
Introduction

Akropolis’ mission is to give everyone the tools to save, grow and provide for the future safely and
without dependence on a central counterparty, or to fall prey to predatory financial practices of
multiple intermediaries.

Our goal is to create yield-generating products that don’t predominantly rely on inflationary
emissions as the main source of yield and that generate returns regardless of the market
conditions.

Our current products include:

Vortex - An on-chain basis trading strategy that aims to generate long-term, sustainable and
rewarding yields while remaining market-neutral.

yVaults - Streamlined and simplified access to select Yearn vaults to optimize yields.

We believe Akropolis is the one-stop solution for any investor seeking access to passive, efficient
and sustainable yield generation.

Roadmap
You can find the Akropolis roadmap here:

Notion – The all-in-one workspace for your notes, tasks, wikis, and databases.
Notion

Community channels
 Telegram

 Discord

 Twitter

 Medium

 Governance forum

Using Akropolis
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://www.notion.so/akropolis/675c3c2d7f6b44fe8ead0f43f9e79482?v=833c08d791e44053bdf0f442f0adc6f6
https://t.me/akropolis_official
https://discord.gg/Y58CGUW
https://twitter.com/akropolisio
https://medium.com/akropolis
https://gov.akropolis.io/
https://akropolis.gitbook.io/akropolis/using-akropolis
https://akropolis.gitbook.io/akropolis/

Using Akropolis
A step-by-step guide

Connect your wallet

First, Connect your wallet using the button at the top right corner.

We support multiple types of wallets (the most popular choice is). Make sure that your
wallet is connected to the right network (Ethereum mainnet).

MetaMask

Deposit

Select the vault that you would like to deposit into.

Enter the amount of tokens you want to deposit into the vault.

Make sure you have enough ETH/BNB/native network token to pay for transaction fees.

Click on 'Approve' or 'Deposit' button. Depending on previous approvals given, you might need
to confirm 2 transactions (approval for spending & deposit).

Confirm the transaction in your wallet (you should see a popup). Transaction confirmation time
depends on the gas fee & network congestion (usually it's as fast as 1-3 minutes).

You can speed it up by . If your transaction gets
stuck, see on speeding up or cancelling the transaction.

paying a higher gas fee to the network
this guide

When your transaction succeeds, you will see your deposited balance in the interface.

Withdraw

Select the vault that you would like to withdraw from.

Enter how much you want to withdraw, or click 'Max" to withdraw the entire balance.

Click 'Withdraw'.

You will see a confirmation popup from your wallet. Click 'Confirm'.

You will receive tokens in your wallet when your transaction succeeds.

What do I do if I don't have funds on the Vault's network?

This is quite common as sending funds across chains can be a stressful experience both in terms
of security and user experience.

Bridging assets cross-chain is important, however, as you cannot initiate transactions without the
chain's native asset to pay for gas fees.

Arbitrum

To transfer ETH over to Arbitrum, you can use this bridge:

Arbitrum Bridge

Here are some guides on using Arbitrum and transferring funds from L1 (Ethereum) to L2
(Arbitrum):

The Essential Guide to Arbitrum

Guide to Arbitrum and setting up Metamask for Arbitrum
Medium

 Binance Smart chain

Binance Smart chain uses BNB (BEP-20 format) as its native asset for transaction fees.

To transfer assets cross-chain, you can use BSC bridge:

Binance DEX | Binance Smart Chain
Binance | Binance Smart Chain | Binance Bridge | Binance Swap | Binance.or

Here are some more resources on BSC and how to use it:

Binance | Binance Smart Chain | Binance Staking | Binance Swap | Binance.org
Binance | Binance Smart Chain | Binance Staking | Binance Swap | Binance.org

How to Get Started with Binance Smart Chain (BSC) | Binance Academy
Binance Academy

Introduction
Previous

Vortex
Next - Products

Last modified 1yr ago

Akropolis Search ⌘K

https://metamask.io/
https://blog.leverj.io/how-to-set-the-gas-limit-and-gas-price-in-metamask-1b33c38c32fd
https://metamask.zendesk.com/hc/en-us/articles/360015489251-How-to-Speed-Up-or-Cancel-a-Pending-Transaction
https://bridge.arbitrum.io/
https://newsletter.banklesshq.com/p/the-essential-guide-to-arbitrum
https://medium.com/stakingbits/guide-to-arbitrum-and-setting-up-metamask-for-arbitrum-543e513cdd8b
https://www.binance.org/en/bridge
https://www.binance.org/en/smartChain
https://academy.binance.com/en/articles/how-to-get-started-with-binance-smart-chain-bsc
https://akropolis.gitbook.io/akropolis/
https://akropolis.gitbook.io/akropolis/products/vortex
https://akropolis.gitbook.io/akropolis/

Overview

What is Vortex?
Vortex (v1) is an on-chain basis trading strategy that aims to generate long-term, sustainable and
rewarding yields while remaining market-neutral.

