016/1159.pdf
TrustME, https://github.com/trustnote/document

5.1.3. Framework of mining system

 Forest node

Framework of the Mining Pool

Mining Pool Cloud Service

Mining
Machine

Mining
Machine

Mining
Machine

Mine Field
Management System

https://eprint.iacr.org/2013/881.pdf
https://obyte.org/Byteball.pdf
https://docs.iota.org/docs/the-tangle/0.1/concepts/the-coordinator
https://eprint.iacr.org/2018/104.pdf
https://arxiv.org/abs/1805.03870
https://eprint.iacr.org/2016/1159.pdf
https://github.com/trustnote/document

17

The mining pool system requires a Forest full node in order to participate in the PoW
consensus of Forest blockchain network. The Forest node interacts with the mining pool
service module using Stratum protocol and RPC protocol. Only in this way can the
Forest node have the right to broadcast the mined blocks to the Forest network.
 Mining pool service
Mining pool service is a back-end cloud service module which interacts with the mining
machine program, sends mining tasks to the mining machine and receives the mining
results reported by the mining machine. When the mining is very difficult throughout
the network, the mining pool service will break down tasks with high difficulty into
tasks with low difficulty and send them to mining program. After receiving results
reported by the mining machine, it will screen the results with low difficulty to make
them satisfy the demands of high difficulty. The mining pool service also has a mining
income calculation module, which calculates the contribution degree of each mining
machine to the income of a certain block and then calculates the reward for each mining
machine, according to its contribution.
 Mining pool Web foreground
The users can use the Web foreground to configure and monitor their own mining
machines.
 Mining pool Web management background
The mine pool operators can use the management background interface to manage their
mining pools.
 Mining machine program
The mining program is a program which calculates a certain workload by calling CPU,
GPU or ASIC.
5.1.4. The hiding of IP address in the P2P protocol

Transaction Data Spreading Protocol
When all nodes in the blockchain communicate with each other, a P2P protocol will be
used to transmit transactions and block data. During the P2P communication, the IP
addresses of nodes will be exposed. If some nodes in the blockchain monitor the IP
addresses of nodes purposefully, associate the transaction data sent by nodes with their
IP addresses, they will be able to figure out the identity of owners of some addresses on
the blockchain. The Bitcoin community has recognized this problem and designed a
technical solution to solve the privacy leakage problem of P2P layer. Tor and Dandelion
are two technical solutions this problem, of which Dandelion is specifically designed for

18

this. For relevant technology, see the link below:
Dandelion++ protocol, https://arxiv.org/pdf/1805.11060.pdf
https://medium.com/@thecryptoconomy/dandelions-and-a-bright-future-for-Bitcoin-
privacy-712dbc4b1ec5
At present, two public blockchains that implement MimbleWimble have realized the
network routing proposal of Dandelion. In MimbleWimble, nodes send transactions
through several hops, aggregate transactions randomly (after receiving them), send them
to miners and then package into blocks. This makes it more difficult for monitoring
nodes to figure out how the transactions happen. As Forest public blockchain must
process transaction data at a high speed and the accounting unit is single transaction, the
implementation scheme of Dandelion protocol probably need to be modified, in order to
increase the speed of transaction jump.

5.1.5. Descr iption about cut-through in Forest
The MimbleWimble protocol not only hides transactions with Pedersen Commitment,
but also prunes transaction information by integrating the same transaction inputs and
outputs within a block, which is called cut-through. The following figure is a schematic
diagram of cut-through of transaction data within a block:

A Simple Schematic of Cut-through
As mentioned above, MimbleWimble merges all transactions within a block into a
block-wide transaction and remove the structure and boundary between transactions. If
a transaction uses a very “new” (unidentified) input, it is absolutely possible to remove
the intermediate outputs, without affecting the chain validation. Out of technical
consideration, please note that the transaction cut-through cannot eliminate all
intermediate transactions. Every transaction will be saved in the transaction kernel
permanently so that the blockchain data can be verified correctly. The transaction kernel
proves the actual ownership of transaction inputs and allows using mathematical rules to
verify transactions and the whole chain.
In the current technical architecture design of Forest public blockchain, we first use a
mature accounting scheme in DAG chain and take a single transaction data as the
accounting unit. Therefore, at present, the Forest public blockchain is unable to realize
transaction cut-through within a block. It should be noted that this kind of design is
reasonable, for wallet node wants to confirm the transaction as soon as possible at this
moment, rather than have a cut-through later for the sake of transaction. In DAG quick
accounting, to make other nodes confirm the transaction as soon as possible, the wallet
is weighing between quick confirmation and cut-through, and the result of weighing is
that transaction speed comes first.

