

Centrifuge
Security Assessment
March 29, 2019

Prepared For:
Philip Stehlik | Centrifuge
philip@centrifuge.io

Prepared By:
Josselin Feist | Trail of Bits
josselin@trailofbits.com

Gustavo Grieco | Trail of Bits
gustavo.grieco@trailofbits.com

Sam Moelius | Trail of Bits
sam.moelius@trailofbits.com

Changelog:
March 29, 2019: Initial report delivered to Centrifuge
July 9, 2019: Added re-test results and reworded last three issues.

mailto:philip@centrifuge.io
mailto:josselin@trailofbits.com
mailto:gustavo.grieco@trailofbits.com
mailto:sam.moelius@trailofbits.com

Executive Summary

Project Dashboard

Engagement Goals

Coverage

Smart contracts Recommendations Summary
Short Term
Long Term

Precise-proofs Recommendations Summary
Short Term
Long Term

go-centrifuge Recommendations Summary
Short Term
Long Term

General Recommendations Summary
Short Term
Long Term

Findings Summary
1. Revoked Management and Action keys can still be used
2. A race condition on commit can break document updates
3. User can commit anchor with incorrect Merkle root proof
4. Lack of contract existence check may lead to unexpected behavior
5. An anchor can be committed multiple times if its Merkle root is zero
6. Merkle root verification can be done on empty proofs
7. REST API is exposed on all interfaces
8. Centrifuge “createconfig” requires password to be passed on command line
9. Centrifuge “createconfig” stores a plaintext password in a configuration file
10. Private keys are world-readable by default
11. Smart contract build dependencies are not up to date
12. Solidity compiler optimizations can be dangerous
13. User can commit anchor without requiring collaborators’ signatures
14. Lack of location verification in the Merkle Tree is error prone
15. ABIEncoderV2 is not production-ready
16. Lack of fixed-size data cast on binary.Write call leads to incorrect leaves
17. Manually adding leaves can lead to name collisions in the Merkle tree

Centrifuge Assessment | 1

18. Nil pointer dereferencing can lead the precise proof library to panic when flattened
by protobuf
19. The lack of documentation on the protobuf format invites for incorrect document
format
20. Error messages can be used to leak the collaborators list
21. Timing attack can be used to leak the collaborators list
22. Centrifuge nodes sign documents without users’ consent
23. Messages from an identity with no associated P2P keys leads to a node crash
24. Updated timestamps can decrease
25. Incorrect message error handling on invalid document access
26. libp2p dependencies are not up to date
27. Collaboration possibly leaked at the P2P level
28. Documentation should indicate who the consumers of fields are
29. Consider requiring consent to become a collaborator
30. Anchor id update allows for multiple tokens mint for the same document

A. Vulnerability Classifications

B. Code Quality

C. Fuzzer-based Test Cases for Centrifuge
Test Cases for Centrifuge
Measuring coverage
Integrating fuzzing and coverage measurement into the development cycle

D. Fix Log
Fix Log Summary

Centrifuge Assessment | 2

Executive Summary
From March 18th through March 29th, 2019, Centrifuge engaged Trail of Bits to review the
security of the Centrifuge node and smart contracts. Trail of Bits conducted this
assessment over the course of four person-weeks with three engineers working from the
Centrifuge git repositories.

Trail of Bits looked for flaws in the smart contracts and the Go code using static analysis,
fuzzing and manual review. During the first week, emphasis was placed on high-level
architectural considerations, the anchor registry, and the NFT token contracts. The second
week was focused on the P2P protocol and the precise proof library. Additionally, we
developed several fuzzing tests for internal functions using go-fuzz and libFuzzer.
Appendix C documents these deliverables.

Trail of Bits identified 30 findings ranging from high-severity to informational. Several of the
issues require malicious collaborators, and can lead to invalid updating and anchoring of
documents. Additionally, we found issues in the precise proof library, including incorrect
Merkle tree creation due to a misused standard library call. We also found issues at the
P2P level, including the collaborators list leaking through an error message received by
untrusted users.

The number and severity of the discovered vulnerabilities are expected for a system at
Centrifuge’s development stage. Trail of Bits commends Centrifuge for organizing an
assessment on a work in progress state of the protocol. We acknowledge that some of the
findings would have been mitigated with upcoming features. Trail of Bits identified the
following axes of improvement for the protocol:

● Reduce the trust required between collaborators of a document. The protocol requires
the collaborators of a given document to trust each other entirely. A malicious or
compromised collaborator could inflict critical damage.

● Improve the signature-verification procedure. The signature procedure was designed
to be only a proof of receipt and does not indicate the signer’s validation. The
benefit of the signature mechanism is therefore limited and users might
misunderstand its purpose.

● Provide secure key management and authentication. It will be required prior to a
deployment in a real context of the protocol.

● Document the assumptions and limitations of the protocol. The protocol requires users
to be aware of the core limitations and the expected behaviors to use the system
reliably.

Centrifuge Assessment | 3

Centrifuge should fix all the issues, add static analyzers and fuzzing to the development
process, and consider the improvements stated above. Finally, we recommend additional
review prior to the production deployment of the system.

Centrifuge Assessment | 4

Project Dashboard
Application Summary

Name go-centrifuge, centrifuge-ethereum-contracts,
precise-proofs, centrifuge-protobufs

Version 187ba86154e4298f52b294310b3e4f42c4e9b0ee

c5e55d16c4cfe058ca641d2a746a665f277f0c9f

13d3af957299c614237c42cdc331f7acd7c7d201

864a8ef4039324cebf3f23df115f50db12009d4c

Type Go and Solidity smart contracts

Platforms Ethereum, Go, Protobuf

Engagement Summary

Dates March 18th- 29th, 2019

Method Whitebox

Consultants Engaged 3

Level of Effort 4 person-weeks

Vulnerability Summary

Total High-Severity Issues 7 ◼◼◼◼◼◼◼

Total Medium-Severity Issues 6 ◼◼◼◼◼◼

Total Low-Severity Issues 4 ◼◼◼◼

Total Informational-Severity Issues 5 ◼◼◼◼◼

Total Undetermined-Severity Issues 8 ◼◼◼◼◼◼◼◼

Total 30

Category Breakdown

Access Controls 3 ◼◼◼

Timing 2 ◼◼

Data Validation 13 ◼◼◼◼◼◼◼◼◼◼◼◼◼

Data Exposure 5 ◼◼◼◼◼

Centrifuge Assessment | 5

Patching 3 ◼◼◼

Undefined Behavior 1 ◼

Auditing and Logging 1 ◼

Denial of Service 1 ◼

Error Reporting 1 ◼

Total 30

Centrifuge Assessment | 6

Engagement Goals
The engagement was scoped to provide a security assessment of the Centrifuge node and
its smart contracts.

The major security concern was to ensure that the protocol is sound and the
implementation of the hashing, signatures, signature checking, document state validation,
interactions with Ethereum are secure.

Specifically, we sought to answer the following questions:

Smart contracts

● Are the keys correctly managed?
● Is the NFT minting correct?
● Can a token be minted two times?

Precise-proof

● Are all the fields uniquely identified by a property?
● Can a valid proof of a property always be produced, regardless of its value?
● Can a proof be reused on multiple fields of the same core document?
● Are the salts always correctly re-generated?
● Can the merkle tree/proof generation crash?

go-centrifuge

● Can a remote user gain read or write access to a non-authorized document?
● Can a user crash an external node?
● Are the validators enough to ensure that the documents are valid?
● Can an attacker abuse the P2P wire message protocol?

Since the system is a work in progress, all the areas not mentioned above were not
targeted by the assessment, including the local storage, the REST API, and the callbacks via
webhooks.

Coverage
Smart contract. Trail of bits reviewed the smart contracts using manual review and Slither ,
the static analyzer. We looked for flaws in the authorization and the handling of keys. We
checked the Merkle tree verification library and its correct usage in the other contracts. We
also reviewed the minting process. We did not review the dependencies’ code (including
the openzepellin ERC721 contract, and the zos dependencies), and did not validate the unit
tests.

Centrifuge Assessment | 7

https://github.com/trailofbits/slither/

Precise-proof. Trail of bits reviewed the precise-proof library using manual review and
fuzzing. A focus was placed to find the creations of incorrect Merkle trees, and to
compromise the proofs verifications. We also looked for code panics, with a lower priority.
Efforts were made to find collisions in the leaves names. We reviewed the library using the
provided formats, and briefly consider formats that were not in the provided with the
Centrifuge codebase. We did not fully investigate the impact of malformed new protobuf
formats, and did not validate the unit tests.

Go-centrifuge. Trail of bits reviewed go-centrifuge using manual review and fuzzing. We
focused our efforts on the network interaction, and on the functionalities reachable by
external peers. We looked for bypasses of privilege, leaks of information, and crashes. We
reviewed how the node handles external requests and checked the correct access
validations. We briefly reviewed the smart contract interactions, in particular with the
identity and the NFT contracts . We investigated with a low priority the Kademlia protocol
usage, the REST API, and the key management of the node. We did not validate the unit
tests.

Due to the time constraint and the number of bugs found, we expect other bugs to be
present in the covered areas.

Centrifuge Assessment | 8

Smart contracts Recommendations Summary
This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short Term
❑ Check that the Management and Action keys are not revoked prior to their usage
in KeyManager and Identity. Revoked keys can still be used, preventing mitigation of a
compromised key.

❑ Disallow the use of the commit function without having a valid preCommit . Direct
calls to commit allow for a race condition wherein an attacker may steal the anchor id prior
to its anchoring.

❑ When committing an anchor, ensure the validity of the document root by checking
sha256(signingRoot+signatureRoot) == documentRoot. The current check allows for
an incorrect document root to be committed.

❑ Check the contract’s existence prior to the call in the Identify contract, and
consider adding a separate function to transfer ethers. The lack of contract existence
check may lead to unexpected behavior for the caller.

❑ Prevent anchors with a Merkle tree equal to zero from being committed. Anchoring
a Merkle tree with root equal to zero allows for multiple anchoring on the same anchor id.

❑ Check for a minimal length of proofs for all calls to verifySha256 and verify . Empty
lists of proofs will allow to bypass some of the Merkle tree verification.

❑ Update the smart contract build process dependencies to the latest version
wherever possible. Out of date dependencies might lead to missed critical bug fixes.

❑ Measure the contracts’ gas savings from optimizations, and carefully weigh that
against the possibility of an optimization-related bug. The Solidity compiler has a
history of compilation-related bugs, which should be carefully considered.

❑ Remove the usage of the ABI encoder V2 if the contracts are meant to be
production deployed in the short term. The encoder is still experimental and not ready
for production code.

❑ Implement an onchain mapping from document IDs to token IDs, and check that a
token cannot be minted multiple times. Prevent the document ID to be changed

Centrifuge Assessment | 9

during update. Multiple tokens can be minted for the same document if the token ID
associated to the document is changed.

Long Term
❑ Add unit tests to ensure the correct authorization schema of the Identity contract,
including scenarios where the keys are compromised. Thorough unit tests on the
authorization schema will have prevent issues like TOB-Centrifuge-001 .

