
livepeer / wiki Public

Update WHITEPAPER.md 5d5b6c3 · last month History

Notifications Fork 72 Star 200

Code Issues 2 Pull requests 1 Actions Projects Wiki Security Insights

Files

 master

Go to file

Documentation • Share feedback

images

spec

.gitignore

CONTRIBUTING.md

Deployed-Contract-Addresses.md

GOVERNANCE-FOUNDERS-S…

GPU-SUPPORT.md

LICENSE

README.md

STREAMFLOW.md

WHITEPAPER.md

wiki / WHITEPAPER.md

petfold

Livepeer Whitepaper
Protocol and Economic Incentives For a Decentralized Live Video Streaming Network

Doug Petkanics doug@livepeer.org
Eric Tang eric@livepeer.org

Abstract

The Livepeer project aims to deliver a live video streaming network protocol that is fully decentralized, highly scalable, crypto token
incentivized, and results in a solution which can serve as the live media layer in the decentralized development (web3) stack. In addition,
Livepeer is meant to provide an economically efficient alternative to centralized broadcasting solutions for any existing broadcaster. In this
document we describe the Livepeer Protocol - a delegated stake based protocol for incentivizing participants in a live video broadcast network
in a game-theoretically secure way. We present solutions for the scalable verification of decentralized work, as well as the prevention of
useless work in an attempt to game the token allocations in an inflationary system.

Table of Contents

Introduction and Background
The Live Video Stack

Livepeer Protocol
Video Segments

Livepeer Token

Protocol Roles

Consensus

Bonding + Delegation

Transcoder() Transaction

Broadcast + Transcoding Job
Preprocessing

The Job

End Job

Verification of Work
A Note On Truebit

Token Generation

Slashing

Token Distribution

Governance

Attacks
Consensus Attacks

DDoS

Useless or Self Dealing Transcoder

Transcoder Griefing

Chain Reorg

Live Video Distribution

Use Cases
Pay-As-You-Go Content Consumption

Auto-Scaling Social Video Services

Uncensorable Live Journalism

Video Enabled DApps

Summary

Appendix
Livepeer Protocol Parameter Reference

Livepeer Protocol Transaction Types

References

Note: This paper was originally published in April, 2017. A scaling proposal called "Streamflow" has been proposed in December, 2018 which
outlines some iterations and enhancements on some of the ideas presented below. Read the Streamflow Proposal here.

Introduction and Background

The vision of the decentralized web has begun to be realized over the past couple years with the emergence of networks like Ethereum to
enable trustless computing, Swarm and IPFS/Filecoin to enable decentralized storage and content distribution, Bitcoin and various token
projects to facilitate p2p transfer of value, and decentralized name registries like Blockstack and ENS to provide human accessible names to
content and identities. These elements form the basis for decentralized applications (DApps) to be built in the form of largely static or
infrequently updated web or mobile content, but at the moment DApps still lack the ability to include streaming media and data in an open and
decentralized way. The goal of the Livepeer project is to decentralize live video broadcast over the internet.

The Livepeer Project Overview provides a nice introduction to the current state of live video on the internet. This whitepaper will largely focus
on the cryptoeconomic protocol details of Livepeer, rather than the business case, but in summary the overview describes the current state of
live streaming as growing at a rapid pace, centralized, and expensive. On the other hand, a fully decentralized P2P solution, where nodes
contributed their own computation and bandwidth in service of streaming live video would be more open and scalable, as there would be no
limit to the number of connections that could be served.

This technology is certainly available to a certain extent, but to date there has been no incentive to get users to run nodes that provide this
functionality, nor has there been proper funding for the development of an open protocol that can facilitate this in a way that benefits the entire
internet rather than one centralized company. However, with the recent emergence of crypto token powered protocols [2, 3], there is now an
opportunity to simultaneously incentivize users to contribute computation and bandwidth towards live video broadcast, in a way that aligns with
financing the development of an open media server solution capable of delivering live streamed video according to all the latest standards and
formats required to reach the full range of devices. Additionally, the economic actions traditionally seen as a result of token powered protocols
indicate that the cost to the broadcaster in order to use the Livepeer network could be cheaper than the cost of any centralized solution.

As the Livepeer technology and protocol are delivered, it will enable users to participate in the following flow:

1. Capture a video on your camera, phone, screen, or web cam and send it into the Livepeer network.

2. Nodes running within the network will encode it into all the necessary formats to reach every supported device. Users running these nodes
will be incentivized via fees paid by the broadcaster in ETH, and the opportunity to build reputation through the protocol token to earn the
right to perform more work in the future.

3. Any user on the network can request to view the stream, and it will automatically be distributed to them in near realtime.

The Live Video Stack

The technology stack for broadcasting live video has evolved over many years and contains many layers. Broadcasters need to capture video
at the source, interface with a media server to process and transcode the video into many different formats, distribute the video across a
network, and then allow the video to be played in high perceived quality by the end consumer. There are also economic questions that are
introduced when one thinks through this stack, such as whether it should be the broadcaster or consumer who should be paying for the
bandwidth to transfer the video.

A typical live streaming platform today needs to support RTMP, HLS, Mpeg-Dash video formats in H.264 and VP8 codec. New codecs like
H.265/HEVC, VP9, and AV1 will become more popular in the near future as consumers become more accustomed to higher video quality. For
HLS alone, Apple suggests bitrates from 145kb/s all the way up to 7800kb/s, in order to serve the different types of devices under different
conditions. All of this adds a significant amount of complexity and cost to live video broadcasting.

The existing decentralized development stack (web3) contains solutions for some of the layers required for a live video platform, like file
transfer and payments, but currently there are no solutions for the capture and interface, transcoding and processing, and serving layers of live
video. For this, Livepeer introduces the Livepeer Media Server (LPMS) - an open source implementation of a media server which provides all
of the live video specific functionality necessary for DApp developers and existing broadcasters to build live functionality into their applications.
Read more about it here.

As a standalone application, any developer could build a live application on top of the LPMS, but it would still be centralized and would need to
be scaled through traditional means. However when every node on the Livepeer network is running the LPMS, and the protocol’s economic
incentives ensure that those nodes will contribute their processing power and bandwidth in service of transcoding and distributing live video, a
self-scaling, pay-as-you-go network is made available to developers, who can simply send their live stream into the network, and
have the implementation details of scaling, payment, and media hosting abstracted away.

