
Threshold Docs

What is the Threshold Network?

Getting Started

Got 2 minutes? Check out an introduction video to the Threshold Network:

An Intro to ThresholdAn Intro to Threshold

Staking Guides: Jump right in

Follow our handy guides to get started on staking basics as quickly as possible:

Staking on Threshold

Fundamentals: Dive a little deeper

Learn the fundamentals of the Threshold Network to get a deeper understanding of our main features:

Proxy Re-Encryption (PRE)

tBTC v2

https://www.youtube.com/watch?v=8MzE_FG67Z8

Threshold DAO

Fundamentals

Threshold Access Control
Threshold Application

Threshold Access Control enables end-to-end encrypted data sharing and communication without the need
to trust a centralized authority. It is the only access control layer available to Web3 developers that has
already achieved true decentralization through a live and well-collateralized network, with sensitive
cryptographic operations disassembled and distributable across ~250 independently operated servers.

End-users of applications which have integrated Threshold Access Control enjoy the following features &
benefits:

End-to-end encryption for everything.
Built on the privacy-for-everyone principles of popular end-to-end encrypted messengers but applicable
to a far wider set of use cases, including private NFTs, connected vehicles, DBaaS, live-streaming,
private DAO group chats, and much more.

Trustlessness via true decentralization.
Key management, condition verification and ciphertext re-encryption are operationally distributed across
a geographically diverse array of machines/servers, operated by economically independent individuals
and commercial entities.

Powerful, per-ciphertext conditionality.
Future access to data can be contingent on the fulfillment of nearly any predefined condition, and those
conditions attached to any granularity of data payload (e.g. a single message or an entire table).

Flexible condition composability.
Conditions of all types can be mixed-and-matched using logical operators and flexible prefix notation
into virtually any desired combination.

Tunable collusion-resistance, redundancy & latency.
Developers have full control over the cohort(s) of node operators which manage access to a given data
payload, user base or entire application. These security parameters can also be packaged into simpler
user-facing optionality for custom risk preferences.

Highly incentivized uptime.
The Threshold network's multi-app model strongly incentivizes node operators to provision service to
tBTCv2, and its strict availability requirements. Threshold Access Control 'piggybacks' on tBTCv2
uptime, reliability and technical competence.

Optional: keypair-only decryption.
If even stricter security guarantees are required, and data recipients' public keys are known in advance,
developers may opt for end-user data to be re-encrypted by node operators such that they are only
decryptable by pre-designated clients.

The Threshold Access Control service is built on two distinct but interwoven technologies; Conditions-
Based Decryption (CBD) and Proxy Re-Encryption (PRE). Both offer trust-minimized end-to-end encryption
and access control is executed by the same decentralized array of nodes. There are some trade-offs
between (explicit) security and access condition customization, which are explored in the
section.

trust assumptions

Note for Threshold stakers: the up-and-running 'PRE app' will eventually be renamed to encompass the
broader Threshold Access Control service, and will also acquire new functionality via the addition of CBD
technology. This will require a DAO-driven upgrade but will not fundamentally change the operational
requirements or compensation.

Conditions-Based Decryption (CBD)
Threshold Application – underlying technology

Conditions-Based Decryption (CBD) is one of two technologies underpinning the Threshold Access Control
service, the other being Proxy Re-Encryption. The vast majority of developers will only require CBD
technology to provably protect their users' data, and we recommend that all developers start here – by
familiarizing themselves with CBD.

In broad terms, CBD enables the users of adopting applications to specify conditions for accessing their
encrypted data. If those conditions are not fulfilled – which means formal verification by a cohort of nodes
from the Threshold network – then the data remain entirely unreadable to anyone besides the original data
owner/encryptor. However, if the predefined conditions are provably satisfied, then the data requester gains
decryption rights.

Threshold Decryption

Under the hood, CBD involves splitting a joint secret – a decryption key – into multiples shares and
distributing those among authorized and collateralized node operators (stakers in the Threshold network). A
minimum number – a threshold – of those operators holding the key shares must be online and actively
participate in partial decryptions. These are subsequently combined on the requester's client to reconstruct
the original plaintext data.

Conditionality

A range of access condition types can be defined by the data owner. For example:

EVM-based
e.g. Does the requester own a given NFT?

RPC-driven
e.g. Does the requester have at least X amount of a given token in their wallet?

Time-based
e.g. Has a predefined period elapsed, after which requests will be ignored?

These conditions are also composable and can be combined in any logical sequence or decision tree.

Conditions are 'attached' on a per-ciphertext basis. In other words, each and every payload, message or bit
can be access-restricted by a unique set of specified conditions. In most situations, condition sets will be
automatically reused until the end-user proactively configures them – for example, in order to remove an
address from continuing to access the messages in a group chat.

Conditions Verification

Currently, requesters prove their association with condition fulfillment – i.e. their right to receive a threshold
number of decrypting shares – by signing a transaction that verifies their ownership of a given Ethereum
wallet. That wallet is checked for fulfillment of the specific condition – e.g. owning an NFT in order to access
a DAO's knowledge base.

This signature can be cached by the application for a use case-appropriate period of time, such that the user
does not have to repeatedly re-sign for access later. However, verification still takes place in the background
– for example, if a wallet address is removed from an NFT-gated group-chat by dint of changing the access-
granting NFT, they will immediately be unable to see new messages. The cached signature will not give
them access any longer than is specified by the data owner/encryptor.

Network Parameterization

CBD is fully decentralized. Therefore, developers have the option to tweak certain network parameters,
which affect the collusion-resistance, redundancy, latency and (in future versions) cost of using CBD. For
example:

The number of decrypting shares n

The frequency and/or prompt for resampling a new cohort from the node array

The 'hard-coded' node address that always feature in the cohort

This optionality can also be surfaced for end-users – for example, in the form of 'packages' that they might
choose between, accommodating their risk and cost preferences . A guide on best practices for
choosing/surfacing network parameters will be released soon.

Proxy Re-Encryption (PRE)
Threshold application – underlying technology

The Characters of Proxy Re-Encryption • (PRE) • Threshold Network • NuCypherThe Characters of Proxy Re-Encryption • (PRE) • Threshold Network • NuCypher

PRE is an end-to-end encryption protocol that is a more scalable, more flexible form of
and enables a group of proxy entities to transform encrypted data from one public key to another, without the
power to decrypt the data or gain access to any private keys. PRE equips developers, applications and end-
users with secrets management and dynamic access control capabilities. The nodes on the Threshold
Network act as these proxy entities and use threshold cryptography to securely and cooperatively re-encrypt
data for recipients based on access conditions defined by the data owner.

public-key encryption

PRE is directly applicable to use cases that aim to maintain data ownership while facilitating data sharing
capabilities such as paid subscriptions to encrypted content, or the transfer of data ownership for encrypted
NFTs. Data, wherever stored, remains private and encrypted while data owners maintain the ability to share
that data and cryptographically enforce access controls.

Want to get started staking with Threshold and running a node for PRE? Follow this guide:

PRE Node Setup

https://www.youtube.com/watch?v=SXn1zShgVI8
https://en.wikipedia.org/wiki/Public-key_cryptography

tBTC v2
Threshold application

Existing solutions that bridge Bitcoin to Ethereum require users to send their Bitcoin to an intermediary, in
exchange for an Ethereum token that represents the original asset. This centralized model requires you to
trust a third party and is prone to censorship, threatening Bitcoin's promise of secure, permissionless
decentralization.

The second generation of tBTC () is a truly decentralized bridge between Bitcoin and Ethereum. It
provides Bitcoin holders secure and open access to the broader cryptoeconomy. tBTC v2 allows you to
unlock your Bitcoin’s value to borrow and lend, mint stablecoins, provide liquidity, and much more.

tBTC v2

Instead of centralized intermediaries, tBTC v2 uses a randomly selected group of operators running nodes
on the Threshold Network to secure deposited Bitcoin through threshold cryptography. That means tBTC v2
requires a threshold majority agreement before operators perform any action with your Bitcoin. By rotating
the selection of operators weekly, tBTC v2 protects against any individual or group of operators seizing
control. Unlike other solutions on the market, users of tBTC v2 trust math, not hardware or people.

Put your Bitcoin to work with the next generation of tBTC on the Threshold NetworkPut your Bitcoin to work with the next generation of tBTC on the Threshold Network

tBTC

https://blog.threshold.network/tbtc-v2-vision-for-2022/
https://www.youtube.com/watch?v=9jnDtNQ_GEc

Threshold USD
Threshold application

Threshold USD (thUSD) is a tBTC backed stablecoin pegged 1:1 against USD.

Background: About Bootstrapping

A certain network effect is required for a stablecoin to function well. Bootstrapping is the process of ensuring
the protocol has gained enough traction to become self-sufficient.

In the past this was usually accomplished by being an early adopter of coins, such as buying Bitcoin early
and benefiting from the lower price. DeFi revolutionized the bootstrapping concept by enabling the
bootstrapping of capital through yield-farming (aka rented liquidity).

Liquity Protocol bootstrapped by issuing LQTY tokens to depositors in the stability pool. This incentivized
people to take out loans and deposit to the stability pool.

For normal, healthy operations of the protocol, it's vital that there is sufficient funds in the stability pool to
cover all liquidations. However the LQTY incentive resulted in far more deposits than is required and this is
essentially wasted capital. Furthermore there are concerns on how sustainable Liquity will be after the initial
100 million LQTY has been issued and the pool is only sustained through liquidations rewards.

How does Threshold USD approach this?

In Threshold USD we take a different approach. A newer concept in DeFi known as Protocol Controlled
Value (PCV) is the idea that the protocol itself can own liquidity and use that to improve the protocol. This is
a new alternative to renting it elsewhere (aka yield-farming) and has the benefit of long-term sustainability.

But the PCV has to come from somewhere. In thUSD we resolve this by issuing an to
the PCV which then deposit these funds directly to the stability pool. Read more about this here:

Initial Protocol Loan

Initial Protocol Loan

That lets us bootstrap the stability pool at zero cost to the protocol.

But not only that, by eliminating the LQTY token, all profits (from interest, etc) will go directly into the PCV.
Compared to Liquity, where profits are distributed among LQTY holders, we have eliminated a massive
drain on the system, at no cost.

Having the stability pool funded on its own is enough for the protocol to function, and we can expect some
users that want to borrow against their tBTC to take part, but it's not going to create major adoption, and for
thUSD to function well it needs to be stable at ~$1, that requires people to put up liquidity at decentralized
exchanges.

In order to draw in more users and create liquidity for thUSD, we will issue rewards to pools on other
platforms (such as a thUSD stablecoin pool on curve). This will incentivize users to take debt and deposit
into curve, with the added benefit of improved liquidity and resiliency.

How fast we want to grow can be almost entirely adjusted by how much reward is sent to the pool.

This part is indeed rented liquidity with all its drawbacks, but remember that Threshold USD profits are sent
to the PCV instead of LQTY holders: As the protocol grows in popularity, profits from the protocol itself can
be used to fund these rewards, thus creating a self-sustaining feedback loop.

On top of that, Threshold DAO will store some of its reserves in stablecoins, so the Threshold DAO can
initiate a PCV with deposits on curve. That will result in more stability for thUSD which is important for
adoption.

Initial Protocol Loan

The Initial Protocol Loan (IPL) is a debt issued against the protocol itself in order to fund the stability pool.
Even though it's technically debt, it does not in itself make the protocol a fractional reserve because all funds
are accounted for.

How it works

thUSD is minted by the PCV and deposited into the stability pool. A freeze on withdraw is initiated until debt
is fully repaid. At any time, the Threshold DAO can initiate a withdraw, which will destruct the debt and
withdraw exceeds. If the PCV for some reason has less than the debt available, withdraw is denied.

Profits from usage of the protocol (loan interest, redemption fee etc) accrues into the PCV, so in an event
where there are less funds than debt the protocol first has to earn back the missing funds.

Benefits of the hybrid PCV + IPL model:

Bootstrap stability pool for free

No need for LQTY token = all profits accrue directly to the PCV

Immediately surplus on first loan drawn / liquidation

Predictability and (once debt is repaid) high resilience against Black Swans

No idle capital (it doesn't "really" exist)

Disadvantages

Higher risk of undercollateralization during the initial stages

Poor management of PCV could result in not enough funds in the stabilty pool

About the risk

Each liquidation that occurs will draw against the stability pool and result in ~10% profit to the stability pool.
This also means that the price can drop up to 10% after a liquidation before the stability pool is at risk of
losing money on the liquidation. Our integration with B.Protocol ensures that liquidated tBTC is
automatically converted back to thUSD and re-deposited into the stability pool. Under normal circumstances
and without other factors, it is expected that the balance of thUSD in the pool will grow over time.

But there can be black swan events, large drops in the price of BTC in a short period of time or liquidity
issues that results in a loss, even at ~10% profit. This is a risk of the protocol becoming undercollateralized,
but the same issue would apply even without debt (stability pool not being profitable). The protocol is
created to be sustainable, so these types of rare events will be averaged out. In addition, all income streams
from Threshold USD also ends up in the PCV which further decrease the risk of undercollaterization.

The undercollaterialization is mostly a concern during the initial bootstrapping phase. As interest accrue and
repay the initial debt, the funds in the stability pool will be replaced by a fully owned PVC, thus eliminating
this disadvantage.

B. Protocol

B. Protocol is a third-party decentralized backstop liquidity protocol aiming to make lending platforms more
stable.

The problem

In Liquity Protocol there's a concept called "Stability Pool" []. The purpose of the stability pool is to
purchase liquidated collateral (tBTC) at a discount by using Threshold USD (thUSD) as payment.

2

Users deposits thUSD into the stability pool and their funds are pooled with other depositors. If a pool
consist of 900,000 thUSD and a user deposits 100,000 thUSD, that user is entitled to 10% of the collateral
seized.

The issue with stability pool is that as liquidations occurs, thUSD is traded to tBTC, but never back to
thUSD. If left untouched, the pool will eventually only consist of tBTC and no further liquidations can take
place against the pool. Furthermore, by acquiring tBTC collateral, the value for depositors in the pool
becomes subject to the price of BTC.

Users are therefore incentivized to quickly sell of the tBTC for thUSD to avoid taking on price risk, but in
Liquity, this process is manual. User has to manually open the UI and withdraw tBTC, sell it for thUSD and
then re-deposit the thUSD. This is both a time consuming and gas costly operation, best suited for whales
and users with their own bots.

Even worse, a DAO cannot realistically operate in the current stability pool model because voting to move
and sell funds becomes impractical, costly and slow.

In order to establish a non-human, algorithmic, fully automated solution to compound profits we look to
B.Protocol.

B.Protocol to the rescue

Instead of depositing directly into the stability pool, we can use B.Protocol's wrapping smart contract
interface, which deposits the thUSD to the stability pool on behalf of all users (and the PCV).

Once liquidation happens, the discounted tBTC is automatically offered for sale by B.Protocol’s Backstop
AMM (B.AMM). This is done according to a deterministic formula, which takes into account the current tBTC
and thUSD inventory, and the current BTC-USD market price (which is taken from Chainlink). Whenever the
sale occurs, the smart contract deposits the returned thUSD back to the stability pool.

If there are no takers for the offer on the B.AMM, Gelato Keepers will arbitrage through popular DEX pairs to
fulfill the order.

https://docs.liquity.org/faq/stability-pool-and-liquidations

This way the PCV becomes self-sufficient and able to operate indefinitely without outside interference.

