
Abstract

In the current blockchain world, a Turing­complete smart contract virtual

machine has been widely used and attracted the attention and participation of

application developers. As a result, many fields like decentralized finance,

crypto art, and decentralized game have made great progress. However, the

current blockchain infrastructure requires all nodes to verify and agree on the

calculation results, which severely limits the ability of smart contracts. The

existing smart contract languages and virtual machines are limited to writ­

ing short programs and accessing very few resources. Yet, machine learning

models require a massive demand for computing and storage resources to be

applied on the blockchain environment. With the emergence of artificial in­

telligence services, machine learning plays a huge role in image recognition,

natural language processing, pattern recognition and many other fields.

The Cortex project adds AI algorithm support to smart contracts by ex­

panding the underlying instruction set of smart contracts and enhancing the

storage layer so that anyone can addAI capabilities to smart contracts. At the

same time, the proposed incentive mechanism prompts model contributors

to submit and optimize models on Cortex chain and receive rewards.

The ultimate goal of Cortex is to become a better tokenwhich supports all

AI models. To achieve this goal, Cortex 2.0 builds a more comprehensive

core technical architecture to enhance the on­chain AI inference in smart

contracts and improve the security and performance of the Cortex chain. In

addition, Cortex 2.0 also put a great emphasis on the accuracy and privacy of

on­chain AI inference results by implementing formal verification, trusted

execution environment, etc.

1

Cortex 2.0 ­ AI on Blockchain

The Cortex Team

Jan,30,2021

Contents

1 Introduction 4

2 The Core Framework 6

2.1 Formal Verification: Z3­Prover 7

2.2 More AI models on Cortex: Extended Operator Set 9

2.3 Fair Proof of Work Consensus: RandomAI 10

2.4 Performance Improvement: three­phase of Zero Knowledge Proof 12

3 The Whole Architecture 14

3.1 Trusted Execution Environment: Cortex Enclave 15

3.2 Distributed File System . 16

3.3 Offchain AI Framework ­ CortexFlow 17

2

3.4 Privacy for Model and Data . 18

3.5 Cross Chain . 19

4 Applications 20

4.1 AI DAO . 20

4.2 On­chain AI game . 22

4.3 On­chain AI financial services 23

5 RoadMap 24

A Operators’ Math Formalization 26

A.1 Reduce Operators . 26

A.2 Broadcast Operators . 29

A.3 NN Operators . 31

A.4 Elemwise Operators . 36

A.5 Transform Operators . 41

A.6 Vision Operators . 53

B The Models Implemented in CVM and Performance Testing 57

3

1 Introduction

In 2009, Bitcoin [1] proposed a blockchain model that can support a decentral­

ized and credible digital currency exchange system. However, its built­in stacked

language is not Turing­complete, such as limiting loop functions, this design re­

stricts the real­world application scenarios of the Bitcoin system. In 2013, the

Ethereum [2] project extended the programmable language on blockchain to the

Turing­complete Solidity language. This expansion has brought a large number of

applications to the blockchain system. Ethereum proposed the Gas mechanism to

cope with the subsequent Turing shutdown issue and denial of service attack prob­

lems. Although it is a good solution from an economic point of view, but Ethereum

can only perform small­scale calculations and storage, limiting the application

of the Ethereum system in big data scenarios such as machine learning. There

are projects trying to improve the performance of Ethereum to run more complex

smart contracts, such as the PoS public chain Algorand [3], the two­layer expan­

sion plan zk­Rollup [4], Arbitrum [5], the new consensus public chain Solana [6],

Avalanche [7], decentralized storage IPFS [8] and other solutions. Yet, there is still

a big gap between the computing and storage requirements for machine learning.

TheCortex project [9] based on Ethereumbut expands the fundamentals and breaks

the barrier between the current blockchain system and artificial intelligence. Cor­

tex chain introduces unprecedented capabilities such as classification, prediction,

and generation of AI models to the blockchain system. Massive breakthroughs

come with more challenges. As such, to solve the computing, storage, and net­

working burdens of AI applications in the blockchain system, Cortex has proposed

a series of solutions:

• Implement the Model Representation Tool (MRT) to convert traditional AI

models into fixed­point models that can be executed on the blockchain;

4

• Propose the Cortex virtual machine, CVM, to realize on­chain AI inference

calculations;

• Introduce TorrentFS P2P file storage system to solve models and data stor­

age problem;

Moreover, AI services require large­scale data and massive computing power,

which both aremainly in the hand of large companies, forming a unhealthymonop­

olistic market. To break the barrier, the Cortex ecosystem provides a decentralized

AI model marketplace where users can share AI models and gain rewards, allow­

ing more people to enjoy AI technology. We believe the Cortex project will bring

together AI technology and the general public, just as Prometheus brings light to

humanity.

With the completion of the Cortex 1.0 mainnet launch in June 2019, The 1.0 white

paper [9] has been realized, and it is no longer a fantasy to deploy and run machine

learning models on the blockchain. Large companies are no longer the only ones

with big data and computing power. Everyone can enjoy the convenience brought

by AI through the Cortex chain and fully understand how their data is used. Devel­

opers can now access AI models to build more complex applications and benefit

from them.

With the introduction of Cortex 2.0, the Cortex Labs team aims to make fur­

ther breakthroughs in system architecture, software implementation, hardware im­

plementation, and app ecosystem. we hope to achieve a decentralized AI­on­

blockchain ecosystem with enhanced features, more powerful performance, more

stable protocols, and cross­chain capabilities to bringAI technology to other blockchain

systems.

This paper introduces the vision of Cortex 2.0 design, its core architecture, and

overall framework. The core architecture section describes how to further im­

5

prove performance, security, and decentralization of Cortex chain. The overall

framework section is a series of on­chain and off­chain work introductions, in­

cluding facilitating the use of the Cortex chain, protecting the user’s model and

data privacy, and making it easier and better to use on­chain AI models, etc.

2 The Core Framework

To build a public chain that supports AI models, Cortex 2.0 needs to optimize

the AI model inference and the underlying blockchain infrastructure. Not only

does it needs to improve the on­chain model accuracy and consistency, but it also

needs to optimize the existing Cortex chain in terms of consensus and performance.

The Cortex 2.0 core architecture is shown in Figure 1 and contains the following

technological breakthroughs:

1. Formal verification: The formalization and correctness verification of AI

operators are completed through the Z3 prover [10] to ensure that all model

inference results in the Cortex chain are deterministic and reproducible.

2. AI operator library: Further improve the underlying operator library of AI

model supported by Cortex, so that Cortex can achieve more AI model in­

ference work.

3. Consensus algorithm: The RandomAI workload proof algorithm to enhance

the decentralization of Cortex furthermore.

4. Performance improvement: Gradually realize the packaging of transfer trans­

actions, smart contracts, and AI inference, and improve the performance of

the Cortex chain through zero­knowledge proof technology.

6

Figure 1: Cortex 2.0 Core Framework

2.1 Formal Verification: Z3­Prover

The instruction execution and calculation results in the smart contract virtual ma­

chine belong to the consensus mechanism of blockchain, which requires the in­

struction operation in the virtual machine to be deterministic and reproducible.

Cortex 1.0 regards the AI model inference operation as a basic instruction (INFER

| IFNERARRAY) integrated into the virtual machine (CVM), and this leads to two

important characteristics that AI inference operation should have on blockchain:

determinism and reproducibility. The Cortex Labs team pays sufficient attention

to the above features, and proposes or plans to propose a series of interpretable

models or methods to ensure the completeness of the inference operation within

the deterministic AI framework (CVM Runtime):

• Write and publish an MRT quantitative paper to introduce the necessity,

completeness of the deterministic AI framework and related model trans­

formation method;

• Use mathematically strict descriptive symbols to define the input, output,

7

and process logic of the operator in the AI framework, to ensure that the

calculation of the operator is theoretically verifiable;

• Use the third­party library Z3­Prover to verify the correctness of source code

implementation in the CVM Runtime project library;

Cortex 2.0 plans to publish the MRT quantitative paper, which focus on the model

transformation work made by the Cortex Labs team. This work is for the deter­

ministic AI framework CVM Runtime, including but not limited to the necessity

of model fixed­pointization, related research and key achievements. The calcula­

tion requirements on the blockchain includes certainty, while the parallel architec­

ture of floating­point models in existingmainstreamAI framework has uncertainty

of calculation. The necessity of model fixed­pointization lies mainly in the con­

tradiction between the certainty on the blockchain and the uncertainty in the AI

framework. For this reason, relevant quantitative research papers have been in­

vestigated and related achievements have been referred to implement the MRT

conversion tool, which is adapted to the deterministic AI framework. For more

details please refer to the paper description and the release plan is described in the

roadmap section 5.