Livepeer Protocol

The Livepeer Protocol defines how the various actors in a live streaming ecosystem participate in a secure and economically rational way. The
two major areas that the protocol needs to address are the actual distribution of live video from the source to a large number of consumers in a
performant and scalable way, and the economic incentives for encouraging participation in the network in a secure and game-theoretic manner.
While this whitepaper will touch on the live video distribution itself where overlapping with the economic protocol, it will largely focus on the
latter in order to demonstrate security and economic alignment. At the highest level, the protocol is designed to:

Allow any node to send a live video into the network, and optionally pay to have it transcoded into various formats and bitrates.

Allow any node to request the video from the network.

Allow participants to contribute their processing power and bandwidth in service of transcoding and distribution of video, and to be
compensated accordingly.

In a decentralized network where participants are rewarded in proportion to the amount of work that they contributed, the two big challenges
that need to be addressed to ensure security are:

Can it be verified that the work that the nodes did was done correctly?

Are the nodes being awarded for real work that contributed value to the network, as opposed to fake work done in an attempt to gain token
allocations unfairly?

The Livepeer protocol is designed to address both the verification of work and the prevention of fake work, while also offering solutions for
automatic scalability of the network and baked in governance for protocol evolution over time.

Video Segments

The core unit of media within Livepeer is what we will call a segment . A segment is a time sliced chunk of multiplexed audio and video of time
length t . Every segment in the Livepeer network is unique, and contains the cryptographic evidence to verify that the broadcaster intended

this specific data for this specific segment. Each stream is made up of many consecutive segments, each containing a sequence number
identifying their proper ordering. A segment contains the following fields:

Video Segment Field Description

StreamID Identifies the origin node and stream that this segment belongs to.

SequenceNumber The sequential order that this segment belongs in the original stream.

DataPayload The binary metadata and data representing the audio/video in this segment.

DataHash The hash of the data payload.

BroadcasterSignature
A signature from the broadcaster of Priv(StreamID, SequenceNumber, hash(StreamID, SequenceNumber,
DataHash)) which can be used to attest and verify that the broadcaster claims this to be the true data for this
unique segment.

The Livepeer protocol generally uses segments as the unit of work for transcoding, distribution, and payments.

Livepeer Token

The Livepeer Token (LPT) is the protocol token of the Livepeer network. But it is not the medium of exchange token. Broadcasters use
Ethereum's Ether (ETH) to broadcast video on the network. Nodes who contribute processing and bandwidth earn ETH in the form of fees from
broadcasters. LPT is a staking token that participants who want to perform work on the network stake in order to coordinate how work gets
distributed on the network, and to provide security that the work will get done honestly and correctly. LPT has the following purposes:

It serves as a bonding mechanism in a delegated proof of stake system, in which stake is delegated towards transcoders (or validators)
who participate in the protocol to transcode video and validate work. The token, and potential slashing that occurs due to protocol
violation, is necessary in order to secure the network against a number of attacks. More below.

It routes work through the network in proportion to the amount of staked and delegated token, essentially serving as a coordination
mechanism.

It is a unit of account that is specific to the Livepeer ecosystem, which forms the basis of a SectorCoin concept, applicable to additional
functionality to be introduced in the future [4]. Services such as DVR, closed captioning, ad insertion/monetization, and analytics can all
plug into the Livepeer ecosystem and potentially make use of the security provided by staking LPT.

An initial allocation of Livepeer Token will be distributed so that stakeholders can fulfill various roles in, and use the network, and then
additional token will be issued according to algorithmically programmed issuance over time. See the Token Distribution section.

Following the conventions of Ethereum and many popular ERC20 tokens [16], LPT will be divisible by 10 ^ 18, with larger denominations such
as the LPT itself intended to be used for user level transactions such as staking, and smaller denominations intended to be used for protocol
accounting.

Protocol Roles

Before going forward, let’s define the roles in the network so that there is a common vocabulary for discussing the protocol. A Livepeer node is
any computer running the Livepeer software.

Node Role Description

Broadcaster Livepeer node publishing the original stream

Transcoder Livepeer node performing the job of transcoding the stream into another codec, bitrate, or packaging format.

Relay Node
Livepeer node participating in the distribution of live video and passing of protocol messages, but not necessarily
performing any transcoding.

Consumer Livepeer node requesting the stream, likely to view it or serve it through a gateway to their app or DApp’s users.

In addition to the above roles played by users running Livepeer nodes, the protocol also will refer to the following systems. While we use
certain specific systems to make reference to a possible implementation, alternative systems can also be swapped in if they provide similar
functionality and cryptoeconomic guarantees:

System Role Description

Swarm
Content addressed storage platform. Data can be guaranteed to be available there temporarily during the verification
process via SWEAR protocol [7, 12]. (Note in this document we refer to Swarm, but other content addressed storage
platforms can be substituted if data availability can be guaranteed with high probability).

Livepeer
Smart
Contract

Smart contract running on the Ethereum network [1].

Truebit
Blackbox verification protocol that guarantees correctness of computation placed on chain (at a hefty cost) [6].
(http://truebit.io)

Here is a visual overview of the roles, and the ways in which they communicate with one another in the work verification process described
below.

Segments flowing from the broadcaster to the transcoder and eventually to the consumer. The transcoder ensures they have signatures and
proof of work to participate in the work verification procedure.

Note on Transcoders: Transcoders play the most critical role in the Livepeer ecosystem. They are the ones who are taking an input stream
and converting it into many different formats in a timely manner for low latency distribution. As such they benefit from high availability, efficient,
powerful hardware (potentially with GPU accelerated transcoding), high bandwidth connections, and solid DevOps practices. Transcoders
should churn far less than other network participants, as when they take on the job of transcoding a stream, it’s less than ideal if they drop off
the network. While the network can scale to support many participants playing the role of transcoder (and earning the requisite token
allocations), this is a special role that’s delegated from most network participants, in order to ensure that a reliable network that provides value
to broadcasters is maintained. More below on this delegation.

Consensus

Livepeer has a two layer consensus system. The LPT ledger and transactions are secured by the underlying blockchain, such as Ethereum.
Any transfer of the LPT token or any transaction in the system can be considered to have been confirmed with the same security as the
underlying proof of work or proof of stake blockchain. The second layer however, dictates the distribution of newly generated LPT. This is
governed by the Livepeer Smart Contract, and participation in the protocol by various actors. While there is no consensus required per say, in
terms of acceptance and validation of previous blocks, the protocol defines rules for participation and conditions upon which actors will be
penalized (slashed) for failing to fulfill their role.