Integration details

B.Protocol Team will deploy a non-upgradable pool that is Threshold USD compatible.

The pool will be using Chainlink BTC/USD oracle (same as Threshold USD)

The pool will not deploy idle funds in any yield farming applications.

Threshold USD PCV will whitelist the smart contract for the B.Protocol pool and the Threshold Network
DAO (T DAO) will vote to initiate a deposit of thUSD to the B.Protocol pool. The deposit is moved from the
PCV smart contract to B.Protocol and can be moved back to the PCV at any time, without limitation, as long
as the T DAO votes to do so. If there is tBTC in the pool at the time of withdraw, the tBTC may also be
transferred back to the PCV.

The B.AMM contract's "A" parameter ("A" is amplification factor​​​ [1], higher value means less slippage) is
operated through a co-ownership between T DAO and B.Protocol, where B.Protocol propose "A" value and
T DAO can approve or reject.

The discount rate is set to 4% on deployment, but the max rate should be configurable up to 10% in a joint
governance mechanism between T DAO & B.Protocol.

All profits from liquidations will auto-compound within the B. Protocol pool.

Keeper

As a backup mechanism, B. Protocol will deploy Gelato keepers [] that can route.3

Example:​

tBTC -> WBTC -> USDC -> thUSD

In this case funds are routed through the following Curve Finance stable pools:

In addition, funds are routed through uniswap (v2 or v3) WBTC/USDC pools.

Other routes could be:

tBTC -> WBTC -> DAI -> thUSD
tBTC -> WBTC -> USDT -> thUSD

or:

tBTC -> renBTC -> USDC -> thUSD

The keeper is funded by the DAO and any profit it makes is distributed back to the PCV.

https://medium.com/gelato-network/introducing-gelato-v2-the-most-reliable-way-to-automate-your-ethereum-smart-contracts-73cd0010599e

Threshold DAO

Threshold is community-driven and governed by an eponymous DAO that includes the constituencies of
both the NuCypher and Keep networks. The community decided that a . The Threshold DAO has three
primary bodies: Tokenholder DAO, Staker DAO, and the Elected Council. The goal of this three-pronged
approach is to enhance representation while ensuring accountability, as each of these governance bodices
will hold the other two accountable, similar to the system of checks and balances found in most
constitutional governments. They will also hold separate responsibilities that are embedded in the
governance structure. See and for a more extended description of the DAO
structure.

this blog post this proposal

From an implementation perspective, both the Tokenholder DAO and the Staker DAO are based on
Governor Bravo governance model (in particular, using OpenZeppelin Governance). The Tokenholder DAO

is on Ethereum Mainnet at 0xd101f2B25bCBF992BdF55dB67c104FE7646F5447 . The Elected
Council is implemented as a Gnosis Safe contract, with a 6-of-9 configuration, also deployed on Ethereum

Mainnet, at 0x9F6e831c8F8939DC0C830C6e492e7cEf4f9C2F5f . The Staker DAO is postponed
until the complete functionality for staking is released.

https://blog.threshold.network/thresholds-governance-structure-and-the-upcoming-council-elections/
https://forum.threshold.network/t/threshold-network-dao-proposal-v2/57

Governance Process

During the early days of the merger, one of the issues discussed by the community was the design of the
governance process for the new network. This resulted in the design outlined by , which was voted
and approved by the two original communities.

TIP-2

Lifecycle of a successful proposal

1. Forum discussion: A Threshold community member posts a potential proposal on the Threshold
governance forums. Community members who post the initial proposal are encouraged to get active in
Meta governance discussions within the community on forums and in Discord to earn support for the
proposal. There is no minimum token threshold required to create a new proposal on the forums.
Community mods reserve the right to moderate proposals during this stage by simply deleting the
proposal from the forums.

2. Temperature Check: Once a potential proposal has enough traction and discussion within the
community, it can proceed for a temperature check, which requires off-chain to pass. If a
proposal receives majority support during the temperature check snapshot, it is eligible to move onto
the next step.

snapshots

3. Proposal Creation: A community member holding enough vote weight submits the proposal on-chain.
The proposal enters a 2-day delay period before voting officially begins.

4. Vote Period: Proposal voting remains open for 10 days. If the proposal passes with enough quorum,
it moves onto the next step; if the proposal fails, it is canceled. Creators and supporters of the proposal
may bring a modified proposal forward again but it must be sufficiently different and pass requirements
outlined in previous steps.

5. Timelock Period: Once a proposal is approved, the Governor smart contracts include an additional
timelock delay of 2 days. Anyone can interact with the Governor smart contracts to queue an approved
proposal into the Timelock contract.

6. Execution: After the timelock delay, anyone can execute an approved proposal.

https://forum.threshold.network/t/tip-2-threshold-network-dao-proposal-v2/57

The lifecycle of a successful proposal

Deviations in the proposal lifecycle

Council vetos: During the on-chain phase, the Elected Council can veto any proposal. This is intended
to be an extra security mechanism in the event that a dangerous proposal passes.

Late quorum prevention: The 10-days voting period is automatically extended when quorum is
reached late, to prevent governance attacks that try to reach quorum at the last minute; in case a
proposal reaches quorum less than 2 days before the deadline, the proposal deadline is extended for 2
more days from the moment the quorum was reached.

Governor

Snapshots

🙋♀ 🙋♀ Guilds

Additionally to the DAO governance bodies, there are community-led guilds such as the Marketing Guild,
the Integrations Guild, and the Treasury Guild. Each guild is managed by an elected committee and holds
regular, rotating elections.

Join a guild (via - #dao-contribute channel) and work together with other Threshold DAO
members based on your interests and expertise!

Discord

Treasury Guild

The is responsible for effectively managing the Threshold DAO treasury. This
includes growing Protocol Owned Liquidity (POL), researching / implementing best practice treasury
management strategies, executing ecosystem liquidity incentives, diversifying the treasury, etc.

Threshold Treasury Guild

Integrations Guild

The core mission of the is to build successful, synergistic and long-lasting
relationships with other protocols, DAOs and external organizations.

Threshold Integrations Guild

Marketing Guild

The is responsible for general Threshold marketing across services, growing our
network of contributors, onboarding new members to the Threshold DAO, educating people about the
Threshold’s value, services and use cases, and more.

Threshold Marketing Guild

https://discord.gg/threshold
https://thresholdnetwork.notion.site/Treasury-Guild-7b50c4d66c0a4f93991cc64352d6ce73
https://thresholdnetwork.notion.site/Integrations-Guild-4ff2e5fdea4442d7af19d27342ab8225
https://thresholdnetwork.notion.site/Marketing-Guild-9803f6d29d09481da9a99264ec625aab

Threshold Multisigs
Compilation of current multisigs for the Threshold council and guilds

Council Multisig

Gnosis Safe

Council Multisig at Gnosis Safe

The Threshold Council multisig is set to 6 of 9.

Guilds Multisigs

Treasury Guild Multisig

Gnosis Safe

Treasury Guild Multisig at Gnosis Safe

This multisig is set to 6 of 9 and can be changed by the guild committee if needed.

Integrations Guild Multisig

Gnosis Safe

Integrations Guild Multisig at Gnosis Safe

This multisig is set to 3 of 5 and can be changed by the guild committee if needed.

Marketing Guild Multisig

https://gnosis-safe.io/app/eth:0x9F6e831c8F8939DC0C830C6e492e7cEf4f9C2F5f/home
https://gnosis-safe.io/app/eth:0x71E47a4429d35827e0312AA13162197C23287546/home
https://gnosis-safe.io/app/eth:0x2ff7aB212cD6FEaE21bAc5300465E149FB6b85a9/home

Gnosis Safe

Marketing Guild Multisig at Gnosis Safe

This multisig is set to 5 of 8 and can be changed by the guild committee if needed.

ESDM - Emergency Security Developer Multisig

To be created

The Threshold ESDM multisig will be set to 3 of 4.

https://gnosis-safe.io/app/eth:0xd55c4261145EA1752662faA0485AfBC8C431b0CA/home

DAO Vote Delegation

To participate in DAO governance, stakers or token holders must set a governance delegate address. Vote
delegation is the process of granting a delegate the power to vote on your behalf, using your voting weight,
on DAO governance issues. The delegate can be yourself (self-delegation) or a third party. A configured
delegate can be changed or revoked at any time.

Delegation never involves the transfer of custody of assets but rather just the vote weight
those assets represent in the Threshold DAO.

Third-Party Delegation

Third-party delegates are volunteers who actively participate in Threshold governance and wish to grow
their influence over critical DAO decisions. Delegates provide ETH addresses to which other Threshold
token holders and Threshold stakers can delegate their vote weight. Third-party delegates are subsequently
responsible for voting on Threshold governance proposals with this vote weight that others have assigned to
them.

It is ideal for those who are unsure or uninterested in governance and does not want to participate in
proposals, discussions, and voting. Instead, they can select active DAO members who have demonstrated a
commitment to Threshold to make decisions on their behalf using their token weight and stake weight.
Delegating their vote allows token holders and stakers to have an indirect say in the DAO without being
involved in day-to-day governance activities.

There is no established compensation for third-party delegate contribution to governance.

Token Weight Delegation

Liquid T holders who aren't staking on Threshold can delegate their token weights to themselves or a third
party for voting on governance proposals.

Delegation is accomplished via an on-chain transaction which costs ETH.

1. Go to https://boardroom.io/threshold

2. Connect your wallet

3. Click "Set Up Delegation"

Set Up Delegation

4. Select your "Delegation Type" - either to yourself or a third party.

https://boardroom.io/threshold

Choose Delegation Type

5. Enter "Delegate Address" and click on "Delegate Votes"

Delegate Votes

6. Sign the transaction

Stake Weight Delegation

Stakers on Threshold can delegate their stake weights to themselves or a third party for voting on
governance proposals.

Delegation is accomplished via an on-chain transaction which costs ETH.

1. Go to https://stake.nucypher.network/manage

2. Connect your wallet

3. Click on the "delegate" tab in the navigation bar

"delegate" Tab

4. Enter the delegate address - once an address is entered, a “Delegate” button will appear

https://stake.nucypher.network/manage

Enter Delegate Address

5. Click "Delegate" and sign the transaction.

Delegate Button

Staking & Running a Node

Upgrade NU & KEEP to T

NU and KEEP tokens can be upgraded to T tokens via the Vending Machine contracts.

As decided by the NU and KEEP communities in the , the conversion ratio for each
token is based on the total supply rather than price. The final total supply of NU is ~1,380,688,920 and the
total supply of KEEP is ~940,795,010.

final merge proposal

As a result, the token factors are:

1 NU: ~3.26 T

1 KEEP: ~4.78 T

Token upgrades can be performed via the which interfaces directly with the Vending
Machine smart contracts.

Threshold Dashboard

NU->T Upgrade

Keep->T Upgrade

https://forum.keep.network/t/t-token-proposal-rc0/264
https://dashboard.threshold.network/upgrade

Staking on Threshold

Stakes on Threshold can take the following forms:

T stake using liquid T created on the Threshold Dashboard

Legacy NU stake migrated to T from the NuCypher Dashboard

Legacy KEEP stake migrated to T from the Keep Dashboard

Here is a summary of the overall process:

Stake Creation

Stake Liquid T

Go to https://dashboard.threshold.network/staking

Connect your wallet

Your T balance will be shown - click on "Stake"

There will be a pop-up describing the staking process; click the check-box to acknowledge you have
read the requirements

Choose an amount of T to stake and confirm the transaction

https://dashboard.threshold.network/staking
https://stake.nucypher.network/manage
https://dashboard.keep.network/applications/threshold
https://dashboard.threshold.network/staking

Migrate Legacy NU Stake

Go to https://stake.nucypher.network/manage/stake

Click "Stake NU on Threshold"

Stake NU on Threshold

Migrate Legacy KEEP Stake

Authorize Threshold Staking for the Keep Network legacy stake -
https://dashboard.keep.network/applications/threshold

https://stake.nucypher.network/manage/stake
https://dashboard.keep.network/applications/threshold

Stake KEEP on Threshold

Running a Node
Get involved in staking the Threshold Network

Have what it takes to run a node of your own?

Click for a guide on how to setup your own PRE node.here

Click to learn how to setup a tBTC v2 node.here

Please be aware that running a node is not an easy task and requires technical skill and
commitment to maintaining node uptime and availability.

Prefer staking with Professional Staking Providers instead?

Click to see a list of professional grade staking providers.here

Staking Providers have not been vetted or endorsed by Threshold. Use your judgement
when selecting a provider.

Self-Managed

PRE node setup with nucypher-ops

nucypher-ops is an ansible script that automates setup and configuration of a PRE node.

nucypher-ops setup guide

tBTC v2 Client Setup

A guide for to setup and configure the tBTC v2 client.

tBTC v2 Client Setup

PRE Node Setup
This document provides basic instructions for use of the nucypher-ops utility for
setting up PRE nodes.

This document will help you get a node running to which you can bond your stake. Please note
that running a node is not a passive activity.

Nucypher-ops is an ansible script that will setup and configure a PRE node for you. Currently, the script
supports AWS and Digital Ocean. This document will guide you through the setup process using visuals
from DigitalOcean.

Local Machine Considerations

Install Ubuntu 20.04.4 LTS through the Windows Store:

WSL is the most convenient way to run nucypher-ops on a Windows based local machine

To begin, update your local machine and install dependencies

sudo apt update
sudo apt upgrade
sudo apt-get install libffi-dev python3-dev python3-pip python3-virtualenv build-
essential libssl-dev

Read prompts and respond appropriately. This will take a few minutes.

Windows

Install Python and pip on your local machine, if you don't have it already:

 Python Website

Visit the Python.org Website

PyPA Website

Visit the and follow the steps provided to make sure that you have a working
Python with pip installed.

pypa.io Website

MacOS

https://www.python.org/downloads/macos/
https://pip.pypa.io/en/stable/getting-started/

To begin, update your local machine and install dependencies

sudo apt update
sudo apt upgrade
sudo apt-get install libffi-dev python3-dev python3-pip python3-virtualenv build-
essential libssl-dev

Read prompts and respond appropriately. This will take a few minutes.

Linux

SSH Key

Generate an SSH key pair. We will need the public key.

Visit the website to learn about OpenSSH.OpenSSH

ssh-keygen -t rsa
 cat .ssh/id_rsa.pub

Generating a new SSH Key

Copy the highlighted part

https://www.openssh.com/

New SSH Key

In your Digital Ocean dashboard:

Go to Settings > Security and click the Add SSH Key button.

Adding a new SSH Key

Paste the key into the box, give your key a name, and click the Add SSH Key button.

Adding a new SSH Key

Open a Text Document to make notes. Copy the SSH Fingerprint into this text file.

Do not share the fingerprint with anyone. Save and store in a secure place such as a password
manager.

SSH Fingerprint

While we're here, let's create an API key as well. Go to API > Tokens/Keys and click the Generate New
Token button.

Generating an API Access Token

Name your token and click the Generate New Token button.

Unless you plan to periodically refresh this token yourself, you can set "Expiration" to NEVER

Generating an API Access Token

Copy the API Key into your Text file or password manager.

Generating an API Access Token

L2 Providers

The PRE application requires access to an Ethereum endpoint, as well as a Polygon endpoint. One solution
is to use a provider such as , , or . Each has their own pros and cons. Review them
carefully.

Infura Quicknode Alchemy

Once you have made your decision(s) and signed up for an account, login to your account and setup an
endpoint for Ethereum. The setup steps are very straightforward for each provider.