❑ Document the race condition risk on preCommit and ensure that users are aware of
it. Closely monitor it by inspecting Anchor events. A race condition attack on preCommit
would temporarily spam the anchor registry.

❑ Carefully review the Solidity documentation . In particular, any section that contains a
warning must be carefully understood since it may lead to unexpected or unintented
behavior.

❑ Identify the smart contract properties that should always be true or false and test
them using Manticore and Echidna . Automated testing framework will help to identify
ahead of time future bugs.

❑ Add integration tests on all functions relying on the Merkle tree verification. Unit
tests should highlight failing scenarios, including empty and incorrect proofs.

❑ Monitor the development and adoption of Solidity compiler optimizations to
assess its maturity. The Solidity compiler has a history of compilation-related bugs, which
should be carefully considered.

❑ Monitor the development and adoption of Solidity ABIEncoderV2 to assess its
maturity. The encoder is still experimental and not ready for production code.

Centrifuge Assessment | 10

http://solidity.readthedocs.io/en/develop/index.html
https://github.com/trailofbits/manticore
https://github.com/trailofbits/echidna

Precise-proofs Recommendations Summary
This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short Term
❑ Cast the call to reflect.Len() to uint64 prior calling toBytesArray . toBytesArray
requires fixed-size data and will return incorrect result otherwise .

❑ Check the return error of all the calls to binary.Write . binary.Write can fail, so its
return must be checked for errors.

❑ Prevent a leaf from being added if its name is already present in the tree. Adding a
leaf with an existing name will lead to incorrect proof generation and verification.

❑ Handle the return of 0 in all the uses of reflect.ValueOf . ValueOf can return zero
and the return value will trigger a nil pointer dereference if not checked properly.

❑ Document how to build a correct protobuf document format. If the user is not aware
of the expected format structure, it can generate a format with name collisions in the tree.

Long Term
❑ Improve the unit tests coverage of the API usage of the precise proof library. The
unit tests must cover different API usage, including manual leaves add.

❑ Consider implementing a tool to validate the correctness of a protobuf document
format. If the user does not follow the expected format, it can generate a schema leading
to name collisions in the tree.

Centrifuge Assessment | 11

go-centrifuge Recommendations Summary
This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short Term
❑ Have the Centrifuge node listen for REST API calls on just the loopback interface
(i.e., 127.0.0.1). The REST API is exposed on all interfaces, allowing anyone to steal the
node private key and password.

❑ Ask the user to enter the password through a prompt. Requiring the password on
the command line and a configuration file is error prone and dangerous.

❑ Ensure that created private keys are readable only by the user who created them.
World-readable private keys is dangerous. Instead, use file permissions 600 on Unix.

❑ Return the same error message from a node in case of privilege access error and
missing documents. Attackers can determine if a node is a collaborator by reading the
error message when requesting a document.

❑ Check that did has at least one P2P key in CurrentP2PKey . Interacting with a peer
without P2P key will lead to a node crash.

❑ Ensure that the timestamp of a document always increases during an update . The
update procedure allows documents to decrease their timestamp, leading to unexpected
behavior.

❑ Return the validateDocumentAccess error if the function call fails in GetDocument .
The error message is incorrect in case of invalid document access.

❑ Update go build process dependencies to the latest versions wherever possible.
Out-of-date dependencies might lead to missed critical bug fixes.

❑ Prevent the P2P routing leak of information when asking a collaborator location .
Peers asked for a route can deduce that the caller and the destination are collaborators. A
solution is to communicate with other users randomly to introduce noise in the network.

❑ Consider adding a random delay when returning an error message from a node.
Constant-time return values will prevent timing attacks on the system that reveal important
information about the collaborators.

Centrifuge Assessment | 12

❑ Disable automatic signing of documents. Require explicit approval from users
using the REST API. Automatic signing of documents can be abused to sign a malicious
update.

❑ Disable automatic addition of collaborator. Require explicit approval from users
using the REST API. Adding collaborators without their consent can be misused by
malicious peers.

Long Term
❑ Consider a method of communicating with the Centrifuge node that does not
involve TCP/IP sockets. The current model is risky and error-prone. Consider using Unix
domain sockets, they are much easier to control access to.

❑ Consider requiring the user to unlock their Ethereum accounts using geth’s
--unlock feature. It will relieve createconfig to deal directly with Ethereum private keys.

❑ Refactor Centrifuge node code to safely load and store private keys. The current
keys management is error prone and follows dangerous practices (TOB-Centrifuge-008 ,
TOB-Centrifuge-009 , TOB-Centrifuge-010).

❑ Integrate the use of npm audit into the CI testing to avoid the use of vulnerable
dependencies. Out of date dependencies might lead to miss critical bug fixes.

❑ Consider that information can be leaked through side channel when the nodes
interact. Even if an attacker cannot directly retrieve information, they might be able to
deduce it by looking at how the system reacts.

❑ Implement a user interface that allows a user to accept or reject individual
document-signing requests. Automatic signing of documents can be abused to sign
malicious update.

❑ Implement a user interface that allows a user to accept or reject individual
collaboration requests. Adding collaborators without their consent can be misused by
malicious peers.

❑ Add unit tests to cover all the possible message errors. Unit tests must cover
expected failure and check if the message errors are correctly generated.

❑ Investigate alternative private routing solutions. Information can be leaked if the
routing algorithm is not designed to preserve the privacy of the collaborators.

Centrifuge Assessment | 13

General Recommendations Summary
This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short Term

❑ Clearly document the collaborator trust requirement to the users. To work reliably,
the system requires all collaborators to trust each other. Users who are unaware of this
requirement will misuse Centrifuge.

❑ Clearly document that the location of the leaf in the Merkle tree is not checked .
Users creating document checks must be aware of this restriction and take the necessary
precautions when writing document checks.

❑ Document the interactions and the expected fields of the Centrifuge components.
The lack of documentation on the component interactions and expected fields make its
review difficult.

Long Term
❑ Research and implement approaches to fork documents if there is a disagreement
between the collaborators. Forking a document will allow for recovery from an incorrect
or malicious document update.

❑ Research and implement approaches to verify the presence of the signature
without revealing them. Such a system would allow to verify the collaborators’ signatures
when anchoring a document.

❑ Investigate solutions to confirm the leaf location in the Merkle tree, or alternative
verification format. The lack of leaf location check might lead to misuse or compromise of
the verification.

❑ Periodically run the fuzzer provided in Appendix C to identify code panics. Fuzzing
will help to detect code panics issues during the development.

❑ Add gosec to the CI. gosec is fast and can detect security issues with precision.

❑ Investigate what core document fields should be automatically checked. Core
document fields must be carefully considered and automatically checked to prevent an
incorrect update.

Centrifuge Assessment | 14

https://github.com/securego/gosec

❑ Implement a CI check to detect out-of-date go dependencies. Out of date
dependencies might lead to miss critical bug fixes.

Centrifuge Assessment | 15

Findings Summary
Title Type Severity

1 Revoked Management and Action keys
can still be used

Access Controls High

2 A race condition on commit can break
document updates

Timing Medium

3 User can commit anchor with incorrect
Merkle root proof

Data Validation Undetermined

4 Lack of contract existence check may lead
to unexpected behavior

Data Validation Medium

5 An anchor can be committed multiple
times if its Merkle root is zero

Data Validation Low

6 Merkle root verification can be done on
empty proofs

Data validation Undetermined

7 REST API is exposed on all interfaces

Data Exposure High

8 Centrifuge “createconfig” requires
password to be passed on command line

Data Exposure High

9 Centrifuge “createconfig” stores a
plaintext password in a configuration file

Data Exposure High

10 Private keys are world-readable by default Data Exposure High

11 Smart contract build dependencies are
not up to date

Patching Informational

12 Solidity compiler optimizations can be
dangerous

Undefined
Behavior

Undetermined

13 User can commit anchor without
requiring collaborators’ signatures

Data Validation Undetermined

Centrifuge Assessment | 16

14 Lack of location verification in the Merkle
Tree is error prone

Data Validation Undetermined

15 ABIEncoderV2 is not production-ready Patching Undetermined

16 Lack of fixed-size data cast on
binary.Write call leads to incorrect leaves

Data Validation Medium

17 Manually adding leaves can lead to name
collisions in the Merkle tree

Data Validation Medium

18 Nil pointer dereferencing can lead the
precise proof library to panic when
flattened by protobuf

Data Validation Low

19 The lack of documentation on the
protobuf format invites for incorrect
document format

Auditing and
Logging

Informational

20 Error messages can be used to leak the
collaborators list

Data Validation High

21 Timing attack can be used to leak the
collaborators list

Timing High

22 Centrifuge nodes sign documents without
users’ consent

Access Controls Undetermined

23 Messages from an identity with no
associated P2P keys leads to a node crash

Denial of
Service

Medium

24 Updated timestamps can decrease Data Validation Low

25 Incorrect message error handling on
invalid document access

Error Reporting Low

26 libp2p dependencies are not up to date Patching Informational

27 Collaboration possibly leaked at the P2P
level

Data Exposure Undetermined

Centrifuge Assessment | 17

28 Documentation should indicate who the
consumers of fields are

Data Validation Informational

29 Consider requiring consent to become a
collaborator

Access Controls Informational

30 Anchor id update allows for multiple
tokens mint for the same document

Data Validation Medium

Centrifuge Assessment | 18

1. Revoked Management and Action keys can still be used
Severity: High Difficulty: High
Type: Access Controls Finding ID: TOB-Centrifuge-001
Target: KeyManager.sol, Identity.sol

Description
Identify defines two privileged key types: Management and Action. The revocation of a
key of one of these types has no effect. As a result, it is not possible to mitigate a key
compromise.

The Management key allows adding new keys of arbitrary purpose. The Action key allows
the execution of arbitrary commands from the contract. keyHasPurpose checks if a key has
a given purpose:

function keyHasPurpose (

 bytes32 key ,

 uint256 purpose

)

public

view

returns (bool found)

{

 Key memory key_ = _keys[key];

 if (key_.purposes. length == 0) {

 return false ;

 }

 for (uint i = 0 ; i < key_.purposes. length ; i ++) {

 if (key_.purposes[i] == purpose) {

 return true ;

Centrifuge Assessment | 19

 }

 }

}

Figure 1: KeyManager.sol#L151-L169

Keys can be revoked using revokeKey . There is no mechanism to ensure that a
Management or Action key was not revoked. As a result, revoking these keys will have no
effect, and it will not be possible to recover from a compromise.

Exploit Scenario
Eve compromises Bob’s Action key and registers an incorrect Merkle root. Bob revokes the
key. Eve continues to take advantage of the compromised key.

Recommendation
Check that the keys are not revoked prior to their usage.

Add unit tests to ensure the correct authorization schema of the Identity contract, including
scenarios where the keys are compromised.

Centrifuge Assessment | 20

2. A race condition on commit can break document updates
Severity: Medium Difficulty: High
Type: Timing Finding ID: TOB-Centrifuge-002
Target: AnchorRepository.sol

Description
The commit function was designed to store a document root in a given anchor but a race
condition can block any future updates to the document.