This second level of consensus governing the newly generated token is based upon Delegated Proof of Stake (DPOS), as inspired by systems
like Bitshares, Steem, Tendermint, and Casper [5, 9, 10, 11]. The role of validators in the network is played by Transcoders. Any user can
delegate their stake towards a transcoder, who then needs to perform transcoding jobs in the network, participate in the work verification
protocol, and invoke functions on chain at specific intervals to validate this work. The protocol will distribute fees and newly generated token,
and it will slash the stake of badly behaved actors. The validation result will be recorded on-chain via Truebit after it performs the validation, so
there will be no room for disputes between the broadcaster and the transcoder.

Bonding + Delegation

In Livepeer, in order to indicate stake in the network, nodes must bond some amount of their LPT. They do this through the Bond()

transaction, which will tie up their stake in the smart contract until they Unbond() , at which point they will enter an unbonding state which will
last for UnbondingPeriod time. Upon completion of the UnbondingPeriod they can then withdraw their LPT.

The bonded amount is used to delegate stake towards a Transcoder. The network supports N active transcoders at any one time, which is a

moveable network parameter. Any node can indicate that it wishes to be a Transcoder with a Transcoder() transaction, and the protocol will
select the N transcoders with the most cumulative stake (their own + delegated from other nodes) at the start of each round, along with one
random transcoder from the waitlist.

Newly generated token in Livepeer is distributed to bonded nodes in relative proportion to the amount of work that they have bonded (minus
fees), as long as they’ve delegated towards transcoding nodes that behave according to the protocol. Bonds can be slashed (reduced by a
certain percentage) if the nodes that they’ve delegated towards do not behave and violate one of the slashing conditions. Nodes who have
bonded and delegated towards a Transcoder also receive a portion of the fees that the Transcoder generates through transcoding jobs on the
network. In essence, nodes who perform work, earn the fees that broadcasters paid for that work.

Going forward, when this document uses the term "delegator", it is referring to bonded nodes who have delegated their stake towards a
transcoder candidate, instead of delegating it towards themselves as a transcoder.

In summary, participants choose to bond their stake for the following reasons:

Participate in delegating towards effective transcoders who will provide great service to the network, ensuring its value to broadcasters.

Build reputation and future-work allocation in form of allocated token in proportion to stake.

Earn fees generated from transcoders.

They may wish to be a Transcoder.

Transcoder() Transaction

A node indicates their willingness to be a transcoder by submitting a Transcoder() transaction, which publicizes the following three

properties:

PricePerSegment : the lowest price they are willing to accept to transcode a segment of video

BlockRewardCut : The % of the block reward that bonded nodes will pay them for the service of transcoding. (Example 2%. If a bonded

node were to receive 100 LPT in block reward, then 2 LPT to the transcoder).

FeeShare : The % of the fees from broadcasting jobs that the transcoder is willing to share with the bonded nodes who delegate towards
it. (Example 25%. If a transcoder were to receive 100 ETH in fees, they would pay 25 ETH to the bonded nodes).

The Transcoder can update their availability and information up until RoundLockAmount time before the next transcoding round. This is offered
as a % of the round. (Example 10% == 2.4 hours. They can change this information until 2.4 hours before the next transcoding round which
lasts for RoundLength 1 day). This gives bonded nodes the chance to review the fee splits and token reward splits relative to other

transcoders, as well as anticipated fees based upon the rate they're charging and network demand, and move their delegated stake if they
wish. At the start of a transcoding round (triggered by a call to the InitializeRound() transaction), the active transcoders for that round are
determined based upon the total stake delegated towards each transcoder, and stakes and rates are locked in for the duration of that round.

There is one change that is allowed during the RoundLockPeriod : The lowest offered price/segment for any of the candidate transcoders is

locked in and can't be moved, but other transcoder candidates can adjust their price/segment downwards. This allows them to match the
lowest offered price on the network if they wish in order to guarantee their stake-weighted share of work on the network. They are not allowed
to move their offered price upwards during this period.

Here is an example state of Transcoder options that a delegator can review when deciding whom to delegate towards.

Transcoder ID PricePerSegment BlockRewardCut FeeShare

1 22 wei 1% 25%

2 30 wei 2% 40%

3 10 wei 4% 1%

...

N 14 wei 0% 2%

Note on price: In this document we list price/segment. In reality, Livepeer plans to use a gas accounting inspired model where there is a notion
of units of gas required for certain job parameters of a segment such as bitrate, encoding, frame size, etc. Price/segment is a stand in, where
the incentives are the same, but in reality they’ll likely be communicating price/gas.

Broadcast + Transcoding Job

Transcoders who are open for business on the network, throw their hat into the ring for transcoding work by submitting a
TranscodeAvailability() transaction. This indicates their availability and places them into a pool of transcoders available to take a newly

submitted job.

When a broadcaster submits their stream into the Livepeer network it is given a StreamID . This serves as both a unique identifier, and it also
contains the origin node address so that nodes know how to request and route requests to consume this stream towards the origin. The stream
contains many consecutive Segments , as described in the Video Segments section. If the broadcaster would like the network to take care of

transcoding their stream into all the formats and bitrates necessary to reach every user on every device, then the first step is submitting a
transcoding job transaction on chain. Jobs are given a unique ID as well, and the input data to job consists of:

Job(StreamID, TranscodingOptions, PricePerSegment)

The TranscodingOptions define the output bitrates, formats, encodings, etc, and the PricePerSegment lists the price that the broadcaster

will offer.

As soon as this transaction is mined, the next blockhash will be used to pseudo-randomly determine the transcoder selected for this job. All
transcoders with a price that’s lower than or equal to the price offered will be considered, and the blockhash modulus the number of candidate
transcoders (weighted by their stakes) will determine the index of the selected transcoder.

At this point the broadcaster can begin streaming video segments towards the transcoder, and they’ll participate in the following protocol. The
protocol also makes use of a persistent storage solution, for example Swarm, as part of the work verification process.

Preprocessing

1. Broadcaster -> Livepeer Smart Contract: submits a deposit on chain to cover the cost of the full transcoding job. This can be refilled
later at any point, but the Transcoder may stop work if the deposit runs out as they gradually cash in for work done.

The Job

2. Broadcaster -> Livepeer Smart Contract: Job(streamID, options, price/segment)
Creates the job request on chain and places some ETH in escrow to pay for the work.