Make sure you select Mainnet for each endpoint. You will receive what looks like a https web address,
Infura calls it an Endpoint, Quicknode refers to it as a Web3 endpoint. Make sure that the endpoint you copy
starts with https.

Copy each of the endpoints to your text document or into your password manager. We will use them shortly.

Do NOT share your provider addresses with anyone.

Checklist

Let's review and make sure you have everything needed to be successful:

SSH key pair fingerprint

API Access token

Endpoint URL for Ethereum

Endpoint URL for Polygon

https://infura.io/
https://www.quicknode.com/
https://www.alchemy.com/

Sample text file

These items should be kept readily available.

Installing nucypher-ops

pip install nucypher-ops

This will download the utility, and install dependencies. This process will take several minutes.

nucypher-ops installation

Creating Your Node

Execute the following and be ready to answer questions from the utility:

nucypher-ops nodes create

This will connect to your Digital Ocean account, spin up a VPS, configure and secure it, and install all of the
necessary software for you.

The utility will ask which provider you are using. Answer accordingly and press ENTER.

Selecting VPS provider in nucypher-ops

Provide your API Key and press ENTER.

Providing API Key in nucypher-ops

Provide your SSH Fingerprint and press ENTER.

Providing SSH fingerprint in nucypher-ops

Then be patient.

Creating VPS instance & PRE node

VPS instance & PRE node created

Deploying Ursula

In a few minutes, you'll be ready to bond your stake.

nucypher-ops ursula deploy

Provide your ETH endpoint when requested and press ENTER.

Provide your Polygon endpoint when requested and press ENTER.

Configuring and deploying Ursula

Wait for it...

PRE node ready to bond

The items at the bottom are your node's IP address and Operator address, to which you will need to bond
your stake.

To bond your stake to your new PRE node, click below:

NuCypher Staking (Beta)

Bonding UI link

Make sure you take note of your operator address.

Nucypher-Ops Config File location

Nucypher-ops is a convenient tool for deploying a PRE node on the Threshold network. In case you need to
make changes to the configuration of the utility on your local machine, these are the default directories
where config files are stored locally:

https://stake.nucypher.network/manage/bond

~/.local/share/nucypher-ops

Linux

~/Library/Application Support/nucypher-ops

MacOS

Caution: Do not make changes to these files without making a backup of them first. Do not make
changes to these files unless you know and understand what you are doing.

Caution: Breaking these files may lead to your node becoming permanently inaccessible. Use
extreme caution.

Post Install

To find out about other features try

nucypher-ops --help

if you need to update your node to a new version of NuCypher just execute

nucypher-ops ursula update

Keep in mind staking is an active process, and that you are responsible for operational security,
as well as backing up any relevant data. Carefully review your firewall rules and make necessary

adjustments. nucypher-ops configures a PRE node, it does not setup security measures.

tBTC v2 Node Setup
This document explains the basic installation and configuration for the tBTC v2
staking client.

This document is intended for members of the community who would like to run their own tBTC v2 node.

Please be aware that running a node is not an easy task and requires technical skill and
commitment to maintaining node uptime and availability.

Please review this document in its entirety prior to beginning setup of your node to familiarize yourself with
the general setup process.

Important Considerations

The Threshold Network expects certain capabilities for each node running on the network. To help attain
these capabilities consider the following criteria:

It is paramount that tBTC v2 nodes remain available to the Network. We strongly encourage a stable
and redundant internet connection.

Equally important is machine uptime and reliability. A VPS is strongly recommended.

A connection to a production grade self-hosted or third party Ethereum node deployment.

Persistent and redundant storage that will survive a VM or container rotation, and a disk failure.

Each node running on the network requires a unique Ethereum Operator Account. The account has to
maintain a positive Ether balance at all times.

Each node running on the network requires a unique IP address or a unique application port running
under the same IP.

Recommended Machine Types

While it is possible to run the client on a local machine, this is not recommended.

Your operating environment will ultimately dictate what machine type to go with. This is particularly relevant
if you’re running a containerized solution where multiple applications are sharing VM resources. The below
types are sufficient for running one instance of the tBTC v2 Node.

The preferred OS is Ubuntu.

VPS Provider VPS Type

AWS c5.large

Azure F2s v2

Google Cloud n2-highcpu-2

Self-hosted 2 vCPU / 2 GB RAM / 1 GiB Persistent Storage

Ethereum API

A Keep Node requires a connection to a WebSocket Ethereum API. You should obtain a WS API URL from
a service provider (e.g. , ,) or run your own Ethereum node (e.g.).Alchemy Infura Ankr Geth

Configuration

The client expects configuration options to be passed as CLI flags or specified in a . If you specify
an option by using a parameter on the command line, it will override the value read from the configuration
file.

config file

https://www.alchemy.com/
https://www.infura.io/
https://www.ankr.com/rpc-service/
https://geth.ethereum.org/

Operator Account
Prepare your machine to install the tBTC v2 staking client

The client requires an Ethereum Key File of an Operator Account to connect to the Ethereum chain. This
account is created in a subsequent step using Geth (GoEthereum).

The Ethereum Key File is expected to be encrypted with a password. The password has to be provided in a

prompt after the client starts or configured as a KEEP_ETHEREUM_PASSWORD environment variable.

The Operator Account has to maintain a positive Ether balance at all times. We strongly advise you monitor
the account and top-up when its balance gets below 0,5 Ether.

Please do NOT reuse an operator account that is being used for PRE or other applications.

Install Geth (GoEthereum)

To create a new Ethereum account, (GoEthereum) and create a new account using the
command below. This account will subsequently be referred to as the Operator Account.

install Geth

geth account new --keystore ./operator-key

When prompted, provide a password to protect the operator key file.

Use a password manager to generate a strong password and store it safely. It will be needed
again during setup.

Avoid passwords that contain the following characters: ', ", `, $
These characters may be interpreted as part of the configuration which can lead to undesirable
outcomes that may be extremely time intensive to correct.

Once the process completes, your public key will be displayed. Take note of your Operator Account public
key.

DO NOT LOSE THE PASSWORD TO THE OPERATOR ACCOUNT.

Funding your Operator Account

Your Operator Account will need to maintain a positive ETH balance at all times to ensure proper operation
and availability of your tBTC v2 node.

https://geth.ethereum.org/docs/install-and-build/installing-geth#ubuntu-via-ppas

Application Authorization & Operator
Registration
The following demonstrates how to authorize applications for tBTC v2 and how to
register your operator address via the Threshold Dashboard.

One important step to get your node operating on the Threshold Network is proper application authorization
as well as operator account registration. Applications need only be authorized once.

It is CRITICALLY important that both the tBTC application as well as the Random Beacon
applications are authorized. A node cannot be deployed without both applications being properly
authorized.

Please note: by authorizing these applications, an unbonding period of 45 days will go into effect
on the T you stake for these applications. This cool-down period begins the day you submit an
unstake request.

Application Authorization

To get started, visit the and connect your wallet.Threshold Dashboard

https://dashboard.threshold.network/

Threshold Dashboard

Click on "Configure Apps"

Authorizing Threshold Applications

Select BOTH tBTC and Random Beacon applications and enter your desired amount of T to stake per
application. Note that the minimum is 40,000T.

Authorizing Threshold Applications

Operator Registration

The operator account is the Ethereum account created on your node. In order for the network to associate
your T stake with your node, you must register your Operator Address.

An Operator for the Provider registration can be submitted just once. The Operator address
assignment cannot be updated.

Registering Operator Address

After both applications have been authorized, click on "Start Mapping" to begin the Operator Registration
process.

Registering Operator Address

Enter your Operator Address in the field provided and click on "Map Address."

Once the steps above have been successfully completed, you are ready to move on to the next step in the
node deployment process.

Don't forget: a tBTC v2 node will not be able to be deployed without successfully authorizing both
the tBTC and Random Beacon applications, and registering the node's operator address FIRST.

Network Configuration
Required network configuration for the tBTC v2 staking client.

Required Ports

The node has to be accessible publicly to establish and maintain connections with bootstrap nodes and
discovered peers. The node exposes metrics and diagnostics services for network health monitoring
purposes. Update firewall rules as necessary, including application level firewalls for the following ports

Purpose Config Property Protocol Default

Network network.port TCP 3919

Status clientInfo.port TCP 9601

The network port must be exposed publicly for peers to connect to your node.

The status port must be exposed publicly for rewards allocation.

Announced Addresses

An Announced Address is a layered addressing information (multiaddress / multiaddr) announced

to the Threshold Network that is used by peers to connect with your node, e.g.: /dns4/bootstrap-
0.test.keep.network/tcp/3919 or /ip4/104.154.61.116/tcp/3919 .

If the machine you’re running your node is not exposing a public IP (e.g. it is behind NAT) you should set the

network.AnnouncedAddresses (flag: --network.announcedAddresses) configuration property

to addresses (ip4 or dns4) under which your node is reachable for the public.

To read more about multiaddress see the .libp2p documentation

https://docs.libp2p.io/reference/glossary/#multiaddr

Data Storage
Setup persistent data directories for the client.

The client requires two persistent directories. These directories will store configuration files and data
generated and used by the client. It is highly recommended to create frequent backups of these directories.
Loss of these data may be catastrophic and may lead to slashing.

It is crucial to ensure the data directory is persisted and backed up on a regular basis.

Create folders for tBTC v2 client

cd /home
mkdir keep
cd keep
mkdir storage config

The tBTC v2 client will create two subdirectories within the storage directory: keystore and work . You
do not need to create these.

The keystore subdirectory contains sensitive key material data generated by the client. Loosing the

keystore data is a serious protocol offense and leads to slashing and potentially losing funds.

It is the operator’s responsibility to ensure the keystore data are not lost under any circumstances.

The work directory contains data generated by the client that should persist the client restarts or

relocations. If the work data are lost the client will be able to recreate them, but it is inconvenient due to the
time needed for the operation to complete and may lead to losing rewards.

Copy Operator keystore file

Assuming for the root user with the command provided in the

step, the operator-key file should be located in the ~/operator-key directory.

Geth was installed Operator Account creation

cd ~/operator-key

Contained within the operator-key directory is the account key file (operator key file), its name will be
similar to the following:

UTC--2018-11-01T06-23-57.810787758Z--
fa3da235947aab49d439f3bcb46effd1a7237e32

copy (not move!) this account key file to the config directory created above

ls -la
cp name_of_account_key_file /home/keep/config/name_of_account_key_file

Installation
A tBTC v2 node can be set up using either a docker or binary installation.

Docker Installation
This page will guide you through Docker setup steps.

Install Docker

Install or update Docker to the latest version. Visit the for detailed instructions. Use
the command below to find your installed version if needed:

Official Docker website

docker --version

Docker and Security Best Practices

General best practices recommend against running the tBTC v2 client as the root user as a security
precaution. One security-minded approach is to (Rootless
mode).

Run the Docker daemon as a non-root user

Next, choose ONE of the following options. The tBTC v2 Service option configures the client to run as a
service in order to ensure that the client is restarted automatically, should your machine reboot. The Docker
Launch Script is faster to setup, but won't start the client if your machine reboots.

https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/security/rootless/

Create the tbtcv2.service file:

cd /etc/systemd/system/
nano tbtcv2.service

Paste the following in the tbtcv2.service file:

[Unit]
Description=tBTC v2 client
After=network.target
Wants=network.target

[Service]
Environment="ETHEREUM_WS_URL=<Ethereum API WS URL>"
Environment="OPERATOR_KEY_FILE_NAME=<Operator Account keyfile name>"
Environment="OPERATOR_KEY_FILE_PASSWORD=<Operator Account keyfile password>"
Environment="PUBLIC_IP=/dns4/<PUBLIC_IP_OF_MACHINE>/tcp/3919"
Environment="CONFIG_DIR=/home/<user name>/keep/config"
Environment="STORAGE_DIR=/home/<user name>/keep/storage"

These items only apply if you setup rootless-mode.
Do not enable unless using rootless mode. Don't forget to adjust user UID.
#Environment="XDG_RUNTIME_DIR=/run/<user name>/<user UID>/"
#Environment="DOCKER_HOST=unix:///run/<user name>/<user UID>/docker.sock"

Type=simple
WorkingDirectory=/home/<user>

ExecStart=/usr/bin/docker run \
 --volume ${CONFIG_DIR}:/mnt/keep/config \
 --volume ${STORAGE_DIR}:/mnt/keep/storage \
 --env KEEP_ETHEREUM_PASSWORD=${OPERATOR_KEY_FILE_PASSWORD} \
 --env LOG_LEVEL=info \
 --log-opt max-size=100m \
 --log-opt max-file=3 \
 -p 3919:3919 \
 -p 9601:9601 \
 keepnetwork/keep-client:latest \
 start \
 --ethereum.url ${ETHEREUM_WS_URL} \
 --ethereum.keyFile /mnt/keep/config/${OPERATOR_KEY_FILE_NAME} \
 --storage.dir /mnt/keep/storage \
 --network.announcedAddresses $PUBLIC_IP

Restart=always
RestartSec=15s

[Install]
WantedBy=default.target

Systemd Service

Replace the placeholders inside the <> brackets, remove the <> brackets but be sure to not edit
anything further.

When done, save and close the file.

Next, test to make sure your configuration works:

sudo systemctl start tbtcv2

There will be no console output because it will be running in the background. Use systemctl to
get the status of the service:

sudo systemctl status tbtcv2

If the service failed, go back and double check your configuration.

Another option is to see if the Docker container is running:

docker ps

If everything is running as intended, enable the service:

systemctl enable tbtcv2

Now, with the service running, you should make sure that your configuration will tolerate a reboot
and start up again automatically.

reboot now

Log back in to your machine and check that the service is running. If it is, you're done. If not, go
back and review your work.

Docker Launch Script

To launch the tBTC v2 client, several configuration flags and environmental values need to be
set. For simplicity, a bash script can be used rather than typing or pasting all the flags into the
console.

Create the launch script:

nano keep.sh

And paste the following:

Keep tBTC v2 Client
#
Ethereum endpoint WebSocket URL
This can be a provider such as Infura, Alchemy, Ankr, etc or your own Geth Nodeq
ETHEREUM_WS_URL="wss://mainnet.infura.io/ws/v3/redacted_credentials"
note: only replace characters inside the " ". The Quotation marks must be retaine
ETHEREUM_WS_URL="<Ethereum API WS URL>"

Docker Container

copied to home/keep/config earlier
OPERATOR_KEY_FILE_NAME="<Operator Account keyfile name>"

password set during Operator Account Address creation
OPERATOR_KEY_FILE_PASSWORD="<Operator Account keyfile password>"

To configure your node with a Public IP, enter it below.
PUBLIC_IP="<PUBLIC_IP_OF_MACHINE>"
Alternatively, you can use DNS.
To configure DNS, modify the last line of the script
and add your DNS in the following format:
/dns4/bootstrap-1.test.keep.network/tcp/3919

Setup configuration and storage directories
THESE MUST BE PERSISTENT STORAGE
CONFIG_DIR="/home/keep/config"
STORAGE_DIR="/home/keep/storage"

docker run \
 --detach \
 --restart on-failure \
 --volume $CONFIG_DIR:/mnt/keep/config \
 --volume $STORAGE_DIR:/mnt/keep/storage \
 --env KEEP_ETHEREUM_PASSWORD=$OPERATOR_KEY_FILE_PASSWORD \
 --env LOG_LEVEL=info \
 --log-opt max-size=100m \
 --log-opt max-file=3 \
 -p 3919:3919 \
 -p 9601:9601 \
 keepnetwork/keep-client:latest \
 start \
 --ethereum.url $ETHEREUM_WS_URL \
 --ethereum.keyFile /mnt/keep/config/$OPERATOR_KEY_FILE_NAME \
 --storage.dir /mnt/keep/storage \
 --network.announcedAddresses /ip4/$PUBLIC_IP/tcp/3919

Save and close the file, and make it executable:

sudo chmod +x keep.sh

To launch the tBTC v2 client, execute:

sudo bash keep.sh

The --detach property will prevent the status messages from the client to be
printed to the console. Review the Docker logs for detailed status information.