The commit function can be called with or without previously calling preCommit as shown in
Figure 1. In cases of using preCommit function, the code will verify that the caller is the
preCommit call owner identified as _preCommits[anchorId].identity .

function commit (

 uint256 anchorIdPreImage ,

 bytes32 documentRoot ,

 bytes32[] calldata documentProofs

)

 external

 {

 uint256 anchorId =

uint256 (sha256 (abi . encodePacked (anchorIdPreImage)));

 //not allowing to write to an existing anchor

 require (_commits[anchorId].docRoot == 0x0);

 // Check if there is a precommit and enforce it

 if (hasValidPreCommit (anchorId)) {

 // check that the precommit has the same _identity

 require (_preCommits[anchorId].identity ==

msg . sender , "Precommit owned by someone else");

 require (

Centrifuge Assessment | 21

 MerkleProof. verifySha256 (

 documentProofs,

 documentRoot,

 _preCommits[anchorId].signingRoot

),

 "Signing root validation failed"

);

 }

 _commits[anchorId] = Anchor (

 documentRoot,

 uint32 (block . number)

);

 emit AnchorCommitted (

 msg . sender ,

 anchorId,

 documentRoot,

 uint32 (block . number)

);

 }

Figure 1: The commit function in AnchorRepository.sol#L45-L70

However, if the user did not use preCommit , the commit transaction can be frontrun by an
attacker.

Exploit Scenario
Alice calls the commit function with the anchorIdPreImage , which requires her to update
her document. Bob observes and frontruns the unconfirmed transaction using the same
anchorIdPreImage value with a different documentRoot . As a result, Alice is unable to
perform any updates in her document.

Recommendation
In the short term, disallow the use of the commit function without having a valid preCommit .

Centrifuge Assessment | 22

The use of preCommit is a partial mitigation since this transaction could be also be frontrun
by the attacker but it is more expensive. Therefore, in the long term, document this risk
and ensure that users are aware of it. Closely monitor it by inspecting Anchor events.

Centrifuge Assessment | 23

3. User can commit anchor with incorrect Merkle root proof
Severity: Undetermined Difficulty: High
Type: Data Validation Finding ID: TOB-Centrifuge-003
Target: AnchorRepository.sol

Description
preCommit reserves an anchor id with a signing root. To commit the anchor, the user must
provide a document root containing the signing root. Users can commit malformed or
malicious document roots by crafting a Merkle tree that contains the signing root in any
leaf.

It is assumed that anchors that are committed after a preCommit call will follow Centrifuge’s
Merkle tree schema:

Figure 1: Root hash schema (Figure 3 of the Centrifuge yellow paper)

However, a malicious user can commit a Merke proof containing the Rsigning in any leaf,
breaking the assumption that the value revealed on preCommit call is the Rsigning of the
tree.

Exploit Scenario
Bob call preCommit to reverse the anchor id with the valid signing root. Eve has access to
Bob’s identity contract. Eve calls commit with an invalid document root. As a result, Eve
blocks Bob’s document update.

Centrifuge Assessment | 24

Recommendation
Ensure the validity of the document root by checking that:

sha256(signingRoot+signatureRoot) == documentRoot
is true.

Be aware that checking that an element is inside a Merkle tree does not ensure that the
element is at the expected location.

Centrifuge Assessment | 25

4. Lack of contract existence check may lead to unexpected behavior
Severity: Medium Difficulty: Medium
Type: Data Validation Finding ID: TOB-Centrifuge-004
Target: Identity.sol

Description
A failure to check for a contract’s existence in the Identity contract may lead to incorrect
assumptions in the code execution.

Identity.execute calls external contracts using a low-level call:

return to.call. value (value)(data);

Figure 1: Identity.sol#L78

The Solidity documentation warns:

The low-level call, delegatecall, and callcode will return success if the calling account is
non-existent, as part of the design of EVM. Existence must be checked prior to calling if
desired.

As a result, execute will return true if it points to an address without code, while no code is
executed.

Note that the existence must be checked only for non-empty data, to allow the send of
ether to non-contract address.

Exploit Scenario
Bob’s smart contract calls execute with 10 ethers and an incorrect destination. The ethers
are lost. Bob’s smart contract incorrectly assumes the execution was successful.

Recommendation
For a non-empty data call, check the contract’s existence prior to the call, with the assembly
opcode extcodesize.

Alternatively, consider adding a separate function, send_ethers , which purpose will be to
only send ether (with potential data associated), and prevent any call to execute for
non-existing contract.

Avoid low-level calls. If they are necessary, carefully review the Solidity documentation , in
particular, the Warnings section.

Centrifuge Assessment | 26

http://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions
http://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions

5. An anchor can be committed multiple times if its Merkle root is zero
Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-Centrifuge-005
Target: AnchorRepository.sol

Description
AnchorRepository was designed to store the anchors. These are meant to be committed
only once. If an anchor is committed with a Merkle root equal to zero, it can be committed
multiple times.

AnchorRepository.commit stores a Merkle root of a given anchor. To ensure that commit is
called only once per anchor, _commits[anchorId].docRoot is checked:

//not allowing to write to an existing anchor
require (_commits[anchorId].docRoot == 0x0);

Figure 1: AnchorRepository.sol#L85

If an anchor is committed with a Merkle root equal to zero, commit can be called a second
time, breaking the contract’s assumption.

Exploit Scenario
The Centrifuge team develops off-chain code that watches the events associated with the
AnchorRepository contract. Eve calls commit twice on the same anchor destination. This
breaks an important invariant of the commit function. The code does not handle the double
call and crashes.

Recommendation
Prevent anchors with a Merkle tree equal to zero from being committed.

Identify the code properties and test them using Manticore and Echidna .

Centrifuge Assessment | 27

https://github.com/trailofbits/manticore
https://github.com/trailofbits/echidna

6. Merkle root verification can be done on empty proofs
Severity: Undetermined Difficulty: Low
Type: Data validation Finding ID: TOB-Centrifuge-006
Target: MerkleProof.sol

Description
MerkleProof.verifySha256 and verifySha uses proofs to check that a node is present in
a Merkle root. If no proof is provided, both functions will return true if the node is the root.
While this behavior is correct, it might lead to unexpected behavior.

As shown in Figure 1, the verifySha256 function uses the proofs to check the presence of a
node in a Merkle tree.

 function verifySha256 (

 bytes32 [] memory _proof ,

 bytes32 _root ,

 bytes32 _leaf

)

 internal

 pure

 returns (bool)

 {

 bytes32 computedHash = _leaf;

 for (uint256 i = 0 ; i < _proof. length ; i ++) {

 bytes32 proofElement = _proof[i];

 if (computedHash < proofElement) {

 // Hash(current computed hash + current element of the proof)

 computedHash = sha256 (abi . encodePacked (computedHash, proofElement));

 } else {

 // Hash(current element of the proof + current computed hash)

 computedHash = sha256 (abi . encodePacked (proofElement, computedHash));

 }

Centrifuge Assessment | 28

 }

 // Check if the computed hash (root) is equal to the provided root

 return computedHash == _root;

 }

Figure 1: MerkleProof.sol#L17-L42

If an empty list is provided as a proof, the leaf is compared to the root. This corner case
might allow an attacker to provide incorrect information if both the tree and the leaf are
controlled.

For example, Anchor.commit will check that the signing root is contained in the document
root. Here both values are being controlled by the user:

 require (_preCommits[anchorId].identity == msg . sender , "Precommit owned

by someone else");

 require (

 MerkleProof. verifySha256 (

 documentProofs,

 documentRoot,

 _preCommits[anchorId].signingRoot

),

 "Signing root validation failed"

);

Figure 2: AnchorRepository.sol#L93-L101

As a result, the user can provide any value for the document root (and the signing root), if
he provides an empty proof.

Exploit Scenario
Eve calls precommit with a signing root equal to 1. Eve calls commit with a document root
equal to 1. As a result, verifySha256 returns true and the document root is 1.

Recommendation
Short term, consider checking for a minimal length of proofs for all calls to verifySha256
and verify .
Long term, add unit-tests on all functions dependent on the Merkle tree verification that
highlight failing scenarios, including empty and incorrect proofs.

Centrifuge Assessment | 29

7. REST API is exposed on all interfaces
Severity: High Difficulty: Low
Type: Data Exposure Finding ID: TOB-Centrifuge-007
Target: Access Controls

Description
It is possible to make REST API calls to a Centrifuge node from an external machine. This is
concerning. Sensitive information, such as the node private key, is exposed through the
REST API.

For example, sending an HTTP GET request for /accounts in the port 8082 produces a
response like that in Figure 1.

{
 "data": [
 {
 "eth_account": {
 "key": "<JSON-PRIVATE-KEY>",
 "password": "<PASSWORD>"
 },
 ...
 },
 ...
]
}

Figure 1: Example Centrifuge REST API call response

Note that the response includes both the Ethereum private key used to sign Centrifuge
transactions and the password used to secure that private key. This is sufficient
information for an attacker to syphon off all of the Ether associated with that key.

Exploit Scenario
An attacker finds that Centrifuge is running on some machine and makes an HTTP GET
request for /accounts using the 8082 port, which produces a response like the one in
Figure 1. The attacker obtains the details of the Ethereum private key associated with that
node, and steals all of its ethers.

Recommendation
Short term, have the Centrifuge node listen for REST API calls on just the loopback interface
(i.e., 127.0.0.1).
Long term, consider a method of communicating with the Centrifuge node that does not
involve TCP/IP sockets. For example, Unix local domain sockets are, in general, much
easier to control access to.

Centrifuge Assessment | 30

8. Centrifuge “createconfig” requires password to be passed on command
line
Severity: High Difficulty: High
Type: Data Exposure Finding ID: TOB-Centrifuge-008
Target: Centrifuge “createconfig”

Description
The command line createconfig uses a plaintext password. As a result, an attacker can
steal the password by watching the list of processes.

If the Ethereum private key used to sign Centrifuge transactions is secured by a password,
then that password must be passed to createconfig on the command line. From the
instructions for installing a Centrifuge node:

If you have entered a password when creating the geth node in the previous step, you
will need to enter this password at this step as well:

$ centrifuge createconfig \
-z ~/.ethereum/keystore/<KEY-FILE> \
-e ws://127.0.0.1:8546 \
-t <DEFINE_CONFIG_DIR_NAME> \
-a 8082 -p 38204 -k <PASSWORD>

Figure 1: Centrifuge node installation instructions

This makes <PASSWORD> available in a process listing (e.g., via “ ps -ef ”), viewable by all
users logged into the machine on which createconfig is run. Moreover, in our
experiments, createconfig took approximately 20 seconds to run. Thus, there would be
ample opportunity for a malicious user to recover such a password by repeatedly
generating process listings.

Exploit Scenario
An attacker has advanced knowledge that Centrifuge is going to be installed on some
machine. The attacker gains local access to that machine and runs a script to repeatedly
generate process listings. Centrifuge is installed. The attacker recovers the password for
the Ethereum key used to sign the node’s transactions.

Recommendation
Short term, if a password is required, then prompt the user to enter it rather than requiring
the user to pass it on the command line.