Advantages of using Vortex
Advantages of using Vortex (v1) include:

Market Neutrality - Vortex allows users to generate yield without being exposed to directional
price risk. Regardless of whether it’s a bull, bear or crab season, Vortex should generate
sustainable yields.

Rewarding Yields - Vortex’s underlying strategy has proven to be profitable across all market
conditions and has historically outperformed many other market-neutral strategies and higher-
risk yield farms.

Single Asset - Vortex only requires users to deposit a single asset - USDC. This makes Vortex
an effective alternative to lending or farming with stablecoins.

Low Maintenance - Vortex is a passive strategy for our users, but actively managed by our
strategists for maintenance and risk management. The returns generated by Vortex are also
periodically compounded, further enhancing yield.

Ecosystem Benefits - Vortex provides liquidity that is crucial for decentralized derivative
exchanges that offer perpetual contracts to function.

Risks of using Vortex
Risks involved with using Vortex (v1) include:

Smart Contract Risks - Vortex is a smart contract that will connect to multiple external smart
contracts, each with their own risks.

Negative Returns - The use of Vortex may result in negative returns. This could be because of
a range of unlikely events, including:

The funding rate on perpetual exchanges being consistently against Vortex

Vortex’s position(s) being liquidated

Excessive slippage caused by a need to exit all Vortex positions quickly

Centralization - The initial launch of Vortex will have elements of centralization, including
control by a predetermined strategist who has the ability to open and close strategy positions.

Temporary Suspensions - We may suspend deposits and/or withdrawals at any time for
Vortex. We will only suspend when necessary and will notify via our social channels at the start
and end of each suspension, providing reasons and time estimates where possible. Unless we
say otherwise, funds will be safe.

Limits - Deposit limits will be enforced for Vortex. These will scale quickly over time, but when
the displayed limit is reached, further deposits will not be possible until the limit is increased.

Vortex has procedures in place to help mitigate these risks; see Risk Management

Vortex
Products - Previous

How it works
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/risk-management
https://akropolis.gitbook.io/akropolis/products/vortex
https://akropolis.gitbook.io/akropolis/products/vortex/how-it-works
https://akropolis.gitbook.io/akropolis/

How it works

High-level example
Here’s a high-level example of how Vortex works in favorable conditions:

Assuming 1 ETH = 3500 USDC

1. User deposits 7000 USDC into Vortex, receiving a proportionate share of the pool as Vault
Tokens.

2. Vortex’s underlying strategy will then:

1. Send 3500 USDC to a decentralized exchange to buy 1 ‘physical’ ETH;

2. Send 3500 USDC to a decentralized derivatives exchange and use it as collateral to short
1 ETH worth of Perpetual Contracts.

3. Vortex will automatically collect the Funding Rate and periodically compound and rebalance
into both positions, increasing the value of the Vault Tokens.

Vortex utilizes a Basis Trading strategy.

How Vortex applies Basis Trading
The crypto markets have historically been weighted towards longs as the majority of participants
speculate that prices will go up.

This trend has continued on decentralized derivatives exchanges that offer Perpetual Contracts,
which means that Funding Rates have historically, on average, been positive. As a result, from a
Funding Rate perspective, it has been profitable to open short positions - but then you may lose a
lot more than your Funding Rate returns if prices suddenly moon.

Vortex fixes this by removing the directional price risk from the short position while maintaining
the Funding Rate advantage, enabling users to generate market-neutral yields.

To learn more about Basis Trading and Perpetual contracts, please visit:

Basis Trading and Perpetual Contracts

Overview
Previous

Roadmap
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.gitbook.io/akropolis/additional-resources/basis-trading-and-perpetual-contracts
https://akropolis.gitbook.io/akropolis/products/vortex/overview
https://akropolis.gitbook.io/akropolis/products/vortex/roadmap
https://akropolis.gitbook.io/akropolis/

Roadmap

Vortex v1 on Mainnet(s) - Guarded Launch

Vortex v1 will launch on both Arbitrum and Binance Smart Chain mainnets in a decentralized way.
The launch of Vortex v1 will be determined by the results of the governance proposal and will be
subject to additional restrictions as part of the guarded launch.

