
Vite: Bridging Every Blockchain in a Multi-Chain Future / ViteBridge /

N E X T

Introduction

vite.org © 2023 Vite Labs.

R E S O U R C E S

Introduction

API

Smart Contract

Tutorial

Reference

ViteBridge

ViteBridge Whitepaper

ViteX

Vite.js

Vite Java SDK

Tech Articles

VEP

New Docs (beta)

ViteBridge Whitepaper

Search

ViteBridge: A Generic Decentralized Cross-
Chain Transfer Protocol

Background

In recent years, many public blockchain projects have been created, but almost all of them have been built to become closed

ecosystems.

This means when users make transactions or use dApps, these actions are only of a trustless nature when performed within

the same protocol.

As such, independent blockchains have become isolated islands of both data and digital assets. The space is screaming for

an effective and trustless cross-chain protocol.

This paper proposes a generic and decentralized cross-chain transfer protocol to bridge all blockchains. This protocol will

allow unconstrained transfer of information and value between heterogeneous ecosystems, and push our industry towards

more openness and interoperability.

Design Goals

Related Works

Currently, the schemes of cross-chain transfer protocol can mainly summarize into the following categories:

Top-Level Protocol Approaches

By providing a top-level cross-chain protocol, all transfers between blockchains that build on the protocol are supported.

and are based on this solution to provide cross-chain interoperability.

This solution can only provide interoperability between the blockchains within the ecosystem, but it cannot support the

existing heterogeneous blockchains (such as Bitcoin and Ethereum). Moreover, the different top-level protocols are not

compatible with each other. At the current stage, it is still too far from having a universal protocol that can be accepted by

the whole blockchain industry.

Single Custodial Approaches

A trusted centralized organization manages the assets on many different blockchains through one or a set of private keys

and supports cross-chain transfers between the blockchains.

, and are based on this scheme.

This solution is effective and is suitable for most blockchains. However, it cannot meet the goals of decentralization and

security.

Federated Custodial Approaches

A group of trusted centralized entities jointly manage assets on the blockchain and realize cross-chain transfers between

blockchains.

is an inter-exchange settlement network based on a federated custodial approach. Bitcoin is locked by 15 signers

including exchanges and liquid providers authorized by Blockstream.

is a Bitcoin-backed ERC-20 token on Ethereum. This is still a centralized solution, but instead of relying entirely on

one authority, it relies on a consortium of organizations performing different roles in the network.

Although this type of solution introduces multiple custodians to improve security, it is still centralized in nature and does not

meet the goal of decentralization.

Cryptographic Approaches

This approach leverages a smart contract on one blockchain to verify whether the transaction on the other blockchain is

confirmed. The smart contract serves as a light client of the remote blockchain, and it does not verify the entire block but

only the block headers or a Merkle root.

is a decentralized bridge between EOS and Ethereum. It implements a light client for EOS that only needs to

maintain a set of block producers and an algorithm to verify Ethereum PoW hash functions based on the SmartPool

algorithm.

implements EthOnNearProver, a NEAR contract in Rust, and NearOnEthProver, which is

written in Solidity and deployed on Ethereum. EthOnNearProver can verify Ethereum events, while the NearOnEthProver

contract verifies NEAR contract execution results on Ethereum.

is a design for a decentralized, one-to-one redeemable token pegged to BTC. To prove a deposit, the depositor

submits proof that the transaction was included in a valid Bitcoin block with sufficient subsequent accumulated work. The

proof is verified by an SPV smart contract on the host blockchain such as Ethereum.

is a platform of decentralized privacy coins. Through Incognito, a public coin can be shielded to obtain its privacy

coin counterpart of the same value. Incognito validators verify the shielding transaction and the deposit proof inside it in

particular by using SPV.

Such solutions meet the goals of decentralization and security. However, they are not generic enough. Due to the serious

challenge of designing a light client for PoS blockchains, it has no efficient way to validate the suffix blocks of those

blockchains without the signatures of stakeholders, which depends on the recent stake distributions and cannot be verified

externally.

Game-Theoretic Approaches

This approach assumes that the user is always rational and selfish. Through a moderate economic model and rules design,

the protocol can achieve game-theoretic security.

uses bonding and algorithmically adjusted fees to make sure that attacks are never profitable and to make sure

that it can always restore the one-to-one peg if an attack ever does succeed.

requires a bond per deposit from each backing signer because signers are able to collude to censor withdrawals or

abscond with funds. Bonded signers offer depositors recourse in the case of colluding signers interfering with operation.

‘s custodian must bond some collateral (ETH or liquid ERC20) into the Bond smart contract with Collateral-to-

Deposit ratio is initially set as 150%. So custodians do likely have a motivation to return original public coins to the redeemer.

Such approaches meet the goals of genericity and decentralization. But they are more vulnerable than cryptographic

schemes.

Introduction

Tradeoffs

Protocol Overview

The following figure outlines the architecture of the protocol:

Contributions

The main contributions of this paper include:

Definitions

Note:

Vite does not always serve as the host blockchain. For example, when a BTC-backed asset is issued on Vite, Vite is

the host blockchain, and the remote blockchain (Bitcoin) is the origin blockchain. On the contrary, when a VITE-

backed ERC20 token is issued on Ethereum, in this case, Vite becomes the origin blockchain, and Ethereum is the

host blockchain.

Asynchronous Transfer Model

A token transfer on Vite includes two transactions, Tsend and Treceive . For example, if Alice wants to transfer 10 VITE to

Bob, she should submit a Tsend transaction first. When the transaction is confirmed, 10 VITE will deduct from Alice's

account. At this point, Bob has not received the 10 VITE, and Alice's transfer is marked as in transit in the ledger. When Bob

sees Tsend in the ledger, he should initiate a Treceive transaction to receive it. After Treceive is confirmed in the Vite

network, the 10 VITE will finally add to Bob's account.

On Vite, Alice and Bob both have their own blockchains (Account Chain). There is no synchronized world state on Vite, and

the account states of Alice and Bob are independent.

This model is especially suitable for cross-chain transfer. Because the ledger states of different blockchains are isolated, it is

impossible to change the state of two blockchains simultaneously within one transaction.

A cross-chain deposit can split into two asynchronous transactions, Tsend, which represents as Tlock that takes place on the

origin blockchain in order to lock the original asset, and Tmint, serving the role of Treceive that occurs on the host blockchain

in the purpose of issuing backed assets.

Similarly, a cross-chain withdrawal can also be separated into two async transactions. Tsend works as Tburn on the host

blockchain to burn the backed asset, while Treceive becomes Tunlock on the origin blockchain, so as to unlock the

corresponding original asset.

The asynchronous transfer model must follow the rules as below:

This rules is crucial. The first rule ensures the safety of the protocol. Backed assets should never be minted in the absence of

real deposits, and original assets can only unlock upon actual withdrawals. The second rule guarantees liveness of the

protocol. After a certain period, the depositor will always get the backed asset, and the withdrawer will finally get the original

asset.

Note:

The asynchronous transfer model is different from atomic swap model. In atomic swap model, both transactions

occur at the same time or neither.

Problem Abstraction

In general, a cross-chain transfer protocol mainly answers the following questions:

The goal of this paper is to establish a bi-directional cross-chain transfer protocol between Vite and the remote blockchain. In

the first case, Vite is the host blockchain, and the remote blockchain is used as the original blockchain; in the second case,

Vite is the original blockchain, and the remote blockchain becomes the host blockchain.

Let us consider the first case, using Vite as the host blockchain and issuing backed assets of the remote blockchain on Vite.

Lock Transaction Verification

How to verify that Tlock issued by the depositor is confirmed on the remote blockchain?

The perfect solution is to allow each Vite full node to keep a copy of the ledger of the remote blockchain and utilize Vite's

snapshot chain to confirm the transaction. It requires to implement a full node of the remote blockchain on Vite. In this way,

any Tlock can be verified in the Vite network. Unfortunately, this solution is overkill and cannot be applied in reality because

it is impossible for each Vite node to also become a full node for all the remote blockchains.