In addition, Cortex 2.0 logically abstracts the operator codes already supported

in the CVM Runtime to form a strict mathematical operation definition to ensure

theoretical interpretability, consistency, and completeness. By standardizing and

pre­stating the input, output and other configuration attributes of the operator, the

processing logic implicit in the code is abstracted in the form of mathematical

expressions and the equation symbol definition, aka formula, is given. The formal

symbol of mathematical description can provide a theoretical complete reference

and give a unique and definite calculation result when the calculation results are

inconsistent between possible inference code versions. The operator mathematical

notation description supported in the current CVM Runtime project library has

8

been constructed and added to appendix A.

Finally, Cortex 2.0 intends to use the satisfiability modulo theories (SMT) [11]

to complete the formal verification of the operator implementation in the code­

base. SMT is a generalization of Boolean satisfiability (SAT), adding equation

reasoning, arithmetic, fixed­size bit­vectors, arrays, quantifiers, and other useful

first­order theories. The SMT solver is a tool to determine the satisfiability (or

double validity) of the formulas in these theories. It can be used in applications

such as extended static checking, predicate abstraction, test case generation, and

bounded model checking on infinite domains.

Z3 formal validator (Z3­Prover) [10] is a new SMT solver developed byMicrosoft

in the United States. Its goal is to solve problems that arise in software verification

and software analysis, and integrates a variety of the latest and comprehensive

theoretical research work and implements it in the project library for code analysis,

code audit, and so on. Cortex 2.0 will invoke the Z3­Prover library to perform

formal verification for all operators’ code in the CVM Runtime. By defining the

data scale and range of the input and configuration attributes of each operator, it

is verified that the output or intermediate calculation results are computationally

correct and precision overflow free.

2.2 More AI models on Cortex: Extended Operator Set

A series of operator sets and their implementation are defined in the CVM Run­

time project library. And a strict mathematical description definition is described

above, stipulating the logic of the operator to calculate under given input and out­

put a deterministic result. The supported operator set refers to the existing main­

stream deep learning framework architecture and combines the network structure

involved in AI models used most often, including necessary operators such as con­

9

volution, fully connected, and activation function. At present, the CVM Runtime

execution framework developed by the Cortex Labs team can support computer

vision CV research and some natural language processing NLP tasks, where CV

contains image classification and object recognition.

Based on this, Cortex version 2.0 intends to implement more operators and expand

the operator set to round out the on­chain AI model. On the one hand, Cortex 2.0

pays sustained attention to the new operators proposed by academia and indus­

try. On the other hand, Cortex 2.0 extends the operator set to the field of natural

language processing (speech, semantics, and text), adding LSTM [12], GRU [13],

RNN [14], TRANSFORMER Operators such as [15], BERT [16] and other opera­

tors, which will enhance the inference capability of Cortex 2.0 in natural language

tremendously.

In addition to the officially defined operators, Cortex 2.0 will also launch a cus­

tom operator function. Users can complete the custom operator according to the

protocol and tools provided by Cortex, and upload the operator to the Cortex oper­

ator library for the extension. That extends the user­defined range from the model

level to the operator level. Operators contributed by the community can effectively

create a practicable operator library to meet their needs.

Besides, for the consideration of correctness and safety with user­defined opera­

tors, the CVM Runtime codebase will merge the customized operators only after

completing the mathematical symbol description and code formal verification.

2.3 Fair Proof of Work Consensus: RandomAI

For a long time, the idea of one­machine­one­vote in the cryptocurrency commu­

nity has not beenmaterialized due to the design of the expensive ASIC chips which

enhance the computational acceleration ratio. The community and academia have

10

explored many memory bottleneck algorithms to be more friendly to the GPU and

CPUminingwithout spending a lot ofmoney on specializedmining equipment like

ASIC. Ethereum’s Dagger­Hashimoto [2] and Zcash’s Equihash [17] are among

those algorithmic practices that focus on GPU mining.

TheCortex chainwill continue to prioritize one­machine­one­vote. The Cortex 1.0

adopts a proof­of­work scheme based on Cuckoo Cycle [18] to narrow the speed

gap between CPU and special mining machine. In the Cortex 2.0, the RandomAI

POW algorithm will be investigated and designed to ensure the fairness of the

consensus algorithm.

The significant advantage of a general­purpose CPU over an ASIC mining ma­

chine is the versatility of executing code, so the PoW algorithm to be used must

be dynamic. The existing RandomX generates a random calculation program, re­

quires nodes to complete it, and submits the converted result as proof of work.

This random calculation program can increase the CPU advantages against ASIC

mining machines.

Cortex 2.0 will base on the concept of the RandomX algorithm and design Ran­

domAI proof­of­work algorithm. As shown in the figure 2, RandomAI has three

stages. Based on the information of the previous block (disordered memory state),

the first stage uses the pre­defined CVMoperator to generate random networks and

data. In the second stage, random data are input into the random network to obtain

the inferred result, and the third stage converts the inference result into the stan­

dard format of proof of work for submission. To meet the specific requirements

of the POW result, the proof process needs to be repeated, constantly generate

different simulation networks to try. In this process, due to the existence of a ran­

dom simulation network, it cannot be accelerated by a custom­made circuit mining

machine. Therefore, the RandomAI workload proof algorithm can effectively mo­

tivate nodes in the network to use general­purpose CPUs and GPUs for workload

11

certification, improving the degree of decentralization for Cortex.

Figure 2: RandomAI PoW algorithm

2.4 Performance Improvement: three­phase of Zero Knowl­

edge Proof

In the blockchain field, performance bottlenecks have always plagued relevant

researchers to ensure the decentralization and security of the blockchain system.

Up to now, there are many solutions to improve the blockchain performance, such

as the consensus protocol replacement, DAG, zk­Rollup, sharding, and sidechains

[19].

Due to the limitation of the CAP theorem of distributed systems, scaling up the

blockchain will be an option, a trade­off between system consistency, availability,

and persistence. The Cortex Labs team has conducted a series of in­depth research

on the capacity expansion issue, hoping to improve the network performance with­

out sacrificing core security assumptions. And we finally selected the zk­Rollup

as the solution.

12

The zk­Rollup is a technology that uses zero­knowledge proof to put the calcula­

tion execution section off­chain. It does not require every node to participate in

the calculation but only needs to verify the correctness of the calculation results.

Traditional verification requires a recalculation of the verification result and takes

up a lot of resources. And zk­Rollup reduces the computation overhead of verifi­

cation hugely by adopting probabilistic confidence proof PCP, which guarantees

the proof correctness under the maximum probability.

The world state of Cortex 2.0 is put in a Merkle tree and records all account bal­

ance, nonce, data, and so on. Each transaction causes a partial account state trans­

fer in the world state. For the legality verification of state transfer brought about by

transaction, each blockchain node needs to re­execute the transaction calculation

process, resulting in wasted resources and performance bottlenecks.

Cortex 2.0 will use zk­SNARK [20] technology to separate the calculation process

and the verification process. Each node merges the transactions and packages

them for calculation, inputting The Merkle tree root and transaction set before the

transfer and outputting theMerkle tree root in the world state after the transfer. The

proof of calculation process will be generated by zk­SNARK and then submitted

to the blockchain. Blockchain nodes can improve the performance of the entire

blockchain significantly by just doing the verification for the correctness of the

proof, which will represent the validity of state transfer of these transactions.

As shown in the figure 3, the expansion plan of Cortex 2.0 is divided into three

stages: zero­knowledge proof for transfer transactions, zero­knowledge proof for

smart contracts, and zero­knowledge proof for AI models. The first phase adopts

the zk­Rollup solution to realize ZKP of transfer transactions and acceleration of

packaging. In the second stage, by enhancing the versatility of the zero­knowledge

proof circuit, zk­CVM is realized to perform ZKP and transaction packaging, to

support smart contracts without AI inference. In the third stage, by adopting the

13

AI­compatible ZKP technology [21] of inference, the blockchain capacity will

expand for transactions that include AI model inference.

Figure 3: Cortex 2.0 Three­Phase Scaling

3 The Whole Architecture

To better serve the AI model developers and AI application developers, Cortex 2.0

will provide richer technical components in addition to the core framework, form­

ing a complete AI framework and application ecosystem to help users enjoy the

convenience brought by AI blockchain better. The overall architecture is shown

in Figure 4.