The path shown in the example configuration will differ from yours. Make sure it is configured
correctly.

Client Startup

Unless the --detach flag was removed from the startup script, there will be no console output. In order to
check your node, retrieve the Docker logs.

First, find your Docker instance identification, it'll be a random combination of words, e.g.

stinky_brownie :

sudo docker ps

Use your specific identification and substitute:

sudo docker logs stinky_brownie >& /path/to/output/file

Scroll down about half a page, and you should see the following:

▓▓▌ ▓▓ ▐▓▓ ▓▓▓▓▓▓▓▓▓▓▌▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▄
▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▌▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
 ▓▓▓▓▓▓ ▓▓▓▓▓▓▓▀ ▐▓▓▓▓▓▓ ▐▓▓▓▓▓ ▓▓▓▓▓▓ ▓▓▓▓▓ ▐▓▓▓▓▓▌ ▐▓▓▓▓▓▓
 ▓▓▓▓▓▓▄▄▓▓▓▓▓▓▓▀ ▐▓▓▓▓▓▓▄▄▄▄ ▓▓▓▓▓▓▄▄▄▄ ▐▓▓▓▓▓▌ ▐▓▓▓▓▓▓
 ▓▓▓▓▓▓▓▓▓▓▓▓▓▀ ▐▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▌ ▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
 ▓▓▓▓▓▓▀▀▓▓▓▓▓▓▄ ▐▓▓▓▓▓▓▀▀▀▀ ▓▓▓▓▓▓▀▀▀▀ ▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▀
 ▓▓▓▓▓▓ ▀▓▓▓▓▓▓▄ ▐▓▓▓▓▓▓ ▓▓▓▓▓ ▓▓▓▓▓▓ ▓▓▓▓▓ ▐▓▓▓▓▓▌
▓▓▓▓▓▓▓▓▓▓ █▓▓▓▓▓▓▓▓▓ ▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓
▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓ ▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓

Trust math, not hardware.

| Keep Client Node |
| |
| Version: Version: v2.0.0-m1 (4d745f6d0) |
| |
| Operator: 0x_your_operator_address |
| |
| Port: 3919 |
| IPs : /ip4/111.222.333.444/tcp/3919/ipfs/redacted |
| |
| Contracts: |
| RandomBeacon : 0x5499f54b4A1CB4816eefCf78962040461be3D80b |
| WalletRegistry : 0x46d52E41C2F300BC82217Ce22b920c34995204eb |
TokenStaking : 0x01B67b1194C75264d06F808A921228a95C765dd7

Congratulations, your node is up and running.

Binary Installation
This page will guide you through Binary setup steps.

Choose either Docker installation OR Binary installation.

Download the Binary

Download the client binary file, make sure you are in the correct directory.

cd /home/keep
wget https://github.com/keep-network/keep-core/releases/download/v2.0.0-m1/keep-client-
mainnet-v2.0.0-m1-linux-amd64.tar.gz

After the download completes, use the command below to display the contents of the folder:

ls -la

Extract the compressed file:

tar xzvf downloaded-file-name-here.tar.gz

You can save some time and prevent misspelling a file name by typing the first few letter of the
file name and pressing the Tab key. This will autocomplete the file name. Be sure to verify the file
name prior to pressing the enter key.

Configure tBTC v2 Client

To launch the tBTC v2 client, several configuration flags and environmental values need to be set. For
simplicity, a bash script can be used rather than typing or pasting all the flags into the console.

The following flags must be set at minimum:

--ethereum.url "wss://mainnet-ETH-enpoint-here"
--mainnet
--storage.dir "/home/keep/storage"
--ethereum.keyFile "/home/keep/config/UTC--Your-Operator-Key-Name"
to configure your node to use your machine's public IP
--network.announcedAddresses "/ip4/your.ipv4.address.here/tcp/3919"
to configure your node to use DNS, provide your DNS in the following
format
/dns4/bootstrap-1.test.keep.network/tcp/3919

For a complete list of client commands and flags, see .CLI Options

To launch the client, execute the following:

./keep-client start --ethereum.url "wss://mainnet-ETH-enpoint-here" --mainnet --storage.dir
"/home/keep/storage" --ethereum.keyFile "/home/keep/config/UTC--Your-Operator-Key-Name" --
network.announcedAddresses "/ip4/your.ipv4.address.here/tcp/3919"

If everything is configured correctly, the client will request the password for the Operator Account. Supply the
password and press Enter.

You should see the following shortly:

▓▓▌ ▓▓ ▐▓▓ ▓▓▓▓▓▓▓▓▓▓▌▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▄
▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▌▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
 ▓▓▓▓▓▓ ▓▓▓▓▓▓▓▀ ▐▓▓▓▓▓▓ ▐▓▓▓▓▓ ▓▓▓▓▓▓ ▓▓▓▓▓ ▐▓▓▓▓▓▌ ▐▓▓▓▓▓▓
 ▓▓▓▓▓▓▄▄▓▓▓▓▓▓▓▀ ▐▓▓▓▓▓▓▄▄▄▄ ▓▓▓▓▓▓▄▄▄▄ ▐▓▓▓▓▓▌ ▐▓▓▓▓▓▓
 ▓▓▓▓▓▓▓▓▓▓▓▓▓▀ ▐▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▌ ▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
 ▓▓▓▓▓▓▀▀▓▓▓▓▓▓▄ ▐▓▓▓▓▓▓▀▀▀▀ ▓▓▓▓▓▓▀▀▀▀ ▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▀
 ▓▓▓▓▓▓ ▀▓▓▓▓▓▓▄ ▐▓▓▓▓▓▓ ▓▓▓▓▓ ▓▓▓▓▓▓ ▓▓▓▓▓ ▐▓▓▓▓▓▌
▓▓▓▓▓▓▓▓▓▓ █▓▓▓▓▓▓▓▓▓ ▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓
▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓ ▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓

Trust math, not hardware.

| Keep Client Node |
| |
| Version: Version: v2.0.0-m1 (4d745f6d0) |
| |
| Operator: 0x_your_operator_address |
| |
| Port: 3919 |
| IPs : /ip4/111.222.333.444/tcp/3919/ipfs/redacted |
| |
| Contracts: |
| RandomBeacon : 0x5499f54b4A1CB4816eefCf78962040461be3D80b |
| WalletRegistry : 0x46d52E41C2F300BC82217Ce22b920c34995204eb |

TokenStaking : 0x01B67b1194C75264d06F808A921228a95C765dd7

Congratulations, your node is up and running.

Advanced Options
Advanced configuration options and tBTC v2 staking client options

Logging

Configuration options for logging

Alternatives to Dashboard

Alternative application authorization methods to using the Threshold Dashboard.

Config File

Application configuration can be stored in a file and passed to the application with the --config flag.

CLI Options

Alternatives to Dashboard
Alternative application authorization methods to using the Threshold Dashboard.

An operator-registering transaction can be submitted with the Keep Client if the staking provider address key
file is available.

Authorizing Random Beacon via the Client (Docker)

export KEEP_CLIENT_CONFIG_DIR=$(pwd)/config

export KEEP_CLIENT_ETHEREUM_WS_URL="<Ethereum API WS URL>"

export STAKING_PROVIDER_KEY_FILE_PASSWORD="<Staking Provider Account Key File Password>"
export STAKING_PROVIDER_KEY_FILE_NAME="<Staking Provider Account Key File Name>"
export OPERATOR_ADDRESS="<Operator Account Address>"

docker run \
 --volume $KEEP_CLIENT_CONFIG_DIR:/mnt/keep-client/config \
 --env KEEP_CLIENT_ETHEREUM_PASSWORD=$STAKING_PROVIDER_KEY_FILE_PASSWORD
 us-docker.pkg.dev/keep-test-f3e0/public/keep-client:latest \
 ethereum \
 --ethereum.url $KEEP_CLIENT_ETHEREUM_WS_URL \
 --ethereum.keyFile /mnt/keep-client/config/$STAKING_PROVIDER_KEY_FILE_NAME \
 beacon random-beacon register-operator --submit \
 $OPERATOR_ADDRESS

Authorizing TBTC application via the Client (Docker)

$() fi

export KEEP_CLIENT_CONFIG_DIR=$(pwd)/config

export KEEP_CLIENT_ETHEREUM_WS_URL="<Ethereum API WS URL>"

export STAKING_PROVIDER_KEY_FILE_PASSWORD="<Staking Provider Account Key File Password>"
export STAKING_PROVIDER_KEY_FILE_NAME="<Staking Provider Account Key File Name>"
export OPERATOR_ADDRESS="<Operator Account Address>"

docker run \
 --volume $KEEP_CLIENT_CONFIG_DIR:/mnt/keep-client/config \
 --env KEEP_CLIENT_ETHEREUM_PASSWORD=$STAKING_PROVIDER_KEY_FILE_PASSWORD
 us-docker.pkg.dev/keep-test-f3e0/public/keep-client:latest \
 ethereum \

 --ethereum.url $KEEP_CLIENT_ETHEREUM_WS_URL \
 --ethereum.keyFile /mnt/keep-client/config/$STAKING_PROVIDER_KEY_FILE_NAME \
 ecdsa wallet-registry register-operator --submit
 $OPERATOR_ADDRESS

Via Web Browser

An operator-registering transactions can be submitted with Etherscan.

For each of the RandomBeacon and WalletRegistry contracts perform the following steps:

1. Find the address of the contract and open it on Etherscan (see below).

2. Go to Contract → Write Contract tab.

3. Connect your wallet with Connect to Web3 button.

4. Submit the registerOperator function with your Operator address as an argument.

Logging
Optional logging configuration for the tBTC v2 staking client.

Configuration

Logging can be configured with environment variables. Please see sample settings:

LOG_LEVEL=DEBUG
IPFS_LOGGING_FMT=nocolor
GOLOG_FILE=/var/log/keep/keep.log
GOLOG_TRACING_FILE=/var/log/keep/trace.json

LOG_LEVEL option DEBUG will generate extensive output. Consider INFO instead.

If you want to share your LibP2P address with others you can get it from the startup log. When

sharing remember to substitute the /ipv4/ address with the public facing IP of your client if

you’re running on a private machine, or replace the entire /ipv4/ segment with a DNS entry if
you’re using a hostname.

Config File
Use a config file to store client configuration.

Application configuration can be stored in a file and passed to the application with the --config flag.

Example:

./keep-client --config /path/to/your/config.toml start

Configuration files in formats TOML, YAML and JSON are supported.

Sample configuration file:

This is a sample TOML configuration file for the Keep client.

[ethereum]
URL = "ws://127.0.0.1:8546"
KeyFile = "/Users/someuser/ethereum/data/keystore/UTC--2018-03-11T01-37-33.202765887Z--
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8AAAAAAAAA"

Uncomment to override the defaults for transaction status monitoring.

MiningCheckInterval is the interval in which transaction
mining status is checked. If the transaction is not mined within this
time, the gas price is increased and transaction is resubmitted.
#
MiningCheckInterval = 60 # 60 sec (default value)

MaxGasFeeCap specifies the maximum gas fee cap the client is
willing to pay for the transaction to be mined. The offered transaction
gas cost can not be higher than the max gas fee cap value. If the maximum
allowed gas fee cap is reached, no further resubmission attempts are
performed. This property should be set only for Ethereum. In case of
legacy non-EIP-1559 transactions, this field works in the same way as
`MaxGasPrice` property.
#
MaxGasFeeCap = "500 Gwei" # 500 Gwei (default value)

Uncomment to enable Ethereum node rate limiting. Both properties can be
used together or separately.
#
RequestsPerSecondLimit sets the maximum average number of requests
per second which can be executed against the Ethereum node.
All types of Ethereum node requests are rate-limited,
including view function calls.
#
RequestsPerSecondLimit = 150

ConcurrencyLimit sets the maximum number of concurrent requests which

can be executed against the Ethereum node at the same time.
This limit affects all types of Ethereum node requests,
including view function calls.
#
ConcurrencyLimit = 30

BalanceAlertThreshold defines a minimum value of the operator's account
balance below which the client will start reporting errors in logs.
A value can be provided in `wei`, `Gwei` or `ether`, e.g. `7.5 ether`,
`7500000000 Gwei`.
#
BalanceAlertThreshold = "0.5 ether" # 0.5 ether (default value)

[network]
Bootstrap = false

Peers = ["/ip4/127.0.0.1/tcp/3919/ipfs/16Uiu2HAmFRJtCWfdXhZEZHWb4tUpH1QMMgzH1oiamCfUuK6NgqWX
",
]
Port = 3920

Uncomment to override the node's default addresses announced in the network
AnnouncedAddresses = ["/dns4/example.com/tcp/3919", "/ip4/80.70.60.50/tcp/3919"]

Uncomment to enable courtesy message dissemination for topics this node is
not subscribed to. Messages will be forwarded to peers for the duration
specified as a value in seconds.
Message dissemination is disabled by default and should be enabled only
on selected bootstrap nodes. It is not a good idea to enable dissemination
on non-bootstrap node as it may clutter communication and eventually lead
to blacklisting the node. The maximum allowed value is 90 seconds.
#
DisseminationTime = 90

[storage]
Dir = "/my/secure/location"

ClientInfo exposes metrics and diagnostics modules.