So, is it possible to replace with light clients and only maintain the partial state, such as block headers or a Merkle root, of the

remote blockchain on Vite? This solution works for some remote blockchains, such as Bitcoin or Ethereum, by using

additional cryptographic verification to improve system security. We will introduce this solution in the Augmented

Transaction Verification section later.

However, for most POS blockchains, it is very hard to implement light clients. So, in this case, this approach does not apply.

A more general solution is to introduce a set of relay nodes that keep a complete ledger of Vite and the remote blockchain

locally. Relays are responsible for verifying Tlock on the remote blockchain.

The integrity of relays is guaranteed by collateral bonding, and any fraud attempt will lead to collateral losses. In some cases,

even the relays conspire or collude, the losses they suffer will be much larger than the money they could abuse.

How the relays verify transactions on the remote blockchain is a key point of this paper, which will be explained in detail in

the follow-up sections.

Mint Transaction Creation

How to generate a valid Vite transaction Tmint according to Tlock?

The minting of backed assets is performed through a smart contract deployed on Vite.

The backed asset is the redeemable token issued on Vite. As a specific token for ViteBridge, it has no other way to mint

except in the smart contract.

Burn Transaction Verification

How to verify that Tburn is confirmed on Vite?

It is also realized through the smart contract on Vite.

After the withdrawer sends the backed asset to the contract, these redeemable tokens will be burnt. The Tburn transaction

must be confirmed (after necessary snapshots) before any subsequent step can proceed. Luckily, the presence of

asynchronous smart contracts on Vite makes the above process easily accomplished.

Unlock Transaction Creation

How to generate a valid remote blockchain transaction Tunlock according to Tburn?

Our solution is to implement a wallet smart contract on Vite to manage remote blockchain's assets in a decentralized manner.

This wallet smart contract can assemble a valid transaction and sign it in correspondence with the remote blockchain

protocol.

It is another focus of this paper and will be described in detail later.

Workflows

The following figure describes several key workflows of the protocol by using Vite as the host blockchain and the original

blockchain respectively.

Below we separately describe the processes of cross-chain transfer of BTC between Bitcoin and Vite, and between Vite and

Ethereum.

Transfer from Bitcoin to Vite

Vault Transfers

Transfer from Vite to Bitcoin

Internal Transfers

Transfer from Vite to Ethereum

Transfer from Ethereum to Vite

Wallet Contract

In this section, we discuss how to implement a decentralized wallet of a remote blockchain through Vite smart contracts, so

as to manage assets on the remote blockchain in a decentralized manner. The contract has the following features:

For the general purpose of the protocol, the smart contract should hold a private key, so as to generate addresses and sign

transactions based on the remote blockchain's protocol. In the meantime, in order to keep the protocol decentralized, not

any single node of the host blockchain has opportunity to know the private key of the contract.

It is not easy for common blockchains because typical smart contracts cannot hold a secret. But thanks to the presence of

Consensus Group, the Wallet Contract can be implemented on Vite.

Consensus Group

On Vite, each contract is assigned to a consensus group, and the nodes constituting the consensus group are selected

according to protocol rules. For example, the stakeholders of VITE token vote for the top N nodes in the group.

Only nodes in the consensus group can produce blocks for the contract. To complete this job, they execute the contract's

code and return a correct result that can be verified by other nodes in the Vite network.

Why is consensus group so important? Let's look at several scenarios.

On a blockchain without consensus groups, such as Ethereum, the scenarios cannot be handled well.

In contrast, we can easily implement the scenarios through consensus groups on Vite.

Contract Request Ordering

The consensus group defines a rule to sort incoming requests, for example, sort by the hash of request transaction, to

prevent front-running.

Random Functions

The consensus group uses VRF (Verifiable Random Function) to generate random numbers that will be used in the contract.

It communicates with the smart contract through specific built-in functions and ViteVM instructions.

Sign messages in Smart Contract

By leveraging distributed off-chain computation, the consensus group signs the data within the contract according to a

specific signing rule. For example, among M nodes in the consensus group, N (N < M) nodes can collaborate and generate a

valid signature.

The following conditions must be satisfied to produce a decentralized signature:

TSS Consensus Group

Below we take use of TSS (threshold signature scheme) to construct a consensus group, generate a public key, and sign

transactions for smart contracts in a decentralized manner.

The workflow is as follows:

Deposit Address

In order to map Tlock on the original blockchain to Tmint on Vite, it is necessary to create different mapping schemes

according to the protocols of the original blockchain.

First of all, the original blockchain should support at least one of the following features: Smart contracts, Multi-sig, or TSS, in

order to implement a decentralized wallet based on smart contracts on Vite.

For original blockchains that support smart contracts, a deposit can be sent to the contract address including a valid

beneficiary address as parameter.

For original blockchains that do not support smart contracts, there are usually two ways to generate a deposit address:

Below we take Bitcoin as an example to introduce how to generate a separate original blockchain deposit address for each

user in the Wallet contract.

Every Bitcoin transaction contains Bitcoin Script, which can be used to carry custom data. However, adding a beneficiary

address directly to the locking script of Tlock requires that the depositor must use a specific wallet software to sign the

transaction, which is not user-friendly.

In BIP16, Bitcoin introduced P2SH (Pay to Script Hash) transactions to simplify the locking script. Therefore, we choose the

P2SH address as the deposit address, so that users can use any client that supports BIP16 to initiate a deposit, including from

a crypto exchange.

The deposit address generation scheme is as follows:

In the redeem script, the hash of beneficiary address will be pushed into the stack and popped up immediately. The

instructions here are only used to distinguish different depositors and have no influence on the unlocking process.

tss_pubkey is the TSS public key of the consensus group. It is returned by calling the Vite built-in function

tss_pubkey_secp256k1() in the Wallet contract.

When the members of the consensus group are changed, tss_pubkey is changed, causing all deposit addresses to be invalid.

Therefore, it is important to show the expiration time of the current deposit address on the client UI.

Refund

If the depositor transfers funds to an expired deposit address, the funds may lose. To avoid this situation, we can add a Time

Lock to enable refund after a timeout. The modified redeem script is as follows:

As shown in the example, a Time Lock is added to the redeem script. If a Tlock transaction exceeds the deposit_timeout, a

refund transaction will initiate to transfer the assets to ViteBridge Jury's account. In order to get refund, the depositor should

submit a support ticket and attach deposit proof. Jury will review the proof and return funds to the depositor.

Funds Collection

If a multi-address deposit approach is adopted, the original assets will scatter in multiple accounts, and these funds need to

be gathered regularly and aggregated into one account. This aggregate account is called Vault Account, which is generated

by the Wallet Contract and is used to unlock funds while withdrawing.

The funds collection code is written in the Wallet Contract, and a reasonable policy should be set up according to the

throughput and cost on the original blockchain. For example, in Bitcoin, it is reasonable to collect multiple funds by

specifying multiple inputs in one transaction. We can also put this step in the Tlock of withdrawal to save more transaction

fees.

For each collection process, the Wallet Contract is required to generate and sign a original blockchain transaction, which is

shortly broadcast to the original blockchain by relay nodes.

The funds collection process consumes a certain cost, which should be covered in cross-chain transfer fees.

Vault Handover

Since the members of the consensus group change regularly, a new vault account must be generated from time to time. In

this case, all the original assets that are locked in the previous vault should be transferred to the new vault.

By leveraging the asynchronous smart contract on Vite, we can monitor the tssRegrouped message and deal with vault

handover in the message listener. The pseudo-code is as follows:

Funds Unlocking

In order to unlock original assets, the Wallet contract generates a original blockchain transaction first, then call the Vite built-

in signing function, such as tss_sign_secp256k1() , to sign the transaction.

Once the signature is returned, the relay node will broadcast the signed transaction to the original blockchain.

There is a side-effect for signing the original blockchain transaction. Once the code is executed, even if the contract state

rolls back on Vite, the unlocking process is irreversible. It is highly recommended to wait until Tburn has enough

confirmations before executing the unlocking function.

Wallet State Updating

Sometimes, offline wallets cannot be implemented for some original blockchains. So the Wallet contract must maintain a state

in order to assemble original blockchain transactions.