Centrifuge Assessment | 31

https://developer.centrifuge.io/docs/getting-started/install-cent-node/

Long term, consider requiring the user to unlock their Ethereum accounts using geth’s
--unlock feature. Doing so could relieve createconfig from having to deal with Ethereum
private keys at all.

Centrifuge Assessment | 32

9. Centrifuge “createconfig” stores a plaintext password in a configuration
file
Severity: High Difficulty: High
Type: Data Exposure Finding ID: TOB-Centrifuge-009
Target: Centrifuge configuration file

Description
The centrifuge node stores paintext the passwords. This practice is highly risky and will
easily lead to compromise.

After obtaining the password used to secure an Ethereum private key, createconfig stores
that password in plaintext in a config.yaml configuration file. The password is later read-in
by centrifuge (the command) and used to unlock the private key.

Note that config.yaml is world-readable by default. Thus, any user with read access to a
file’s enclosing directory can recover the password. Also note that world read(-only)
directory access is a common default on many Unix-based systems.

Exploit Scenario
An attacker learns that Centrifuge is installed on some machine. The attacker gains local
access that machine. With the default directory permissions still in place, the attacker reads
the plaintext password out of the config.yaml file.

Recommendation
Short term, if a password is required, then prompt the user for it each time that
centrifuge is run, rather than store the password in a configuration file.

Long term, as mentioned in TOB-Centrifuge-008 , consider requiring the user to unlock their
Ethereum accounts using geth’s --unlock feature. Doing so could relieve createconfig
from having to deal with Ethereum private keys at all.

Centrifuge Assessment | 33

10. Private keys are world-readable by default
Severity: High Difficulty: Medium
Type: Data Exposure Finding ID: TOB-Centrifuge-010
Target: Centrifuge private keys

Description
The centrifuge node keys are world-readable by default, which increases the risk of
compromise.

Centrifuge’s createconfig utility creates two public-private key pairs: one pair to sign
Centrifuge documents (signing.pub.pem and signing.key.pem) and one pair to secure
P2P connections (p2p.pub.pem and p2p.key.pem). All four keys are world-readable by
default, including the two private keys (signing.key.pem and p2p.key.pem). Thus, any
user with read access to a files’ enclosing directories can recover the private keys. Also
note that world read(-only) directory access is a common default on many Unix-based
systems.

It is also worth mentioning that the loadKeyPair and loadCertPool functions will load
hard-coded public-private key pairs from the insecureKey and insecureCert constants
defined in the API package as shown in Figure 1.

const (
insecureKey = `-----BEGIN RSA PRIVATE KEY-----

MIIEowIBAAKCAQEAyEnDbL/RxZrgDN85W958GvCnWYfLIl/yf3OnzRpSlhz5oKg6
…
-----END RSA PRIVATE KEY-----`

insecureCert = `-----BEGIN CERTIFICATE-----
MIIDmDCCAoACCQDHr6ZuK9By7zANBgkqhkiG9w0BAQsFADCBjTELMAkGA1UEBhMC
…
-----END CERTIFICATE-----`
)

Figure 1: api/insecure.go#L8-L58

Exploit Scenario
Eve learns that Centrifuge is installed on Bob’s machine. Eve gains unprivileged local access
to Bob’s machine. With the default directory permissions still in place, she recovers the
private keys. Eve uses the key to sign documents as though she were Bob.

Recommendation
Short term, ensure that when private keys are created, they are readable only by the user
who created them (e.g., Unix file permissions 600).

Long term, refactor Centrifuge node code to safely load and store private keys.

Centrifuge Assessment | 34

11. Smart contract build dependencies are not up to date
Severity: Informational Difficulty: Undetermined
Type: Patching Finding ID: TOB-Centrifuge-011
Target: Centrifuge Ethereum Contracts repository

Description
Updated node modules are available for many of the Centrifuge Ethereum Contracts’ build
dependencies.

Dependency Version currently in use Latest version available

ethereumjs-util 5.2.0 6.1.0

ethereumjs-wallet 0.6.2 0.6.3

ganache-cli 6.1.8 6.4.1

husky 1.0.0-rc.15 1.3.1

solium 1.2.2 1.2.3

truffle 5.0.6 5.0.9

truffle-hdwallet-provider 1.0.2 1.0.5

zos 2.1.2 2.2.2

zos-lib 2.1.2 2.2.2

In particular, npm audit indicates that the zos 2.1.2 dependency contains a “critical”
vulnerability related to a “Sandbox Breakout.”

Exploit Scenario
An attacker learns of a exploitable vulnerability in an old version of a build dependency.
The attacker forks the Centrifuge Ethereum Contracts repository and modifies the code in a
way that looks benign, but actually exploits the machines of the developers who download
and build the fork.

Recommendation
Short term, update build process dependencies to the latest version wherever possible.
Long term, integrate the use of npm audit into the CI testing to avoid the use of vulnerable
dependencies.

References

● Sandbox Breakout
● npm-check

Centrifuge Assessment | 35

https://npmjs.com/advisories/337
https://www.npmjs.com/package/npm-check

12. Solidity compiler optimizations can be dangerous
Severity: Undetermined Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-Centrifuge-012
Target: truffle.js

Description
The compilation of the Centrifuge smart contracts has enabled optional compiler
optimizations in Solidity.

There have been several bugs with security implications related to optimizations.
Moreover, optimizations are actively being developed . Solidity compiler optimizations are
disabled by default. It is unclear how many contracts in the wild actually use them.
Therefore, it is unclear how well they are being tested and exercised.

High-severity security issues due to optimization bugs have occurred in the past . A
high-severity bug in the emscripten-generated solc-js compiler used by Truffle and Remix
persisted until just a few months ago. The fix for this bug was not reported in the Solidity
CHANGELOG.

A compiler audit of Solidity from November, 2018 concluded that the optional
optimizations may not be safe . Moreover, the Common Subexpression Elimination (CSE)
optimization procedure is “implemented in a very fragile manner, with manual access to
indexes, multiple structures with almost identical behavior, and up to four levels of
conditional nesting in the same function.” Similar code in other large projects has resulted
in bugs.

There are likely latent bugs related to optimization, and/or new bugs that will be introduced
due to future optimizations.

Exploit Scenario
A latent or future bug in Solidity compiler optimizations—or in the Emscripten transpilation
to solc-js —causes a security vulnerability in the Centrifuge contracts.

Recommendation
Short term, measure the gas savings from optimizations, and carefully weigh that against
the possibility of an optimization-related bug.

Long term, monitor the development and adoption of Solidity compiler optimizations to
assess its maturity.

Centrifuge Assessment | 36

https://github.com/ethereum/solidity/pull/6118
https://solidity.readthedocs.io/en/v0.5.4/bugs.html
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.csz7fns3yza3
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.csz7fns3yza3
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.csz7fns3yza3
https://blog.zeppelin.solutions/solidity-compiler-audit-8cfc0316a420
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn
https://docs.google.com/document/d/1PZBSCBWBwd6AqWCgXqLnw8FNQ4HRurP5usrXuKuU0a0/edit#heading=h.l6fakub3mvnn

13. User can commit anchor without requiring collaborators’ signatures
Severity: Undetermined Difficulty: High
Type: Data Validation Finding ID: TOB-Centrifuge-013
Target: AnchorRepository.sol

Description
To preserve the collaborators, no signatures are revealed when committing an anchor. As a
result, it is possible to anchor a document root without collaborators’ consent.

This design choice is required until more private signature verification solutions are used,
but forces users to entirely trust their collaborators entirely.

The severity of the issue depends on the interpretation of the purpose of the signatures,
which was unclear from the yellow paper.

Exploit Scenario
Bob updates a document with amountToPay == 0 . Bob does not have the agreement of the
other collaborators. Bob anchors the Merkle root of the document. As a result, Bob
updates the onchain version of the document without any collaborators consent. The other
participants are forced to re-create the document excluding Bob as collaborator.

Recommendation
Short term, clearly document the trust requirement to the users.

Long term, research and implement approaches to:

● Fork documents if there is a disagreement between the collaborators,
● Verify the presence of the signature without revealing them

Centrifuge Assessment | 37

14. Lack of location verification in the Merkle Tree is error prone
Severity: Undetermined Difficulty: High
Type: Data Validation Finding ID: TOB-Centrifuge-014
Target: MerkleProof.sol

Description
Merkle proofs check if an element is present in the Merkle tree. The verification does not
check that the location of the element is correct. As a result, an element can be misplaced,
leading to unexpected behavior.

In Centrifuge, all the users are supposed to validate that the document root is well-formed.
If this assumption is not true, a malicious document tree could trigger unexpected
behaviors by duplicating elements, or placing them in unexpected locations. Potential risks
include double NFT minting.

The dynamic shape of the tree makes location verification difficult. Due to time constraints,
we could not find a viable mitigation that would not require extensive modification.

Exploit Scenario
Bob anchors a document that contains all the elements allowing an NFT token to be minted
two times, with different token ids. Bob mints two NFT tokens.

Recommendation
Short term, clearly document that the location in the tree is not checked. Developers
creating document checks must be aware of it and take the necessary precautions when
writing the checks.

Long term, investigate solutions to confirm the leaf location, or an alternative verification
format.

Centrifuge Assessment | 38

15. ABIEncoderV2 is not production-ready
Severity: Undetermined Difficulty: Low
Type: Patching Finding ID: TOB-Centrifuge-015
Target: PaymentObligation.sol, UserMintableERC721.sol

Description
The contracts use the new Solidity ABI encoder: ABIEncoderV2. The encoder is still
experimental and not ready for production code.

For example, on March 26th, a severe bug was found in the encoder and was introduced in
Solidity 0.5.5.

Due to its experimental status, we expect other bugs to be present in the encoder.

Exploit Scenario
Centrifuge deploys its contracts. After the deployment a bug is found in the encoder. As a
result, the contracts are broken and can be exploited to steal the token’s ownership.

Recommendation
If you plan to deploy contracts in production in the short term, remove the usage of the ABI
encoder V2.

Long term, monitor the development and adoption of Solidity encoder to assess its
maturity.

Centrifuge Assessment | 39

https://blog.ethereum.org/2019/03/26/solidity-optimizer-and-abiencoderv2-bug/

16. Lack of fixed-size data cast on binary.Write call leads to incorrect leaves
Severity: Medium Difficulty: Medium
Type: Data Validation Finding ID: TOB-Centrifuge-016
Target: precise-proofs/flatten.go

Description
flatten.toBytesArray is called during the leaves creation. toBytesArray uses
binary.Write which requires fixed-size data, but is called with non-fixed size data. As a
result, incorrect leaves can be created.

toBytesArray calls binary.Write :

func toBytesArray (data interface {}) [] byte {

buf := new (bytes.Buffer)

binary. Write (buf, binary.BigEndian, data)

return buf. Bytes ()

}

Figure 1: toBytesArray in proofs/flatten.go#L355-L359

The binary.Write documentation states:

Data must be a fixed-size value or a slice of fixed-size values, or a pointer to such data

toBytesArray is called several times with a reflect.Len() object, to store the length of the
mapping or slice in the tree:

f. appendLeaf (lengthProp, toBytesArray (value. Len ()), getSalt (lengthProp. CompactName ()),
saltsLengthSuffix, [] byte {}, false)

…

f. appendLeaf (lengthProp, toBytesArray (value. Len ()), getSalt (lengthProp. CompactName ()),
saltsLengthSuffix, [] byte {}, false)

Figure 2: proofs/flatten.go#L137-L150

reflect.Len() returns an int . This type is not a fixed-size value and is machine
dependent . As a result, the length stored will be zero.