3. The protocol can use the next block hash to deterministically select the correct Transcoder for this job.

4. Transcoder -> Broadcaster: send output streamID and receipt that the job is accepted.

5. Broadcaster -> Transcoder: send stream segments, which contain signatures verifying the input data.

6. Transcoder performs transcoding and makes new output stream available on network

7. Transcoder: Store a transcode receipt for each segment of transcoding work. A transcode receipt has the following fields.

Transcode Receipt
Field

Description

StreamID Identifies the origin node and stream that this segment belongs to.

Sequence Number The sequential order that this segment belongs in the original stream.

Input Data hash The hash of the input segment data payload.

Transcoded Data hash The hash of the output data after transcoding this segment.

Broadcaster segment
signature

A signature from the broadcaster of Priv(StreamID, Seq#, Dhash) which can be used to attest and verify that
the broadcaster claims this to be the true data for this unique segment.

Transcoder segment
signature

A signature of all of the above fields from the transcoder attesting to the claim that this specific output
transcoding was performed on this specific input.

Whenever the transcoder observes that they are no longer receiving segments, they can call ClaimWork() to claim their work.

End Job

10. Transcoder -> Livepeer Smart Contract: Call ClaimWork(JobID, StartSegmentSeq#, EndSegmentSeq#, MerkleRoot) . Transcoder is
claiming on chain they have performed work on the claimed segment range, with a merkle root of all of the transcode receipt data to
commit to the content of these encoded segments.

11. Wait for this transaction to be mined, and observe the next blockhash. The protocol can then determine which segments will be verified
based upon the VerificationRate .

12. Transcoder -> Swarm: Write input data payloads for the segments that will be challenged via verification, using SWEAR params to
ensure the data will be there long enough for verification (VerificationPeriod time).

13. Transcoder -> Livepeer Smart Contract: Provide transcode claims on chain for each segment that needs to be verified, along with
merkle proofs for the receipts for each segment in the transcode claims. The smart contract can verify the signatures from Broadcaster
and Transcoder to ensure all data necessary is available to conduct verification, and can verify the merkle proofs against the committed
merkle root from ClaimWork() .

14. Transcoder -> Truebit: Verify() . This is an onchain call to the Truebit smart contract, where the Transcoder provides the Swarm input

hash for the challenged segment. (More on verification in the following section)

15. Truebit -> Livepeer Smart Contract: The result of the job is written on chain. This is compared to the transcoding claim result that the
Transcoder provided.

16. Livepeer Smart Contract: at this point the Livepeer smart contract has all the information it needs to determine if the Transcoder’s work is
verified. - If verified correct, then use as input to token allocation algorithm and release of escrowed fees. - If incorrect, then Transcoder
and its stakers get slashed FailedVerificationSlashAmount and the Broadcaster is refunded.

The Broadcaster can stop sending segments at any point, which effectively is an EndJob() .

At this point the transcoding has been performed, proof of the work has been claimed on the chain, and failure or success of the verification of
the work has been reported. All the info is on chain to determine allocation of fees and token allocations to transcoders and delegators, or
slashing in the case of failed verification. Let’s take a look at how work is actually verified.

Verification of Work

In order to allocate fees to transcoders who claim that they have performed a transcoding job, it’s necessary that the protocol can determine
that the job was actually performed correctly with high probability. For this, Livepeer extends the research of, and makes use of, the Truebit
Protocol [6].

Truebit works by having one participant (the solver) perform the actual work for the fee, in this case transcoding, and then having additional
participants (verifiers) verify the work in order to detect mistakes, errors, or cheating. The task is broken down into very small steps, and the
verifiers check the work of the solver to find the first step that differs from what they expected it to be. Then, only this one very small step needs
to be played out on chain by a smart contract (judge), who can tell which party did the work correctly. The economic incentives, including
forced errors to incentivize checking on the part of verifiers, ensure that it is not profitable to cheat or challenge incorrectly, but it is profitable to
play the role of checking the work.

The downside of this protocol is that it costs between 5x-50x the cost of the original work in order to verify all work. Livepeer uses Truebit as a
black box to verify segments, but it gets around having to pay this very high verification tax by only verifying a small percentage of segments
randomly, and using slashing in the case of failed verifications. The VerificationRate set within Livepeer determines how frequently a
specific segment is to be selected for challenge within Truebit, and the randomness of a future block hash after the work has been committed
to the blockchain, determines which segments specifically are selected.

If work is committed via an ClaimWork() call in block N , then

If Sha3(N, BlockHash(N), Seg#) % VerificationRate == 0 then the segment # must be verified.

The Transcoder provides Transcode Claims on chain for the candidate segments by invoking the Verify() transaction. The Livepeer Smart
Contract can verify the authenticity of these claims using the internal signatures and provided merkle proofs, and then invoke a call to Truebit
to verify only these segments.

Truebit solvers and verifiers access the input data for a segment from a persistent content addressed storage system, such as Swarm. The
Transcoder is responsible for verifying that the segment data is available in Swarm, and can optionally look for receipts from the SWEAR
protocol [5] guaranteeing persistence for a certain period of time, which is long enough for Truebit to play out. Additionally, they can take it upon
themselves to run a Swarm node ensuring that the data is available to Truebit verification. If they have reason to believe that data is not
available in Swarm, they can provide it, or just call ClaimWork() on the previously available data.

Truebit will write the results of the computation (succeeded or failed) back to the Livepeer Smart Contract, which can then be used in the
reward and slashing calculations within the protocol. A transcoding node can not predict in advance which segments will be verified, and the
following penalties will be felt in the case of cheating or failing to transcode correctly:

FailedVerificationSlashAmount will be slashed if they fail a verification from Truebit.

MissedVerificationSlashAmount will be slashed if they fail to provide transcode claims and invoke Truebit on segments they were
required to do so.

Lost fee from the broadcaster.

Not only will the Transcoder be slashed, but all their delegators will be slashed as well. They will take this account into their decision of
who to delegate towards, and the Transcoder could lose the lucrative job they hold.

It is important that it be more profitable to simply stake LPT towards a valid, honestly performing transcoder, than it can be to cheat and take
slashing penalties while still collecting fees and token allocations for dishonest work. Careful selection of the slashing params and verification
rate can ensure this.