For example, Nano requires a previous_hash field for each transaction, and Ethereum needs a gas_price field.

One solution is to let relay nodes pass the states to Wallet Contract. However, this requires that the state must be auditable.

If a relay submits fake data, it will be punished economically.

Relays

This protocol leverages a group of relays to report remote blockchain transactions to Vite. To achieve this, the relay should

have access to the remote blockchain's ledger.

In the meantime, relays are also responsible for forwarding transactions signed on Vite to the remote blockchain. Since relays

have the opportunity to abscond with assets on Vite by reporting fake transactions, they must bond collateral in order to get

a grant to mint or unlock assets on Vite. For each original asset, a separate group of relays is assigned, and each relay is

required to bond a certain amount of the asset as collateral. In return, relay is eligible to cross-chain transaction fees.

Note:

Different from other cross-chain transfer protocols, our protocol do not use VITE(the native token on Vite) as

collateral, but directly use the original assets. This makes over-collateralization easier to achieve, so that the total

value of backed asset on Vite is not limited by the market value of the VITE token. At the same time, we avoid using

Price Oracle or liquidation auctions to compensate users who suffered losses, in the end reducing the complexity of

the protocol.

The key is that we introduce a decentralized wallet contract to provide safe custody for the original asset as

collateral.

Each remote blockchain has assigned a group of relay nodes. A relay node is an off-chain program that can access both the

Vite's full node and the remote blockchain's full node through APIs. Each relay node has a Vite address. When the relay node

calls the Relay Contract, a Vite transaction is initiated from this address.

Bridge Bootstrap

Before the bridge of a new backed asset starts to work, it must go through the bootstrap process. The relay jointed in the

cold start phase is called bootstrap relay.

For this purpose, some configurations should be set in the Relay Contract:

Configuration Type Description Example

origin_blockchain string Original blockchain name Bitcoin

host_blockchain string Host blockchain name Vite

original_asset string Original asset name BTC

backed_asset string Backed asset name BTC-

000

min_relay_num uint Minimum relay number required for the bridge 3

max_relay_num uint Maximum relay number allowed for the bridge 10

relay_quorum uint Minimum relay number to approve a remote blockchain transaction 2

min_collateral_amount uint Minimum collateral amount 10

collateral_abort_delay uint Time delay (in Vite snapshot epoch, appromixately 75s) to refund collateral if a

relay is about to quit during bootstrap

300

collateral_unlock_delay uint Time delay (in Vite snapshot epoch, appromixately 75s) to refund unbonding

collateral

300

bootstrap_relay_bond_amount uint Additional bond (in VITE token) to become a bootstrap relay 10,000

bond_unlock_delay uint Time delay (in Vite snapshot epoch, appromixately 75s) to unlock a bond 1152

liquidate_delay uint Time delay (in Vite snapshot epoch, appromixately 75s) before liquidating 11520

The bootstrap process is as follows:

Important

Peer audit between bootstrap relays cannot sufficiently guarantee the bridge security since all bootstrap relays may

collude or be in control by attackers. Therefore, it is necessary for users to inspect the relay's collateral before using

a new bridge. Trusting a bridge in carelessness may result in asset losses.

This protocol assumes that the user is also a game player of the protocol and take the audit responsibility. All data

required for the audit are public. Moreover, visual tools can be used to improve audit efficiency. Besides users,

ViteBridge Jury will also share the audit responsibility.

Remote Transaction Report

Important

If all the relay's collaterals of a bridge are locked up, the bridge will suspend deposits because no backed assets can

be minted due to insufficient reserve. At this time, the bridge no longer accepts incoming deposits, and any request

for a deposit address will fail.

If a user initiates a deposit transaction in this circumstance, the deposit will enter a dispute state, which should be

resolved by ViteBridge Jury later.

Relay Registration

This protocol is open to everyone. New relays can join freely by completing the following registration process:

Relay Quit

When a relay is about to quit, it needs to go through the following quitting process:

Important

It is necessary to pay attention to any quitting relays. If a cheating behavior is observed in the past, anyone can

submit a challenge request to the Relay Contract to postpone the relay from getting the collateral back in time.

In this case, it takes a longer time for the relay to unlock collateral. Users and other relays will have enough time to

withdraw ahead of the cheating relay.

Bridge Liquidation

If the number of relays in a bridge reduces to the lower limit, any relay's quit will cause the bridge to stop working. At this

time, if a relay still wants to quit, it must go through the liquidation process:

Bridge Bankruptcy

A bridge may stop working under the following situations:

Once such situations occur, there is no guarantee that the backed asset can be fully redeemed. At this time, the bridge must

go through the bankruptcy process:

Auxiliaries

The design philosophy of this protocol is that although the relays cannot be prevented from doing evil in advance, all other

participants can be aware of fraud and avoid loss in time. Once a relay commits fraud, the protocol will provide an evacuation

window for all backed asset holders and honest relays to quit first, and leave the evil relay to suffer asset loss.

In principle, it requires all the participants of the protocol, including ordinary users, to be cautious and keep monitoring the

behavior of relays. However, this requirement will lead to bad user experiences.

Therefore, in order to provide a better user experience, we introduce some auxiliary mechanisms in the protocol to supervise

relays for reducing the burden on users.

ViteBridge Jury

We introduce a DAO to audit the financial situation of the bridge for users, supervise the behavior of relays, and arbitrate

disputes. Such DAO is called ViteBridge Jury. The DAO contains 11 members, who are selected through voting by VITE

stakeholders. ViteBridge Jury is controlled by the Jury Contract deployed on Vite. The Jury members will call the Jury

Contract to perform their duties, and the judgment result will automatically take effect on chain.

A Jury member's main responsibility includes:

Watchdogs

In order to speed up the fraud detection, we introduce a role called Watchdog in the protocol. Watchdogs are special parties

that monitor relay's behavior and bridge's financial situation for rewards. A report will be submitted to ViteBridge Jury if

Watchdog finds a problem.

Anyone can be a Watchdog and call the inform() function of the Jury Contract to report an issue, such as a fake remote

blockchain transaction or an original collateral asset problem.

Each report must bond a small amount of VITE token. If the report is found malicious by ViteBridge Jury, the bond will be

slashed.

If the report is confirmed valid by ViteBridge Jury, the first reporting Watchdog will be awarded a bonus. The bonus comes

from the slashed collateral from a guilty party, such as a cheating relay.

Augmented Transaction Verification

In pursuit of universality, the protocol does not make cryptographic verification mechanism essential. Instead, it relies on

relays to give information cross blockchains, and the relay's honesty is guaranteed game theoretically.

However, for some blockchains with hard money, we can still embed cryptographic verifications in the bridge to enhance

safty.

To achieve this, we define a hook function function verifyTransaction(RemoteTransaction tx) returns(bool) in the Relay

Contract. It returns a boolean value to represent the verification result.

This function is called after a remote blockchain transaction enters approved state. If it returns false, the transaction enters

the failed state and will not execute the subsequent code to mint or unlock assets.

By default, this hook function simply returns true . If the remote blockchain is suitable for implementing a light client, this

hook function should be overwrite to implement cryptographic verifications by light client.

Vite as Original Blockchain

For ease of understanding, in the previous sections, we regard Vite as the host blockchain by default. In fact, this protocol

also supports to regard Vite as the original blockchain. In this case, the remote blockchains supporting asset issuance, such

as Ethereum, is regard as the host blockchain.

Lock Transaction Verification

How to verify that the Tlock initiated by the depositor is confirmed on Vite?

Since the original asset is mapped to a reedmable token on Vite, a Vite smart contract can lock the backed asset and

execute the subsequent code asynchronously after waiting for enough confirmations.

Mint Transaction Creation

How to generate a valid remote blockchain transaction Tmint according to Tlock?

The Wallet Contract on Vite will assemble and sign a remote blockchain transaction first, and then broadcast the signed

transaction to the remote blockchain through relays. The smart contract deployed on the remote blockchain to control the

backed asset needs to maintain the public key of the Vite TSS consensus group and verify the signature. After the

verification is passed, the contract will mint backed assets on the remote blockchain.