Metrics collects and exposes information useful for external monitoring tools usually
operating on time series data.
All values exposed by metrics module are quantifiable or countable.
#
The following metrics are available:
- connected peers count
- connected bootstraps count
- eth client connectivity status

Diagnostics module exposes the following information:
- list of connected peers along with their network id and ethereum operator address
- information about the client's network id and ethereum operator address
[clientInfo]
Port = 9601
NetworkMetricsTick = 60
EthereumMetricsTick = 600

Uncomment to overwrite default values for TBTC config.
#
[tbtc]
PreParamsPoolSize = 3000
PreParamsGenerationTimeout = "2m"
PreParamsGenerationDelay = "10s"
PreParamsGenerationConcurrency = 1
KeyGenConcurrency = 1

Developer options to work with locally deployed contracts
#
[developer]

TokenStakingAddress = "0xBB"# RandomBeaconAddress = "0xBB"
WalletRegistryAddress = "0xBB"
BridgeAddress = "0xBB"

CLI Options
Review available CLI Options below.

keep-core/client-start-help at main · keep-network/keep-core
GitHub

https://github.com/keep-network/keep-core/blob/main/docs/resources/client-start-help

$ keep-client start --help
Starts the Keep Client in the foreground

Usage:
 keep-client start [flags]

Flags:
 --ethereum.url string WS connection URL for Ethereum client.
 --ethereum.keyFile string The local filesystem path to Keep operator
 --ethereum.miningCheckInterval duration The time interval in seconds in which trans
 --ethereum.maxGasFeeCap wei The maximum gas fee the client is willing t
 --ethereum.requestPerSecondLimit int Request per second limit for all types of E
 --ethereum.concurrencyLimit int The maximum number of concurrent requests w
 --ethereum.balanceAlertThreshold wei The minimum balance of operator account bel
 --network.bootstrap Run the client in bootstrap mode.
 --network.peers strings Addresses of the network bootstrap nodes.
 -p, --network.port int Keep client listening port. (default 3919)
 --network.announcedAddresses strings Overwrites the default Keep client address
 --network.disseminationTime int Specifies courtesy message dissemination ti
 --storage.dir string Location to store the Keep client key share
 --clientInfo.port int Client Info HTTP server listening port. (de
 --clientInfo.networkMetricsTick duration Client Info network metrics check tick in s
 --clientInfo.ethereumMetricsTick duration Client info Ethereum metrics check tick in
 --tbtc.preParamsPoolSize int tECDSA pre-parameters pool size. (default 1
 --tbtc.preParamsGenerationTimeout duration tECDSA pre-parameters generation timeout.
 --tbtc.preParamsGenerationDelay duration tECDSA pre-parameters generation delay. (de
 --tbtc.preParamsGenerationConcurrency int tECDSA pre-parameters generation concurrenc
 --tbtc.keyGenerationConcurrency int tECDSA key generation concurrency. (default
 --developer.bridgeAddress string Address of the Bridge smart contract
 --developer.randomBeaconAddress string Address of the RandomBeacon smart contract
 --developer.tokenStakingAddress string Address of the TokenStaking smart contract
 --developer.walletRegistryAddress string Address of the WalletRegistry smart contrac

Global Flags:
 -c, --config string Path to the configuration file. Supported formats: TOML, YAML, JSON.
 --developer Developer network
 --goerli Görli network
 --mainnet Mainnet network

Environment variables:
 KEEP_ETHEREUM_PASSWORD Password for Keep operator account keyfile decryption.
 LOG_LEVEL Space-delimited set of log level directives; set to "help" for h

Frequently Asked Questions
Find answers to some of the most commonly asked questions here.

Errors in Logs or Console

Certain errors may be reported by your node during the early stages of Chaosnet and the tBTC 2 launch.
See a sample below:

2022-10-10T18:30:42.571Z WARN keep-beacon beacon/node.go:78 selecting group not
possible: [cannot select group in the sortition pool: [got error [execution reverted:
Sortition pool unlocked] while resolving original error [execution reverted: Sortition pool
unlocked]]] {"seed":
"0x29c60250c292e108e6abf4dcc76cb161d8ae8e803c4d4419eaff6e97f514b080"}

This warning is normal and may happen on chaosnet. It will disappear and reappear periodically.

This is expected during this stage of the chaosnet. When the pool is locked, new operators cannot join but
sortition (selecting operators from the pool) is possible. When the pool is unlocked, new operators can join
but the sortition is not possible. Once the first set of beta operators is registered, the pool will get locked for
some time to allow the sortition. After some time, when another set of beta operators are added, the pool will
be unlocked again.

Staking Providers

You can delegate running an application node to one of the node-as-a-service Staking Providers listed
below.

Staking Providers have not been vetted or endorsed by Threshold. Use your judgement
when selecting a provider.

Staking Provider Contact Information

Ankr ​ ​sales@ankr.com

Coinbase Cloud ​ ​cloud-sales@coinbase.com

Blockdaemon ​ ​konstantin@blockdaemon.com

Boar ​ ​hello@boar.network

DELIGHT ​ ​contact@delightlabs.io

Figment ​ ​support@figment.io

InfStones ​ ​sales@infstones.com

Low Fee Validation ​ ​eduardo@lowfeevalidation.com

P2P ​ ​am@p2p.org

Staked ​ ​staked@staked.us

https://www.ankr.com/
mailto:sales@ankr.com
https://www.coinbase.com/cloud
mailto:cloud-sales@coinbase.com
https://blockdaemon.com/
mailto:konstantin@blockdaemon.com
https://boar.network/
mailto:hello@boar.network
https://delightlabs.io/
mailto:contact@delightlabs.io
https://figment.io/
mailto:support@figment.io
https://infstones.com/
mailto:
https://lowfeevalidation.com/
mailto:eduardo@lowfeevalidation.com
https://p2p.org/
mailto:am@p2p.org
https://staked.us/
mailto:staked%40staked.us

Goerli Testnet

Here you'll find the version of the Threshold dapp. Goerli testnet

Goerli Testnet - Threshold Dashboard

https://dashboard.test.threshold.network/overview/network

Testnet tBTC v2 node Setup
This page will show you how to launch a tBTC v2 node on the testnet.

This is a TESTNET guide document. Following this document will not result in a node enabling
you to earn mainnet rewards.

Recommended Machine Types

While it is possible to run the client on a local machine, this is not recommended.

Your operating environment will ultimately dictate what machine type to go with. This is particularly relevant
if you’re running a containerized solution where multiple applications are sharing VM resources. The below
types are sufficient for running one instance of the tBTC v2 Node.

The preferred OS is Ubuntu.

VPS Provider VPS Type

AWS c5.large

Azure F2s v2

Google Cloud n2-highcpu-2

Self-hosted 2 vCPU / 2 GB RAM / 1 GiB Persistent Storage

Ethereum API

A Keep Node requires a connection to a WebSocket Ethereum API. You should obtain a WS API URL from
a service provider (e.g. , ,) or run your own Ethereum node (e.g.).Alchemy Infura Ankr Geth

The client requires an Ethereum Key File of an Operator Account to connect to the Ethereum chain. This
account is created in a subsequent step using Geth (GoEthereum).

The Ethereum Key File is expected to be encrypted with a password. The password has to be provided in a

prompt after the client starts or configured as a KEEP_ETHEREUM_PASSWORD environment variable.

The Operator Account has to maintain a positive Ether balance at all times.

Please do NOT reuse an operator account that is being used for PRE or other applications.

https://www.alchemy.com/
https://www.infura.io/
https://www.ankr.com/rpc-service/
https://geth.ethereum.org/

Install Geth (GoEthereum)

To create a new Ethereum account, (GoEthereum) and create a new account using the
command below. This account will subsequently be referred to as the Operator Account.

install Geth

geth account new --keystore ./operator-key

When prompted, provide a password to protect the operator key file.

Use a password manager to generate a strong password and store it safely. It will be needed
again during setup.

Avoid passwords that contain the following characters: ', ", `, $
These characters may be interpreted as part of the configuration which can lead to undesirable
outcomes that may be extremely time intensive to correct.

Once the process completes, your public key will be displayed. Take note of your Operator Account public
key.

DO NOT LOSE THE PASSWORD TO THE OPERATOR ACCOUNT.

Funding your Operator Account

Your Operator Account will need to be funded with goerli ETH and maintain a positive balance at all times to
ensure proper operation and availability of your tBTC v2 node.

Network Configuration

The node has to be accessible publicly to establish and maintain connections with bootstrap nodes and
discovered peers.

Update firewall rules as necessary, including application level firewalls.

The node exposes metrics and diagnostics services for monitoring. A network port has to be exposed
publicly, so the peers can connect to your node. A Diagnostics Port has to be exposed publicly, for the
rewards allocation.

https://geth.ethereum.org/docs/install-and-build/installing-geth#ubuntu-via-ppas

Purpose Config Property Protocol Default

Network network.port TCP 3919

Status clientInfo.port TCP 9601

A Diagnostics Port has to be exposed publicly, for the rewards allocation.

Announced Addresses

An Announced Address is a layered addressing information (multiaddress / multiaddr) announced

to the Threshold Network that is used by peers to connect with your node, e.g.: /dns4/bootstrap-
0.test.keep.network/tcp/3919 or /ip4/104.154.61.116/tcp/3919 .

If the machine you’re running your node is not exposing a public IP (e.g. it is behind NAT) you should set the

network.AnnouncedAddresses (flag: --network.announcedAddresses) configuration property

to an addresses (ip4 or dns4) under which your node is reachable for the public.

To read more about multiaddress see the .libp2p docummentation

One important step to get your node operating on the Threshold Network is proper application authorization
as well as operator account registration. Applications need only be authorized once.

It is CRITICALLY important that both the tBTC application as well as the Random Beacon
applications are authorized. A node cannot be deployed without both applications being properly
authorized.

Please note: by authorizing these applications, an unbonding period of 45 days will go into effect
on the T you stake for these applications. This cool-down period begins the day you submit an
unstake request.

Application Authorization

To get started, visit the Threshold Dashboard and connect your wallet.

https://docs.libp2p.io/reference/glossary/#multiaddr

Threshold Dashboard

Click on "Configure Apps"

Authorizing Threshold Applications

Select BOTH tBTC and Random Beacon applications and enter your desired amount of T to stake per
application. Note that the minimum is 40,000T.

Authorizing Threshold Applications

Operator Registration

The operator account is the Ethereum account created on your node. In order for the network to associate
your T stake with your node, you must register your Operator Address.

An Operator for the Provider registration can be submitted just once. The Operator address
assignment cannot be updated.

Registering Operator Address

After both applications have been authorized, click on "Start Mapping" to begin the Operator Registration
process.

Registering Operator Address

Enter your Operator Address in the field provided and click on "Map Address."

Once the steps above have been successfully completed, you are ready to move on to the next step in the
node deployment process.

Don't forget: a tBTC v2 node will not be able to be deployed without successfully authorizing both
the tBTC and Random Beacon applications, and registering the node's operator address FIRST.

Create Folder Structure

The client requires two persistent directories. These directories will store configuration files and data
generated and used by the client. It is highly recommended to create frequent backups of these directories.
Loss of these data may be catastrophic and may lead to slashing.

It is crucial to ensure the data directory is persisted and backed up on a regular basis.

Create folders for tBTC v2 client

cd /home
mkdir keep
cd keep
mkdir storage config

The tBTC v2 client will create two subdirectories within the storage directory: keystore and work . You
do not need to create these.

The keystore subdirectory contains sensitive key material data generated by the client. Loosing the

keystore data is a serious protocol offense and leads to slashing and potentially losing funds.

It is the operator’s responsibility to ensure the keystore data are not lost under any circumstances.

The work directory contains data generated by the client that should persist the client restarts or

relocations. If the work data are lost the client will be able to recreate them, but it is inconvenient due to the
time needed for the operation to complete and may lead to losing rewards.

Copy Operator keystore file

Assuming for the root user with the command provided in the

step, the operator-key file should be located in the ~/operator-key directory.

Geth was installed Operator Account creation

cd ~/operator-key

Contained within the operator-key directory is the account key file (operator key file), its name will be
similar to the following:

UTC--2018-11-01T06-23-57.810787758Z--
fa3da235947aab49d439f3bcb46effd1a7237e32

copy (not move!) this account key file to the config directory created above

ls -la
cp name_of_account_key_file /home/keep/config/name_of_account_key_file

Install Docker

Install or update Docker to the latest version. Visit the for detailed instructions. Use
the command below to find your installed version if needed:

Official Docker website

docker --version

Docker Launch Script

https://docs.docker.com/engine/install/ubuntu/

To launch the tBTC v2 client, several configuration flags and environmental values need to be set. For
simplicity, a bash script can be used rather than typing or pasting all the flags into the console.

Create the launch script:

nano keep.sh

And paste the following:

Keep Testnet tBTC v2 Client
#
Ethereum endpoint WebSocket URL
This can be a provider such as Infura, Alchemy, Ankr, etc or your own Geth Nodeq
ETHEREUM_WS_URL="wss://goerli.infura.io/ws/v3/redacted_credentials"
note: only replace characters inside the " ". The Quotation marks must be retained
ETHEREUM_WS_URL="<Ethereum API WS URL>"

copied to home/keep/config earlier
OPERATOR_KEY_FILE_NAME="<Operator Account keyfile name>"

password set during Operator Account Address creation
OPERATOR_KEY_FILE_PASSWORD="<Operator Account keyfile password>"

To configure your node with a Public IP, enter it below.
PUBLIC_IP="<PUBLIC_IP_OF_MACHINE>"
Alternatively, you can use DNS.
To configure DNS, modify the last line of the script
and add your DNS in the following format:
/dns4/bootstrap-1.test.keep.network/tcp/3919

Setup configuration and storage directories
THESE MUST BE PERSISTENT STORAGE
CONFIG_DIR="/home/keep/config"
STORAGE_DIR="/home/keep/storage"

docker run \
 --detach \
 --restart on-failure \
 --volume $CONFIG_DIR:/mnt/keep/config \
 --volume $STORAGE_DIR:/mnt/keep/storage \
 --env KEEP_ETHEREUM_PASSWORD=$OPERATOR_KEY_FILE_PASSWORD \
 --env LOG_LEVEL=info \
 --log-opt max-size=100m \
 --log-opt max-file=3 \
 -p 3919:3919 \
 -p 9601:9601 \
 us-docker.pkg.dev/keep-test-f3e0/public/keep-client \
 start \
 --goerli \
 --ethereum.url $ETHEREUM_WS_URL \
 --ethereum.keyFile /mnt/keep/config/$OPERATOR_KEY_FILE_NAME \
 --storage.dir /mnt/keep/storage \

 --network.announcedAddresses /ip4/$PUBLIC_IP/tcp/3919

Save and close the file, and make it executable:

sudo chmod +x keep.sh

To launch the tBTC v2 client, execute:

sudo bash keep.sh

The --detach property will prevent the status messages from the client to be printed to the
console. Review the Docker logs for detailed status information.

The path shown in the example configuration will differ from yours. Make sure it is configured
correctly.

Client Startup

Unless the --detach flag was removed from the startup script, there will be no console output. In order to
check your node, retrieve the Docker logs.

First, find your Docker instance identification, it'll be a random combination of words, e.g.

stinky_brownie :

sudo docker ps

Use your specific identification and substitute:

sudo docker logs stinky_brownie >& /path/to/output/file

Scroll down about half a page, and you should see the following:

▓▓▌ ▓▓ ▐▓▓ ▓▓▓▓▓▓▓▓▓▓▌▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▄
▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▌▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
 ▓▓▓▓▓▓ ▓▓▓▓▓▓▓▀ ▐▓▓▓▓▓▓ ▐▓▓▓▓▓ ▓▓▓▓▓▓ ▓▓▓▓▓ ▐▓▓▓▓▓▌ ▐▓▓▓▓▓▓
 ▓▓▓▓▓▓▄▄▓▓▓▓▓▓▓▀ ▐▓▓▓▓▓▓▄▄▄▄ ▓▓▓▓▓▓▄▄▄▄ ▐▓▓▓▓▓▌ ▐▓▓▓▓▓▓
 ▓▓▓▓▓▓▓▓▓▓▓▓▓▀ ▐▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▌ ▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓
 ▓▓▓▓▓▓▀▀▓▓▓▓▓▓▄ ▐▓▓▓▓▓▓▀▀▀▀ ▓▓▓▓▓▓▀▀▀▀ ▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▀
 ▓▓▓▓▓▓ ▀▓▓▓▓▓▓▄ ▐▓▓▓▓▓▓ ▓▓▓▓▓ ▓▓▓▓▓▓ ▓▓▓▓▓ ▐▓▓▓▓▓▌
▓▓▓▓▓▓▓▓▓▓ █▓▓▓▓▓▓▓▓▓ ▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓
▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓ ▐▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓ ▓▓▓▓▓▓▓▓▓▓

Trust math, not hardware.

| Keep Client Node |
| |
| Version: Version: v2.0.0-m1 (4d745f6d0) |
| |

| Operator: 0x_your_operator_address |
| |
| Port: 3919 |
| IPs : /ip4/111.222.333.444/tcp/3919/ipfs/redacted |
| |
| Contracts: |
| RandomBeacon : 0x2bA82903B635a96154A515488d2952E86D6adc3A |
| WalletRegistry : 0x2363cc10b7680000C02E4a7067A68d1788ffc86F |
TokenStaking : 0x69f962a0fbA5635e84eC94131f9072108E2E4F24

Congratulations, your node is up and running.