Figure 3 shows an example where toBytesArray returns an incorrect value.

package main

import (
 "fmt"

Centrifuge Assessment | 40

https://golang.org/pkg/encoding/binary/#Write
https://golang.org/pkg/reflect/#Value.Len
https://github.com/golang/go/issues/8381#issuecomment-66096996
https://github.com/golang/go/issues/8381#issuecomment-66096996

 "encoding/binary"
 "bytes"
 "reflect"
)

func toBytesArray (data interface {}) [] byte {

buf := new (bytes.Buffer)
binary. Write (buf, binary.BigEndian, data)
return buf. Bytes ()

}

func main () {

 fVal := reflect. ValueOf ("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA")

 buf_1 := toBytesArray (int32 (fVal. Len ()))
 buf_2 := toBytesArray (fVal. Len ())

 fmt. Printf ("---> %v \n" , buf_1) // returns ---> [0 0 0 36]
 fmt. Printf ("---> %v \n" , buf_2) // returns ---> []
}

Figure 3: Proof of concept of toBytesArray misuse

Exploit Scenario
Bob’s document contains a mapping. The length of the mapping is incorrectly stored as a
zero value. As a result, Bob’s document proofs are incorrect.

Recommendation
Cast the call to Len() to uint64.

Check the return error of all the calls to binary.Write , including

● flatten.go#L357
● property.go#L40
● property.go#L102

Add gosec to the CI.

Centrifuge Assessment | 41

https://github.com/securego/gosec

17. Manually adding leaves can lead to name collisions in the Merkle tree
Severity: Medium Difficulty: Medium
Type: Data Validation Finding ID: TOB-Centrifuge-017
Target: tree.go

Description
Each leaf of the Merkle requires a unique name to allow the correct generation and
verification of the Merkle proofs. This assumption can be broken if the leaves are added
manually to the tree.

The precise-proof library allows the addition of leaves to a Merkle tree using the following
functions:

● AddLeaves (tree.go#L287-L293)
● AddLeaf (tree.go#L299-L305)
● AddLeavesFromDocument (tree.go#L308-L323)

Each leaf is associated with a name, which is used to identify the proof. If a user adds a leaf
with a name already in use, the associated proof will be incorrect.

Figure 1 shows an example of misuse.

package main

import (

"crypto/sha256"
"fmt"

documentspb "github.com/centrifuge/precise-proofs/examples/documents"
"github.com/centrifuge/precise-proofs/proofs"

)

func main () {

document := documentspb.ExampleDocument{}

doctree := proofs. NewDocumentTree (proofs.TreeOptions{Hash: sha256. New () /*, Salts:
&salts*/ })

checkErr (doctree. AddLeavesFromDocument (&document))
checkErr (doctree. AddLeavesFromDocument (&document))
checkErr (doctree. Generate ())

for _, leaf := range doctree. GetLeaves () {

fmt. Println ("#############")
fmt. Println (leaf.Property. ReadableName ())
fmt. Println (leaf.Property. CompactName ())

}

}

func checkErr (err error) {

Centrifuge Assessment | 42

if err != nil {
panic (err)

}
}

Figure 1 : example program to reproduce this issue.
Note: GetLeaves() was added to return the leaves of a tree

Exploit Scenario
Bob creates a Merkle tree where two leaves share the same name. As a result, the proof of
the first leaf can be used to validate the presence of the second leaf.

Recommendation
Prevent a leaf from being added if its name is already present in the tree.

Improve the unit tests coverage of the API usage of the precise proof library.

Centrifuge Assessment | 43

18. Nil pointer dereferencing can lead the precise proof library to panic when
�lattened by protobuf
Severity: Low Difficulty: Medium
Type: Data Validation Finding ID: TOB-Centrifuge-018
Target: proofs/flatten.go

Description
A lack of nil pointer check can lead the precise proof library to panic when flattened by
protobuf.

FlattenMessage calls handleValue with reflect.ValueOf(message) as a parameter.
reflect.ValueOf can return a nil pointer .

func FlattenMessage (message proto . Message , getSalt GetSalt , saltsLengthSuffix

string , hashFn hash . Hash , compact bool , parentProp Property) (leaves [] LeafNode ,

err error) {

f := messageFlattener{

saltsLengthSuffix: saltsLengthSuffix,

hash: hashFn,

compactProperties: compact,

}

err = f. handleValue (parentProp, reflect. ValueOf (message), getSalt,

saltsLengthSuffix, nil)

if err != nil {

return

}

err = f. sortLeaves ()

if err != nil {

return []LeafNode{}, err

}

return f.leaves, nil

}

Figure 1: proofs/flatten.go
#L249-L266

Centrifuge Assessment | 44

https://golang.org/pkg/reflect/#ValueOf

The parameter is not checked for nil value, but is dereferenced by handleValue .

func (f * messageFlattener) handleValue (prop Property , value reflect . Value ,

getSalt GetSalt , saltsLengthSuffix string , outerFieldDescriptor

* go_descriptor . FieldDescriptorProto) (err error) {

// handle special cases

switch v := value. Interface ().(type) {

 …

}

Figure 2: Header of handleValue function in proofs/flatten.go#L32-L34

As a result, a nil pointer dereferencing can occur, leading the library to panic.

Exploit Scenario
Alice submits a "]0000 " as a document protobuf to Bob. The library triggers the nil pointer
dereferencing. This causes Bob's node to crash.

Recommendation
Short term, correctly handle the return of 0 in all the uses of reflect.ValueOf .

Long term, periodically run the fuzzer provided in Appendix C to identify code panics.

Centrifuge Assessment | 45

19. The lack of documentation on the protobuf format invites for incorrect
document format
Severity: Informational Difficulty: Low
Type: Auditing and Logging Finding ID: TOB-Centrifuge-019
Target:

Description
The lack of documentation on the expected protobuf format for the document is likely to
invite errors and might lead to incorrect document formats.

For example, it is unclear what naming convention should be followed when creating a
protobuf document schema. The usage of protobuf can lead to name collision if some
prefixes related with internal protobuf fields are used (flatten.go#L66-L75) (e.g.if the name
starts with XXX_).

Exploit Scenario
Bob creates a protobuf document format. Bob’s format has a field named : XXX___field .
As a result, the field is not included in the tree, and the Merkle root is incorrect. .

Recommendation
Document how to build a correct protobuf document format.

Consider creating a tool to validate the correctness of a protobuf document format.

Centrifuge Assessment | 46

20. Error messages can be used to leak the collaborators list
Severity: High Difficulty: Low
Type: Data Validation Finding ID: TOB-Centrifuge-020
Target: p2p/receiver/handler.go

Description
The collaborators list of a document is meant to be private. An attacker can identify a
document’s collaborators by checking the node message errors.

To access a document, among others, the node will check for the local presence of the
document, and then the caller privilege access. The error message reported for these two
checks will not be the same.

func (srv * Handler) GetDocument (ctx context . Context , docReq * p2ppb . GetDocumentRequest ,

requester identity . DID) (* p2ppb . GetDocumentResponse , error) {

model, err := srv.docSrv. GetCurrentVersion (ctx, docReq.DocumentIdentifier)

if err != nil {

return nil , err

}

if srv. validateDocumentAccess (ctx, docReq, model, requester) != nil {

return nil , err

}

Figure 1: p2p/receiver/handler.go#L215-L222

Only collaborators of the document will have the local copy and will check for the caller
privilege access.
As a result, an attacker can determine if a node is a collaborator of a given document by
checking the error message when asking the document to the node.

Exploit Scenario
Eve is not a collaborator of a given document, but wants to determine if Bob is. Eve asks
the document to Bob’s node. The node returns an error message warning that Eve has no
access to the document. As a result, Eve knows that Bob is a collaborator.

Recommendation
Short term, return the same error message in case of privilege access error, and missing
documents.

Long term, consider that information can be leaked through side channel.

Centrifuge Assessment | 47

21. Timing attack can be used to leak the collaborators list
Severity: High Difficulty: Undetermined
Type: Timing Finding ID: TOB-Centrifuge-021
Target: handler.go

Description
A document’s list of collaborators is meant to be private. An attacker can identify the
collaborators of a document through a timing attack.

To access a document, among others, the node will check for the local presence of the
document, and then the caller privilege access:

func (srv * Handler) GetDocument (ctx context . Context , docReq * p2ppb . GetDocumentRequest ,

requester identity . DID) (* p2ppb . GetDocumentResponse , error) {

model, err := srv.docSrv. GetCurrentVersion (ctx, docReq.DocumentIdentifier)

if err != nil {

return nil , err

}

if srv. validateDocumentAccess (ctx, docReq, model, requester) != nil {

return nil , err

}

Figure 1: handler.go#L215-L222

Only collaborators of the document will have the local copy and will check for the caller
privilege access.

If the document is not present, the node will reply faster than if the node needs to load the
document and check the access. As a result, an attacker can determine if a node is a
collaborator of a given document by checking the response time when asking for the
document.

This issue is similar to TOB-Centrifuge-019 . Due to time constraints, we did not evaluate the
difficulty to exploit such a scenario in a real-world setup.

Exploit Scenario
Eve wants to determine if Bob has access to a given document. Eve ask the document to
Bob’s node 100 times. Based on the average response time, Eve deduces that Bob is a
collaborator of the document.

Centrifuge Assessment | 48

Recommendation
Short term, consider adding a random delay when returning an error message.

Long term, consider that information can be leaked through side channel.

Centrifuge Assessment | 49

22. Centrifuge nodes sign documents without users’ consent
Severity: Undetermined Difficulty: Low
Type: Access Controls Finding ID: TOB-Centrifuge-022
Target: Handler.HandleRequestDocumentSignature

Description
The lack of manual verification to sign a document can lead a node to sign incorrect or
malicious documents.

When a centrifuge node receives a request to sign a document, the node automatically
signs the document with no user interaction. Thus, a node could be made to sign a
document that the node’s owner would never willingly sign.

The severity of the issue depends on the interpretation of the purpose of the signatures,
which was unclear from the yellow paper.

Exploit Scenario
Eve creates a document declaring that Alice owes Eve $100 USD. Eve lists Alice as a
collaborator on this document. Eve sends the document to Alice, whose node signs it
automatically. Eve seeks payment of the “debt” using the signed document as evidence
thereof.

Recommendation
Short term, disable automatic signing of documents. Require explicit approval from users
using the REST API.

Long term, implement a user interface that allows a user to accept or reject individual
document-signing requests. A minimal solution would simply allow the user to indicate
“yes” or “no” to each request. A more complicated solution should focus on identifying
unsolicited requests, so that the user can discard them.