Burn Transaction Verification

How to verify that Tburn is confirmed on the remote blockchain?

The backed asset is burned in the smart contract deployed on the remote blockchain. After Tburn is confirmed, the relay is

responsible for reporting to Vite. Similarly, bonding collateral is required for relay to prevent cheating. At this time, the relay's

collateral is an asset on Vite, such as BTC-000, which is locked in the Vite smart contract.

Unlock Transaction Creation

How to generate a valid Tunlock on Vite according to Tburn?

As a built-in functionality of Vite, a transaction Tunlock can be triggered in a smart contract on Vite to unlock original assets.

Transfer Redirect

In the above sections, we discussed how to transfer funds between a remote blockchain and Vite. Sometimes, users want to

transfer assets from one remote blockchain to another, such as from Bitcoin to Ethereum. To meet this demand, Vite can be

used as a relay blockchain for cross-chain transfers between two remote blockchains, and the cross-chain transfer can go

through without Vite accounts.

This type of transfer is called Tranfer Redirect.

Let's look at the workflow shown in the following figure, where a user wants to transfer BTC from Bitcoin to Ethereum.

Economy

A well-designed economic model can help improve the efficiency of the protocol and provide a good experience to user.

Below we briefly describe the concepts of the economic model but leave the details for future design.

Governance

Compared with mature blockchains such as Bitcoin or Ethereum, the ledger structure and protocol of a new-emerged

blockchain usually change more frequently.

Therefore, we need a decentralized governance approach to deal with possible changes.

The following issues need to be addressed in the governance approach:

We are not going to answer the above questions here, but will explore them as an in-depth topic in the future.

Safety and Liveness

Safety Threats

The protocol may face the following security risks.

Liveness Threats

The protocol's liveness could be impacted by the following risks.

Use Cases

Instant Cross-Chain Transfer

Users can implement cross-chain transfers from one remote blockchain to another via ViteBridge's Transfer Redirect

functionality.

For example, If Alice has 1 BTC and wants to transfer it from Bitcoin to Ethereum, she can take the following steps:

Cross-Chain DeFi (Borrowing)

Alice has 1,000 DOT. She needs some USDT to pay the rent, while she doesn't want to sell her DOT at the moment.

Cross-Chain DEX

Stable Coin Cross-Chain Exchange

A stable coin can be issued on multiple different blockchains. For example, USDT was issued on Omni, Ethereum, EOS, Tron,

Algorand, Liquid Network, Bitcoin Cash, and Solana. ViteBridge can provide users with cross-chain exchange of stable coins

in a trustless way.

Payment

In the above payment scenario, through transferring Ethereum-based USDT to the Vite blockchain, Alice, Bob, and Charlie

have saved many transaction fees while benefiting from the featured instant costless payment on Vite.

Cryptocurrency Custody

Alice plans to establish a centralized crypto exchange called AliceX, to provide trading services for digital assets on many

blockchains. After consulting with a third-party custody, she finds that the custody fee is too high for her, and only a small

number of blockchains with high market value are supported. If she chooses to develop the custodial system by herself, the

cost of development and maintenance is still expensive, not to mention the challenge of security risks.

After thoughtful consideration, Alice decides to use ViteBridge to implement a multi-chain custody.

In this scenario, Alice only needs to maintain a service with Vite, and rely on ViteBridge to complete the communication to

other blockchains. More importantly, this custodial service is decentralized, and Alice does not have to trust any "middle

man" who could take advantage of the opportunity to misappropriate assets. Alice can also implement hot/cold asset

management through optimized authorizations in AlicexCustodian. In addition, through the AlicexCustodian contract on Vite,

Alice can easily complete PoR (Proof of Reserve), so as to grant the users with more confidence.

Exchange Listing

In this scenario, Alice operates a blockchain project called Alichain, and she hopes to list Alichain's assets on some

centralized exchanges. However, centralized exchanges often prefer listing ERC20 tokens since listing a native coin of

Alichain will consume more development costs, while a DEX can only list assets issued on the same blockchain and cannot

support Alichain. Alice finally solves the problem by using ViteBridge.

#

#

Generic. The protocol is not designed for specific blockchains but should apply to most existing blockchains.

Decentralized. The protocol must minimize the trust required from any single party in the system. Anyone can join or

leave freely according to the rules established by the protocol.

Secure. The protocol must be Byzantine fault-tolerant and maximize security in confrontation with various attacks.

#

#

Cosmos ↗ Polkadot ↗

#

Coinbase Custody ↗ Bitgo ↗ Vite Gateway ↗

#

Liquid ↗

WBTC ↗

#

Waterloo ↗

ETH-NEAR Rainbow Bridge ↗

tBTC ↗

Incognito ↗

#

RenVM ↗

tBTC ↗

Incognito ↗

#

#

We are not going to propose a top-level protocol that requests every blockchain project to follow. We believe in a future

where many blockchains will blossom to serve different needs. So easy transfer of data and assets between blockchains

will become increasingly important. Creating a generic top-level protocol is not a prioritized task. In fact, any attempt to

build such a new protocol will only introduce yet another closed ecosystem. Therefore, we choose not to ask for other

blockchains to follow our specifications. But on the contrary, we have designed Vite to bridge every blockchain in a

decentralized manner.

Due to the significant inherent differences of blockchain projects, many blockchains do not have smart contract VMs. We

do not intend to bridge any two blockchains directly. Instead, we will use Vite as a relay chain to forward bi-directional

cross-chain transfers between two blockchains.

It is impossible to leverage an existing blockchain, such as Ethereum, to accomplish the same goal because Ethereum

lacks a few necessary features. For example, Ethereum cannot hold a secret or sign transactions in smart contracts.

Meanwhile, it does not support additional signature algorithms such as Ed25519 in the EVM either. Therefore, we decide

to upgrade the current Vite protocol to implement the above features.

Vite Mainnet launched in September 2019. As a battle-hardened blockchain, some features of Vite are very suitable for

cross-chain transfer. Benefited from the asynchronous smart contracts, cross-chain deposits and withdrawals can be

perfectly implemented on Vite. For example, in a withdrawal case, when the confirmation number of the backed asset

burning transaction reaches a given number, a member function of a smart contract is executed by the consensus group

to unlock original assets on the remote blockchain.

Considering genericity, this protocol does not implement cryptographic light clients in smart contracts on the remote

blockchain. Instead, it adopts a game-theoretic scheme to verify remote blockchain transactions through a set of relays

bonding adequate collateral. Relays that failed to perform duties will bear the loss of the collateral.

Also based on the consideration of genericity, the protocol does not require smart contracts on remote blockchains. As

long as TSS or Multisig is supported, this protocol can be applied.

Decentralization first matters. Regardless that a few tradeoffs are made in pursuit of genericity, this protocol is designed

not to rely on the trust of any single organization or individual, and using the protocol does not require permissions from

any party.

#

The protocol consists of a set of smart contracts deployed on the Vite blockchain and a set of relay nodes running off-

chain programs.

The Wallet contract takes the role of a decentralized wallet of the remote blockchain that is featured to generate public

keys, construct remote blockchain transactions, and sign the transactions within the contract.

The Wallet contract deploys on the Vite blockchain. It also designates a consensus group, whose members hold the

private keys in a decentralized manner to ensure no single party knows the complete private key.

The members of the consensus group are voted on the Vite blockchain. Anyone can join or leave freely without

permission.

The relay node is responsible for reporting transactions on the remote blockchain and minting backed assets on Vite.

Relays must bond collateral in advance during registration and add additional collateral for each excess deposit if

required.

#

Propose a solution to realize a decentralized wallet of any blockchain through smart contracts. This solution allows the

decentralized custody of assets on another blockchain.

Propose a protocol to control the issuance of backed assets through over-collateralizing original assets on the remote

blockchain. The protocol achieves game-theoretic security via equilibrium, through a game with perfect information

between the asset issuer and the stakeholders.