https://arxiv.org/pdf/1805.11060.pdf
https://medium.com/%40thecryptoconomy/dandelions-and-a-bright-future-for-bitcoin-privacy-712dbc4b1ec5
https://medium.com/%40thecryptoconomy/dandelions-and-a-bright-future-for-bitcoin-privacy-712dbc4b1ec5
https://medium.com/%40thecryptoconomy/dandelions-and-a-bright-future-for-bitcoin-privacy-712dbc4b1ec5

19

5.1.6. Descr iption about lightning network
Overview of lightning network

Since the Bitcoin network cannot fully support concurrent processing, the lightning
network needs to transfer on-chain transactions to off-chain to complete them.

Transfer On-chain Transactions to Off-chain
The off-chain transaction and transfer are realized through payment channels. The key to
payment channels is double-signature deposit and dishonesty penalty

A Schematic of Payment Channels
If only a point-to-point payment channel can be established, then the liquidity of lightning

network is still insufficient. It is necessary to make the payment channels form a payment
network. Thus, the lightning network will adopt hashed timelocks to realize the forwarding and
routing of payment.

20

Lightning Payment Network
 To sum up, two keys to lightning network are RSMC and HTLC. As long as we can

support multi-signature and hashed timelocks, we will be able to support the lightning network.
How does MimbleWimble realize contracts?

 Andrew Poelstra discussed how MimbleWimble realizes smart contracts using elliptic
curve cryptography and Pedersen Commitment, in the absence of scripts

 For details about this technical solution, see the following link:
https://www.reddit.com/r /Bitcoin/comments/ap3qt6/andrew_poels
tra_scr iptless_scr ipts_with/.

 The Grin project also has a underlying technical document describing how to realize
the basic contract functions on the basis of basic functions of Grin:
https://github.com/mimblewimble/gr in/blob/master /doc/contract s.md

 The technical plan of the Beam project has already analyzed the technical feasibility of
implementing lightning network on the basis of MimbleWimble. See the link below:
https://medium.com/beam-mw/mimblewimble-lightning-network-e16 27538aca2

 It can be concluded from the description of materials related to Beam that as long as a
MimbleWimble project possesses the above basic contract functions, it has the foundation to
implement the lightning network.

 In the subsequent development of Forest public blockchain, we will track and draw
lessons from the development progress of Lightning Network Daemon, Rust-lightning, Beam and
other projects in order to carry out the development of Forest Lightning.

5.1.7. Wallet service module
Below is a Bitcoin wallet service architecture designed by the Bitpay company.
From the architecture, it can be seen that wallet service module is a cloud service module

that falls in between Bitcoin node and Bitcoin wallet application. With a wallet service module,
the wallet application software no longer needs to treat a lot of technical details related to the
blockchain ledger data or store blockchain ledger data, but achieve the sending and receiving of
transactions and manage the private keys of wallet.

https://www.reddit.com/r/Bitcoin/comments/ap3qt6/andrew_poelstra_scriptless_scripts_with/
https://www.reddit.com/r/Bitcoin/comments/ap3qt6/andrew_poelstra_scriptless_scripts_with/
https://www.reddit.com/r/Bitcoin/comments/ap3qt6/andrew_poelstra_scriptless_scripts_with/
https://www.reddit.com/r/Bitcoin/comments/ap3qt6/andrew_poelstra_scriptless_scripts_with/
https://github.com/mimblewimble/grin/blob/master/doc/contract
https://github.com/mimblewimble/grin/blob/master/doc/contracts.md
https://medium.com/beam-mw/mimblewimble-lightning-network-e1627538aca2
https://medium.com/beam-mw/mimblewimble-lightning-network-e1627538aca2

21

An open source project of Bitcoin wallet service:
https://github.com/bitpay/bitcore/tr ee/master /packages/bitcor e-wallet-service

Forest public blockchain is developed for subsequent large-scale application scenarios.
Therefore, we also need to develop and implement a similar wallet service module, to allow
developers to develop and implement Forest wallet App quickly.