Figure 4: the Whole Architecture

14

3.1 Trusted Execution Environment: Cortex Enclave

SGX (Software Guard Extensions) proposed by the Intel Corporation is a popu­

lar solution in many designs of trusted computing. It aims to solve the problem

of secure remote computing through trusted hardware. The trusted hardware will

establish a dedicated secure container Enclave where computing service users up­

load calculations and data to the secure container, and SGX protects the privacy

and security of data when performing calculations.

Cortex 2.0 will build a trusted execution environment based on SGX to execute

AI model inference on the Cortex chain. On the one hand, SGX can ensure the

correctness of the AI model inference. Whenever a node completes an AI model

inference and packs it into blocks, other nodes do not need to repeat complex

model inference calculations. The SGX signature can be certified to ensure that

the calculation results are correct. It reduces the computational overhead caused

by repeated execution of model inference. On the other hand, SGX can guarantee

data privacy. Users can use the privacy mode to perform non­public calculations

in SGX. This personal data can never be obtained externally, and that provides the

privacy support for models and data.

On this basis, Cortex 2.0 plans to improve SGX and launch the Cortex Enclave,

a trusted execution environment that combines software and hardware. The hard­

ware part of Cortex Enclave is implemented based on the Risk­V architecture and

provides data encryption at the hardware level. In addition, to support the rich

on­chain ecosystem of Cortex 2.0, Cortex Enclave intends to embed in the above

formalized AI operators to accelerate and optimize the operators from the hard­

ware level, thereby improving the inference efficiency of the AI model in Cortex

2.0.

Cortex Enclave includes an enclave protection module, smart contract execution

15

device, and encryption module. The enclave protection module builds a trusted

computing environment on the chip to ensure the reliability of all data and exe­

cution actions, including but not limited to the execution of smart contracts, data

signatures, sensor data collection, etc. The decoding conversion unit accepts the

binary code input from the outside and uses the decoding device to de­analyze the

binary code into the contract primitive sequence. By invoking the pre­embedded

primitive meaning function, it then converts the reverse­analyzed primitive se­

quence into instruction code. The instruction execution unit parses the instruction

code to execute. The processing result of the instruction execution unit is handed

over to the encryption coprocessor to sign and encrypt. The trusted computing

chip can ensure reliability in the prediction procedure and improve the execution

efficiency of all Turing­complete smart contracts at the same time for the server

to call. This technical solution has obtained related patents.

3.2 Distributed File System

Storage system is an important component in every public chain. The traditional

public chain uses a linked storage structure of block data, and the bottom layer

uses a key­value pair database such as levelDB to store data. This storage system

ensures that all data passes the consensus of the entire network node, ensuring

consistency and tamper­proof modification. However, due to high redundancy,

this storage system has performance bottlenecks and capacity constraints, making

it hard to store AI models and datasets.

Cortex has designed compatible storage systems for different data types, includ­

ing high­security, high­redundancy on­chain storage, which adopts the traditional

key­value pair storage system; and distributed file systems with large­scale and

fast access that uses the Torrent File System, invokes the libtorrent library, and

transmits the model and data dynamically through the DHT network. It would

16

ensure the final consistency state of the model and data. The well­designed ab­

straction by Cortex makes it possible to use any key­value storage system to store

models and data. Cortex’s abstraction layer of data storage does not rely on any

specific distributed storage solutions. DHT and IPFS can both be applied to solve

storage problems.

Cortex’s current storage capacity can support most typical applications such as

pictures, voices, texts, and short videos, and is sufficient to cover most AI scenar­

ios. For models and data that exceed the current storage limit, such as medical

holographic scan data, which can be tens of GB per data piece, Cortex 2.0 will

support it by increasing the storage limit. Cortex 2.0 version intends to extend the

underlying distributed file system, and improve the scalability of the Cortex chain

and the performance of transmission and storage in the storage layer by supporting

more projects such as IPFS and databases.

3.3 Offchain AI Framework ­ CortexFlow

Model developers have become accustomed to completing model development

and training in existing mainstream AI frameworks such as TensorFlow and Py­

Torch. Cortex has created Model Representation Tool (MRT) to help model de­

velopers upload models to the chain quickly and conveniently. MRT realizes the

simple and efficient migration from the traditional AI model to the on­chain AI

model with the determinism of the AI model.

There are many restrictions on the quantitative research of AI models under the

traditional framework. The fundamental reason is that they do not have a theo­

retically complete solution for the consistency of floating­point model execution,

which led to the redesign to a fixed­point AI execution framework: CVM Run­

time and the realization of the migration tool MRT. Cortex 2.0 plans to develop an

17

AI framework CortexFlow, including but not limited to training, execution, and

deployment, to help model developers better contribute in the Cortex ecosystem.

CortexFlow, the AI framework proposed by Cortex 2.0, contains many compo­

nents such as model development, training, testing, etc. The model can be con­

structed directly using a formalized verification set of operators supported by Cor­

tex 2.0. And user­defined operators can be imported into the set after passing

the formalized verification. In the model training process, compared to the tradi­

tional model training method, CortexFlow automatically adds a fixed­point pro­

cess during the training process. Then the deployment process would automati­

cally convert the parameters obtained from training into a fixed­point model that

can execute on the chain, and effectively ensure model accuracy to meet appli­

cation requirements in industrial scenarios. The model developed and trained by

CortexFlow can be directly deploy to the CVMRuntime for inference without any

modification. At the same time, CortexFlow also provides a public test dataset to

help the model testing. Part of the dataset comes from the Cortex 2.0 chain, which

allows users to design the AI model of the on­chain data.

3.4 Privacy for Model and Data

The openness and transparency of the blockchain are a threat to the privacy of user

data. In the AI field, model parameters and training/test data may all be private

data. Relying on distributed storage alone can provide data availability, but not

data privacy. To address this, Cortex 2.0 provides a full suite of privacy protection

solutions, including data privacy and model privacy.

With the help of Cortex Enclave, Cortex 2.0 can help users store their models or

data in the Enclave to protect privacy. Other nodes can input data into the En­

clave, and the Enclave executes the inference and returns the result. This scheme

18

guarantees the user model, data privacy, and inferred result correctness with the

help of the Enclave model.

Cortex 2.0 intends to use Enclave, fully homomorphic encryption, and zero­knowledge

proof to advance simultaneously. For public AI models, users can infer results and

generate zero­knowledge proofs locally, then upload the proofs to nodes to ver­

ify and synchronize. Users can select a fully homomorphic encryption mode for

AI model privacy. First, conduct homomorphic encryption on their inferred data,

then upload the encrypted data for nodes for inference. Notice that the encrypted

result can be decrypted back to the correct one.

3.5 Cross Chain

With the emergence of more and more blockchain systems, interoperability be­

tween multiple blockchain systems becomes an important issue. Cross­chain ca­

pability forwards transactions or contract calls on the source chain to the target

chain. According to the trust foundation of cross­chain, there are three types of

cross­chain technologies: atomic exchange, notary mechanism, and relay mecha­

nism [22]. The operation of atomic exchange [23] is too complicated, it is limited

to the exchange of assets on the chain and impossible to complete the cross­chain

of contract calls. In the notary mechanism, trusted nodes monitor specific events

in the source chain and send corresponding operations to the target chain. The sig­

nature is verified by the contract to ensure security, and most of the notary nodes

are required to be trusted. The relay mechanism implements the light nodes of the

source chain through smart contracts on the target chain and verifies the transac­

tion records to the source chain. The cross­chain bridge on the relay mechanism

does not need to trust the relay node.

Cortex 2.0will enhance the interoperability of the Cortex chainwith other blockchain

19

systems by building a cross­chain bridge so that the AI capabilities on Cortex can

be provided to more applications based on other blockchain infrastructures. Ap­

plications on other blockchain system can use the cross­chain bridge to call the

AI contracts on the Cortex chain for AI inference, and then return the inference

results to the blockchain to complete the function.

Cortex 2.0 will first implement a cross­chain bridge with a single­node notary

mechanism to support two­way asset cross­chain. Then Cortex 2.0 will realize the

cross­chain bridge on the multi­node notary mechanism, which supports two­way

contract calls, and provide security through multi­signature. Finally, Cortex 2.0

will implement the cross­chain bridge of the relay mechanism to further improve

the security of the cross­chain bridge.