#

Backed Asset: A backed asset is a crypto asset issued on a blockchain by taking another crypto as collateral. The backed

asset is redeemable for the original asset on demand. The value of a backed asset is 1:1 pegged to the original asset. The

amount of collateral should reflect the circulating supply of the backed asset. For example, BTC-000 is a BTC-backed

asset issued on the Vite blockchain.

Original Asset: An original asset is a backing asset of the backed asset. For example, the original asset of BTC-000 is

BTC.

Origin Blockchain: An original blockchain is a blockchain on which an original asset stores. For example, Bitcoin is the

origin blockchain of BTC.

Host Blockchain: A host blockchain is a blockchain on which a backed asset stores. For example, Vite is the host

blockchain of BTC-000.

Vite: is a DAG-based blockchain that features zero-fee transactions and optimizes for transaction speed, reliability,

and security. It installs a smart contract VM and a built-in DEX with on-chain order books.

Vite ↗

Remote Blockchain A remote blockchain is a blockchain that connects to Vite through ViteBridge.

#

A Treceive is always paired with a Tsend transaction.

A Treceive comes eventually after a Tsend takes place.

#

Lock Transaction Verification: How to verify that a Tlock is confirmed on the remote blockchain.

Mint Transaction Creation: How to generate a valid Tmint on the host blockchain based on Tlock.

Burn Transaction Verification. How to verify that Tburn is confirmed on the host blockchain.

Unlock Transaction Creation. How to generate a valid remote blockchain transaction Tunlock based on Tburn.

#

#

#

#

#

Suppose a BTC backed token BTC-000 is issued on Vite. At this time, Bitcoin is the original blockchain, and Vite is the

host blockchain.

Suppose an ERC20 contract is deployed on Ethereum and a BTC-000 backed token vBTC is issued. At this time, Vite is

the original blockchain, and Ethereum is the host blockchain.

#

1. The depositor requests a BTC deposit address from the Bitcoin Wallet contract according to his Vite address.

2. The depositor initiates a transaction on Bitcoin and transfers BTC to the deposit address.

3. The relay discovers that the deposit address has received BTC.

4. After the transaction is confirmed, the relay node reports a Tlock to the Bitcoin Relay contract.

5. After the Tlock transaction has been reported by a quorum of relays, it is regarded as confirmed on the Bitcoin

blockchain. At this time, the Bitcoin Wallet contract will be notified.

6. The Bitcoin Wallet contract looks up the Vite address according to the depositor's BTC deposit address, and then notifies

the BTC-000 Wallet contract to mint the BTC-000 tokens.

7. The BTC-000 Wallet contract mints an equivalent amount of BTC-000 and sends them to the depositor’s Vite address.

#

8. In order to facilitate subsequent unlocking of funds for withdrawals, it is necessary to collect funds scattered in different

deposit addresses and aggregate them into a single vault address.

9. When the TSS consensus group is at the end of term, a new vault address will be generated. At this time, the old vault

address will be discarded and all funds will be transferred to the new vault.

#

10. In a withdrawal process, a user holding BTC-000 can initiate a withdrawal transaction on the Vite blockchain, sending

BTC-000 tokens to the BTC-000 Wallet contract, with his Bitcoin address to receive BTC.

11. The BTC-000 Wallet contract burns the received BTC-000 tokens and waits until the Tburn transaction obtains enough

confirmations, then notifies the Bitcoin Wallet contract to unlock the equal amount of BTC.

12. The Bitcoin Wallet contract assembles a Tunlock transaction of Bitcoin and sign it.

13. The relay obtains the signed Bitcoin transaction and broadcast it to the Bitcoin network.

14. After Tunlock is confirmed, the withdrawer receives the original BTC in his Bitcoin address.

#

15. As a native token issued on Vite, BTC-000 can be freely transferred between Vite addresses.

#

16. In a cross-chain scenario, BTC-000 token holders can transfer it to Ethereum to obtain the equivalent vBTC, which is a

BTC-000 backed ERC20 token issued on Ethereum. At this point, the depositor can initiate a transaction on Vite,

sending BTC-000 to the BTC-000 Wallet contract, with his Ethereum address to receive vBTC.

17. At this time, unlike the withdrawal process, the BTC-000 Wallet contract does not burn the received BTC-000 tokens,

but lock them in the contract as the reserve for vBTC. When Tlock has obtained enough confirmations, the Ethereum

Wallet contract will be notified to unlock the corresponding vBTC.

18. The Ethereum Wallet contract assembles a Tmint of Ethereum and sign it. This transaction will be sent to the vBTC

ERC20 contract on Ethereum.

19. The relay fetches the signed Ethereum transaction and broadcast it to the Ethereum network.

20. After the vBTC ERC20 contract on Ethereum receives the transaction, it verifies the signature according to the public

keys of the TSS consensus group. If the verification passes, the same amount of vBTC will be minted and sent to the

user's Ethereum address.

#

21. Holders of vBTC can initiate a cross-chain withdraw transaction, by calling the vBTC ERC20 contract on Ethereum, to

redeem an equivalent amount of BTC-000 on Vite. The vBTC ERC20 contract will deduct the vBTC from the user's

balance and burn them.

22. The relay discovers a Tburn transaction of the vBTC ERC20 contract on Ethereum.

23. When Tburn is confirmed, the relay reports it to the Ethereum Relay contract on Vite.

24. After the Ethereum Relay contract has been reported by a quorum of relays, the Tburn transaction is regarded as

confirmed, and the BTC-000 Wallet contract will be notified to unlock BTC-000.

25. The BTC-000 Wallet contract unlocks an equivalent amount of BTC-000 and sends them to the user's Vite address.

#

According to the beneficiary address provided by the depositor, an unique deposit address is generated. Depending on

the remote blockchain's protocol, the deposit address can be an address, or a tuple of (address, memo) .

Maintain address mapping and look up the corresponding beneficiary address of Tmint after receiving a Tlock notification

from the Relay contract.

Assemble a transaction for the remote blockchain in the correct format.

Sign a remote blockchain transaction.

#

1. Multiple users call a contract simultaneously. In this scenario, the contract must prioritize the requests. For example, two

users submit orders to a DEX contract at the same time, if there is no rule specifying the order of processing, it will cause

the front-running vulnerability.

2. Generate a safe random number in a decentralized manner.

3. Sign a message in a smart contract.

1. In a DEX on Ethereum, after a trading transaction is broadcasted, a front-runner can quickly place another order at the

same price with a higher gas price. Since the execution order of the transactions is determined by miners, the first

transaction will be suppressed because miners always choose transactions with higher fees.

2. A third party can deploy a VRF-based random number generator contract on Ethereum, such as . The

random numbers can be verified on chain, but the nodes participating in the random number generating are determined

by Chainlink's off-chain rules, which will not go through the on-chain consensus of Ethereum.

Chainlink VRF ↗

3. Ethereum can only verify signatures in the contract. Signing a message in the contract is not supported.

#

#

A node in the consensus group generates a random seed at local and publishes the proof to the Vite network.

After a certain period, the consensus group node releases the previously generated random seed to the Vite network,

and other nodes can verify based on the proof they received earlier.

A smart contract requests a random number by calling the built-in function random64() or nextrandom() .

The two functions are compiled into ViteVM code instructions 0x4A OP_SEED and 0x4B OP_RANDOM .

A user initiates a Trequest transaction to call the contract. The contract will not be executed until the transaction is

confirmed to ensure the execution will not revert.

When the VM executes instruction 0x4A OP_SEED or 0x4B OP_RANDOM , it obtains a random seed according to the height of

Trequest and generates a random number based on it.

#

To prevent fraud, any node in the Vite network can verify the membership of the consensus group.

The members of the consensus group are voted every a certain time has passed. New members do not need permission

from old ones to join.

No single node in the consensus group can obtain the complete private key. Even if multiple nodes conspire, they still

cannot assemble a valid signature.

#

The consensus group executes TSS Key Generation to create a public key and a set of private keys for each node in the

group, then publishes the public key to the Vite network. The private keys will be used for subsequent signing. This

process requires ad-hoc peer to peer communications between nodes in the consensus group.