Centrifuge Assessment | 50

23. Messages from an identity with no associated P2P keys leads to a node
crash
Severity: Medium Difficulty: Low
Type: Denial of Service Finding ID: TOB-Centrifuge-023
Target: Identity service

Description
The identity service’s CurrentP2PKey function does not check whether an identity has any
P2P keys. Thus, when trying to fetch an identity’s most recent P2P key, an “index out of
range” error can result, causing the node to crash.

The code in question is in Figure 1. If no P2P keys were ever registered with the identity
corresponding to did , then the array keys will be empty, and the variable lastKey will be
assigned keys[-1] . This results in an “index out of range” error causing the node to panic.
The panic will not be caught, so the node will crash.

// CurrentP2PKey returns the latest P2P key

func (i service) CurrentP2PKey (did id . DID) (ret string , err error) {

keys, err := i. GetKeysByPurpose (did, &(id.KeyPurposeP2PDiscovery.Value))

if err != nil {

return ret, err

}

lastKey := keys[len (keys)- 1]

Figure 1: identity/ideth/service.go#L288-L295

Exploit Scenario
Eve creates an identity but does not register any P2P keys with it. Eve sends a message to
Alice on the P2P network. Alice extracts Eve’s identity from the message and tries to fetch
her P2P keys using CurrentP2PKey . Alice’s node crashes and must be manually restarted.

Recommendation
Short term, CurrentP2PKey should check that the identity corresponding to did has at least
one P2P key. If the identity has none, then CurrentP2PKey should return an error.

Long term, implement a fuzzer to generate random requests from other nodes to make
sure that untrusted inputs are properly handled.

Centrifuge Assessment | 51

24. Updated timestamps can decrease
Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-Centrifuge-024
Target: go-centrifuge/identity/ideth/service.go

Description
Documents have a timestamp to determine when it was updated last. Due to a lack of
timestamp increase validation, it is possible to decrease the document’s timestamp during
an update.

The timestamp field from a document is used to validate the signatures of all the
collaborators, as shown in Figure 1.

// ValidateKey checks if a given key is valid for the given centrifugeID.

func (i service) ValidateKey (ctx context . Context , did id . DID , key [] byte , purpose * big . Int ,

validateAt * time . Time) error {

 ….

// if revoked

if ethKey.RevokedAt > 0 {

// if a specific time for validation is provided then we validate if a

revoked key was revoked before the provided time

if validateAt != nil {

revokedAtBlock, err := i.client. GetEthClient (). BlockByNumber (ctx,

big. NewInt (int64 (ethKey.RevokedAt)))

if err != nil {

return err

}

if big. NewInt (validateAt. Unix ()). Cmp (revokedAtBlock. Time ()) > 0 {

return errors. New ("the given key [%x] for purpose [%s] has been

revoked before provided time %s " , key, purpose. String (), validateAt. String ())

}

} else {

return errors. New ("the given key [%x] for purpose [%s] has been

revoked and not valid anymore" , key, purpose. String ())

}

}

 …

Centrifuge Assessment | 52

}

Figure 1: go-centrifuge/identity/ideth/service.go#L328-L369

There is no validation to ensure that the timestamp of the new document is greater than
the current version. As a result, it is possible to update a document with a timestamp lower
than the version to be updated.

Exploit Scenario
Bob creates a document with a timestamp of June, 10th 2019. Eve updates the document
with a timestamp of May, 10th 2019. As a result, the document associated timestamp is
incorrect.

Recommendation
Short term, properly validate the updated timestamp to be greater than the previous one.

Investigate what core document fields should be automatically checked.

Centrifuge Assessment | 53

25. Incorrect message error handling on invalid document access
Severity: Low Difficulty: High
Type: Error Reporting Finding ID: TOB-Centrifuge-025
Target: p2p/receiver/handler.go

Description
A lack of error check leads the Centrifuge node to report an incorrect message error in
response to invalid document access.

On a document access request, GetDocument executes srv.validateDocumentAccess :

if srv. validateDocumentAccess (ctx, docReq, model, requester) != nil {

return nil , err

}

Figure 1: p2p/receiver/handler.go#L220-L222

If the function fails, the error returns the nil value instead of the error returned by
srv.validateDocumentAccess . As a result, GetDocument returns (nil, nil) , and will
trigger another error in PrepareP2PEnvelope .

The error reported to the user will be related to PrepareP2PEnvelope instead of the invalid
document access, preventing the user from understanding the failure of the call.

Exploit Scenario
Bob has no access to Alice’s document. Bob calls Alice’s node to get the document. The
node returns an error that does not indicate to Bob its lacks of privilege. Bob is confused
and loses a few hours before realizing the problem.

Recommendation
Short term, return the validateDocumentAccess error if the function call fails.

Long term, add unit tests to cover all the possible message errors.

Centrifuge Assessment | 54

26. libp2p dependencies are not up to date
Severity: Informational Difficulty: Low
Type: Patching Finding ID: TOB-Centrifuge-026
Target: go-centrifuge/Gopkg.toml

Description
go-centrifuge relies on several outdated dependencies.

For example, go-libp2p uses gx/6.0.1 from June 9th 2018, while the current version is 0.0.3
from March 26th, 2019 (note: they changed the release version format). There were more
than 20 releases between gx/6.0.1 and the latest version. The situation is similar for several
other packages, including go-libp2p-host and go-libp2p-peer.

As a result, Centrifuge does not benefit from potential security fixes of its dependencies.

Exploit Scenario
An attacker learns of an exploitable vulnerability in an old version of a libp2p golang
dependency and uses it to gain unauthorized access to a node or to produce a denial of
service.

Recommendation
Short term, update build process dependencies to the latest versions wherever possible.

Long term, implement a check in your CI testing in order to detect out-of-date
dependencies.

Centrifuge Assessment | 55

27. Collaboration possibly leaked at the P2P level
Severity: Undetermined Difficulty: High
Type: Data Exposure Finding ID: TOB-Centrifuge-027
Target: P2P network

Description
The libp2p’s routing algorithm, which is based on Kademlia, could allow peers to learn
when two identities on the network are collaborating.

In a Kademlia network, each node has an associated ID. Suppose Alice needs to
communicate with Bob on the network. Of the peers that Alice knows about, Alice
determines those whose IDs share a long prefix with Bob’s ID. Alice then asks those nodes,
“Do you know how to communicate with Bob?” Each node either responds with “Yes” and
the relevant details, or “No, but here are some nodes that share a longer ID prefix with Bob
than I do.” Alice continues in this way until Bob is found.

Thus, if Alice asks Eve “Do you know how to communicate with Bob?”, then Eve learns that
Alice and Bob are potentially collaborating. Eve could use this information to her
advantage.

Exploit Scenario
Alice and Bob collaborate on a document, a fact they wish to keep secret. Alice uses the
P2P network to send the document to Bob for signature. In determining how to
communicate with Bob, Alice asks Eve, “Do you know how to communicate with Bob?” Eve
thereby learns that Alice and Bob are likely collaborating, and tries to use this information
for financial gain (e.g., blackmail).

Recommendation
Prevent the leak of information. A solution may be to ask to communicate with other users
randomly to introduce noise in the network.

Investigate alternative private routing solutions.

Centrifuge Assessment | 56

https://en.wikipedia.org/wiki/Kademlia

28. Documentation should indicate who the consumers of fields are
Severity: Informational Difficulty: Undetermined
Type: Data Validation Finding ID: TOB-Centrifuge-028
Target: Documentation

Description
The existing Centrifuge protocol documentation does not indicate the bodies of code that
use and maintain the fields in a Centrifuge document, making its review difficult.

A Centrifuge document consists of many fields. The documentation should make clear
which bodies of code make use of those fields. The following are some examples.

● Signatures
○ Centrifuge nodes set this field during document signing.
○ The anchor registry expects this field to exist but does not inspect its

contents.
○ The PaymentObligation contract inspects just the owner’s signature within

this field during token minting.
● TokenId

○ Centrifuge nodes set this field during token minting.
○ The PaymentObligation contract checks this field during token minting, e.g.,

that no other tokens with this ID exist.
● Timestamp

○ Centrifuge nodes set this field and check it during signature verification.
○ No on-chain code uses this field.

Note that the protocol documentation does mention “core document fields”. However, this
is not sufficient. For example, neither TokenId nor Timestamp is included in “core
document fields.”

The problem is one of compartmentalization. Many parties interact with Centrifuge
documents, e.g., the node that authors a document, the node’s collaborators, “core”
Centrifuge contracts (e.g., AnchorRepository.sol), other contracts, etc. At present, there is
no clear delineation as to which parties should be concerned with which fields. As such,
when a change is made to any field, one must consider the effects of that change on all
possible parties.

Even if compartmentmentalization cannot be enforced using the source language (e.g.,
Solidity, Go), it can still be documented. This would involve (1) introducing additional
categories like “core document fields” mentioned above, and (2) laying out precisely, for
each category, the parties that can read from the fields in that category, and the parties
that can write to the fields in that category.

Centrifuge Assessment | 57

Exploit Scenario
Eve submits a pull request to the Centrifuge repository affecting how some document field
is updated. Reviewers are forced to consider how that change might affect all parties that
interact with Centrifuge documents. Time and resources are wasted. Such waste would
have been avoided had proper compartmentalization been implemented.

Recommendation
Document the interactions and the expected fields of the Centrifuge components.

Centrifuge Assessment | 58

29. Consider requiring consent to become a collaborator
Severity: Informational Difficulty: Undetermined
Type: Access Controls Finding ID: TOB-Centrifuge-029
Target: P2P network

Description
Currently, anyone on the P2P network can list anyone else as collaborator. This exposes
nodes to unwanted and potentially malicious traffic.

A possible solution would be to implement whitelisting. More specifically, the owner of a
node could prepare a list of the other nodes with whom they are willing to collaborate. A
node utilizing a whitelist would only accept and parse documents from nodes on the
whitelist.

Exploit Scenario
Eve discovers a document parsing vulnerability. Eve creates a document to exploit the
vulnerability and sends it to Alice. Alice’s node accepts the document even though she has
never heard of Eve. Alice experiences financial and/or data loss as a result of accepting the
document.

Recommendation
Short term, disable automatic collaborator acceptance. Require explicit approval from
users using the REST API.

Long term, implement a user interface that allows a user to accept or reject individual
collaboration requests.

Centrifuge Assessment | 59

30. Anchor id update allows for multiple tokens mint for the same
document
Severity: Medium Difficulty: High
Type: Data Validation Finding ID: TOB-Centrifuge-030
Target: PaymentObligation.sol

Description
A NFT can be minted to represent a document. A document is supposed to have only one
NFT token associated. This assumption can be broken if the token id of the document is
updated.

The id of the NFT is the token id of the document:

function mint (

 address to ,

 uint256 tokenId ,

 string memory tokenURI ,

 uint256 anchorId ,

 bytes [] memory properties ,

 bytes [] memory values ,

 bytes32 [] memory salts ,

 bytes32[][] memory proofs

)

 public

 {

 // First check if the tokenId exists

 require (

 ! _exists (tokenId),

 "Token exists"

);

Figure 1: PaymentObligation.sol#L116-L132

PaymentObligation ensures that a NFT is not minted multiple times by checking the
existence of the token id.