App Development

Threshold Access Control

Use Threshold Access Control for end-to-end encrypted, end-to-end decentralized data sharing and
communication.

-> See in the Fundamentals section for an overview of the over-arching
concepts and value propositions.

Threshold Access Control

There are multiple products and versions under the umbrella of 'Threshold Access Control':

Conditions-Based Decryption, Proof-of-Concept
Use this version to familiarize yourself with the SDK, API and developer-facing
configuration/parametrization. Get started .here

Conditions-Based Decryption, Mainnet version
This version is under intense development and will be released in early Q2 2022. Learn about the vision
for the product and underlying trust model .here here

Proxy Re-encryption, Mainnet version
This product and version is currently live on the Threshold Mainnet and has been battle-tested for over 2
years. Learn the fundamentals of the PRE offering and get started building with PRE . here here

Get Started (CBD PoC)

This tutorial is a quick way for developers to learn about the Threshold Access Control service by building
with the Proof-of-Concept (PoC) version of . Conditions-Based Decryption

Note that the underlying vary between versions and technologies; these are explained in
detail for the , , and versions.

trust assumptions
CBD Proof-of-Concept CBD Mainnet PRE Mainnet

1. Install nucypher-ts

nucypher-ts is under .active development

To begin, we need to install the nucypher-ts library:

yarn add @nucypher/nucypher-ts

One of the nucypher-ts dependencies takes advantage of . In order to run nucypher-ts in the
browser, we have to from the source files. This process is mostly automated by the wrapper

generated by .

WASM
load WASM

wasm-pack

For this tutorial we'll need a few extra packages:

yarn add ethers @metamask/detect-provider

Visit for more information on using nucypher-ts in your web application.nucypher-ts/examples

2. Build a Cohort

Next, we will create a Cohort based on our risk preferences. A Cohort is a group of nodes that work

together to control access to data. Threshold and Shares are two parameters used to create a Cohort . For

example, a 3-of-5 Cohort needs at least 3 of the 5 members to provide shares to access the original data.

To create a Cohort , use the following code:

import { Cohort } from '@nucypher/nucypher-ts';

const config = {
 threshold: 3,
 shares: 5,
 porterUri: 'https://porter-tapir.nucypher.community',
};
const newCohort = await Cohort.create(config);

https://github.com/nucypher/nucypher-ts/pulls
https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly/Loading_and_running
https://rustwasm.github.io/docs/wasm-pack/tutorials/npm-browser-packages/using-your-library.html
https://github.com/nucypher/nucypher-ts/tree/main/examples

Notice that we provided a porterUri parameter. is a web-based service that interacts with nodes
on the network on behalf of applications. It acts as an "Infura for Threshold Access Control". In this example,

we used a Porter endpoint for the tapir testnet.

Porter

3. Specify default Conditions

Conditions are the requirements for a data requester or recipient to access the plaintext data – i.e. what they
will need to prove later to gain decryption rights.

The ERC721Ownership condition checks the owner of a given token ID. It can be customized by using

the ownerOf contract method and comparing it with the requestor's signature. For more information, see
the section.References

CBD allows developers to enforce conditional access at various runtime stages, depending on
what makes the most sense for the use case. At this point, we will add the default Conditions,
which will only gate-keep access if no other conditions are included later at encryption time. This
is explained further in .Condition Hierarchies

We will now specify the conditions that must be met to access the data. In this tutorial, we will require that
the requester owns an ERC721 token with a token ID of 5954.

import { Conditions } from '@nucypher/nucypher-ts';

const NFTOwnership = new Conditions.ERC721Ownership({
 contractAddress: '0xBC4CA0EdA7647A8aB7C2061c2E118A18a936f13D',
 chain: 5, // Tapir network uses Görli testnet
 parameters: [5954],
});

There are multiple and it is possible to combine multiple conditions into a
.

Condition types
ConditionSet

import { Conditions, ConditionSet } from '@nucypher/nucypher-ts';

const conditions = new ConditionSet([
 NFTOwnership,
 // Other conditions can be added here
]);

4. Build a Strategy

https://docs.nucypher.com/en/latest/application_development/web_development.html#porter

We will now combine the Cohort , ConditionSet , and any other necessary parameters into a

. Strategies are a convenient way to bundle together frequently used configurations, including
specific combinations of network parameters and conditionality.
Strategy

import { Strategy } from '@nucypher/nucypher-ts';

const newStrategy = Strategy.create(newCohort, conditions);

Next, we will deploy this Strategy to the Threshold Network. To do that, we're going to transact on
Polygon Mumbai:

import detectEthereumProvider from '@metamask/detect-provider';
import { providers } from 'ethers';

const MMprovider = await detectEthereumProvider();
const mumbai = providers.getNetwork(80001);

const web3Provider = new providers.Web3Provider(MMprovider, mumbai);
const newDeployed = await newStrategy.deploy('test', web3Provider);

Deploying a Strategy requires writing to the blockchain. This requires a wallet funded with

testnet MATIC and connection to the blockchain via a provider (e.g. MetaMask).

For more information about customizing and reusing Cohort , Condition , and Strategy objects, see
the page in the documentation.References

5. Encrypt the plaintext & update Conditions

We can now encrypt data using the newly deployed Strategy . At this point, we can also specify new
conditions on which data access will be predicated. These will take a higher precedence and override the
default conditions contained in the Strategy. For this example, let's make it so the overriding requirement is
that the requester's wallet hold a minimum number (three) of NFTs. The NFTs are from the same collection

that we specified in Step 3. Note that Threshold nodes will check this new condition using the balanceOf
method.

To encrypt the plaintext:

const NFTBalanceConfig = {
 contractAddress: '0xBC4CA0EdA7647A8aB7C2061c2E118A18a936f13D',
 standardContractType: 'ERC721',
 chain: 5,
 method: 'balanceOf',
 parameters: [':userAddress'],
 returnValueTest: {
 comparator: '>=',
 value: 3,

 },
};
const NFTBalance = new Conditions.Condition(NFTBalanceConfig);

const encrypter = newDeployed.encrypter;

const plaintext = 'this is a secret';
const encryptedMessageKit = encrypter.encryptMessage(
 plaintext,
 new ConditionSet([NFTBalance])
);

The resulting encryptedMessageKit contains the encrypted data and associated condition(s).

6. Request decryption rights

Finally, we will test the conditional access control service by requesting decryption rights:

const decrypter = newDeployed.decrypter;

const conditionContext = conditions.buildContext(web3Provider);
const decryptedMessage = await decrypter.retrieveAndDecrypt(
 [encryptedMessageKit],
 conditionContext
);

At decryption time, the requester will be asked to verify their address by signing a message in MetaMask.

This is where conditionContext comes into play – if the requester's address controls the minimum
number (or greater) of the specified NFT, they are eligible to receive the requisite number of decryption
fragments. By assembling these fragments, they are able to decrypt and view the plaintext encrypted in the
previous step.

Note that the requester does not need to manually sign the next time they seek access to the
data, as their client can temporarily cache their signature. Fresh plaintexts encrypted under any
conditions involving the same wallet address are automatically accessible to any requester who
has signed at least once, provided they still fulfill the (new) conditions, and the cached signature
has not expired.

Example applications

The following samples showcase integrations with React-based web apps, and serve as an 'end-to-end'
reference for creating conditions-based encryption & decryption:

nucypher/tdec-sandbox

nucypher/tdec-nft-example

nucypher/alpha-leaks-demo

https://github.com/nucypher/tdec-sandbox
https://github.com/nucypher/tdec-nft-example
https://github.com/nucypher/alpha-leaks-demo

Trust Assumptions

As the only genuinely decentralized access control service on the market, Threshold Access Control may
also claim to be the most 'trustless' solution available to Web3 app buidlers – or indeed, available to any
developer seeking an unambiguous departure from the exploitative Web 2.0 trust paradigm.

Nevertheless, there is no such thing as a third-party integration that imposes zero additional trust burden
onto an application's end-users. Rather, when choosing infrastructural technology, it is the nature and
texture of the trust burden(s) – or the 'trust assumptions' – that truly matter.

In the case of Threshold Access Control, the trust assumptions are:

non-binary – i.e. not reducible to 'trustless' or 'trustful'.

non-static – i.e. they evolve over time based on in-protocol features and exogeneous phenomena.

tunable – i.e. adopting developers may select from a range of explicit trust assumptions on behalf of their
user base, and/or surface that optionality for end-users to choose themselves.

This section serves to explain the implicit and explicit trust assumptions that are baked into Threshold
Access Control, for the and versions. These assumptions are synthesized and
exposed to the vast majority of adopting developers in the form of pre-configured .

Mainnet Proof-of-Concept
Trust Packages

Note that many projects in the Web3 infrastructure space seek to obscure this reality by loosely labelling
their solution as 'decentralized', but fail to explain precisely what the trust implications are in practice.
Beware of ambiguity!

Trust Packages

This page is under construction.

CBD Mainnet Version

 Note that the CBD Mainnet version remains under development and is planned for release in Q2
2023. However, for developers considering integrating Conditions-Based Decryption into their
application, it is worthwhile familiarizing oneself with the underlying trust model.

Trust Packages

CBD allows adopting developers to pull a range of 'trust levers' in order to satisfy and assuage the trust, risk,
cost, redundancy and latency preferences of their end-users. However, correctly selecting individual
parameters across each and every trust/risk dimension requires a deep understanding of the underlying
mechanisms and cryptology. Moreover, these parameters must be combined into a coherent bundle that, as
a whole, aligns with the risk aversion and trust-minimization desiderata of end-users. Hence, to avoid
burdening developers with onerous analysis, the Threshold team has constructed a set of pre-configured
'trust packages'. They are introduced and detailed . here

The context for configuring the trust packages follows below.

Cohort-based trust assumptions

The foundation of the Threshold Access Control trust model (and indeed, threshold cryptography in general)
is the concept of a Cohort; a group of Threshold nodes temporarily employed to either:

1. Collectively generate and manage part of a public key that can be used to encrypt one or more data
payloads.

2. Collectively manage a decryption fragment associated with a single data payload and provide the
fragment to requesters who fulfill pre-specified conditions.

All Cohorts are parametrized on formation, including the Cohort size (n) and Cohort threshold (m). These
parameters are the inputs for the following core trust assumptions:

The first is the orderly threshold assumption, wherein the protocol relies on a minimum number – the
threshold – of node operators within each Cohort to follow the protocol correctly. For example, a 16-of-32
cohort would require at least 16 nodes to be online, responsive and (ideally) run an up-to-date version of
CBD software. If any fewer than 16 are online, data requesters will be unable to retrieve decryption
fragments.

The second is the honest threshold assumption, the protocol's most fundamental form of collusion-
resistance – that is, protection against deliberate, unlawful attempts to access private data. In this case, the
protocol relies on a minimum number of operators to be ‘honest’ – i.e. not susceptible to bribery, coercion or

other attempts to maliciously collude. This minimum is calculated as the threshold node count (m)

subtracted from the total cohort size, plus one (n - m + 1). Using the same example as before, a 16-of-
32 Cohort would require a minimum of 32 - 16 + 1 = 17 honest operators. In other words, if at least 17
individual operators refuse to collude, there is nothing the remaining 15 operators can do, regardless of their
war chest or aggregate stake power.

Note that the orderly threshold and honest threshold assumptions are conceptually similar to the more
common honest majority assumption. However, they are more flexible than simply requiring those who
control 50% of the staked tokens to be honest. Unlike most BFT or pBFT-based protocols, the honest
threshold can be partially decoupled from the operators’ stake weights, depending on the cohort sampling
parameters specified by the developer or end-user.

Sampling-based trust assumptions

The orderly threshold and honest threshold trust assumptions above treat each Cohort as an isolated group,

where the chosen parameters (m-of-n) determine the group’s redundancy, latency and collusion
resistance. However, the reality is that each Cohort is selected from a larger sample of Threshold nodes,
which is far larger than the typical/optimal size of each cohort – there is not necessarily much overlap
between Cohorts.

Therefore, the mechanisms through which nodes are selected to form Cohorts carry their own trust
assumptions. More specifically, the sampling parameters impact the security and collusion-resistance of a
given data sharing flow. Sampling parametrization can be divided into; (1) those relating to frequency and

prompting of (re-)sampling, and (2) compositional requirements to form a Cohort, besides the top-level m &

n parameters.

(1) Cohort refresh

Members of a Cohort can be replaced as frequently as is practical, with the main constraint being the
bandwidth overhead of key discovery. A more regular re-sampling of Cohort members provides a form of
increased collusion-resistance, as an attacker would have less time to discover, contact and bribe/coerce
the requisite threshold of operators in order to access sensitive material.

It could be argued that with very frequent Cohort refresh, a wily attacker could simply wait until a
subset of operators they control happens to satisfy the threshold, however briefly that may be.
However, this attack strategy would be of little value in most contexts, since it would be almost
impossible to predict which encrypted message would coincide with the malicious subset-in-
waiting. For example, an attacker seeking illicit access to market sensitive information (from a
private DAO group chat) would be extraordinarily fortunate to temporarily control the requisite
decryption fragments in the exact window that a market-moving message was shared.

The logic which prompts the refreshing of Cohort members is also customizable. For example, a group chat
application might include the option to mark a conversation as 'sensitive', in which case messages sent
within this conversation will be assigned to and managed by fresh Cohorts with a greater frequency (or
randomness) than regular messages.

It’s worth noting that the refreshing of Cohort members is unavoidable, regardless of the
frequency or prompts chosen by a developer or end-user. This is because node operators will
naturally wind down their operations and commitment to the network ('unbonding') over time.
Although there are staker-facing protocol mechanisms in place to minimize the probability of a
disorderly exodus, the proactive refreshing of Cohorts can also mitigate against abandonment of
duties, for example by preemptively replacing operators with pending stake withdrawals (i.e.
those who have initiated unbonding) with those with a longer-term economic commitment to the
network (i.e. no unbonding initiated, or some longer token lock-up period).

(2) Cohort composition beyond m & n

Developers may also toggle certain Cohort characteristics via the sampling mechanism. For example, they
might force a percentage of Cohort positions to be filled exclusively by:

Node operators who have staked a minimum (or maximum) sum of T tokens.

Specific Ethereum addresses (e.g. nodes operated by the adopting developer themselves, or their
partners).

Node operators who have not initiated stake unbonding in the past X months.

Node operators who also (or do not) provision service to other Threshold applications, such as tBTCv2.

Node operators who have a minimum historical availability (for example, as measured via their verifiable
tBTCv2 activity).

Population-based trust assumptions

This section is under construction.

The protocol is also permissionless and psuedonymous (Ethereum addresses), which means the total
population of node operators will expand, contract and change its composition over time, and that change
will not be perfectly discernible.