The membership of the consensus group has a fixed term. When it expires, the protocol will select a new group of nodes

according to the consensus rules, then calls TSS Regroup to generate a new public key and new private keys, and finally

publishes the public key to the Vite network.

It is necessary to set up a transition period for group handover. During the time, the old members of the consensus

group cannot quit immediately, but they still need to process incoming signing requests.

Every time the consensus group is changed, it sends a tssRegrouped message to notify the smart contracts.

The smart contract calls the Vite built-in function tss_pubkey(uint epoch) to obtain the public key of the consensus

group. The epoch parameter specifies the term of the consensus group.

The smart contract signs a transaction by calling the Vite built-in function tss_sign(unit epoch, bytes32 data) . The

epoch parameter specifies the term of the consensus group that will be used to sign the transaction. The signature will

not return immediately. Instead, the consensus group will send an asynchronous tssSigned message to the smart

contract to return the signature.

#

1. Original blockchain supports memo or other user-customized fields in a transaction. In this case, a shared deposit address

can be generated through the Wallet contract, and the depositor should specify the beneficiary address in the memo.

2. Original blockchain does not support memo fields in the transaction. In this case, a separate deposit address is generated

for each user through the Wallet contract, and the address mapping between deposit address and benificiary address is

stored in the Wallet contract in order to identify different users.

// Redeem script
<recipient_address_hash>
OP_DROP
<tss_pubkey>
OP_CHECKSIG

// Locking script
OP_HASH160
<20-byte hash of Redeem Script>
OP_EQUAL

// Unlocking script
<tss_signature>
<redeem script>

#

// Redeem script
OP_IF
 <beneficiary_address_hash>
 OP_DROP
 <tss_pubkey>
 OP_CHECKSIG
OP_ELSE
 <deposit_timeout>
 OP_CHECKSEQUENCEVERIFY
 OP_DROP
 <jury_pubkey>
 OP_CHECKSIG
OP_ENDIF

// Locking script
OP_HASH160
<20-byte hash of Redeem Script>
OP_EQUAL

// Unlocking script - Unlock transaction
<tss_signature>
<TRUE>
<redeem script>

// Unlocking script - Refund transaction
<jury_signature>
<FALSE>
<redeem script>

#

#

contract Wallet {
 uint currentEpoch;
 mapping(bytes32 => RemoteBlockchainTransaction) transactionsToSign;
 address relayContract = address("vite_000...");
 message relayTransaction(uint epoch, RemoteBlockchainTransaction transaction);

 onMessage tssRegroup(uint nextEpoch) {
 if (nextEpoch > currentEpoch) {

 bytes32 tssPubkey = tss_pubkey(nextEpoch);

 RemoteBlockchainTransaction tx = createVaultHandoverTransaction(tssPubkey);

 transactionsToSign[tx.id] = tx;

 tss_sign(tx.id, tx, currentEpoch);
 }
 }

 onMessage tssSigned(uint32 epoch, bytes32 id, bytes32 signature) {
 RemoteBlockchainTransaction tx = transactionsToSign[id];
 tx.rawTransaction.signature = signature;

 send(relayContract, relayTransaction(epoch, tx));
 }
}

// Message listener for tssRegroup messages triggered by TSS consensus group

// fetch new TSS public key of the next epoch

// create vault_handover transaction

// put into mapping

// Sign vault_handover transaction with the private keys of the previous members.
// The result can not be returned immediately. It's an asynchronous call.

// Message listener for tssSign messages triggered by TSS consensus group

// notify RelayContract

#

#

#

#

The bootstrap relay request a collateral address from the Relay Contract. When Vite is used as the host blockchain, the

address is a remote blockchain address generated by the Wallet Contract, such as a Bitcoin address; when Vite is used as

the original blockchain, the address is the Vite address of the Relay Contract.

The bootstrap relay transfers the min_collateral_amount of assets to the collateral address. For example, transfer 10 BTC

to the Bitcoin address returned by the Relay Contract.

When the collateral transaction is confirmed, the bootstrap relay calls the setup() function of Relay Contract to register

itself with relay id, hash of collateral transaction, etc. According to the bootstrap_relay_bond_amount specified in the

bridge, the bootstrap relay may also need to bond a certain amount of VITE token. This bonding is irrelevant to the

collateral, but mainly to prevent the relay spam.

Before bootstrap is complete, relays already joined can abort by calling the abort() function of the Relay Contract. The

collateral will not refund until the time of collateral_abort_delay expires. This is to prevent the protocol from being

attacked by frequently joining and quitting of evil relays.

When the collateral is an asset on the remote blockchain, the Relay Contract on Vite cannot verify whether the collateral

is paid. Therefore, each relay needs to audit the collateral status of other relays. Since the collateral address of each relay

is public, and the transactions on the remote blockchain are also public (for a private blockchain, proof of collateral needs

to be provided in a particular way), bootstrap relays can audit each other.

If a bootstrap relay is caught cheating, other relays can choose to abort by calling abort() , and(or) submit a challenge

request to ViteBridge Jury.

When a sufficient number of bootstrap relays complete setup and pass peer audit, each relay must explicitly call the

bootstrap() function of the Relay Contract to notify the system that it is ready.

When a min_relay_num of bootstrap relays have called bootstrap() , the Relay Contract is activated. At this time, the

bridge starts to work.

Bootstrap can only be performed once throughout the lifetime of a bridge. After bootstrap is complete, the joining and

quitting of a relay will follow other rules.

#

Relay nodes need to keep monitoring the related addresses on the remote blockchain. After finding a new Tlock or

Tburn transaction, the relay should report call the report() function to report it dicovered.

Relay nodes need to keep monitoring any unconfirmed cross-chain related transactions on the remote blockchain. When

such a transaction is confirmed, the relay calls the confirm() function to report it confirmed.

In the Relay Contract, any Tlock or Tburn transaction should be confirmed by multiple relays. When the number of

confirmed relays reaches relay_quorum , the transaction is marked as the confirmed state.

If the circulating supply of the backed asset does not reach the upper limit, the transaction will be approved, and the

contract will generate a Tmint or Tunlock transaction. At this time, for relays participating in approval, a number of

(transaction_amount / relay_quorum) collateral will be locked for the relay. If a relay's current unlocked collateral is less

than (transaction_amount / relay_quorum) , it fails to participate in the approval.

If the circulating supply of the backed asset has reached the upper limit, the transaction will keep at the confirmed state,

and the deposit cannot be credited until another user withdraws. Because withdrawal will lead to some backed assets

being burned and decrease the circulating supply, the pending deposit can be processed.

Any locked collateral, if there is no dispute, will be unlocked after bond_unlock_delay passes.

In a dispute, unlocking collateral must wait for the judgment of ViteBridge Jury, which finally determines whether the

collateral can be unlocked or not.

The commission of relay is calculated based on the total number of participants in the approval. If a relay does not

approve any transaction, it won't get the commission.

#

To become a relay, one needs to bond a sufficient amount of collateral. Collateral is paid with backed assets. He should

initiate a cross-chain deposit through the current bridge first, then bonds the collateral with the backed assets obtained.

The relay calls the register() function of the Relay Contract to complete the registration. A min_collateral_amount of

the backed asset should be sent within the transaction.

If the number of relays in the bridge is less than max_relay_num , new relay registration can be accepted. After a new relay

completes the registration process, the bonded collateral in back asset will be burned in the Mint Contract and only the

IOU of the collateral balance is kept in the Relay Contract.

If the number of relays in the bridge reaches max_relay_num , the registration request will fail, and bonded collateral will be

returned.

#

The relay calls the quit() function of the Relay Contract to initiate a quit request.

If the number of relays in the bridge is equal to min_relay_num , the quit request won't be accepted. All remaining relays

can not quit unless new relays join, or going through the liquidation process.

If the number of relays in the bridge is more than min_relay_num , the quit request will be accepted. A quitting relay will

no longer approve transactions, and the collateral will be returned after the specified time.

Relay's quit will reduce the circulating limit of the backed asset. If the existing circulating supply has exceeded the new

upper limit, the bridge will no longer accept new deposits, but only accept withdrawals until the circulating supply drops

below the limit.