4 Applications

4.1 AI DAO

Existing DAO(Decentralized Autonomous Organization) has certain restrictions

in terms of function expression and usage scenarios due to the limitation of under­

lying smart contracts. Cortex 2.0 will launch AI DAO, promoting the development

of decentralized autonomous organizations from the two directions: DAO in AI

and AI in DAO.

4.1.1 DAO in AI

In the AI field, centralized platforms such as Kaggle hold AI competitions to pro­

mote innovation and development of AImodels. These platforms provide a dataset

for contestants to solve a specific issue. The competition often attracts AI devel­

20

opers from all over the world to participate in the competition, and submit their

prediction results for ranking and rewards. However, AI competitions held by cen­

tralized platforms require data from companies to be submitted to the platform for

scoring, which makes it difficult to ensure data privacy. Moreover, participants

need to submit their model to the platform which is difficult to ensure the model

privacy.

The Numer.ai project [24] tries to provide encrypted data sets for model devel­

opers to develop their models. Developers can then participate in competition

by submitting predicted results data or models for ranking and receive cryptocur­

rency rewards. The Numer.ai project adopts the concept of DAO, but the process

of model training, prediction, and firm offer cannot be supervised and certified

through the blockchain, and it still requires centralized institutions for operation

and credit guarantees.

In this scenario, Cortex 2.0 supports the implementation of decentralized AI com­

petitions in the form of DAO and protects the privacy and security of models and

data. The data provider can protect the data through fully homomorphic encryp­

tion. The participating teams complete the training and inference of the model

off­chain and store the results and proofs on the blockchain.

This solution solves the two important problems between existing AI model own­

ers and data owners. On the one hand, it can protect the privacy of data owners

through homomorphic encryption, and the desired model can be obtained without

exposing the data. At the same time, It also avoids the potential risk of user pri­

vacy leakage. On the other hand, it can protect the model owner’s model privacy

and ensure the correctness of the calculation results. The model owner does not

need to provide a model. Through the calculation results and proof of the Cor­

tex 2.0 zero­knowledge AI model, the correctness proof can be completed while

protecting privacy.

21

4.1.2 AI in DAO

Current DAO only uses built­in fixed contract codes and helps organizations to

govern through voting within a small range of choices. The capability of smart

contracts greatly limits the development of DAO. Cortex 2.0 provides complete

on­chain AI models, which enables DAO to achieve automation and intelligent

management in more aspects, and further realize independent decision.

For example, existing DAO needs to design mechanisms such as holding tokens

or NFTs to filter DAO members. This simple mechanism may lead to dangers

such as sybil attacks, while complex mechanisms face block restrictions and high

cost on existing blockchains. The AI model of Cortex 2.0 can efficiently solve this

problem by collecting all historical transactions and relative data of DAO mem­

bers on the blockchain. The models can quickly learn whether the members could

be accepted by the DAO. Moreover, using the members’ various operations in the

DAO as feedback, AI DAO can further learn the various behaviors of the organi­

zation. With the increase of data, AI DAO can replace humans in more scenarios

to complete smart decisions.

4.2 On­chain AI game

Existing blockchain games are limited by the functions and performance of smart

contracts, and can only implement simple game logic. The AI model supported by

Cortex gives games a richer design and more advanced gameplay. The AI models

provides more logical judgments within the game, increasing the fun and ease of

play in the games.

For example, CryptoKitties uses simple contracts and random numbers on the

chain to complete gene combinations when breeding offspring. This logic is sim­

22

ple and easy to implement, but the playability is insufficient. Cortex 2.0 can en­

hance the playability of CryptoKitties on the chain through the AI model. The

offspring combination can read the historical transaction data of the crypto cats on

the chain, and get richer gene combination gameplay through the model.

4.3 On­chain AI financial services

4.3.1 AI DeFi Aggregator

Compared with traditional DeFi aggregators, Cortex 2.0 provides AI DeFi aggre­

gator. It not only evaluates the profitability of each DeFi protocol, but also eval­

uates the potential risk behind each DeFi protocol that users are more likely to

ignore. AI DeFi aggregator uses AI inference capabilities to make comprehensive

decisions on investment strategies and portfolios. Starting from the original data

on the chain of the DeFi protocol, a series of high­level features such as centraliza­

tion, liquidity, and collateral are calculated. The score of each investment project

is finally obtained and the optimal investment portfolio is obtained by the trained

model. The combined inference result is provided to Ethereum’s smart contract

by the cross­chain bridge, and it can be automatically invested in different DeFi

platforms. The solution offers a complete one­stop investment evaluation, consul­

tation, and operation services for users.

In addition, investors only need to answer some investment questionnaires on the

platform, and the AI model can assess the investor’s risk preference, combine with

the AI rating results of the DeFi platform, determine the financial management

plan, and automatically generate the final personality Optimized investment al­

location portfolio. The entire process takes only a few minutes, which achieves

transparency, efficiency and accurate matching of user asset management goals.

23

4.3.2 Decentralized AI credit rating

As data on blockchain becomes more and more abundant, it becomes possible to

rate each user’s assets, risks, credit, etc. Lending based on credit rating becomes

possible. Based on the AI models on the Cortex chain, a comprehensive rating

of loan account data is given, and a reference credit rating can be calculated. The

lending platform uses this as a basis to carry out credit lending business, combined

with risk control methods such as staking. The current lending market is still stuck

in the framework of over collateralization, while AI credit lending realize unse­

cured loan. Mortgage lending is indeed a relatively effective risk control strategy,

but it has also formed some fundamental problems or a relatively obvious barrier

to business development. Breaking through the barriers, we will face a new blue

ocean market, which is undoubtedly worth looking forward to.

4.3.3 AI Stablecoin

Algorithmic stablecoin [25] is an important part of the blockchain financial ecosys­

tem. The current algorithmic stablecoin relies on simple data such as prices col­

lected by oracles to regulate supply, mortgage rate, and other parameters. Exist­

ing regulation algorithms are limited by the process capabilities of smart contracts

and can only achieve rigid control. Such regulation algorithms are vulnerable to

attacks such as lightning loan. The AI algorithmic stablecoin launched in Cortex

2.0 can mine potential data such as market sentiment through historical data, and

prospectively regulate important parameters in the algorithmic stablecoin.

5 RoadMap

• Ritchie 2022 Q1 Complete Solidity Compiler and MRT Upgrade.

24

• Dijkstra 2022 Q2 Deploy the cross­chain bridge of the multi­node notary

mechanism which is compatible with EVM. Publish papers for MRT quan­

tification.

• Bernoulli 2022 Q4 Complete the zk­Rollup for the transactions and con­

tracts. Propose the cross­chain bridge of relay version.

• Galileo 2023 Q4 Integrate the general distributed storage system architec­

ture.

25

A Operators’ Math Formalization

This section provides an extensive explanation to CVM­Runtime operators. Note

that all numbers referred to by the symbol are integers by default.

All the operators’ formalization obeys the unified format:

Y [yindices] = X[xindices],

∀given range,

where condition1 and condition2 and · · · conditionn

which means that for given value range, the formula in the first line is always true,

subjecting to the constraints listed as the condition statements.

A.1 Reduce Operators

A reduce operator performs the reduction function to input data based on the pa­

rameters, and the process logic over all kind of operators are the same. Reduction

is performed on the given axes, other dimensions remains the same and the result

are stored in those places. We abstract the common reduce logic as formalization

here and specify the reduce function for each operators respectively.