A Note On Truebit

While the protocol makes use of Truebit in order to provide fully trustless verification of work, it may be necessary in practice to use available
solutions that provide verification without the degree of trustlessness that Truebit can offer while Truebit is still under development and testing.
Some options, ordered by degree of trustlessness, include:

1. Livepeer API Based Oracle - Trust Livepeer to verify computation. Very centralized, not ideal for anything beyond testing.
2. Oraclize Computation Service - Trust a company who provides proofs of computation and who's entire reputation relies upon putting external
data on chain with proofs that it wasn't tampered with.
3. Secure hardware enclaves - Services like Intel SGX or TownCrier provide trusted computing environments. Trust that their hardware
implementation is correct and secure. This can be decentralized and audited.

Token Generation

Livepeer is inflationary in that new tokens will be generated and allocated over time according to the schedule communicated below in Token
Distribution. If all roles in Livepeer behave according to the protocol, then newly generated tokens will be allocated to users in proportion to
their bonded stake (minus fees). Transcoders have the role of calling the Reward() function in order to trigger the new token allocation or

slashing which can be computed from all data available on chain.

Each transcoder will be required to call Reward() once per round.

Ensure that an active Transcoder is calling Reward() .

Ensure that the Transcoder has not called Reward() yet in this round.

Compute the number of token to mint based upon the InflationRate . Mint this many token.

Calculate the Transcoder's cut based upon their BlockRewardCut .

Distribute this into the Transcoder's bonded stake.

Distribute the remainder into the delegators reward pool.

Update the bonded amount of token to this Transcoder.

Failure to invoke Reward() results in the direct consequence of losing a portion of token allocations, and showing up as a ding on one’s
Transcoder reputation when it comes to being elected by Delegators for the role.

Slashing

As previously mentioned, the conditions for slashing are:

Failing a verification

Failing to invoke verification when required to do so

Not performing a proportional share of the required work within the platform based upon delegated stake

One of the benefits of building within the Ethereum ecosystem are the network effect benefits you receive from being able to build on top of
other protocols such as Truebit and Swarm/SWEAR. Unfortunately, with reliance on these external systems, which themselves have external
dependencies and incentives, it’s possible that a flaw or weakness in one of those protocols could result in slashing within Livepeer.

For example, if a Truebit verification job sat in their queue for a long period of time without any solver or verifier claiming it, Livepeer would fail
to see the result of that verification in time before Reward() was called. Or if the Swarm network suffered a partition and couldn’t propagate

the file to the Truebit verifier in time, then this could also create an issue.

These risks can be mitigated by incentivizing these roles to be played in house by participants in the Livepeer protocol, who may find it in their
best interest to serve as Truebit verifiers or Swarm nodes. But there’s also another approach which is introducing the concept of probability
thresholds on the slashing parameters. Optional protocol variables such as VerificationFailureThreshold could be set to indicate that as
long as the node passes 99% of verifications they won’t be slashed for example. This will remain a further area of research to be worked out
prior to network deployment.

The failure to invoke verification slashing condition can be checked and invoked by any Livepeer protocol participant. There is a FinderFee

which specifies the percent of the slash amount which the finder will receive as a reward for successfully invoking this slashing condition.

The remainder of the slashed funds will enter the CommonPool , which can be burned or allocated to common uses such as further ecosystem

development, according to the governance mechanism of the protocol.

Token Distribution

As a token that represents the ability to participate and perform work in the network through a DPoS staking algorithm, the initial Livepeer
token distribution will follow the patterns of other DPoS systems which require a widely distributed genesis state.

An initial allocation of the token will be distributed to the community at genesis and over the early stages of the network. Receipients can use it
to stake into the role of Transcoder or Delegator. A portion will be allocated to groups who contributed prior work and money towards the
protocol before the genesis, and a portion will be endowed for the long term development of the core project.

At the launch of the network, token issuance will continue according to an inflationary schedule with token being generated at InflationRate

per round relative to the outstanding float of token. As token is issued in proportion to stake of all bonded participants in the protocol, it serves
to incentivize active participation. Participants are "protected" from this inflation, due to earning their proportional share. It is only inactive
participants who are sitting on token without bonding it for participation, who will see their proportional network ownership dilluted by this
inflation.

The initial target for InflationRate will be set such that it aims to incentivize approximately ParticipationRate of the LPT to be bonded
and actively participating [19). For example, if ParticipationRate is 50% then incentives will exist to have half the oustanding token bonded.

The inflation rate will move algorithmically each round to incent the participation target. A higher inflation rate would incent more token to be
bonded, and a lower rate would lead to more people choosing liquidity rather than participation. It's this liquidity preference vs network
ownership percentage tradeoff which should find equilibrium due to a number of economic factors in the network.

Governance

The role of governance within the Livepeer protocol is intended to be three fold:

1. Determine the burning or appropriation of common funds which were slashed from misbehaving nodes.

2. Adjust network parameters to ensure a healthy, thriving network which is valuable to broadcasters.

3. Invoke proposed protocol updates in a decentralized fashion.

Many of the network parameters referenced in this document such as UnbondingPeriod , RoundLength , ParticipationRate , and

VerificationRate are adjustable. Proposals for adjustments to these parameters can be submitted, and the governance process, including

voting by transcoders in proportion to their delegated stake, will determine adoption of these changes automatically within the protocol. The
detailed spec for governance is left for another document. See more here.

Attacks

This section contains a survey of the various ways that malicious actors may try to attack the Livepeer network. We use a rational attacker
model in which the attacker makes decisions based upon their own economic self interest. A number of attacks are mitigated via it being
unprofitable to conduct such attacks, but we also strive to ensure that at the worst the network suffers decrease of efficiency in the case of a
sustained unprofitable attack, and doesn't suffer a failure.

Consensus Attacks

As mentioned previously, consensus in the Livepeer ecosystem is provided by the underlying blockchain platform (Ethereum for example).
51% attacks, double spends of Livepeer Token, and forks of the network would require the same resources and cost-of-attack as Ethereum
itself.

Livepeer is a staked based protocol, and while Transcoders have the role of participating in the work verification process and the token reward
distribution process, they actually do not have the role of validating or accepting other Transcoders' work. There is no concept of a chain, nor is
there validation of previous blocks. There simply exists the economic incentives to verify one's own work and distribute one's own portion of
token allocations when it is one's turn. As such, attacks that are seen in a proof of stake protocols such as the Long Range Attack, the Nothing
at Stake problem, and The Bribe Attack don't apply, as there is no opportunity to attempt to sign multiple blocks or attempt to create a longer
chain from an earlier state. However, one should be aware that as the underlying blockchain migrates to proof of stake, these attacks do
threaten to undermine Livepeer if the benefit of carrying them out on Livepeer were to exceed the cost of attack on Ethereum itself.