The unlocked collateral of a quitting relay will be sent to the relay's address on the original blockchain after calling the

withdraw() function of the Relay Contract.

The collateral unlock waiting period is specified by collateral_unlock_delay .

The locked bond, if no dispute, will be unlocked after (bond_unlock_delay + collateral_unlock_delay) .

In a dispute, ViteBridge Jury will judge whether the bond can be unlocked.

The collateral that was slashed for any reason will no longer be returned.

#

When the remaining relays in the bridge reach min_relay_num , any relay that wants to quit can initiate a liquidation

request by calling the liquidate() function of the Relay Contract.

The bridge in liquidation process will no longer accept relay registrations and deposit requests. It only responds to

withdrawal requests.

Starting from the liquidation request is initiated, the bridge will open a liquidate_delay time window for all current users

to withdraw.

After the withdrawal window is over, the collateral unlocking countdown starts for relays. The rest process is similar to

relay quit.

After the liquidation is complete, the bridge enters the dismissed state.

#

Original assets locked in the Wallet contract are lost.

A confirmed original asset deposit transaction is rolled back.

Fail to properly handle the hard fork of the original blockchain.

Relay fraud is not found in time.

The bankruptcy request can be initiated by ViteBridge Jury, or by a relay and reviewed by ViteBridge Jury.

After the bridge enters the bankrupting state, it should immediately disable deposit and withdrawal, and no longer

accept relay registration or quit requests.

A bankrupt bridge needs to perform Bankruptcy Liquidation, which is similar to ordinary liquidation, but the main

difference is that the bridge may already be insolvent at this time.

In the bankruptcy liquidation process, users who hold backed assets have a higher withdrawal priority than relays.

ViteBridge Jury needs to audit the process and specify two parameters user_redeem_rate and relay_redeem_rate ,

indicating the numbers of original assets that can be redeemed for 1 unit of backed asset for users and relays.

Bankruptcy liquidation has two stages. In the first stage, users can request to withdraw assets at the rate of 1 :

user_redeem_rate .

In the second stage, each relay's available collateral is calculated, and the relay is allowed to withdraw collateral assets at

the rate of 1 : relay_redeem_rate .

After the bankruptcy liquidation is complete, the bridge enters the bankrupted state.

#

#

Audit the collateral rate of a new bridge on behalf of users. A quorum of 8 members needs to reach an agreement to

approve the audit.

Solve dispute transactions. In this case, a quorum of 5 members needs to reach an agreement to approve or reject it.

Initiate a bridge bankruptcy request. This requires a quorum of 8 members.

Supervise the relay's behavior. Once fraud is found, the Jury Contract can send an on-chain transaction to the Relay

Contract to suspend the bridge. This requires a quorum of 5 members.

#

#

#

#

#

#

#

#

1. Alice inputs an Ethereum address and requests a BTC deposit address from the Bitcoin Wallet Contract. Since Alice

doesn't have a Vite address, the contract will construct a unique BTC address based on Alice's Ethereum address and

return it.

2. Alice transfers 1 BTC to the deposit address.

3. The relay monitors the BTC deposit address. In this case, it finds a Transfer Redirect transaction.

4. When the transaction is confirmed, the relay reports to the Relay Contract.

5. After the Relay Contract receives enough reports from relay nodes, it locks the collateral bonding of the reporting relays

and notifies the Bitcoin Wallet Contract.

6. The Bitcoin Wallet Contract retrieves the beneficiary address on Ethereum according to the deposit address and notifies

BTC-000 Wallet Contract on Vite.

7. The BTC-000 Wallet Contract mints BTC-000 and locks it in the contract as a reserve for the BTC-000 backed asset

vBTC on Ethereum.

8. When it is confirmed, the BTC-000 Wallet Contract notifies the Ethereum Wallet Contract to sign a vBTC mint

transaction.

9. The relay forwards the signed vBTC mint transaction to Ethereum.

10. The vBTC ERC20 Contract on Ethereum verifies the signature of the Vite TSS consensus group. After the verification is

passed, an equivalent amount of vBTC will be minted and sent to Alice's Ethereum address.

#

The income of ViteBridge mainly comes from deposit and withdrawal fees. Generally speaking, users should pay for

cross-chain transfers. However, if the fees are too high, it will harm the enthusiasm of the users, and finally, decrease the

total income of the bridge.

More cross-chain transfers are beneficial to the ecosystem on Vite. In addition to fee income, all DApps that benefit from

the cross-chain protocol, such as DEX, DeFi applications or payment applications, are encouraged to contribute to

ViteBridge.

The fee of Transfer Redirect should be higher than ordinary cross-chain transfers.

The income of ViteBridge is mainly used to incentivize relays, which, as required by the protocol, must bond collateral,

run nodes, and usually take more risks than others.

ViteBridge Jury also needs to be incentivized. Otherwise, it may not be faithful in performing the duties and causes a

risk.

Watchdogs need to be incentivized too in order to increase the probability of that cheating behaviors are detected in

time. Honest Watchdogs will receive additional rewards, while a malicious one will be punished by bonding slash.

#

How to update the consensus rules of the TSS consensus group and decide the threshold in TSS.

How to decide the bridge settings, such as relay_quorum , min_collateral_amount , etc.

How to upgrade the Wallet Contract when the remote blockchain's protocol updates.

How to update the election rules and consensus rules of ViteBridge Jury.

#

#

TSS Consensus Group Conspiracy. It is the highest safty threat. Assuming that the TSS consensus group is formed by

Vite SBPs (Snapshot Block Producer), an attacker needs to control enough SBPs above the TSS threshold to exploit the

attack. Since becoming an SBP requires staking of 1,000,000 VITE and adequate votes, it produces a high cost to

manipulate the TSS consensus group. The asset value maintained in the Wallet Contract may not cover, especially in the

early stage of the bridge. So it is not profitable for attackers. Moreover, as the market value of VITE token increases, the

cost will keep rising. On the other hand, we can also increase the staking requirement of the TSS consensus group in the

future, making it even higher than becoming an SBP. At this time, it is even more difficult to manipulate the TSS

consensus group than to manipulate the entire Vite blockchain.

Relay Fraud. A relay may benefit from a fake report of remote transactions. For example, it may mint backed assets

arbitrarily and send them to itself. The evil behavior is not stopped, but because the blockchain's ledger is public, and all

relay's activities are tracked in the smart contract, this behaviors will be caught sooner or later. Before the relay has a

chance to unlock its collateral, a challenger can freeze the funds in the smart contract by submitting a fraud report. In

this case, other users have enough time to withdraw assets ahead of the cheater. This kind of attack can only be

exploited by assuming that the cheating behavior is not discovered until the collateral is being unlocked. We recommend

setting collateral_unlock_delay and bond_unlock_delay of the bridge long enough to prevent the fraud. In addition, the

presence of Watchdogs and Jury will also help to mitigate this risk.

Sybil Attack by Relay. An attacker can attempt to control a bridge by registering multiple relays. To prevent Sybil

Attacks, the protocol requires that each relay must bond a collateral of at least min_collateral_amount . In this case, if a

bridge is manipulated, the attacker will lose his collateral in exchange for backed assets, which have zero value if cannot

be redeemed, and the original assets controlled by the Wallet Contract won't be affected.

Eclipse Attack by Relay. An attacker can block a relay's access to the full nodes of original blockchain and use fake data

to deceive the relay. In this case, the relay is responsible for all the losses. Therefore, to prevent an eclipse attack, the

relay should run a full node by itself or/and access several geographically distributed full nodes for one request.

Phishing Attack by Relay. During the bootstrap phase of a bridge, a bootstrap relay may deceive users by providing fake

proof of collateral. In this case, the relay is able to misappropriate the deposit funds since it did not bond collateral at all.

To avoid it, a new bridge must be audited by ViteBridge Jury before it starts service, and users also need to pay

attention to unfamiliar bridges. In addition, a well-designed client application also helps reduce the risk of phishing.