Vortex v1 on Mainnet(s)

Full Release Following the successful guarded launch, Vortex v1 will have all user access limits
lifted. Note that deposit limits will still be in place due to the product’s design.

Vortex v2

Improvements to Vortex v1 include, but are not limited to:

Higher deposit limits through wider asset pair exposure

Higher capital efficiency through integration of inverse contracts

Higher yields through new rewards and asset pairs.

Vortex Multi-Chain

Vortex will expand beyond Arbitrum and BSC and will be released on all major networks. The
expansion priority will be based on the deployment, liquidity and activity of the perpetual
exchanges of each network.

Vortex v3

Vortex v3 will integrate specific ALM vaults for the “long” position, allowing users to remain market
neutral while also capturing trading fees with significant capital efficiency. This will be applicable to
all chains where both Vortex and Uniswap v3 are live.

Vortex v4

Vortex v4 will be a single vault on each network, each with a “switcher”. This switcher will enable
each vault to allocate deposits between many different underlying strategies (derived from its
integrated exchanges and asset pairs). This format will simplify the user experience while also
enabling the optimization of capital allocation and yield and the maximization of limits.

How it works
Previous

Competitor Comparison
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.gitbook.io/akropolis/products/vortex/how-it-works
https://akropolis.gitbook.io/akropolis/products/vortex/competitor-comparison
https://akropolis.gitbook.io/akropolis/

Competitor Comparison

Text Vortex Lemma UXD

Format(s) Vault Token
Vault Token
Stablecoin

Stablecoin

Network(s)
Arbitrum

Binance Smart Chain
Arbitrum Solana

Exchange(s) MCDEX MCDEX Mango Market

Performance Fees 25% 30% -

Action during
negative Funding
Rate

Stablecoin Farming Treasury Backstop Insurance Fund

Resulting Risks
Slow position

unwinding

Treasury depletion
Slow position

unwinding
Bank run on

leveraged positions

Insurance Fund
depletion

Governance Tok
auction

Roadmap
Previous

AKRO staking
Next - Products

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.gitbook.io/akropolis/products/vortex/roadmap
https://akropolis.gitbook.io/akropolis/products/akro-staking
https://akropolis.gitbook.io/akropolis/

AKRO staking

Currently, stake tab has only one pool - AKRO staking. It's a simple staking pool with easy
mechanics - by sending AKRO to this pool you can earn AKRO itself. There is no lock-ups, you can
withdraw any time.

How to stake?

Open Akropolis app & connect your wallet (don't forget to check that you have AKRO on it!)

Go to staking page

Enter the amount of tokens you want to deposit & or click max to deposit all AKRO you have on
your wallet.

Click on 'Approve' or 'Deposit' button. Depending on previous approvals given, you might need
to confirm 2 transactions (approval for spending & deposit).

Confirm the transaction in your wallet (you should see a popup). Transaction confirmation time
depends on the gas fee & network congestion (usually it's as fast as 1-3 minutes).

When your transaction succeeds, you will see your deposited balance in the interface.

Make sure you have enough ETH to pay for transaction fees.

You can speed it up by . If your transaction gets
stuck, see on speeding up or cancelling the transaction.

paying a higher gas fee to the network
this guide

AKRO rewards are under vesting & are not auto compounded. To learn more, head .here

Competitor Comparison
Previous

AKRO token
Next - Governance

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.io/staking
https://blog.leverj.io/how-to-set-the-gas-limit-and-gas-price-in-metamask-1b33c38c32fd
https://metamask.zendesk.com/hc/en-us/articles/360015489251-How-to-Speed-Up-or-Cancel-a-Pending-Transaction
https://www.akropolis.io/vesting
https://akropolis.gitbook.io/akropolis/products/vortex/competitor-comparison
https://akropolis.gitbook.io/akropolis/governance/akro-token
https://akropolis.gitbook.io/akropolis/

AKRO token

Token Details
Contract address - 0x8ab7404063ec4dbcfd4598215992dc3f8ec853d7

Symbol - AKRO

Decimals - 18

Total Token Supply - 5,000,000,000

AKRO Tokenomics

Tokenomics are evolving and subject to change

Token Utility

AKRO is a governance token that grants holders the right to raise and participate in decisions that
affect Akropolis. This protocol-level governance is tied to managing the suite of DeFi products built
on Akropolis.

AKRO stakers also receive returns from protocol revenue and additional AKRO emissions.