Math Formalization

• Input: X , a tensor of N dimensions, namely (n0, n1, · · · , nN−1)

• Output: Y

• Attribute:

26

– axes (TShape), which isM ­length vector, whereM ∈ [0, N + 1)

– keepdims (bool)

– exclude (bool)

T =

x | i ∈ axes ∧ x =

i, if i ⩾ 0

i+N, otherwise

 ,

where card{T} = M and j ∈ [0, N),∀j ∈ T

U = {0, 1, · · · , N − 1}

R =

U − T, if exclude is true

T, otherwise

r = card{R}

1. Case exclude is True andM = N

Y = X

2. Case exclude is False andM = 0

Y [0, 0, · · · , 0︸ ︷︷ ︸
K

] = REDUCE_FUNC(X),

27

whereK =

1, if keepdims is false

N, otherwise

3. Case keepdims is False

Y [dI(0), dI(1), · · · , dI(N−r−1)] = REDUCE_FUNC(Z),

∀dI(i) ∈ [0, nI(i)) ∧ i ∈ [0, N − r),

where I : [0, N − r) → U −R, s.t. ∀i < j, I(i) < I(j) and

J : [0, r) → R, s.t. ∀i < j, J(i) < J(j) and

Z = {X[d0, d1, · · · , dN−1] | di ∈ [0, ni) ∧ i ∈ J}

4. Otherwise

Y [d0, d1, · · · , dN−1] = M [dI(0), dI(1), · · · , dI(N−r−1)],

∀di ∈ [0, ni) ∧ i ∈ U −R ∧ dj = 0 ∧ j ∈ R,

where I : [0, N − r) → U −R, s.t. ∀i < j, I(i) < I(j) and

J : [0, r) → R, s.t. ∀i < j, J(i) < J(j) and

M = OP_NAME(X, axes=axes, keepdims=false, exclude=exclude)

A.1.1 sum

• Set OP_NAME as sum

• Set REDUCE_FUNC as

REDUCE_FUNC(Z) =
∑

Z

A.1.2 max

• Set OP_NAME as max

28

• Set REDUCE_FUNC as

REDUCE_FUNC(Z) = maxZ

A.2 Broadcast Operators

Abroadcast operator performs the broadcast function to input data, and the process

logic over all kinds of operators are the same.

Math Formalization

• Input: There are 2 inputs.

– A, a tensor ofM dimensions, namely (m0,m1, · · · ,mM−1)

– B, a tensor of N dimensions, namely (n0, n1, · · · , nN−1)

The two input shapes of tensor must satisfy the assertions as below:

P = min(M,N)

Q = max(M,N)

mi = ni ormi = 1 or ni = 1,∀i ∈ [0, P)

• Output: Y , a tensor with Q dimensions, the higher dimension of the two

inputs, and it’s shape is identical to the input with higher dimension.

29

Y [d0, d1, · · · , dK−1] = A[a0, a1, · · · , aM−1] OP B[b0, a1, · · · , aN−1],

∀i ∈ [0, Q) ∧ di ∈ [0,max(emi, eni)),

where aj = dQ−M+j if dQ−M+j < mj else 0,∀j ∈ [0,M) and

bj = dQ−N+j if dQ−N+j < nj else 0,∀j ∈ [0, N) and

emi =

1, i < Q−M

mQ−M+i, otherwise
, ∀i ∈ [0, Q) and

eni =

1, i < Q−N

nQ−N+i, otherwise
,∀i ∈ [0, Q)

A.2.1 broadcast_add

set OP to add.

A.2.2 broadcast_sub

set OP to sub.

A.2.3 broadcast_mul

set OP to mutiply.

A.2.4 broadcast_div

set OP to divide.

30

A.2.5 broadcast_max

set OP to max.

A.3 NN Operators

We provide NN operators for users. In fact, NN operators stand for neural network

operators, the core of neural network learning mechanism. NN operators have

parameters to be trained and logic for linear or non­linear transformation in amodel

graph.

A.3.1 conv2d

We only supported 2­D convolution operator. Also alias Group­wise Convolution.

Math Formalization

• Input: there are 2 or 3 inputs.

– X , input data to be calculated whose shape is (N,C,H,W)

– W , convolution kernel weight whose shape is (OC, IC,KH,KW)

– B, bias data. If B is not None, it’s shape is (OC,).

• Output: Y

• Attributes:

– padding, aTShape of length 2, namely (PH,PW), PH, PW ∈ [min_attr,max_attr),

indicating padding size.

31

– stride, a TShape of length 2, namely (SH, SW) ∈ [1,max_attr),

indicating strides.

– dilation, a TShape of length 2, namely (DH,DW) ∈ [1,max_attr),

parameter used in dilation convolution.

– groups, an int in range[1, C], indicating group number. C = IC ·
groups ∧OC mod groups = 0

Y [n, oc, p, q] =
IC−1∑
ic=0

kernel(n, (oc÷OPG) ∗ IC + ic, p, q, oc, ic) +

0, if B is None

B[oc], otherwise
,

∀n ∈ [0, N) ∧ oc ∈ [0, OC) ∧ p ∈ [0,Y_HMAX) ∧ q ∈ [0,Y_WMAX) ,

where Y_HMAX =

⌊
H + 2 · PH− DH · (KH− 1)− 1

SH

⌋
+ 1 and

Y_WMAX =

⌊
W + 2 · PW− DW · (KW− 1)− 1

SW

⌋
+ 1 and

OPG = OC/groups, OPG ∈ N+ since OC mod groups = 0

where kernel function does the 2D image convolution calculation, and the formu­

lation is:

kernel(n, j, p, q, o, i) =
KH∑
ki=0

KW∑
kj=0

pad(p′ + ki ∗ DH, q′ + kj ∗ DW) ·W [o, i, ki, kj],

where p′ = p · SH− PH and q′ = q · SW− PW and

pad(p, q) =

X[n, j, p, q], if p ∈ [0, H) ∧ q ∈ [0,W)

0, otherwise

32

A.3.2 dense

Dense operator provides a full connected layer.

Math Formalization

• Input: there are 2 or 3 inputs.

– X , a matrix of shape (M,K)

– W , a matrix of shape (N,K)

– B, bias, of typeOptional<DLTensor>. IfB is notNONE, it’s shape

is (N,).

• Output: Y , a matrix of shape (M,N)

Y = XW T +

0, if B is None

B, otherwise

A.3.3 relu

Relu performs elementwise rectified linear unit function.

Math Formalization

• Input: X , a tensor of N dimensions, namely (n0, n1, · · · , nn−1)

• Output: Y , the same shape as X

33

Y [d0, d1, · · · , dn−1] = max(0, X[d0, d1, · · · , dn−1]),

∀i ∈ [0, N) ∧ di ∈ [0, ni)

A.3.4 max_pool2d

Max_pool2d performs max pooling over every plane for each batch and channel.

Math Formalization

• Input: X , of shape (N,C,H,W), indicating there are N batches, C chan­

nels and all the planes are of size (H,W)

• Output: Y

• Attributes:

– pool_size, a TShape of length 2, namely (PSH,PSW)

– padding, either aTShape of length 2, namely (PH,PW) ∈ [min_attr,max_attr),

or an int indicating PH = PW

– strides, a TShape of length 2, namely (SH, SW)

– ceil_mode, boolean.

PSH ∈ [0, H + 2PH + 1),

PSW ∈ [0,W + 2PW + 1),

PSH > PH ∧ PSW > PW

34

Y [n, i, p, q] = max{pad(n, i, p′, q′)

| p′ ∈ [p · SH− PH, p · SH− PH+ PSH), q′ ∈ [q · SW− PW, q · SW− PW+ PSW)},

∀n ∈ [0, N) ∧ i ∈ [0, C)∧

p ∈
[
0, ceil_func

(
H + 2 · PH− PSH

SH

)
+ 1

)
∧

q ∈
[
0, ceil_func

(
W + 2 · PW− PSW

SW

)
+ 1

)
,

where ceil_func(val) =

⌈val⌉, if ceil_mode is true

⌊val⌋, otherwise
and

pad(n, i, p, q) =

X[n, i, p, q], if p ∈ [0, H) ∧ q ∈ [0,W)

INT32_MIN, otherwise

A.3.5 upsampling

Upsampling operator performs upsampling to the input data by copying the value

in each position serveral times.

Math Formalization

• Input: X , whose shape is (N,C,H,W)

• Output: Y

• Attributes: scale, in range [1,max_attr)

35

Y [n, i, h, w] = X[n, i,

⌊
h

scale

⌋
,
⌊ w

scale

⌋
],

∀n ∈ [0, N) ∧ i ∈ [0, C) ∧ h ∈ [0, H · scale) ∧ w ∈ [0,W · scale)

A.4 Elemwise Operators

An elemwise operator performs the elementwise function to input data and the

process logic over all kinds of operators are alike. There might be 1 or 2 input

tensors and the logic might be complicated for someone. That’s way we don’t

abstract them but describe each one.

A.4.1 abs

This operator calculates absolute value of input data.

Math Formalization

• Input: X , a tensor of N dimensions, namely (n_0, n_1, · · · , n_N − 1).

• Output: Y , a tensor whose shape is same as X

Y [d0, d1, · · · , dN−1] =

x, x ⩾ 0

−x, x < 0
,

∀i ∈ [0, N) ∧ di ∈ [0, ni),

where x denotes X[d0, d1, · · · , dN−1]

36

A.4.2 cvm_precision

The precision operator gives how many bits the absolute value of a number takes.