However, the document can change its token id during an update. As a result, users can
mint multiple tokens for a document by changing the token id value.

Exploit Scenario

Centrifuge Assessment | 60

Eve creates a payment obligation and mints two NFTs for it, breaking the invariant that only
one NFT can exist for a document. Eve takes advantage of the broken invariant by selling
the two NFTs to Alice and Bob. Alice and Bob each expect the invariant to hold, i.e., expect
their NFT to be the sole NFT associated with the payment obligation. They do not realize
that both NFTs correspond to the same “debt”, and that they cannot both collect on it.
It is worth mentioning that this attack can be prevented if the participants use unmodified
Centrifuge nodes, or if the trustworthiness of the participants is verified outside of the
Centrifuge protocol.

Recommendation
Short term, implement an onchain mapping from document IDs to token IDs. Before
minting a token for document, check that no token has already been minted for that
document. Prevent the document ID to be changed during update.

Long term, investigate what core document fields should be automatically checked
on-chain and off-chain.

Centrifuge Assessment | 61

A. Vulnerability Classifications
Vulnerability Classes

Class Description

Access Controls Related to authorization of users and assessment of rights

Auditing and Logging Related to auditing of actions or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices or software

Cryptography Related to protecting the privacy or integrity of data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to race conditions, locking or order of operations

Undefined Behavior Related to undefined behavior triggered by the program

Severity Categories

Severity Description

Informational The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important

Medium Individual user’s information is at risk, exploitation would be bad for
client’s reputation, moderate financial impact, possible legal

Centrifuge Assessment | 62

implications for client

High Large numbers of users, very bad for client’s reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may
need to know extremely complex technical details or must discover
other weaknesses in order to exploit this issue

Centrifuge Assessment | 63

B. Code Quality
The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

General recommendations

● Use the terminology in the implementation as it appears in the yellow paper.
Using the same terminology simplifies the review of the code and is less
error-prone. For example Rcore of the yellow paper if called documentRoot in the
contract .

Yellow paper

● Split the equations into two categories: equations and properties. Clearly
identifying properties helps in their review. For example, equations (7), (13), (14), (15)
and (16) are properties that must remain true .

● Add an Appendix that describes how each property is guaranteed or checked.
Identify how the properties are checked helps to ensure their correct behavior.

Centrifuge node

● Change len(collaborators) < 0 to len(collaborators) == 0 in
documents/write_acls.go##L218. len(collaborators) < 0 will always return
false, as a result, the branch is never taken.

● Fix the nil pointer dereference in identity/ideth/factory.go#L49-L54. If the user
has insufficient ether, SubmitTransactionWithRetries returns a nil pointer and an
error. The nil pointer is dereferenced in the log message.

● Fix Go vet context leaks reports . To avoid wasting memory, consider adding
“ defer cancel() ” immediately after calls to WithTimeout or WithCancel .

● Rename the identity variables (did.go#L31-L33, L40-L44) to avoid too-similar
names. keyPurposeAction, keyPurposeP2PDiscovery, keyPurposeSigning are
too similar to KeyPurposeAction, KeyPurposeP2PDiscovery, KeyPurposeSigning .
Variables with names that are too similar are error-prone and more difficult to
review.

● Make sure RandomSlice (go-centrifuge/utils/tools.go#L96-L105) always returns
a list with random bytes . If the size parameter is equal to 0, this function will
return an empty list, which could produce undefined behavior in other parts of the
code.

Smart contracts

● Consider having the Identity contract’s execute method revert when its call
fails. Reverting makes sure the caller does not forget to check for errors.

Centrifuge Assessment | 64

https://goreportcard.com/report/github.com/centrifuge/go-centrifuge

Deployment
● Consolidate uses of address 0x89b0a86583c4444acfd71b463e0d3c55ae1412a5.

Naming this address with a constant and using that constant consistently will make
it easier to deploy in new settings (e.g., using Ganache).

● Fix the deploy procedure of the Centrifuge Ethereum Contracts to work
reliably. Deploying the centrifuge-ethereum-contracts to the Docker container will
fail sporadically. This costs development time and raises doubts about the
correctness of tests involving those deployed contracts.

Centrifuge Assessment | 65

C. Fuzzer-based Test Cases for Centrifuge
Trail of Bits has added test cases for go-fuzz and libFuzzer to the go-centrifuge repository.

Test Cases for Centrifuge
Trail of Bits is working to include a collection of fuzzing tests using go-fuzz and libFuzzer ,
two high-performance, coverage-guided and evolutionary fuzzing engines. These tests
cover a variety of parsing and processing functions, as well as functions that handle
untrusted inputs. We integrated them into the build process in order to provide improved
testing of the go-centrifuge code. For instance, Figure C.1 shows the tests created to ensure
the robustness of the ResolveDataEnvelope implementation. Any panic will be reported by
the fuzzers.

func FuzzResolveDataEnvelope(data [] byte) int {
 p := &protocolpb.P2PEnvelope{}
 err := proto.Unmarshal(data, p)
 if err != nil {
 return 0
 }
 p2pcommon.ResolveDataEnvelope(p)
 return 1
}

FIgure C.1, a test for unexpected behavior in ResolveDataEnvelope

Our suite of fuzzer supports both go-fuzz and libfuzzer fuzzing. The two fuzzers may
provide different levels of coverage and discover different bugs. Trail of Bits recommends
running the fuzzers with both go-fuzz and libFuzzer to maximize coverage.

Our current tests cover the following functionality:

● Parsing, processing and generation of proofs from protobuf inputs.
● Extraction and parsing of field tags from protobufs.
● Parsing, processing and handling of Ethereum addresses.
● Serialization and deserialization of bytes as hex numbers (using hexutil)
● Use of the SliceOfByteSlicesToHexStringSlice function.
● Serialization and deserialization of BigInts .
● Parsing, processing and handling versions strings.
● Extraction, processing and handling of DID
● Use of ResolveDataEnvelope function.

Centrifuge Assessment | 66

https://github.com/dvyukov/go-fuzz
https://llvm.org/docs/LibFuzzer.html

These test cases will be built via the Makefile.fuzzing . In order to perform the building of
the libFuzzer tests, Clang++ 6.0 or newer is required. For instance, to compile the hexutil
fuzz tests:

$ make -f Makefile.fuzz build TARGET=Hexutil

After the build finishes, a fuzzing campaign could be started using one of these commands:

$ make -f Makefile.fuzz fuzz-go TARGET=Hexutil

$ make -f Makefile.fuzz fuzz-libfuzzer TARGET=Hexutil

The results will be stored in the corresponding fuzzing/$TARGET directory.

Measuring coverage
Regardless of how inputs are generated, an important task after running a fuzzing
campaign is to measure its coverage. To perform this measure, we used the support
provided by Go’s source-based code coverage feature (https://golang.org/cmd/cover/). This
feature runs only with go-fuzz.

After running this fuzzer for a while, we can generate the coverage report with the
following command:

$ cd fuzzing/$TARGET

$ sed '/0.0,1.1/d' coverprofile > coverprofile.fixed

$ go tool cover -html=coverprofile.fixed

The cover tool will produce an html with the exact lines covered during the fuzzing
campaign as well as some statistics on the number of lines.

Integrating fuzzing and coverage measurement into the development cycle
Once the fuzzing procedure has been tuned for speed and efficiency, it should be properly
integrated in the development cycle to catch bugs. We recommend adopting the following
procedure to integrate fuzzing using a CI system:

1. After the initial fuzzing campaign, save the corpus of every test generated. We
provide the initial corpora.

2. For every internal milestone, new feature or public release, re-run the fuzzing
campaign for each test for at least 24 hours, starting with the current corpora. 1

3. Update the corpora with the new inputs generated.

1 For more on fuzz-driven development, see this CppCon 2017 talk by Kostya Serebryany of Google

Centrifuge Assessment | 67

https://golang.org/cmd/cover/
https://github.com/CppCon/CppCon2017/blob/master/Demos/Fuzz%20Or%20Lose/Fuzz%20Or%20Lose%20-%20Kostya%20Serebryany%20-%20CppCon%202017.pdf

Note that over time, the corpora will come to represent thousands of CPU hours of
refinement, and be very valuable for guiding efficient code coverage during fuzz-testing.
However, an attacker could also use them to quickly identify vulnerable code. We
recommend avoiding this additional risk by keeping fuzzing corpora in an access-controlled
storage location rather than in a public repository. Some CI systems allow maintainers to
keep a cache to accelerate building and testing. The corpora could be included in such a
cache, if they are not very large.

Centrifuge Assessment | 68

D. Fix Log
Trail of Bits performed a retest of the Centrifuge system on July 8th and 9th, 2019.
Centrifuge provided fixes and supporting documentation for the findings outlined in the
most recent security assessment. Trail of Bits performed verification of each fix provided
for the findings detailed in the report, using a best-effort methodology.

Centrifuge introduced the required protections to improve the security of their smart
contracts and the off-chain code executed by the nodes. They also fixed issues and
potentially problematic corner cases in their precise proof library (findings 16-19) to avoid
users from generating incorrect or invalid proofs. A detailed log of their responses to
discovered issues follows below.

Fix Log Summary

Title Severity Status

1 Revoked Management and Action keys
can still be used

High Fixed

2 A race condition on commit can break
document updates

Medium Issue
documented

3 User can commit anchor with incorrect
Merkle root proof

Undetermined Fixed

4 Lack of contract existence check may lead
to unexpected behavior

Medium Fixed

5 An anchor can be committed multiple
times if its Merkle root is zero

Low Fixed

6 Merkle root verification can be done on
empty proofs

Undetermined Fixed

7 REST API is exposed on all interfaces High Fixed

8 Centrifuge “createconfig” requires
password to be passed on command line

High Fixed

9 Centrifuge “createconfig” stores a
plaintext password in a configuration file

High Fixed

Centrifuge Assessment | 69

https://github.com/centrifuge/centrifuge-ethereum-contracts/commit/24071076b222c768f8ed173aa68c2eebd6030c98
https://developer.centrifuge.io/docs/further-reading/protocol_limitations/
https://github.com/centrifuge/centrifuge-ethereum-contracts/pull/126
https://github.com/centrifuge/centrifuge-ethereum-contracts/commit/24071076b222c768f8ed173aa68c2eebd6030c98
https://github.com/centrifuge/centrifuge-ethereum-contracts/commit/24071076b222c768f8ed173aa68c2eebd6030c98
https://github.com/centrifuge/centrifuge-ethereum-contracts/commit/24071076b222c768f8ed173aa68c2eebd6030c98
https://github.com/centrifuge/go-centrifuge/pull/928
https://github.com/centrifuge/go-centrifuge/pull/916
https://github.com/centrifuge/go-centrifuge/pull/950