The node population is also non-uniform; rather, it is comprised of a heterogeneous set of operators, ranging
from the hobbyist to institutional stakers. Although there is a degree of standardization with respect to
requisite machine memory, CPU power, latency and availability, the actual underlying servers are only
observable anecdotally – i.e. this cannot yet be verified on-chain. However, this anecdotal, informal insight
into the node population can be supplemented and corroborated with conclusions drawn from on-chain
activity, such as slashing or unbonding events.

Infrastructure-based trust assumptions

This section is under construction.

CBD Proof-of-Concept Version

The Proof-of-Concept version exists to help developers familiarize themselves with the SDK, API and other
architectural/design choices, ahead of the Mainnet version release in Q2 2023.. It is not intended to be
utilized as a trust-minimized service. Hence, the trust assumptions are strictly worse than the Mainnet
version. One can consider the following limitations to be appended on top of the Mainnet trust : model

1. In the absence of a DKG component, the encryptor (or 'Alice') retains permanent decryption power,
regardless of their condition fulfillment later – e.g. transferring the corresponding NFT out of their wallet.

2. Conditions can technically be 'stripped' from ciphertexts by a sophisticated user, which would enable
them to maliciously gain decryption rights by presenting a ciphertext with no attached access
conditionality.

3. The node array managing decryption fragments – and validating condition (non/)fulfillment – are
running on testnet, are operated primarily by NuCypher team-members, and are not subject to a
cryptoeconomic protocol or a requirement to deposit/risk collateral.

Note that these three limitations will be addressed in the CBD Mainnet version. Upgrading from this version
to the Mainnet version involves entirely replacing the underlying cryptosystem, which means all data
encrypted via the Proof-of-Concept will have to be (downloaded and) encrypted again from plaintext utilizing
the new cryptography.

PRE Mainnet Version

This page is under construction.

CBD Advanced Usage

Condition Hierarchies

 can be attached at several steps in the TAC lifecycle, and they have a fixed hierarchy at runtime.
This means default Conditions can be specified and subsequently overwritten later on in the process.
Conditions

Strategy Conditions

Conditions can be attached directly to a . They have the lowest precedence and are a great place
for including defaults or 'fall back' conditions.

Strategy

import { Cohort, Conditions, ConditionSet, Strategy } from '@nucypher/nucypher-ts';

const config = {
 threshold: 3,
 shares: 5,
 porterUri: 'https://porter-tapir.nucypher.community',
};
const newCohort = await Cohort.create(config);

const NFTOwnership = new Conditions.ERC721Ownership({
 contractAddress: '0xBC4CA0EdA7647A8aB7C2061c2E118A18a936f13D',
 chain: 5, // Tapir network uses Görli testnet
 parameters: [5954],
})
const conditions = new ConditionSet([NFTOwnership]);

const newStrategy = Strategy.create(
 newCohort,
 conditions
);

All encrypter objects that a deployed Strategy produces will automatically have these conditions
included. Therefore, all encrypted messages will require these conditions to be satisfied.

Encrypter Conditions

This is the next level of precedence in the hierarchy, where each encrypter object can have its own
conditions. Assuming the above strategy has been deployed, we can attach conditions in the following way:

const encrypter = deployedStrategy.encrypter;

const newNFTOwnership = new Conditions.ERC721Ownership({
 contractAddress: '0xBC4CA0EdA7647A8aB7C2061c2E118A18a936f13D',
 chain: 5,
 parameters: [5000], // let's change the specific NFT
})

encrypter.conditions = new ConditionSet([newNFTOwnership])

This will overwrite the Strategy conditions we defined above - only the new Conditions will be evaluated,

not both. All messages encrypted with encrypter will require newNFTOwnership to be satisfied.

Message Conditions

This is the final, and highest priority, Condition type. When encrypting a message, Conditions can be added
that apply only to this specific encryption. Again, they will overwrite any Conditions specified during
Strategy creation or within the encrypter.

const NFTBalance = new Conditions.ERC721Balance({
 contractAddress: '0xBC4CA0EdA7647A8aB7C2061c2E118A18a936f13D',
 chain: 5,
});

const plaintext = 'this is a secret';
const encryptedMessageKit = encrypter.encryptMessage(plaintext, new ConditionSet([NFTBalance])

Here we've actually made our Condition more relaxed, and only require a non-zero balance with the NFT
contract.

Create Security Optionality With Reusable
Cohorts

Providing configurable security to end-users is easy with Reusable Cohorts. Below we define three cohorts:
small, medium, and large.

smallCohort , mediumCohort , and largeCohort can then be reused by multiple Strategies.

const smallConfig = {
 threshold: 3,
 shares: 5,
 porterUri: 'https://porter-tapir.nucypher.community',
};
const mediumConfig = {
 threshold: 11,
 shares: 20,
 porterUri: 'https://porter-tapir.nucypher.community',
};
const largeConfig = {
 threshold: 51,
 shares: 100,
 porterUri: 'https://porter-tapir.nucypher.community',
};
const smallCohort = await Cohort.create(smallConfig);
const mediumCohort = await Cohort.create(mediumConfig);
const largeCohort = await Cohort.create(largeConfig);

Implementing Revocation via Smart Contract

It is possible to implement Revocation using Conditions that rely on a function call to a Custom Smart
Contract. This allows the handling of revocation to be decentralized and transparent. Here is an example of
a smart contract (not suitable for production):

pragma solidity 0.8.7;

contract Revocation {

 mapping(address => bool) public isRevoked;

 function revoke(address user) public {
 isRevoked[user] = true;
 }

 function unRevoke(address user) public {
 isRevoked[user] = false;
 }
}

And the associated Condition:

const revocationCondition = {

co st e ocat o Co d t o {
 contractAddress: 'DEPLOYED_CONTRACT_ADDRESS',
 method: 'isRevoked',
 parameters: [':userAddress'],
 functionAbi: {
 inputs: [
 {
 internalType: 'address',
 name: '',
 type: 'address',
 },
],
 name: 'isRevoked',
 outputs: [
 {
 internalType: 'bool',
 name: '',
 type: 'bool',
 },
],
 stateMutability: 'view',
 type: 'function',
 },
 chain: 'ethereum',

 returnValueTest: {
 comparator: '==',
 value: false,
 },
};

The condition we have defined calls the isRevoked function of the smart contract and passes the user's

address. If the call returns false (not revoked, i.e. granted), then decryption will occur. If the call returns

true (is revoked), then decryption will fail.

CBD References

Cohort

Cohort.create

When creating a new cohort, the configuration must include threshold , shares , and porterUri .

We also make available the parameters include and exclude which can be used to filter particular
Nodes.

const config = {
 threshold: 3,
 shares: 5,
 porterUri: 'https://porter-ibex.nucypher.community',
};
const newCohort = await Cohort.create(config, (include = []), (exclude = []));

Cohort.toJSON

A cohort can be serialized to a JSON object so that it can be stored and re-used at a later time.

const cohortJSON = newCohort.toJSON();
console.log(cohortJSON);
// {
// "ursulaAddresses": [
// "0x5cf1703a1c99a4b42eb056535840e93118177232",
// "0x7fff551249d223f723557a96a0e1a469c79cc934",
// "0x9c7c824239d3159327024459ad69bb215859bd25"
//],
// "threshold": 2,
// "shares": 3,
// "porterUri": "https://porter-ibex.nucypher.community"
// }

Cohort.fromJSON

Similarly, we can read in a valid JSON object to build a new Cohort.

const importedCohort = Cohort.fromJSON(cohortJSON);
console.log(importedCohort);
// Cohort {
// ursulaAddresses: [
// '0x5cf1703a1c99a4b42eb056535840e93118177232',
// '0x7fff551249d223f723557a96a0e1a469c79cc934',
// '0x9c7c824239d3159327024459ad69bb215859bd25'
//],
// configuration: {
// threshold: 2,

// shares: 3,
// porterUri: 'https://porter-ibex.nucypher.community'
// }
// }

Conditions

This page focuses on Condition types and composition. To understand how Conditions are added and
enforced with respect to runtime, check out the page.

Several distinct categories of access conditions can be specified and combined:

Condition Hierarchies

EVM - on-chain state, eg NFT ownership, ETH balance, tx status, contract function call

RPC - ethereum RPC calls as defined in the Official API

Timelock - time-based conditions, eg Block Height

We provide many helper objects to streamline the creation of common conditions. An expressive API also
allows much more granular control of conditions, and we will provide examples of both methods wherever
possible.

Conditions.ERC721Ownership

Conditions.ERC721Ownership is a shortcut for building conditions that test for ownership of a
specific ERC721 token (NFT):

const NFTOwnership = new Conditions.ERC721Ownership({
 contractAddress: '0xBC4CA0EdA7647A8aB7C2061c2E118A18a936f13D',
 parameters: [5954],
});

If we want to be more verbose we can use Conditions.Condition . The above and below examples
are completely equivalent:

const NFTOwnershipConfig = {
 contractAddress: '0xBC4CA0EdA7647A8aB7C2061c2E118A18a936f13D',
 standardContractType: 'ERC721',
 chain: 1,
 method: 'ownerOf',
 parameters: [5954],
 returnValueTest: {
 comparator: '==',
 value: ':userAddress',
 },
};
const NFTOwnership = new Conditions.Condition(NFTOwnershipConfig);

Conditions.ERC721Balance

https://ethereum.org/en/developers/docs/apis/json-rpc/#json-rpc-methods

Conditions.ERC721Balance is a shortcut for building conditions that test for ownership of at least one
ERC721 token (NFT) within a collection.

const NFTBalance = new Conditions.ERC721Balance({
 contractAddress: '0xBC4CA0EdA7647A8aB7C2061c2E118A18a936f13D',
});

Alternatively:

const NFTBalanceConfig = {
 contractAddress: '0xBC4CA0EdA7647A8aB7C2061c2E118A18a936f13D',
 standardContractType: 'ERC721',
 chain: 5,
 method: 'balanceOf',
 parameters: [':userAddress'],
 returnValueTest: {
 comparator: '>',
 value: 0,
 },
};

const NFTBalance = new Conditions.Condition(NFTBalanceConfig);

Conditions.TimelockCondition

Conditions.TimelockCondition is a shortcut for building conditions that test against block height.

const timelock = Conditions.TimelockCondition({
 returnValueTest: {
 comparator: '>',
 value: 100,
 },
});

or:

const timelockConfig = {
 contractAddress: '',
 standardContractType: '',
 chain: 5,
 method: 'timelock',
 returnValueTest: {
 comparator: '>',
 value: 100,
 },
};
const timelock = Conditions.Condition(timelockConfig);

Conditions.RpcCondition

Conditions.RpcCondition is a shortcut for building conditions that test against standard .RPC calls

const rpc = new Conditions.RpcCondition({
 chain: 1,
 method: 'eth_getBalance',
 parameters: [
 ":userAddress",
 "latest"
],
 returnValueTest: {
 comparator: ">=",
 value: 10000000000000
 }
});

or:

const rpcConfig = {
 contractAddress: '',
 standardContractType: '',
 chain: 1,
 method: 'eth_getBalance',
 parameters: [':userAddress', 'latest'],
 returnValueTest: {
 comparator: '>=',
 value: 10000000000000,
 },
};
const rpc = Conditions.Condition(rpcConfig);

Conditions.Condition

Conditions.Condition provides full control over the configuration of a Condition. It takes parameters:

https://ethereum.org/en/developers/docs/apis/json-rpc/

contractAddress is the public address of the contract we'd like to query.

standardContractType can take values from ERC20 and ERC721 . Alternatively, an ABI can be
passed through if a non standard contract is being used.

functionAbi is the ABI of the function we'd like to call. This is optional if the contract is a standard

ERC20 , ERC721 or ERC1155 .

chain - currently only ethereum is supported, please if you require non-Ethereum
based conditions.

Contact Us

method the contract method that will be called.

parameters are the parameters that will be passed to the contract's method .

returnValueTest defines how the return value of the contract call should be evaluated.

Non Zero balance of ERC20 Token

Here we're checking whether the user owns any T Threshold Network token:

const ERC20Conditions = {
 contractAddress: '0xCdF7028ceAB81fA0C6971208e83fa7872994beE5',
 standardContractType: 'ERC20',
 chain: 5,
 method: 'balanceOf',
 parameters: [':userAddress'],
 returnValueTest: {
 comparator: '>',
 value: 0,
 },
};

Function call of nonstandard Contract

In this example, we will check that the user is able to vote in the T Threshold DAO. The Threshold staking

contract is located at . The function we wish to

call is getVotes which takes an address as its parameter. We need to provide the

contractAddress , functionName , functionParams , and functionAbi when defining the
condition.

0x01B67b1194C75264d06F808A921228a95C765dd7

https://discord.gg/RwjHbgA7uQ
https://etherscan.io/address/0x01b67b1194c75264d06f808a921228a95c765dd7#readProxyContract

const customABICondition = {
 contractAddress: '0x01B67b1194C75264d06F808A921228a95C765dd7',
 method: 'getVotes',
 parameters: [':userAddress'],
 functionAbi: {
 inputs: [
 {
 internalType: 'address',
 name: 'account',
 type: 'address',
 },

],
 name: 'getVotes',
 outputs: [
 {
 internalType: 'uint96',
 name: '',
 type: 'uint96',
 },
],
 stateMutability: 'view',
 type: 'function',
 },
 chain: 1,
 returnValueTest: {
 comparator: '>',
 value: 0,
 },
};

Condition Set

Conditions can be combined into Condition Sets using AND and OR operators.

The below example shows how to authenticate that a requester owns an NFT in one of two different
collections.

const genuineUndead = new Conditions.ERC721Balance({
 contractAddress: '0x209e639a0EC166Ac7a1A4bA41968fa967dB30221',
});
const gnomePals = new Conditions.ERC721Balance({
 contractAddress: '0x5dB11d7356aa4C0E85Aa5b255eC2B5F81De6d4dA',
});
const NFTConditionSet = new ConditionSet([
 genuineUndead,
 Operator.OR(),
 gnomePals,
]);

If we wanted to store this Condition Set for later use we could export it to JSON:

const NFTConditionSetJSON = NFTConditionSet.toJSON();
console.log(NFTConditionSetJSON);
// [
// {
// "chain": "ethereum",
// "method": "balanceOf",
// "parameters": [
// ":userAddress"
//],
// "standardContractType": "ERC721",
// "returnValueTest": {
// "comparator": ">",
// "value": 0
// },
// "contractAddress": "0x209e639a0EC166Ac7a1A4bA41968fa967dB30221"
// },
// {
// "operator": "or"
// },
// {
// "chain": "ethereum",
// "method": "balanceOf",
// "parameters": [
// ":userAddress"
//],
// "standardContractType": "ERC721",
// "returnValueTest": {
// "comparator": ">",

// "value": 0
// },
// "contractAddress": "0x5dB11d7356aa4C0E85Aa5b255eC2B5F81De6d4dA"
// }
//]

And then easily import:

const newConditionSet = ConditionSet.fromJSON(NFTConditionSetJSON);

Strategy

A Strategy combines all possible configuration parameters for using CBD. It takes the following parameters:

cohort - a Cohort object

conditionSet? - an optional ConditionSet . If used, all encryptions made via this strategy have
a default Condition Set assigned

aliceSecretKey? - an optional Secret Key for the encrypter

bobSecretKey? - an optional SecretKey for decrypter

If the optional secret keys are not provided, new ones will be generated instead.