1 takes 1 bit. 2, 3 take 2 bits, etc. A special case is that 0 always takes at least 1

bit.

Math Formalization

• Input X , a tensor of N dimensions, namely (n_0, n_1, · · · , n_N − 1).

• Output Y , a tensor whose shape is same as X

Y [d0, d1, · · · , dN−1] =

⌈log2(abs(x) + 1)⌉, x ̸= 0

1, x = 0
,

∀i ∈ [0, N) ∧ di ∈ [0, ni),

where x denotes X[d0, d1, · · · , dN−1]

A.4.3 elemwise_add

This operator performs elementwise add to the 2 input tensors.

Math Formalization

• Input: there are 2 inputs, of the same shape.

– A, a tensor of N dimensions, namely (n0, n1, · · · , nN−1).

– B, whose shape is same as A.

• Output: Y , a tensor whose shape is same as A and B.

37

Y = A+B

A.4.4 elemwise_sub

This operator performs elementwise subtraction to the 2 input tensors.

Math Formalization

• Input: there are 2 inputs, of the same shape.

– A, a tensor of N dimensions, namely (n0, n1, · · · , nN−1).

– B, whose shape is same as A.

• Output: Y , a tensor whose shape is same as A and B.

Y = A−B

A.4.5 negative

This operator performs elementwise negative to the input tensor.

Math Formalization

• Input: X , a tensor of N dimensions, namely (n0, n1, · · · , nN−1).

• Output: Y , a tensor whose shape is same as X .

Y = −X

38

A.4.6 clip

This operator performs clip, cutting the data into a range, to the input tensor.

Math Formalization

• Input: X , a tensor of N dimensions, namely (n0, n1, · · · , nN−1).

• Output: Y , a tensor whose shape is same as X .

• Attributes:

– a_min

– a_max

Y [d0, d1, · · · , dN−1] =


a_max, x ⩾ a_max

x, x ∈ (a_min, a_max)

a_min, x ⩽ a_min

,

∀i ∈ [0, N) ∧ di ∈ [0, ni),

where x denotes X[d0, d1, · · · , dN−1]

A.4.7 cvm_cilp

This operator clips the input data into a certain CVM precision.

Math Formalization

• Input: X , a tensor of N dimensions, namely (n0, n1, · · · , nN−1).

39

• Output: Y , a tensor whose shape is same as X .

• Attribute: precision, an int in range [1, 33)

Y = clip(X, a_min = −α, a_max = α),

where α = 2precision­1 − 1

A.4.8 cvm_right_shift

This operator performs right shift. Slightly different from C right shift, the result

of this operator would be rounded to nearest integer. A special case is that negative

half number will be rounded up, ­1.5 rounded to ­1 for example.

Math Formalization

• Input: X , a tensor of N dimensions, namely (n0, n1, · · · , nN−1).

• Output: Y , a tensor whose shape is same as X .

• Attribute:

– precision, an int in range [1, 33)

– shift_bit, an int in range [1, 33)

Y = clip(T, a_min = −α, a_max = α),

where T =

⌊(⌊
X

2shift_bit−1

⌋
+ 1

)
÷ 2

⌋
and α = 2precision−1 − 1

40

A.4.9 cvm_left_shift

This operator performs left shift to the input tensor, same as C left shift operator.

Math Formalization

• Input: X , a tensor of N dimensions, namely (n0, n1, · · · , nN−1).

• Output: Y , a tensor whose shape is same as X .

• Attribute:

– precision, an int in range [1, 33)

– shift_bit, an int in range [1, 33)

Y = clip(T, a_min = −α, a_max = α),

where T = X ∗ 2shift_bit and α = 2precision−1 − 1

A.5 Transform Operators

transform operator do not do the calculation on the data but simply reshape, copy

or select part of it. The process logic over all kinds of operators are quite different.

A.5.1 repeat

This operator repeats the input data by repeats times along the given axis. Each

element is repeated right after itself.

Math Formalization

41

• Input: X , a tensor of N dimensions, namely (n0, n1, · · · , naxis, · · · , nN−1)

• Output: Y , a tensor ofN dimensions, namely (n0, n1, · · · , naxis·repeats, · · · , nN−1)

• Attribute:

– axis, an int in range [0, N), indicating on which axis is the repetition

performed.

– repeats, an int in range [1,+∞), indicating how many times the data

is repeated.

Y [d0, d1, · · · , daxis, · · · , dN−1] = X[d0, d1, · · · ,
⌊

daxis
repeats

⌋
, · · · , dN−1],

∀d0 ∈ [0, n0) ∧ · · · ∧ daxis−1 ∈ [0, naxis−1) ∧ daxis ∈ [0, naxis · repeats)∧

daxis+1 ∈ [0, naxis+1) ∧ · · · ∧ dN−1 ∈ [0, nN−1)

A.5.2 tile

This operator tiles the input data several times on several dimensions. Different

from Repeat operator repeating each element right after itself, this operator tiles

the whole data after the whole data.

Math Formalization

• Input: X , a tensor of :math:‘N‘ dimensions, namely (n0, n1, · · · , nN−1),

• Output: Y

• Attribute: reps, a tensor ofM dimensions, namely (m0,m1, · · · ,mM−1).

42

r ∈ [1,max_attr),∀r ∈ reps

Y [k0, · · · , kK−N−1, kK−N , kK−N+1, · · · , kK−1] =

X[kK−N+0 mod n0, kK−N+1 mod n1, · · · , kK−N+N−1 mod nN−1],

∀k0 ∈ [0, S0) ∧ · · · ∧ kK−1 ∈ [0, SK−1),

whereK = max{M,N} and Si = SXi · SRi and

SXp =

np−K+N , p ∈ [K −N,K − 1)

1, p ∈ [0, K −N)
and

SRq =

mq−K+M , q ∈ [K −M,K − 1)

1, q ∈ [0, K −M)

A.5.3 flatten

This operator flattens the input tensor data to an array in a row­major order.

Math Formalization

• Input: X , a tensor of N dimensions, namely (n0, n1, · · · , nN−1).

• Output: Y .

Y [flatten_index(d0, d1, · · · , dN−1, n0, n1, · · · , nN−1)] =

X[d0, d1, · · · , dN−1],

∀d0 ∈ [0, n0) ∧ d1 ∈ [0, n1) ∧ · · · ∧ dN−1 ∈ [0, nN−1)

43

where flatten_index is

flatten_index(d0, d1, · · · , dN−1, n0, n1, · · · , nN−1) =

d0 ·
N−1∏
i=1

ni + d1 ·
N−1∏
i=2

ni + · · ·+ dN−2 ∗ nN−1 + dN−1

A.5.4 concatenate

This operator concatenates tensors along a given axis.

Math Formalization

• Inputs: M tensors, namely I0, I1, · · · , IM−1. They all have :math:‘N‘ di­

mensions, namely I i’s shape is (ni
0, n

i
1, · · · , ni

N−1). All dimensions except

the axis to be concatenated along must have the same length.

• Output: Y

• Attribute: axis, an int in range [0, N).

ni
j = n0

j ,∀i ∈ [1,M) ∧ j ∈ [0, N) ∧ j ̸= axis

Y [d0, d1, · · · , daxis­1, new_idx, daxis+1, · · · , dN−1] = I i[d0, d1, · · · , dN−1],

∀d0 ∈ [0, ni
0) ∧ · · · ∧ dN−1 ∈ [0, ni

N−1) ∧ i ∈ [0,M),

where new_idx =
i−1∑
j=0

nj
axis + daxis

44

A.5.5 transpose

This operator transposes the input data with a certain sequence.

Math Formalization

• Input: X , a tensor of N dimensions, namely (n0, n1, · · · , nN−1)

• Output: Y ,

• Attribute: axes, a TShape of length M ∈ {0, N}, which means axes is

either empty or a permutation of {0, 1, · · · , N − 1}

axis ∈ [−N,N),∀axis ∈ axes

Y [dreal_axes0 , dreal_axes1 , · · · , dreal_axesN−1
] = X[d0, d1, · · · , dN−1],

∀d0 ∈ [0, n0) ∧ · · · ∧ dN−1 ∈ [0, nN−1),

where real_axesi =


axesi, M = N ∧ axesi ⩾ 0

axesi +N, M = N ∧ axesi < 0

N − 1− i, M = 0

and

card {real_axesi | i ∈ [0, N)} = N

A.5.6 slice

This operator slices an input array with given attribute. For each dimension, strides

(default to be 1), start (default to be 0) and end (default to be length of this dimen­

sion) coordinates can be assigned by user.