AKRO staking
Products - Previous

Governance process
Next - Governance

Last modified 1yr ago

Akropolis Search ⌘K

https://etherscan.io/address/0x8ab7404063ec4dbcfd4598215992dc3f8ec853d7
https://akropolis.gitbook.io/akropolis/products/akro-staking
https://akropolis.gitbook.io/akropolis/governance/governance-process
https://akropolis.gitbook.io/akropolis/

Governance process

High-Level Summary

Initial Governance will be done through the ;Akropolis Snapshot.page

Active AKRO stakers will be able to post proposals and vote on them.

What can I signal my vote on?

Product features and integrations

Product fees

Strategy proposals

How do I vote?

Go to the on Snapshot;Akropolis space

Click on “Connect wallet” button in top right corner;

Connect to the wallet which you use for staking of AKRO ;

Click on the option you want to vote for;

Sign the message via your wallet and done.

Voting will be open for 3 days or 72 hours, so if it opens on Wed 1300CET, it will close on Friday
1300CET (approximately, as closing time is set by the block number).

Governance Workflow:

All proposals should first be discussed over the and in Discord. That would
give all governance participants an ability to understand all pros & cons before voting.

governance forum

The team will assign time values (i.e. urgent vs non-urgent, pending, etc) to titles based on our
discretion.

For feature requests please name your proposal AFR+n (i.e. third proposal is named AFR-003).

For governance proposals AIP+n (i.e. third proposal is named AIP-003).

After the initial discussion is completed & community (including team) agree that it should be
officially voted on — team or community members can post it on Snapshot page for voting. And
as it’s off-chain voting, it does not require any gas fees.

After voting is completed & proposal reaches 10% quorum, we will add it to our development
pipeline.

If quorum is not reached, the proposal might be resubmitted for voting after 7 days
cooldown.

Who can create or vote on proposals?

Only AKRO stakers can create or vote for proposals. This way we ensure that only active users
have a say in Akropolis governance.

1 vote equals 1 AKRO staked.

There is a minimum of 25M AKRO to create a proposal on Snapshot.

There is no minimum for voting.

Please check Snapshot docs for more information about & .creating proposals voting on proposals

AKRO token
Governance - Previous

Vortex
Next - Developer documentation

Last modified 1yr ago

Akropolis Search ⌘K

https://snapshot.org/#/akropolis.eth
https://snapshot.org/#/akropolis.eth
https://gov.akropolis.io/
https://docs.snapshot.page/guides/create-a-proposal
https://docs.snapshot.page/guides/vote-for-a-proposal
https://akropolis.gitbook.io/akropolis/governance/akro-token
https://akropolis.gitbook.io/akropolis/developer-documentation/vortex
https://akropolis.gitbook.io/akropolis/

High-Level View

Vortex actively maintains three core positions:

1. ETH Holdings - The long - ETH Holdings are sourced from a decentralized exchange and held
idle in an address.

2. ETH Short Contracts - The short - ETH Short Contracts are collateralized in USDC and collect
the Funding Rate from the decentralized derivatives exchange.

3. Position Buffer - The safety - The Position Buffer is sourced from user deposits and held idle
to ensure the ETH Short Contracts are not liquidated.

For more information, see Position Buffer

Vortex v1 utilizes as the decentralized derivatives exchange and has been
developed to accommodate their unique .

MCDEX
AMM Design

Vortex
Developer documentation - Previous

Contract Design
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/risk-management/position-buffer
https://mcdex.io/homepage/
https://docs.mcdex.io/protocol/amm-design
https://akropolis.gitbook.io/akropolis/developer-documentation/vortex
https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/contract-design
https://akropolis.gitbook.io/akropolis/

Contract Design
Overview of the vault and strategy implementation

1. deposit - A user deposits stablecoins into the vault and receives back tokenised shares of the
vault representing their share of the vault.

2. harvest - Only a Manager may call this function. This is the function that puts funds to work,
determines profit/loss of the strategy and distributes funds to the buffer position, short
position and long position. It also handles vault updates and protocol fee collection.

3. remargin - Only a Manager may call this function. It first completes a harvest. Then runs some
calculations to determine what assets must be swapped in order to return the buffer position
to the correct amount and to return the leverage of the margin account to 1. This is a risk
management function and keeps the strategy safe from liquidation risk.

4. withdraw - A user deposits their shares of the vault, which are then burnt and the user is
returned stablecoins according to the value of the shares of the vault at the point of
withdrawal. Withdrawals involve selling off strategy positions so that withdrawals from the
vault can happen freely.