While relying on the security of the underlying blockchain is nice for prevention of consensus attacks, there still exists a class of quality and
efficiency attacks that can harm the Livepeer network.

DDoS

Denial of Service in Livepeer can go two ways:

1. A Transcoder can try to prevent or slow down a Broadcaster from getting their encoded stream out to the network by accepting a job but
refusing to transcode.

2. A Broadcaster can prevent a Transcoder from being able to do the job that they believe they were assigned by refusing to send them
segments.

Both attacks have a cost and can be mitigated, with slight annoyance.

In the first case, a Transcoder has to pay to claim their availability on chain. If they are not going to receive a fee because they didn't do the
work, then they're throwing ETH away. The Broadcaster can just resubmit the job and be assigned a new Transcoder. One potential option for
scalability is that the protocol can identify a number of valid Transcoders in priority order instead of just one, and this way the Broadcaster can
just move on without another on chain transaction. Additionally, all stats about accepted jobs and average # of segments transcoded/job, etc,
can be calculated from on-chain data, and delegators would use this as input into their decision about whom to delegate towards. Behave
poorly and lose your role.

In the case of a Broadcaster preventing a Transcoder from doing work, this is merely a capacity planning calculation. A Transcoding node can
maintain records of its capacity for concurrent jobs, likelihood of a job being active/inactive, and ensure that it always believes it will have
capacity for the work that it claims. Simply ignoring or calling EndJob() on a node that's refusing to send segments hardly hurts the
Transcoder.

Useless or Self Dealing Transcoder

If a Transcoder has enough stake to maintain their position, they could theoretically list a 100% BlockRewardCut , 0% FeeShare , and charge

a high PricePerSegment such that they would never have to do any work, yet could collect their token allocation. This is prevented by the
CompetitivenessTolerance which requires them to contribute some amount of valid work. Additionally, because of the transaction costs of

participating in the protocol incurred by Transcoders, it would be more profitable for them to simply stake their token toward a valid Transcoder
who was sharing fees with them, than it would be to act as a useless Transcoder who would receive no fees to speak of.

A misbehaving Transcoder who is outputting invalid output would quickly get slashed down to the point of their stake being reduced too low to
actually keep their job and receive any work.

Transcoder Griefing

If a Broadcaster wanted to make the protocol very expensive to operate for a transcoder, it could send transcoders non-consecutive segment
numbers. This is because transcoders can claim work for a continuous range of segment numbers in a single transaction, but would have to
make many transactions to claim work across random segment number ranges. This can be defended against by the following options:

1. Transcoder calls EndJob() and doesn't bother doing the work or attempting to collect the fees.

2. Protocol implements on chain parsing or better segment claim encoding in order to reduce fees associated with claiming non-consecutive
segments in a single call.

3. Simply ignore the segments and never claim the work.

This attack has a high cost to a broadcaster since they must have a deposit and submit jobs on chain in order to even get assigned to a
transcoder in the first place. They have the ability to make life annoying for a transcoder and potentially lose efficiency, but not cause damage
to the network.

Chain Reorg

When a broadcaster submits a job to the Livepeer Smart Contract, the protocol uses the current block hash to determine which transcoder will
be assigned the job. Reorganizations of the underlying blockchain can cause confusion in this scenario. While this is not "an attack" directly, a
transcoder will be valid one second, and then upon reorganization, will no longer be valid. When a reorg is detected the broadcaster can either
redirect the stream towards the new valid transcoder, or the protocol can detect uncle blocks that are included in the main chain, and consider
a transcoder to be valid if an uncle block within a given threshold would have made them valid.

Live Video Distribution

This whitepaper has largely focused on the economic incentives and protocol for ensuring proper transcoding of live video, which is necessary
to support adaptive bitrate streaming and reach every device. But equally important is the distribution of video throughout the network so that it
can be consumed with high quality and low latency. The economics of distribution rely on tit-for-tat bandwidth accounting as popularized by
Bittorrent, and extended via protocols like SWAP [13]. As a simplification, nodes pay to request a segment of video, and nodes get paid to
serve a segment of video. If a node already has a segment and can serve it to multiple requestors, it is profitable. We call this type of node, a
Relay node.

Different incentives exist when it comes to bandwidth for nodes playing different roles in the network.

Consumers may be willing to exchange upstream bandwidth to serve the content to additional Consumers in exchange for being able to
consume the video themselves free of charge. See systems like Webtorrent [14].

Broadcasters serve as origin nodes and may want to charge for consumption of the video, or may want to subsidize the cost of bandwidth
so that everyone can access their video for free.

Transcoders and Relay nodes are willing to provide bandwidth in service of distributing video as long as it is profitable. This is similar to
the role of traditional CDNs.

With Segments as the core unit of data flowing through the network, it is possible to do tit-for-tat bandwidth accounting using ETH as the
basis for settlement. We borrow the Chequebook Contract abstraction from Swarm [6] as a method of offchain payment passing with on chain
settlement. Future developments in the ecosystem including the Raiden Network [15] may allow of payment channels to be used for this
purpose as well. Since token transfer is native to the protocol, it is also possible to embed pricing associated with content directly into the
protocol. A broadcaster can charge for their time or content directly, and nodes will opt into this transfer of value by paying a higher
price/segment which will flow back to the broadcaster.

What's important to note is that while bandwidth accounting can be used to make it profitable to run Relay Nodes which just pass video
segments around the network to add capacity, a-la a CDN, these nodes are purely incentivized by demand for the content, and not incentivized
by new token allocations. In fact, the output of Livepeer can be inserted into a traditional CDN (like Amazon S3, Cloudflare, etc) or
decentralized CDN (like IPFS or Swarm). Development of this peer-to-peer protocol for video segment distribution itself will be an ongoing
opportunity for optimization and improvement in performance.

Peer-to-peer CDNs have been shown to reduce 80-98% of bandwidth requirements on an origin CDN server [17], and the token mechanics
seen in decentralized networks can align stakeholders for the development and maintenance of an open version of the proprietary P2P CDNs
that exist today. The PPSPP Protocol [18] serves as a viable candidate for an open implementation that focuses on delivery of live content.

As non-critical to the cryptoeconomics of the Livepeer protocol, the details are spared from this document, but the interested can follow along
here with the development, and look for a future document addressing purely the video distribution protocol.