45

Math Formalization

• Input: X , a tensor of N dimensions, namely (n0, n1, · · · , nN−1)

• Output: Y ,

• Attributes:

– begin, B dimensions.

– end, E dimensions.

– strides: S dimensions.

B, E, S can be different.

b_arr[b] =


begin[b] + ni, b ∈ [0, N) ∧ b < B ∧ begin[b] < 0

begin[b], b ∈ [0, N) ∧ b < B ∧ begin[b] ⩾ 0

0, b ∈ [0, N) ∧ b ⩾ B

, b ∈ [0, N)

e_arr[e] =


end[e] + ni, e ∈ [0, N) ∧ e < E ∧ end[e] < 0

end[e], e ∈ [0, N) ∧ e < E ∧ end[e] ⩾ 0

ne, e ∈ [0, N) ∧ e ⩾ E

, e ∈ [0, N)

s_arr[s] =

stride[s], s ∈ [0, N) ∧ s < S

1, s ∈ [0, N) ∧ s ⩾ S
, s ∈ [0, N)

46

∀{i | i ∈ [0, N)} : s_arr[i] ̸= 0

b_range(i) =

−1, s_arr[i] < 0

0, s_arr[i] ⩾ 0

e_range(i) =

ni − 1, s_arr[i] < 0

ni, s_arr[i] ⩾ 0

b_vec[b] = clip(b_arr[b], a_min = b_range(b), a_max = e_range(b)− 1), b ∈ [0, N)

e_vec[e] = clip(e_arr[e], a_min = b_range(e), a_max = e_range(e)− 1), e ∈ [0, N)

∀{i | i ∈ [0, N)} :

b_vec[i] < e_vec[i], s_arr[i] > 0

e_vec[i] < b_vec[i], s_arr[i] < 0

47

Y [d0, d1, · · · , dN−1] = X[K[0], K[1], · · · , K[N − 1]],

∀dj ∈ [0,

⌈
e_vec[j]− b_vec[j]

s_arr[j]

⌉
) ∧ j ∈ [0, N),

whereK[i] = b_vec[i] + s_arr[i] ∗ di

A.5.7 take

This operator takes some elements from the input data. If axis is not given, it

flattens the input data and takes elements; if axis is given, takes the input data on

this axis for every coordinates in other axes.

Math Formalization

• Input: there 2 inputs

– X , a tensor of N dimensions, namely (n0, n1, · · · , nN−1)

– indices, a tensor ofM dimensions, namely (m0,m1, · · · ,mM−1)

• Output: Y ,

• Attribute: axis None or int.

1. Case axis is None :

T = flatten(X)

Y [d0, d1, · · · , dM−1] = T [clip(xidx, a_min = 0, a_max = |T | − 1)],

∀(d0, d1, · · · , dM−1),

where dj ∈ [0,mj) ∧ j ∈ [0,M) and

xidx = indices[d0, d1, · · · , dM−1]

48

2. Case axis is int :

axis ∈ [−N,N)

real_axis =

axis, axis ⩾ 0

axis+N, axis < 0

Y [d0, d1, · · · , dM+N−2] = X[d0, · · · , dreal_axis−1, xdix, dreal_axis+M , · · · , dM+N−2],

∀dj ∈


[0, nj), j < real_axis

[0,mj−real_axis), j ∈ [real_axis, real_axis+M)

[0, nj−M+1), j ∈ [real_axis+M,M +N − 1)

,

where xidx = clip(indices[dreal_axis, dreal_axis+1, · · · , dreal_axis+M−1],

a_min = 0, a_max = nreal_axis − 1)

A.5.8 cvm_lut

This operator is a alias for a take where axis is None.

Math Formalization

• Input: there are 2 inputs.

– X , a tensor of N dimensions, namely (n0, n1, · · · , nN−1)

– indices, a tensor ofM dimensions, namely (m0,m1, · · · ,mM−1)

• Output: Y .

Y = take(X, indices, axis = None)

49

A.5.9 expand_dims

This operator expands some new dimensions right from the given axis.

Math Formalization

• Input: X , a tensor of N dimensions, namely (n0, n1, · · · , nN−1),

• Output: Y

• Attributes:

– axis, an int in range [−N−1, N+1), indicating where the new dimen­

sions starts. Note that N + 1, instead of N , will be added to negative

axis.

– num_newaxis, an int in range [min_attr,max_attr)

Y [d0, d1, · · · , dreal_axis−1, 0, 0, · · · , 0︸ ︷︷ ︸
num_newaxis

, dreal_axis, · · · , dN−1] = X[d0, d1, · · · , dN−1],

∀d0 ∈ [0, n0) ∧ · · · ∧ dN−1 ∈ [0, nN−1),

where real_axis =

axis, axis ⩾ 0

axis+N, axis < 0

A.5.10 reshape

This operator reshapes the input data.

Math Formalization

50

• Input: X , a tensor of N dimensions, namely (n0, n1, · · · , nN−1),

• Output: Y ,

• Attribute: target_shape, aTShape of lengthM, namely (m0,m1, · · · ,mM−1)

, s.t. m0 ∗m1 ∗ · · · ∗mM−1 = n0 ∗ n1 ∗ · · · ∗ nN−1.

Y [d0, d1, · · · , dM−1] = T [flatten_index(d0, d1, · · · , dM−1,m0,m1, · · · ,mN−1)],

∀d0 ∈ [0,m0) ∧ · · · ∧ dN−1 ∈ [0,mN−1),

where T = flatten(X)

A.5.11 squeeze

This operator removes dimensions of length 1.

Math Formalization

• Input: X , a tensor of N dimensions, namely (n0, n1, · · · , nN−1)

• Output: Y .

• Attribute: axes, a TShape of length M.

axis ∈ [−N,N),∀axis ∈ axes

51

real_axes =

{axis | axis ⩾ 0 ∧ axis ∈ axes}
⋃
{axis+N | axis < 0 ∧ axis ∈ axis}, M > 0

{axis | naxis = 1 ∧ axis ∈ [0, N)}, M = 0

naxis = 1, ∀axis ∈ real_axis

Y [dI(0), dI(1), · · · , dI(N−K−1)] = X[d0, d1, · · · , dN−1],

∀d0 ∈ [0, n0) ∧ d1 ∈ [0, n1) ∧ · · · ∧ dN−1 ∈ [0, nN−1),

whereK = card {real_axes} and

I : {i | i ∈ [0, N −K)} → {i | i ∈ [0, N) ∧ i /∈ real_axes},

s.t. I(i) < I(j),∀0 ⩽ i < j < N −K

A.5.12 where

This operator selects data from 2 inputs with condition given.

Math Formalization

• Input: there are 3 inputs

– Cond, either a tensor whose shape is same as others, or a 1d tensor

whose length is same as the length of others’ first dimension.

– A, a tensor of N dimensions, namely (n0, n1, · · · , nN−1)

– B, a tensor whose shape is same as A

52

• Output: :math:‘Y‘

1. Case shape of Cond is same as others:

Y [d0, d1, · · · , dN−1] =

A[d0, d1, · · · , dN−1], Cond[d0, d1, · · · , dN−1] ̸= 0

B[d0, d1, · · · , dN−1], Cond[d0, d1, · · · , dN−1] = 0
,

∀di ∈ [0, ni) ∧ i ∈ [0, N)

2. Case Cond is a 1d tensor:

Y [d0, d1, · · · , dN−1] =

A[d0, d1, · · · , dN−1], Cond[d0] ̸= 0

B[d0, d1, · · · , dN−1], Cond[d0] = 0
,

∀di ∈ [0, ni) ∧ i ∈ [0, N)

A.6 Vision Operators

Weprovide 2 operators for vision scenario. Since the scenario is narrow, regulation

of the input data is stricter than other operators. If there’s no other specification,

the input data should be 3D, namely (B,N,K), indicating number of batches,

number of result for each batch and the length (K) of a result. The first value

should be ID and the second should be the score.

A.6.1 get_valid_count

This operator counts how many results are more than a threshold and what are

they.