6. Implementation Path and Milestones
The development of the main chain of Forest will be implemented in the following three
milestones:
1. The basic MimbleWimble main chain of Forest
The main work of this milestone is to integrate and improve Grin, determine a monetary
policy of Forest, integrate and verify the mining system of Forest, improve the
transaction pool module and prepare for the subsequent development of lower layers of
DAG ledger. The specific tasks at this stage include:

1.1 Architecture design and development
plan

1.2 The development of a MimbleWimble
private main chain

1.3 The development of a token mining
policy of Forest

1.4 The development of mining software and
mining pool software

1.5 The development of a dynamic
adjustment algorithm of mining difficulty

1.6 The development of an anti-ASIC
mining algorithm

1.7 The development of a half-year fork
upgrade system of mining algorithm

https://github.com/bitpay/bitcore/tree/master/packages/bitcore-wallet-service
https://github.com/bitpay/bitcore/tree/master/packages/bitcore-wallet-service

22

2. High-performing DAG main chain of Forest
The main work of this milestone is to implement lower layers of the DAG database,
refine the P2P communication protocol, develop a PoW+DAG consensus algorithm,
and develop the main chain of DAG. The specific tasks at this stage include:

2.1 The development of a P2P
network layer of DAG chain

2.2 The development of an in-
memory DAG data engine

2.3 The development of the
lower layers of DAG
database

2.4 The development of a
reference consensus
algorithm of DAG

2.5 The development of a PoW
consensus algorithm of
DAG

2.6 The development of a
private main chain of
DAG+MW

2.7 DAG ledger browser

3. Forest DAG+ lightning network
The main work of this milestone is to develop and implement a lightning network
system that is compatible with MimbleWimble and DAG, based on the DAG chain
developed in Milestone 2, and develop Forest wallet service, so as to facilitate the
development of Forest wallet App. The specific tasks at this stage include:

3.1
The development of a
conditional payment contract
module

3.2 The development of a DAG
lightning network

3.3

The development of Forest
wallet service (only including
the token function of public
chain)

23

The above implementation plan of the Forest project in three milestones fully considers
the operation needs of Forest community, the development sequence of all kinds of
Forest modules, the building process of a Forest development team and the ability
enhancement process of the developer community, so as to make the Forest public
blockchain available as soon as possible, popularize it in the community and carry out
mining as soon as possible. Also we will gradually improve the Forest public
blockchain through constant iteration and upgrade.

	1.Overview of Projects
	1.1. Review of Existing Blockchain Projects
	1.1.1.MimbleWimble remains to be improved compared with
	1.1.2.Brief Introduction to Grin and Beam
	20% of the mining income in the first five years
	A Comparison between Grin and Beam

	1.1.3.DAG ledger technology and TrustNote public blockch
	1.1.4.Brief Introduction to Forest

	2.Design of the Technical Architecture of Forest
	2.1.Key Features of Forest Public Blockchain
	2.2.Systematic Architecture of Forest
	2.2.1.Architecture diagram of Forest
	2.2.2.Description of main modules
	1.P2P network communication module
	2.Transaction pool management module
	3.DAG reference and confirmation consensus module
	4.In-memory DAG data engine
	5.DAG database
	6.The PoW consensus module of trunk of DAG
	7.Token management module
	8.The overall development of DAG main chain
	During the development of Forest, in addition to t
	9.Mining program and fork upgrade tool
	10.Mining pool service
	11.Command line wallet and wallet API
	12.Forest ledger data browser
	13.Conditional payment contract module
	14.Lightning payment module
	15.Wallet service module

	3.List of Upper Software Modules of Forest
	4.Development Environment
	5.Description of Key Technologies
	5.1.1.Combination of MimbleWimble transaction and DAG le
	5.1.2.Design and implementation of DAG consensus algorit
	5.1.3.Framework of mining system
	5.1.4.The hiding of IP address in the P2P protocol
	5.1.5.Description about cut-through in Forest
	5.1.6.Description about lightning network
	5.1.7.Wallet service module

	6.Implementation Path and Milestones