Use Cases

The Livepeer project is concerned with decentralizing one-to-many live video broadcast (multicast). This is the truest form of media distribution,
as it allows a broadcaster to connect directly with their audience in a first-hand manner, free from alterations, after-the-fact interpretation, and
spin. It gives everyone a platform to have a voice. Existing centralized solutions can suffer from censorship, third party control over user
data/relationship/monetization, and inefficient cost structures around payment for the service. Here are some of the logical use cases for
applications and services to be built on top of Livepeer.

Pay-As-You-Go Content Consumption

With a transfer of value transaction baked into the protocol, it is now possible for broadcasters to charge viewers directly for the consumption of
their live broadcast, without requiring a credit card, account, or control over user identity via a centralized platform. This has applications in
education (pay to attend an online course), events (pay to view a concert or live sporting event), entertainment (pay to watch a gamer or
performer's live stream), and many other use cases - all while preserving the privacy of the viewer, and allowing them to pay for only what they
consume directly to the broadcaster.

Auto-scaling Social Video Services

One of the challenges of building consumer video services today is scaling infrastructure to support the demand for the growing number of
streams and growing number of consumers as new users are added. A service layer that easily lets developers begin building their video
solution on top of the Livepeer Network, which will automatically scale to support any number of streams and viewers as they go, will be a
welcome solution to infrastructure developers who would otherwise have to continue provisioning servers, licensing media servers, and
efficiently manage resources to handle spikes.

Uncensorable Live Journalism

Current platforms such as Twitter and Facebook provide amazing live video solutions for reaching a large audience, but they're also the first to
get blocked or censored in a variety of political conflict situations. Use of a decentralized network such as Livepeer would render it nearly
impossible to prevent the word from getting out as to what is really going on on the ground in realtime.

Video Enabled DApps

Decentralized apps (DApps) are beginning to emerge, driven largely by the Ethereum ecosystem. However, to date there hasn't been a viable
solution for embedding live video within a DApp without using a centralized solution or limiting the number of consuming clients based on the
constraints of WebRTC. By introducing Livepeer to the stack, an application can be fully decentralized, yet still contain live video, at scale, to
as many users as wish to consume it.

Summary

In summary, the Livepeer protocol incentivizes nodes to contribute their processing and bandwidth to the network in service of transcoding and
distributing live video. The verification of work is solved by a scalable extension on top of the Truebit protocol which incentivizes nodes to
perform transcoding operations correctly in order to earn their fees and token allocations and preserve their value earning role as a transcoder.
The gamification of the network and false work problem is solved via the economics of the delegated proof of stake block reward accounting. It
becomes more economically rational to simply stake one's tokens towards a value adding node than to pay fees into the network to be
distributed to other delegators when performing work that there wasn't actually real demand for.

The end result is a scalable, pay-as-you-go network for decentralized live video broadcast - a missing layer in the web3 stack that Livepeer
seeks to fill.

Appendix

Livepeer Protocol Parameter Reference

Parameter Name Description Example Value

T Segment length in seconds 2 seconds

N Number of active transcoders 144

RoundLength Length of time between election of a new round of transcoders 1 day

InflationRate
The current target inflation rate per round of LPT. (Moves
algorithmically).

.04% (equivalent to 15%/year)

ParticipationRate The target percent of token bonded vs liquid. 50%

RoundLockAmount

Transcoders rates lock in for this percentage of a round at the
end of a round so that delegators can review and delegate
accordingly without worrying about last minute rate changes.

10% == 2.4 hours

UnbondingPeriod
Time between entering unbonding state, and ability to withdraw
the funds.

1 month

VerificationPeriod

The deadline for verifying a job claim after submission of the
job claim. This also serves as the minimum period that a receipt
of data persistence must be provided in the decentralized
storage solution.

6 hours

VerificationRate The % of segments that will be verified. 1/500

FailedVerificationSlashAmount
% to slash in the case of a failed verification (beyond the
potential allowed failure threshold)

5%

MissedRewardSlashAmount
% to slash in the case of missing a block reward round (Maybe
only do this in the case of n consecutive misses)

3%

MissedVerificationSlashAmount % to slash in the case the transcoder didn’t call verification 10%

CompetitivenessTolerance

If all transcoders were always available and set the same price
and fees, they would receive work in proportion to their stake.
This parameter sets a % that they have to be within this target
work % to be eligible for token allocation. This prevents
transcoders from doing very little share of work relative to their
stake.

90% (extreme example. With
100 transcoders and 100,000
segments, this means I am ok if
I only did 100 segments (10% of
the 1000 I was supposed to
do)).

*SlashingThresholds (TBD)
Placeholder to indicate that we may not slash on all failures,
only if they exceed some threshold % of failure rate.

VerificationFailureThreshold

% of verifications you can fail without being slashed. Useful
because of external dependencies like Swarm/Truebit that
could cause sporadic failure.

1%

FinderFee % of slash amount that the finder will receive as compensation. 5%

SlashingPeriod
The deadline for invoking a slashing condition after the
VerificationPeriod has completed.

1 hour

Livepeer Protocol Transaction Types

Transaction Description

Bond() Bond stake towards a transcoder.

Unbond() Enter the unbonding state for the fixed UnbondingPeriod .

Transcoder() Declare your intentions as a transcoder.

ResignAsTranscoder() Resign your intentions as a transcoder.

TranscodeAvailability()
This transcoder is currently open to accepting another job. They’re in the pool to be assigned randomly
on new job submissions.

Job() Submit a transcoding job on chain.

EndJob() End the job to relinquish transcoding responsibility.

Deposit() Submit a deposit on chain that will be used and drawn against to pay for jobs.

Withdraw() Withdraw from deposit and unbonded stake.

ClaimWork()
End the transcode job and make the claim of which segments you can prove you’ve transcoded via
segment range and merkle root.

DistributeFees() Transcoder claims the fees for a particular claim after verification.

Reward()
Does all the verifications on chain to either slash or distribute token allocations. Can only be invoked by
a transcoder who is active in the current round, once per round.

Verify()
Transcoder provides the transcode claims for segments which will be verified along with merkle proofs
for comparison with merkle root from ClaimWork() . Explicitly call Truebit to perform verification.

InitializeRound()
This transaction needs to be invoked once after the new round's start block to initialize the new active
transcoder pool.

UpdateDelegatorStake()

This allows a delegator to claim their fees + token allocation from previous rounds. It's invoked
automatically through unbonding and bonding, but it serves as a failsafe in case the delegator would like
to update without changing state.