Math Formalization

53

• Input: X , a 3D tensor of shape (B,N,K), 2 ⩽ K ⩽ 32

• Output:

– valid_count,

– Y ,

• Attribute: score_threshold, an int.

valid_count[b] = card{q | q ∈ [0, N) ∧X[b, q, 1] > score_threshold},

∀b ∈ [0, B)

Y [b, idx, k] = X[b, n, k],

∀b ∈ [0, B) ∧ n ∈ [0, N) ∧ k ∈ [0, K) ∧X[b, n, 1] > score_threshold,

where idx = card{q | q ∈ [0, n) ∧X[b, q, 1] > score_threshold}

Y [b, n, k] = −1,∀b ∈ [0, B) ∧ n ∈ [valid_count[b], N) ∧ k ∈ [0, K)

A.6.2 non_max_suppression

This operator implements the nms algorithm, finding valid bounding boxes.

Math Formalization

• Input: there are 2 inputs.

54

– X , a 3D tensor of shape (B,N,K), K = 6

– valid_count, a 1D tensor of length B

• Output: Y

• Attributes:

– iou_threshold, an int, representing the percentage of intersection over

union with value in range (0,+∞)where 101 stands for bounding box

full­overlap specifically and larger integer is equivalent to that.

– max_output_size, an int

– force_suppress, a boolean

– top_k, an int.

R[b, i, k] = X[b, I(i), k],

∀b ∈ [0, B) ∧ i ∈ [0, T) ∧ k ∈ [0, K),

where T = max{min(N, valid_count[b]), 0} and

I : {i | i ∈ [0, T)} → {i | i ∈ [0, T)},

s.t. X[b, I(i), 1] > X[b, I(j), 1]∨

(X[b, I(i), 1] = X[b, I(j), 1] ∧ I(i) < I(j)),∀0 ⩽ i < j < T

55

Y [b, n, k] = R[b, IDX(n), k],

∀b ∈ [0, B) ∧ n ∈ [0,min{T,MOS, card{U}}) ∧ k ∈ [0, K),

where TK =

+∞, if top_k < 0

top_k, otherwise
and

MOS =

+∞, if max_output_size < 0

max_output_size, otherwise
and

iou(p, q) =

OLR(R[b, p, :], R[b, q, :]), force_suppress is true or R[b, p, 0] = R[b, q, 0]

0, otherwise
and

U = {p | p ∈ [0,min{TK, T}) ∧R[b, p, 0] >= 0∧

iou(p, q) < iou_threshold,∀q ∈ U ∧ q < p} and

IDX : {i | i ∈ [0, card{U})} → U, s.t. IDX(i) < IDX(j),∀i < j

Y [b, n, k] = −1,

∀b ∈ [0, B) ∧ k ∈ [0, K) ∧ n ∈ [min{T,MOS, card{U}}, N)

56

B TheModels Implemented inCVMandPerformance

Testing

model Jetson
Nano­
Cortex­
A57(s)

Intel E5­
2650(s)

Jetson
Nano ­
GPU(128
CUDA
Cores)(s)

1080Ti(3584
CUDA
Cores)(s)

yolo_tfm 1.076 0.043
resnet50_mxg 1.2076 0.3807 0.147 0.009
resnet18_v1 0.055 0.004
qd10_resnet20_v2 0.064 0.010
resnet50_v2 1.4674 0.5005 0.185 0.010
qd10_resnet20_v2 0.2944 0.1605 0.065 0.012
trec 0.0075 0.0028 0.002 0.001
dcnet_mnist_v1 0.0062 0.0057 0.002 0.001
mobilenetv1.0_imagenet 0.3508 0.1483 0.039 0.002
resnet50_v1_imagenet 1.2453 0.3429 0.150 0.009
animal10 0.3055 0.1466 0.065 0.010
vgg16_gcv 4.3787 0.6092 0.713 0.021
sentiment_trec 0.0047 0.0022 0.002 0.001
vgg19_gcv 5.1753 0.7513 0.788 0.023
squeezenet_gcv1.1 0.3889 0.0895 0.044 0.002
squeezenet_gcv1.0 0.1987 0.1319 0.064 0.003
shufflenet 1.4575 0.7697 0.140 0.004
ssd 0.773 0.030
ssd_512_mobilenet1.0_coco_tfm 0.311 0.016
ssd_512_mobilenet1.0_voc_tfm 0.220 0.014

57

References
[1] Satoshi Nakamoto and A Bitcoin. A peer­to­peer electronic cash system.

Bitcoin.–URL: https://bitcoin. org/bitcoin. pdf, 4, 2008.

[2] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[3] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed
ledger. Theoretical Computer Science, 777:155–183, 2019.

[4] Vitalik Buterin. On­chain scaling to potentially 500 tx/sec through mass tx
validation. Ethereum Blog, 2018.

[5] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and
Edward W Felten. Arbitrum: Scalable, private smart contracts. In 27th
{USENIX} Security Symposium ({USENIX} Security 18), pages 1353–1370,
2018.

[6] Anatoly Yakovenko. Solana: a new architecture for a high performance
blockchain v0. 8.14, 2021.

[7] Dmitry Tanana. Avalanche blockchain protocol for distributed computing
security. In 2019 IEEE International Black Sea Conference on Communica­
tions and Networking (BlackSeaCom), pages 1–3. IEEE, 2019.

[8] Juan Benet. Ipfs­content addressed, versioned, p2p file system. arXiv
preprint arXiv:1407.3561, 2014.

[9] Ziqi Chen, WeiyangWang, Xiao Yan, and Jia Tian. Cortex­ai on blockchain.
Cortex Labs Pte. Ltd., Singapore, Tech. Rep. C, 201803307:2018, 2018.

[10] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer, 2008.

[11] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories:
introduction and applications. Communications of the ACM, 54(9):69–77,
2011.

[12] SHI Xingjian, Zhourong Chen, Hao Wang, Dit­Yan Yeung, Wai­Kin Wong,
and Wang­chun Woo. Convolutional lstm network: A machine learning ap­
proach for precipitation nowcasting. In Advances in neural information pro­
cessing systems, pages 802–810, 2015.

58

[13] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah­
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder­decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[14] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural net­
work regularization. arXiv preprint arXiv:1409.2329, 2014.

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in neural information processing systems, pages 5998–
6008, 2017.

[16] Jacob Devlin, Ming­Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre­training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[17] Alex Biryukov and Dmitry Khovratovich. Equihash: Asymmetric proof­of­
work based on the generalized birthday problem. Ledger, 2:1–30, 2017.

[18] John Tromp. Cuckoo cycle: a memory­hard proof­of­work system. IACR
Cryptol. ePrint Arch., 2014:59, 2014.

[19] Bin Cao, Zhenghui Zhang, Daquan Feng, Shengli Zhang, Lei Zhang, Mugen
Peng, and Yun Li. Performance analysis and comparison of pow, pos and
dag based blockchains. Digital Communications and Networks, 6(4):480–
485, 2020.

[20] Jens Groth. On the size of pairing­based non­interactive arguments. In
Annual international conference on the theory and applications of crypto­
graphic techniques, pages 305–326. Springer, 2016.

[21] Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkcnn: Zero knowledge proofs
for convolutional neural network predictions and accuracy.

[22] Kaihua Qin andArthur Gervais. An overview of blockchain scalability, inter­
operability and sustainability. Hochschule Luzern Imperial College London
Liquidity Network, 2018.

[23] Maurice Herlihy. Atomic cross­chain swaps. In Proceedings of the 2018
ACM symposium on principles of distributed computing, pages 245–254,
2018.

59

[24] Richard Craib, Geoffrey Bradway, Xander Dunn, and Joey Krug. Numeraire:
A cryptographic token for coordinating machine intelligence and preventing
overfitting. Retrieved, 23:2018, 2017.

[25] Amani Moin, Kevin Sekniqi, and Emin Gun Sirer. Sok: A classification
framework for stablecoin designs. In International Conference on Financial
Cryptography and Data Security, pages 174–197. Springer, 2020.

60

	Introduction
	The Core Framework
	Formal Verification: Z3-Prover
	More AI models on Cortex: Extended Operator Set
	Fair Proof of Work Consensus: RandomAI
	Performance Improvement: three-phase of Zero Knowledge Proof

	The Whole Architecture
	Trusted Execution Environment: Cortex Enclave
	Distributed File System
	Offchain AI Framework - CortexFlow
	Privacy for Model and Data
	Cross Chain

	Applications
	AI DAO
	On-chain AI game
	On-chain AI financial services

	RoadMap
	Operators' Math Formalization
	Reduce Operators
	Broadcast Operators
	NN Operators
	Elemwise Operators
	Transform Operators
	Vision Operators

	The Models Implemented in CVM and Performance Testing