10 Private keys are world-readable by default High Fixed

11 Smart contract build dependencies are
not up to date

Informational Fixed

12 Solidity compiler optimizations can be
dangerous

Undetermined Partially fixed

13 User can commit anchor without requiring
collaborators’ signatures

Undetermined Issue
documented

14 Lack of location verification in the Merkle
Tree is error prone

Undetermined Partially fixed

15 ABIEncoderV2 is not production-ready Undetermined Won't fix

16 Lack of fixed-size data cast on
binary.Write call leads to incorrect leaves

Medium Fixed

17 Manually adding leaves can lead to name
collisions in the Merkle tree

Medium Fixed

18 Nil pointer dereferencing can lead the
precise proof library to panic when
flattened by protobuf

Low Fixed

19 The lack of documentation on the
protobuf format invites for incorrect
document format

Informational Fixed

20 Error messages can be used to leak the
collaborators list

High Fixed

21 Timing attack can be used to leak the
collaborators list

High Fixed

22 Centrifuge nodes sign documents without
users’ consent

Undetermined Issue
documented

23 Messages from an identity with no
associated P2P keys leads to a node crash

Medium Fixed

Centrifuge Assessment | 70

https://github.com/centrifuge/go-centrifuge/pull/931
https://github.com/centrifuge/centrifuge-ethereum-contracts/pull/151
https://developer.centrifuge.io/docs/further-reading/protocol_limitations/
https://github.com/centrifuge/precise-proofs/pull/69
https://github.com/centrifuge/precise-proofs/pull/76
https://github.com/centrifuge/precise-proofs/commit/19d77ea35149a76cde52ecff967d440c76cac52a
https://github.com/centrifuge/centrifuge-protobufs/pull/112/files
https://github.com/centrifuge/go-centrifuge/pull/944
https://github.com/centrifuge/go-centrifuge/pull/1013
https://developer.centrifuge.io/docs/further-reading/protocol_limitations/
https://github.com/centrifuge/go-centrifuge/commit/dab0d7d184fa75dedb6aff44001b555317143a8e

24 Updated timestamps can decrease Low Fixed

25 Incorrect message error handling on
invalid document access

Low Fixed

26 libp2p dependencies are not up to date Informational Fixed

27 Collaboration possibly leaked at the P2P
level

Undetermined In progress

28 Documentation should indicate who the
consumers of fields are

Informational Won't fix

29 Consider requiring consent to become a
collaborator

Informational Won't fix

30 Anchor id update allows for multiple
tokens mint for the same document

Medium Won't fix

Centrifuge Assessment | 71

https://github.com/centrifuge/go-centrifuge/pull/846
https://github.com/centrifuge/go-centrifuge/pull/944
https://github.com/centrifuge/go-centrifuge/pull/922

Detailed Fix Log
Finding 1: Revoked Management and Action keys can still be used
Resolved by verifying the revokedAt field every time a key is used.

Finding 2: A race condition on commit can break document updates
Properly documented as a limitation of the current implementation:

"Two or more collaborators could try to update a document at the same time. The "first" update
that goes through (the first version being anchored) essentially blocks the other from updating
the desired document version.

Mitigation is to always have "pre-commit" enabled. Mid-term this is also possible to be mitigated
by supporting document forking/merging."

Finding 3: User can commit anchor with incorrect Merkle root proof
Resolved by checking that that proof provided follows the structure required in the
protocol specification.

Finding 4: Lack of contract existence check may lead to unexpected behavior
Resolved by checking the contract’s existence prior to the call, with the assembly opcode
extcodesize.

Finding 5: An anchor can be committed multiple times if its Merkle root is zero
Resolved by preventing anchors with a Merkle tree equal to zero from being committed.

Finding 6: Merkle root verification can be done on empty proofs
Resolved by invalidating empty proofs.

Finding 7: REST API is exposed on all interfaces
Resolved by adding a configuration option to specify the interface to expose the REST API
that defaults to the localhost (127.0.0.1).

Finding 8: Centrifuge “createconfig” requires password to be passed on command
line
Resolved by asking the user to securely type the password to unlock the node wallet.

Finding 9: Centrifuge “createconfig” stores a plaintext password in a configuration
file
Resolved by removing the password field from the configuration file.

Centrifuge Assessment | 72

Finding 10: Private keys are world-readable by default
Resolved by writing the configuration file readable only by the user who created them (Unix
file permissions 600).

Finding 11: Smart contract build dependencies are not up to date
Resolved by updating build process dependencies to the latest version wherever possible.

Finding 12: Solidity compiler optimizations can be dangerous
Partially resolved by using less aggressive optimizations and downgrading the compiler to
0.5.3. The Centrifuge team responded:

"We chose to downgrade to version 0.5.3 as the contracts become undeployable without the gas
optimizations. Version 0.5.3 of the Solidity compiler is a reasonable compromise of having the
new features available and a compiler version that has been in use for enough time to give us
confidence of its security."

Finding 13: User can commit anchor without requiring collaborators’ signatures
Properly documented as a limitation of the current implementation:

"It is possible for any collaborator to anchor a new document version at any time. Previous
collaborator's signatures are not required to anchor/publish a new document version. This is less
of a limitation and more of a feature to prevent malicious collaborators from blocking
documents by withholding signatures.

Mid-term a feature could be added that requires an x of n signature scheme where a certain
threshold of collaborator signatures is required to anchor a new state. For now, anybody can
publish a new version of a document."

Finding 14: Lack of location verification in the Merkle Tree is error prone
Partially resolved in some specific cases, by checking that that proof provided follows the
structure required in the protocol specification (See Finding 3). The Centrifuge team
responded:

"In Centrifuge OS, the trust in the individual collaborators of a document is an important piece of
the whole system. Multiple collaborators, who sign off on a document, increase the security of
document validity. A single, malicious/buggy, user can construct and sign any document they
want and publish the root hash on Ethereum without any further validations happening. As soon
as multiple Centrifuge users collaborate on a document, the benign users will withhold their
signatures when they detect a wrongly created document. Hence the trust in an NFT being
minted lies either in the single entity that created & signed the document and minted the NFT, or
in the group of collaborators who signed off on the document. The correct validation of the
overall tree with all its leaves will always happen off-chain and rely on the agreement of multiple
collaborators signing off. A buyer of an NFT will have to rely either on trusting the single entity

Centrifuge Assessment | 73

who minted the NFT in the first place, or the group of collaborators who signed off. This is a
design decision and a buyer of an NFT will always have to trust (or verify) the underlying data of
the private document or the author of the document."

Finding 15: ABIEncoderV2 is not production-ready
Not resolved. The Centrifuge team responded:

"We chose the ABIEncoderV2 with considerations as we need the ability to pass nested lists into
contract calls. Even though the feature is marked "experimental" we deem it an appropriate risk
to use it. Other prominent projects, like MakerDAO, for example in
https://github.com/makerdao/dss/blob/master/src/jug.sol , are using ABIEncoderV2 as well. We
deem the risk adequate compared to the benefit provided."

Finding 16: Lack of fixed-size data cast on binary.Write call leads to incorrect leaves
Resolved by properly implementing the toBytesArray function using a cast to int64 .

Finding 17: Manually adding leaves can lead to name collisions in the Merkle tree
Resolved by properly implementing the addToLeave function to check that no leaves can be
added if its name is already present in the tree.

Finding 18: Nil pointer dereferencing can lead the precise proof library to panic when
flattened by protobuf
Resolved by checking the validity of the value to flatten before using reflection, which
triggered the null pointer dereference.

Finding 19: The lack of documentation on the protobuf format invites for incorrect
document format
Resolved by adding proper documentation to warn about adding protobuf fields with
invalid fields that can produce invalid proofs.

Finding 20: Error messages can be used to leak the collaborators list
Resolved by masking the error messages that outputted when a document is not found.

Finding 21: Timing attack can be used to leak the collaborators list
Resolved by adding a minimal amount of time to respond to any document request.

Finding 22: Centrifuge nodes sign documents without users’ consent
Properly documented as a limitation of the current implementation:

"A Centrifuge node is a technical client to Centrifuge OS. This client exchanges and signs data in
well-known formats. It does not validate document data authenticity.

Centrifuge Assessment | 74

https://github.com/makerdao/dss/blob/master/src/jug.sol
https://github.com/makerdao/dss/blob/master/src/jug.sol

Data authenticity and correctness are always validated by the upstream system. E.g. the
accounting system interacting with a Centrifuge node.

A signature of a collaborator on a Centrifuge document signifies the technical receipt and
validation of a message. It does not signify the agreement that a document itself is valid, e.g. if
an invoice amount is matching the underlying purchase order.

It is possible to attach additional signatures to a document (e.g., with custom attributes) to
indicate "business agreement" of a document. However, this is not part of the protocol
specifications and is the responsibility of an upstream system."

Finding 23: Messages from an identity with no associated P2P keys leads to a node
crash
Resolved by properly checking for empty lists of keys, when a particular P2P key is
required.

Finding 24: Updated timestamps can decrease
Resolved by validating the timestamp every time a collaborator updates it.

Finding 25: Incorrect message error handling on invalid document access
Resolved by properly implementing the missing error handling routine.

Finding 26: libp2p dependencies are not up to date
Resolved by updating all libp2p node dependencies to latest stable versions.

Finding 27: Collaboration possibly leaked at the P2P level
Not resolved yet, but in progress. The Centrifuge team responded:

"This is a common problem with Kademlia DHT. Longterm it will be addressed by replacing our
DHT with one that can be queried anonymously. We expect this to be implemented as a libp2p
module. HOPR is one project that could be used for node discovery or expose DHT nodes on
TOR."

Finding 28: Documentation should indicate who the consumers of fields are
Not resolved. The Centrifuge team responded:

"Documentation is always good and can always be improved. The definition of Centrifuge
messages is separated out into an individual repository
(https://github.com/centrifuge/centrifuge-protobufs) and there is, in our opinion, a reasonable
separation from Core Document to individual business document structures (Invoice, Purchase
Order, etc.). Additionally the Centrifuge Protocol Paper
(https://github.com/centrifuge/protocol/releases) outlines the use of each of the key
protocol-specific fields. "

Centrifuge Assessment | 75

https://github.com/centrifuge/centrifuge-protobufs
https://github.com/centrifuge/protocol/releases

Finding 29: Consider requiring consent to become a collaborator
Not resolved. The Centrifuge team responded:

"We considered this design decision and decided to allow message sending/receiving by any
participant in the network in order to create the most open network possible. There are
possibilities to add white listing and rate limiting of messages at a later point, which we will
consider."

Finding 30: Anchor id update allows for multiple tokens mint for the same document
Not resolved. The Centrifuge team responded:

"In Centrifuge OS, the trust in the individual collaborators of a document is an important piece of
the whole system. Multiple collaborators, who sign off on a document, increase the security of
document validity. A single, malicious or buggy user can construct and sign any document they
want and publish the root hash on Ethereum without any further validations happening. As soon
as multiple Centrifuge users collaborate on a document, the benign users will withhold their
signatures when they detect a wrongly created document. Hence the trust in an NFT being
minted lies either in the single entity that created & signed the document and minted the NFT, or
in the group of collaborators who signed off on the document. A buyer of an NFT will have to rely
either on trusting the single entity who created the document and minted the NFT in the first
place, or the group of collaborators who signed off. This is a design decision and a buyer of an
NFT will always have to trust (or verify) the underlying data of the private document or the
author of the document."

Centrifuge Assessment | 76