*GovernanceTransactions() TBD

References

1. Ethereum White Paper - Vitalik Buterin - Ethereum Wiki - https://github.com/ethereum/wiki/wiki/White-Paper

2. Fat Protocols - Joel Monegro - USV Blog - http://www.usv.com/blog/fat-protocols

3. Crypto Tokens and the Coming Age of Protocol Innovation - Albert Wenger - http://continuations.com/post/148098927445/crypto-tokens-
and-the-coming-age-of-protocol

4. The Case For SectorCoins - Eric Tang - https://medium.com/@ericxtang/case-for-sectorcoins-b70a7c820c2d#.7892n4a57

5. Delegated Proof-of-Stake Consensus - Daniel Larimer - https://bitshares.org/technology/delegated-proof-of-stake-consensus/

6. Truebit - Jason Teutsch and Christian Reitweisner - https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf

7. swap, swear and swindle, incentive system for swarm - viktor trón, aron fischer, dániel a. nagy, zsolt felföldi, nick johnson - http://swarm-
gateways.net/bzz:/theswarm.eth/ethersphere/orange-papers/1/sw%5E3.pdf

8. Kademlia: A Peer-to-peer Information System Based On The XOR Metric - Petar Maymounkov and David Mazieres
https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf

9. Steem Whitepaper - Daniel Larimer, Ned Scott, Valentine Zavgorodnev, Benjamin Johnson, James Calfee, Michael Vandeberg -
https://steem.io/SteemWhitePaper.pdf

10. Introducing Casper "the Friendly Ghost" - Vlad Zamfir - https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/

11. Tendermint Docs - Jae Kwon and Ethan Buchman - https://tendermint.com/docs

12. Swarm - http://swarm-gateways.net/bzz:/theswarm.eth/

13. Incentives Build Robustness in BitTorrent - Bram Cohen - http://bittorrent.org/bittorrentecon.pdf

14. WebTorrent - https://webtorrent.io/

15. Raiden Network - http://raiden.network/

16. ERC20 Token Standard - ethereum/EIPs#20

17. Peer5 leverages viewers’ devices for a P2P approach to streaming video - https://techcrunch.com/2017/01/26/peer5-y-combinator/

18. Peer-to-Peer Streaming Peer Protocol - https://tools.ietf.org/html/rfc7574

19. Inflation and Participation in Stake Based Protocols - Doug Petkanics - https://medium.com/@petkanics/inflation-and-participation-in-
stake-based-token-protocols-1593688612bf

Sign upProduct Solutions Open Source Pricing Search or jump to... Sign in

https://github.com/livepeer
https://github.com/livepeer/wiki
https://github.com/petfold
https://github.com/livepeer/wiki/commit/5d5b6c34dd08cf6447af61f02305c3092851af0b
https://github.com/livepeer/wiki/commit/5d5b6c34dd08cf6447af61f02305c3092851af0b
https://github.com/livepeer/wiki/commits/master/WHITEPAPER.md
https://github.com/login?return_to=%2Flivepeer%2Fwiki
https://github.com/login?return_to=%2Flivepeer%2Fwiki
https://github.com/login?return_to=%2Flivepeer%2Fwiki
https://github.com/livepeer/wiki
https://github.com/livepeer/wiki/issues
https://github.com/livepeer/wiki/pulls
https://github.com/livepeer/wiki/actions
https://github.com/livepeer/wiki/projects
https://github.com/livepeer/wiki/wiki
https://github.com/livepeer/wiki/security
https://github.com/livepeer/wiki/pulse
https://docs.github.com/repositories/working-with-files/using-files/navigating-code-on-github
https://github.com/orgs/community/discussions/54546
https://github.com/livepeer/wiki/tree/master
https://github.com/livepeer/wiki/commits?author=petfold
mailto:doug@livepeer.org
mailto:eric@livepeer.org
https://github.com/livepeer/wiki/blob/master/STREAMFLOW.md
http://ethereum.org/
https://www.ethswarm.org/
http://ipfs.io/
http://blockstack.org/
http://ens.readthedocs.io/en/latest/introduction.html
https://github.com/livepeer/wiki/wiki/Project-Overview
https://camo.githubusercontent.com/d07969961a77b95f07ffbd5ce713c7eef16d213b036d1246600b50b02582f03e/68747470733a2f2f73332e616d617a6f6e6177732e636f6d2f6c697665706565726f72672f4c504578616d706c652e706e67
https://developer.apple.com/library/content/documentation/General/Reference/HLSAuthoringSpec/Requirements.html#//apple_ref/doc/uid/TP40016596-CH2-SW1
https://github.com/livepeer/wiki/wiki/Livepeer-Media-Server
https://github.com/livepeer/wiki/wiki/Livepeer-Media-Server
http://truebit.io/
https://camo.githubusercontent.com/51a556e9ef9fcb1b5f77a08f6b1d5bbffb64f7e9f6ca1ab88194750fdd89c242/68747470733a2f2f6c697665706565722d6465762e73332e616d617a6f6e6177732e636f6d2f646f63732f6c7070726f746f636f6c2e706e67
http://truebit.io/
https://github.com/livepeer/wiki/wiki/Governance
https://github.com/livepeer/go-livepeer
https://github.com/ethereum/wiki/wiki/White-Paper
http://www.usv.com/blog/fat-protocols
http://continuations.com/post/148098927445/crypto-tokens-and-the-coming-age-of-protocol
https://medium.com/@ericxtang/case-for-sectorcoins-b70a7c820c2d#.7892n4a57
https://bitshares.org/technology/delegated-proof-of-stake-consensus/
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
http://swarm-gateways.net/bzz:/theswarm.eth/ethersphere/orange-papers/1/sw%5E3.pdf
https://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf
https://steem.io/SteemWhitePaper.pdf
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://tendermint.com/docs
http://swarm-gateways.net/bzz:/theswarm.eth/
http://bittorrent.org/bittorrentecon.pdf
https://webtorrent.io/
http://raiden.network/
https://github.com/ethereum/EIPs/issues/20
https://techcrunch.com/2017/01/26/peer5-y-combinator/
https://tools.ietf.org/html/rfc7574
https://medium.com/@petkanics/inflation-and-participation-in-stake-based-token-protocols-1593688612bf
https://github.com/
https://github.com/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E%2Fblob%2Fshow&source=header-repo&source_repo=livepeer%2Fwiki
https://github.com/pricing
https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Flivepeer%2Fwiki%2Fblob%2Fmaster%2FWHITEPAPER.md