Create a Strategy

Assuming we have a Cohort already defined, we can construct a Strategy:

import { Cohort, Strategy } from '@nucypher/nucypher-ts';

const config = {
 threshold: 3,
 shares: 5,
 porterUri: 'https://porter-ibex.nucypher.community',
};
const newCohort = await Cohort.create(config);

const newStrategy = Strategy.create(
 newCohort
);

Deploy a Strategy

Before we can encrypt/decrypt, the Threshold network needs to be made aware of our Strategy. We do this
by deploying:

import detectEthereumProvider from '@metamask/detect-provider';
import providers from 'ethers';

const MMprovider = await detectEthereumProvider();
const mumbai = providers.providers.getNetwork(80001);

if (MMprovider) {
 const web3Provider = new providers.providers.Web3Provider(
 MMprovider,
 mumbai
);
 const newDeployed = await newStrategy.deploy('test', web3Provider);

}

Strategy.deploy takes 2 parameters:

label - this is a string that the network uses to identify the strategy

provider - deploying a Strategy requires writing to the smart contract, so a connection to a wallet is
required via a Web3 provider

Deploying a strategy returns a new DeployedStrategy object. This object grants us access to the

encrypter and decrypter which can then be used throughout an application.

const encrypter = newDeployed.encrypter;
const decrypter = newDeployed.decrypter;

const plaintext = 'this is a secret';
const encryptedMessageKit = encrypter.encryptMessage(plaintext);

const decryptedMessage = await decrypter.retrieveAndDecrypt([
 encryptedMessageKit,
]);

Import and Export Strategies

Strategies can be exported allowing them to be reused easily. The syntax is the same whether the strategy
has been deployed or not.

import { DeployedStrategy } from '@nucypher/nucypher-ts';

const configJSON = newDeployed.toJSON();
console.log(configJSON);
/*
LARGE JSON OBJECT
*/
const importedStrategy = DeployedStrategy.fromJSON(configJSON);

Similarly, we can import and export the decrypter objects to JSON. This allows us to rebuild the decrypter on
a client facing application:

import { DeployedStrategy } from '@nucypher/nucypher-ts';

const decrypter = newDeployed.decrypter;
const decrypterJSON = decrypter.toJSON();
// save this JSON are send it over a side channel to a client facing app

// on the client app
import { tDecDecrypter } from '@nucypher/nucypher-ts';
const newDecrypter = tDecDecrypter.fromJSON(decrypterJSON);

Get Started (PRE Mainnet)

This page is under construction. In the meantime use the Read-The-Docs and Github
Documentation linked below.

External documentation and examples
https://github.com/nucypher/nucypher-ts
https://github.com/nucypher/nucypher-ts-demo
https://docs.nucypher.com/en/latest/application_development/getting_started.html#

https://github.com/nucypher/nucypher-ts
https://github.com/nucypher/nucypher-ts-demo
https://docs.nucypher.com/en/latest/application_development/getting_started.html

Contribution Guide

Download, install, build, and test with:

git clone https://github.com/nucypher/nucypher-ts
cd nucypher-ts
yarn install
yarn build
yarn test

Development

Install git hooks

npx husky install

Generate contract typings

yarn typechain

Prepare a new release

yarn run prepare-release

Documentation

To launch a local development version of the documentation:

cd website
yarn run start

This will launch a local server, available at http://localhost:3000 .

To release a new version of the documentation:

yarn run docusaurus docs:version 1.1.0

Publishing

Publish a new release on NPM.

Pay attention to the output of these commands and fix your release if needed.

To build and publish a release, run

yarn prepare-release
Or, to publish an alpha release
yarn prepare-release:alpha

Follow instructions from the command output to finalize the process.

Extras

Security
Security Policies for Threshold Network

If you identify vulnerabilities with any Threshold Network code, please email
with relevant information to your findings. We will work with researchers to coordinate vulnerability
disclosure between our stakers, partners, and users to ensure the successful mitigation of vulnerabilities.

security@threshold.network

Throughout the reporting process, we expect researchers to honor an embargo period that may vary
depending on the severity of the disclosure. This ensures that we have the opportunity to fix any issues,
identify further issues (if any), and inform our users.

Sometimes vulnerabilities are more sensitive in nature and require extra precautions. We are happy to work
together to use a more secure medium, such as Signal. Email and we will
coordinate a communication channel that we're both comfortable with.

security@threshold.network

A great place to begin your research is by working on our testnet. Please see our to get
started. We ask that you please respect network machines and their owners. If you find a vulnerability that
you suspect has given you access to a machine against the owner's permission, stop what you're doing and
immediately email .

documentation

security@threshold.network

mailto:security@threshold.network
mailto:security@threshold.network
https://github.com/threshold-network/threshold/blob/main/docs/extras/broken-reference/README.md
mailto:security@threshold.network

Contribution
How to make edits

Refer to the following documentation here: https://docs.gitbook.com/

To contribute to Threshold documentation, the best place to start is to join the Discord. You can ask
questions there and help contribute to documentation. Join here: http://discord.gg/threshold

https://docs.gitbook.com/
http://discord.gg/threshold

Contract Addresses

Click to see the addresses of contracts deployed on Ethereum Mainnet.here

Click to see the addresses of contracts deployed on Görli Testnet.here

Ethereum Mainnet

Threshold Contracts

Delivered in @threshold-network/solidity-contracts@1.2.1 package.

Contract Address

T Token ​0xCdF7028ceAB81fA0C6971208e83fa7872994beE

TokenStaking ​0x01b67b1194c75264d06f808a921228a95c765dd7

KeepStake
​
​
0x10DE37cF84202A20cae61069C617B3Aa874aF8

NU<>T Vending Machine
​
​
0x1CCA7E410eE41739792eA0A24e00349Dd2476

KEEP<>T Vending Machine ​0xE47c80e8c23f6B4A1aE41c34837a0599D5D16bb

PRE Application Contracts

Contract Address

PRE Application
​
​
0x7E01c9c03FD3737294dbD7630a34845B0F70

SubscriptionManager (Polygon-mainnet)
​
​
0xB0194073421192F6Cf38d72c791Be8729721A

Legacy NU Contracts

Contract Address

NU Token
​
​
0x4fE83213D56308330EC302a8BD641f1d0113A

StakingEscrow
​
​
0xbbD3C0C794F40c4f993B03F65343aCC6fcfCb

WorkLock
​
​
0xe9778e69a961e64d3cdbb34cf6778281d34667

https://etherscan.io/address/0xCdF7028ceAB81fA0C6971208e83fa7872994beE5
https://etherscan.io/address/0x01b67b1194c75264d06f808a921228a95c765dd7
https://etherscan.io/address/0x10DE37cF84202A20cae61069C617B3Aa874aF8b4
https://etherscan.io/address/0x1CCA7E410eE41739792eA0A24e00349Dd247680e
https://etherscan.io/address/0xE47c80e8c23f6B4A1aE41c34837a0599D5D16bb0
https://etherscan.io/address/0x7E01c9c03FD3737294dbD7630a34845B0F70E5Dd
https://etherscan.io/address/0xB0194073421192F6Cf38d72c791Be8729721A0b3
https://etherscan.io/address/0x4fE83213D56308330EC302a8BD641f1d0113A4Cc
https://etherscan.io/address/0xbbD3C0C794F40c4f993B03F65343aCC6fcfCb2e2#code
https://etherscan.io/address/0xe9778e69a961e64d3cdbb34cf6778281d34667c2

Legacy Keep Contracts

Delivered in @keep-network/keep-core@1.8.0 package.

Contract Address

KEEP Token
​
​
0x85Eee30c52B0b379b046Fb0F85F4f3Dc3009a

TokenStaking
​
​
0x1293a54e160D1cd7075487898d65266081A15

TBTC Application Contracts

Delivered in @keep-network/random-beacon@2.0.0 and @keep-network/ecdsa@2.0.0
packages.

Contract Address

Bridge
0x5e4861a80B55f035D899f66772117F00FA0E8

RandomBeacon
0x5499f54b4A1CB4816eefCf78962040461be3D8

TBTC
0x18084fbA666a33d37592fA2633fD49a74DD93a

TBTCVault 0x9C070027cdC9dc8F82416B2e5314E11DFb4F
E3CD

VendingMachine
0x6590DFF6abEd7C077839E8227A4f12Ec90E6

WalletRegistry
0x46d52E41C2F300BC82217Ce22b920c349952

https://etherscan.io/address/0x85Eee30c52B0b379b046Fb0F85F4f3Dc3009aFEC
https://etherscan.io/address/0x1293a54e160D1cd7075487898d65266081A15458
https://etherscan.io/address/0x5e4861a80B55f035D899f66772117F00FA0E8e7B
https://etherscan.io/address/0x5499f54b4A1CB4816eefCf78962040461be3D80b
https://etherscan.io/address/0x18084fbA666a33d37592fA2633fD49a74DD93a88
https://etherscan.io/address/0x9C070027cdC9dc8F82416B2e5314E11DFb4FE3CD
https://etherscan.io/address/0x6590DFF6abEd7C077839E8227A4f12Ec90E6D85F
https://etherscan.io/address/0x46d52E41C2F300BC82217Ce22b920c34995204eb#writeProxyContract

Görli Testnet

Threshold Contracts

Delivered in @threshold-network/solidity-contracts@1.3.0-goerli.0 NPM package.

Contract Address

T Token ​0x3f16380656cAE45D3f80D8833682d2b606eD094

TokenStaking
​
​
0x1da5d88C26EA4f87b5e09C3452eE2384Ee20DC

KeepStake
​
​
0xC76796B031232976cb17521342B0d12283588E6

NU<>T Vending Machine
​
​
0x8D4Ccc04D17d055b88fbaB8634C7F0611d8Aa94

KEEP<>T Vending Machine ​0x8d1EDfee0510537E1081a28Fa4A94769Cfa3969

Legacy NU Contracts

Contract Address

NU Token
​
​
0x26bDc8Cb2D4F55Af3B43568069b65B435bCd

StakingEscrow (stub)
​
​
0xd696d5a9b083959587F30e487038529a876b0

Legacy Keep Contracts

Delivered in @keep-network/keep-core@1.8.1-goerli.0 NPM package.

Contract Address

KEEP Token
​
​
0x22647FfAe391540d584599818CA22fdF18890

TokenStaking
​
​
0x73A63e2Be2D911dc7eFAc189Bfdf48FbB6532

https://goerli.etherscan.io/address/0x3f16380656cAE45D3f80D8833682d2b606eD094A
https://goerli.etherscan.io/address/0x1da5d88C26EA4f87b5e09C3452eE2384Ee20DC75
https://goerli.etherscan.io/address/0xC76796B031232976cb17521342B0d12283588E6F
https://goerli.etherscan.io/address/0x8D4Ccc04D17d055b88fbaB8634C7F0611d8Aa946
https://goerli.etherscan.io/address/0x8d1EDfee0510537E1081a28Fa4A94769Cfa3969a
https://goerli.etherscan.io/address/0x26bDc8Cb2D4F55Af3B43568069b65B435bCdc32c
https://goerli.etherscan.io/address/0xd696d5a9b083959587F30e487038529a876b08C2
https://goerli.etherscan.io/address/0x22647FfAe391540d584599818CA22fdF18890753
https://goerli.etherscan.io/address/0x73A63e2Be2D911dc7eFAc189Bfdf48FbB6532B5b

TBTC Application Contracts

Delivered in @keep-network/random-beacon@2.1.0-goerli.6 , @keep-
network/ecdsa@2.1.0-goerli.4 and @keep-network/tbtc-v2@1.0.3-goerli.0 NPM
packages.

Contract Address

Bridge
0x0Cad3257C4B7ec6de1f6926Fbf5714255a6632

RandomBeacon
0xF177CfA720ceC42841c04A458f6c68e1243C1

TBTC
0x679874fBE6D4E7Cc54A59e315FF1eB266686

TBCTVault
0x65eB0562FCe858f8328858c76E689aBedB786

VendingMachine
0x36B7383077a2CEeFd53e796512760a1888cE

WalletRegistry
0x5b1ebF8008097Ac3EF6785220bFb9ecA2B1a

https://goerli.etherscan.io/address/0x0Cad3257C4B7ec6de1f6926Fbf5714255a6632c3
https://goerli.etherscan.io/address/0xF177CfA720ceC42841c04A458f6c68e1243C1b49
https://goerli.etherscan.io/address/0x679874fbe6d4e7cc54a59e315ff1eb266686a937
https://goerli.etherscan.io/address/0x65eB0562FCe858f8328858c76E689aBedB78621F
https://goerli.etherscan.io/address/0x36B7383077a2CEeFd53e796512760a1888cEeb97
https://goerli.etherscan.io/address/0x5b1ebF8008097Ac3EF6785220bFb9ecA2B1a73Dd

Glossary
Threshold Network Lingo

Term Definition

Threshold Cryptography

Threshold cryptography is a revolutionary
technology that distributes sensitive operations
across multiple independent entities – like nodes
a network – and requires a threshold, or minimum
number of those entities to cooperate for the
operation to be successful.

Staking Provider

An ethereum address of a party authorized to
operate in the network on behalf of a given owner
The staking provider handles the everyday
operations on the delegated stake without actually
owning the staked tokens. A staking provider can
not simply transfer away delegated tokens,
however, it should be noted that the staking
provider’s misbehavior may result in slashing
tokens and thus the entire staked amount is indee
at stake.

Authorizer

An ethereum address appointed by an owner to
authorize applications on behalf of the owner. An
application must be approved by the authorizer
before the staking provider is eligible to participate

Beneficiary

An ethereum address where the rewards for
participation are sent, earned by the staking
provider, on behalf of the owner. A beneficiary
doesn’t sign or publish any protocol-relevant
transactions, but any currency or tokens earned by
the staking provider will be transferred to the
beneficiary.

Delegated stake

An owner’s staked tokens, delegated to the stakin
provider by the owner. Delegation enables token
owners to have their wallets offline and their stake
operated by staking providers on their behalf.

Application

An external smart contract or a set of smart
contracts utilizing functionalities offered by
Threshold Network. Example applications are:
random beacon, proxy re-encryption, and tBTC.
Applications authorized for the given staking

provider are eligible to slash the stake delegated t
that staking provider

Links

Resource Link

Threshold Website ​ ​https://threshold.network

Staking Dashboard ​ ​https://dashboard.threshold.network

Testnet Staking Dashbord ​ ​https://dashboard.test.threshold.network

PRE Application Dashboard ​ ​https://stake.nucypher.network

Github ​ ​https://github.com/threshold-network

Discord ​ ​https://discord.gg/threshold

Governance ​ ​https://forum.threshold.network

Official Blog ​ ​https://blog.threshold.network

Twitter ​ ​https://twitter.com/thetnetwork

https://threshold.network/
https://dashboard.threshold.network/overview/network
https://dashboard.test.threshold.network/
https://stake.nucypher.network/
https://github.com/threshold-network
https://discord.gg/threshold
https://forum.threshold.network/
https://blog.threshold.network/
https://twitter.com/thetnetwork

Between Two Keys
An Educational Video Series

One Fern Between Two Keys • Matt Luongo of Thesis One Fern Between Two Keys • Matt Luongo of Thesis • Justin Myles Holmes• Justin Myles Holmes

Episode 1

One Fern Between Two Keys • Griff Green of Giveth • Justin Myles HolmesOne Fern Between Two Keys • Griff Green of Giveth • Justin Myles Holmes

Episode 2

https://www.youtube.com/watch?v=10-VTatrfkg
https://www.youtube.com/watch?v=nzx5H8otofY