Jury Conspiracy. If Jury is manipulated or colludes, the dispute transaction will be judged in opposite result, and the user

or relay will suffer the loss. In fact, the safty of the protocol is guaranteed by the game between the user and the relay.

Jury only plays an assistant role. Users should not give up their inspection duty and simply choose to trust the Jury. If

Jury fails to work, in order to avoid further loss, users should stop deposit and start withdrawal immediately, and relays

should also stop confirming new transactions and start unlocking collaterals. Jury's fraud can be discovered by all the

users, and a cheating Jury will be voted out.

Watchdog Malicious Report. Watchdog may send spam reports to interfere with Jury's work. It is similar to a DDoS

attack. Since Watchdog needs to bond VITE token for each report, a spam report will finally cause a bonding slash.

#

TSS Consensus Group Neglect. If several nodes in the TSS consensus group do not respond to a signing request, the

request will fail due to unsatisfied threshold for signature. At this time, the user's withdrawal may not credit for a long

time. More seriously, after the consensus group changes, the original assets locked in the previous vault may not be

handed over to the new vault timely, even could never unlock. In this case, the non-responding nodes must be punished

by a staking slash. A low-uptime node should also be voted out to increase liveness.

Relay Neglect. If enough relays are not fulfilling the responsibility, a transaction on the remote blockchain may never be

reported on time. In this case, the user's deposit may not credit. To avoid this situation, we need to make sure the non-

reacting relay won't get fees income, in addition, if the user finds that the deposit does not credit, he can submit a

challenge to Jury, and the relay will be punished for neglect of duty.

Jury Neglect. If Jury neglects to fulfill its duty, a dispute may not be solved for a long time. As a consequence, either the

user or the relay will suffer the losses. In this circumstance, the neglect Jury will be voted out by users and its collateral

will be slashed as a penalty.

#

#

Alice opens the website of ViteBridge, navigates to the Instant Transfer page, respectively selects Bitcoin, BTC, Ethereum

in the from-list, asset list, and to-list.

Alice fills in her Ethereum address. At this time, ViteBridge displays a Bitcoin deposit address for her.

Alice transfers 1 BTC to the deposit address.

Alice receives a 0.995 vBTC ERC20 token on Ethereum (assuming a 0.5% commission is charged).

#

Alice opens the website of ViteBridge, navigates to the Instant Transfer page, respectively selects Polkadot, DOT,

Ethereum in the from-list, asset list, and to-list.

Alice fills in her Ethereum address. At this time, ViteBridge displays a Polkadot deposit address for her.

Alice transfers 1,000 DOT to the deposit address.

Alice receives a 995 vDOT ERC20 token on Ethereum (assuming a 0.5% commission is charged).

Alice saves the 995 vDOT on Compound and borrows 10,000 USDT.

#

Alice opens the ViteX(DEX on Vite) website, navigates to the Deposit page, then selects BTC. At this time, a Bitcoin

deposit address is displayed.

Alice transfers 1 BTC to the deposit address.

After the transfer is confirmed, Alice gets 1 BTC-000 in her ViteX account.

Alice places an order to trade 1 BTC-000 into 30 ETH-000. After the order is filled, 30 ETH-000 will be credited into

Alice's ViteX account.

Alice opens the ViteX Withdraw page, selects ETH, fills in her Ethereum address, and submits a withdrawal request of 30

ETH.

30 ETH-000 is deducted from Alice's ViteX account.

After the withdrawal transaction is confirmed, Alice receives 29.99 ETH in her Ethereum address (assuming that a

commission of 0.01 ETH is charged).

#

Alice opens the website of ViteBridge, navigates to the Stable Coin Exchange page, chooses stable coin assets, selects

Tron as the transfer-out blockchain, and Ethereum as the transfer-in blockchain.

Alice fills in her Ethereum address. At this time, ViteBridge displays a Tron address for her.

Alice transfers 1000 USDT-TRC20 to the Tron address.

After the transaction is confirmed, ViteBridge will mint 1,000 USDT-TRC20-000 and transfer it to the InstantExchange

Contract.

The InstantExchange Contract calls the ViteX Contract to submit an order of which the time-in-force type is FOK (Fill or

Kill). The order trades 1000 USDT-TRC20-000 for USDT-ERC20-000.

If the order is not fully filled, the InstantExchange Contract will withdraw 1000 USDT-TRC20-000 back to the deposit

address, and Alice will receive a refund of 1000 USDT-TRC20 in her Tron address.

If the order is fully filled, Alice receives 995 USDT-ERC20 on Ethereum (assuming a 0.5% commission is charged).

#

Alice transfers 100 USDT to Vite and receives 100 USDT-000.

Using VitePay, Alice pays 10 USDT-000 to merchant Bob on the Vite blockchain to buy a pizza. The transaction is

confirmed within a few seconds with no transaction fee.

Alice pays 1 USDT-000 to merchant Charlie on the Vite blockchain to buy a juice. It has no transaction fee too.

Bob accepts 200 payments through VitePay at the end of this day, a total of 2,000 USDT-000. He transfers the money

to his Ethereum address through a cross-chain transaction. In this case, he only pays commission fee for one transfer.

Through VitePay, Charlie pays the USDT-000 received in the day to the juice supplier at night.

#

Alice deploys a smart contract AlicexCustodian on Vite and designates a Vite address as the owner.

Alice uses her private key to generate a separate Vite address for each user, and keeps the mapping between Account

ID and Vite address in the database.

User Bob requests his deposit address on the AliceX website. At this point, AliceX requests a DirectTransfer deposit

address at ViteBridge. The deposit beneficiary is the AlicexCustodian contract, and the data field fills in Bob’s Account ID.

Bob transfers 1 BTC to the deposit address.

AliceX detects that the AlicexCustodian contract has received a transfer of 1 BTC-000, and then adds 1 BTC to Bob’s

account in the exchange according to the Account ID in the data field.

Another user, Charlie, is preparing to withdraw 1,000 USDT at AliceX. He fills in his Ethereum address.

AliceX deducts 1,000 USDT from Charlie's account, signs a Vite transaction with the owner's private key, and sends it to

the AlicexCustodian contract with Charlie's Ethereum address.

The AlicexCustodian contract sends an Ethereum withdrawal transaction through ViteBridge.

Charlie received 9,995 USDT in his Ethereum address (assuming 5 USDT commission is charged)

#

Alice works with the Alichain's community to complete the integration with ViteBridge.

Alice contacts Bittrex, Kucoin, Upbit, and lists Alichain's Ethereum backed token vAlichain-ERC20.

Alice adds vAlichain/ETH pair on Uniswap.

Alice adds vAlichain-Polkadot/DOT pair on Polkaswap.

Alice lists vAlichain-BEP2/BNB pair on Binance DEX.

Type your text

Type your text

https://docs.vite.org/vite-docs/
https://docs.vite.org/vite-docs/bridge/
https://docs.vite.org/vite-docs/dex/
https://vite.org/
https://twitter.com/vitelabs
https://medium.com/vitelabs
https://t.me/vite_ann
https://discord.com/invite/CsVY76q
https://github.com/vitelabs
https://vite.org/
https://docs.vite.org/vuilder-docs
https://docs.vite.org/vite-docs/bridge/ViteBridge.html
https://cosmos.network/
https://polkadot.network/
https://custody.coinbase.com/
https://www.bitgo.com/
https://vite.wiki/dex/api/gate.html
https://blockstream.com/liquid/
https://wbtc.network/
https://blog.kyber.network/waterloo-a-decentralized-practical-bridge-between-eos-and-ethereum-1c230ac65524
https://near.org/blog/eth-near-rainbow-bridge/
https://docs.keep.network/tbtc/
https://we.incognito.org/t/shielding-cryptocurrencies-turning-any-cryptocurrency-into-a-privacy-coin/83
https://github.com/renproject/ren/wiki
https://docs.keep.network/tbtc/
https://we.incognito.org/t/shielding-cryptocurrencies-turning-any-cryptocurrency-into-a-privacy-coin/83
https://github.com/vitelabs/whitepaper/blob/master/vite_en.pdf
https://docs.chain.link/docs/chainlink-vrf