5. unwind - Only a Manager may call this function. It first completes a harvest. Then it will
convert all longPositions to the stable asset, close all short positions and withdraw all funds
from the margin account back to the strategy. This is a risk management function and keeps
the strategy safe from prolonged negative funding rates and liquidation risk.

6. setParameters (Manager) - Only a Manager may call these functions. These functions set
various parameters in the strategy.

7. emergencyExit - Only a Manager may call this function. It first completes an unwind. Then all
funds are transferred to the governance multisig. This is a risk management function and
protects funds from extreme conditions such as an exploit risk.

8. setParameters(Governance) - Only Governance may call these functions. These functions set
various parameters in the vault and strategy.

High-Level View
Previous

Key Function - harvest
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/high-level-view
https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/key-function-harvest
https://akropolis.gitbook.io/akropolis/

Key Function - harvest
In-depth descriptions of key functions

harvest

 /**
 * @notice harvest the strategy. This involves accruing profits from the strategy a
 * user funds to the strategy. The funds are split into their constituents
 * to their appropriate location.
 * For the shortPosition a perpetual position is opened, for the long posit
 * to the long asset. For the buffer position the funds are deposited to th
 * @dev only callable by the owner
 */
 function harvest() public onlyOwner {
 uint256 shortPosition;
 uint256 longPosition;
 uint256 bufferPosition;
 isUnwind = false;

 mcLiquidityPool.forceToSyncState();
 // determine the profit since the last harvest and remove profits from the margi
 // account to be redistributed
 uint256 amount;
 bool loss;
 if (positions.unitAccumulativeFunding != 0) {
 (amount, loss) = _determineFee();
 }
 // update the vault with profits/losses accrued and receive deposits
 uint256 newFunds = vault.update(amount, loss);
 // combine the funds and check that they are larger than 0
 uint256 toActivate = IERC20(want).balanceOf(address(this));

 if (toActivate > 0) {
 // determine the split of the funds and trade for the spot position of long
 (shortPosition, longPosition, bufferPosition) = _calculateSplit(
 toActivate
);
 // deposit the bufferPosition to the margin account
 _depositToMarginAccount(bufferPosition);
 // open a short perpetual position and store the number of perp contracts
 positions.perpContracts += _openPerpPosition(shortPosition, true);
 }
 // record incremented positions
 positions.margin = getMargin();
 positions.unitAccumulativeFunding = getUnitAccumulativeFunding();
 emit Harvest(
 positions.perpContracts,
 IERC20(long).balanceOf(address(this)),
 positions.margin
);
 }

The harvest function is the strategy's "work" function. It is responsible for running the strategy.

 /**
 * @notice determine the funding premiums that have been collected since the last e
 * @return fee the funding rate premium collected since the last epoch
 * @return loss whether the funding rate was a loss or not
 */
 function _determineFee() internal returns (uint256 fee, bool loss) {
 int256 feeInt;

 // get the cash held in the margin cash, funding rates are saved as cash in the
 int256 newAccFunding = getUnitAccumulativeFunding();
 int256 prevAccFunding = positions.unitAccumulativeFunding;
 int256 livePositions = getMarginPositions();
 if (prevAccFunding >= newAccFunding) {
 // if the margin cash held has gone down then record a loss
 loss = true;
 feeInt = ((prevAccFunding - newAccFunding) * -livePositions) / 1e18;
 fee = uint256(feeInt / DECIMAL_SHIFT);
 } else {
 // if the margin cash held has gone up then record a profit and withdraw the
 feeInt = ((newAccFunding - prevAccFunding) * -livePositions) / 1e18;
 uint256 balanceBefore = IERC20(want).balanceOf(address(this));
 if (feeInt > 0) {
 mcLiquidityPool.withdraw(perpetualIndex, address(this), feeInt);
 }
 fee = IERC20(want).balanceOf(address(this)) - balanceBefore;
 }
 }

The harvest will begin by determining the profit/loss since the previous harvest. It will do this by
getting the unitAccumulativeFunding and getting the difference from the last harvest's
unitAccumulativeFunding. If the difference is positive then the profits will be withdrawn from the
margin account. If the difference is negative then the loss will be determined.

 /**
 * @notice function to update the state of the strategy in the vault and pull any fu
 * @param _amount change in the vault amount sent by the strategy
 * @param _loss whether the change is negative or not
 * be the sender
 * @return toDeposit the amount to be deposited in to the strategy on this update
 */
 function update(uint256 _amount, bool _loss)
 external
 onlyStrategy
 returns (uint256 toDeposit)
 {
 // if a loss was recorded then decrease the totalLent by the amount, otherwise i
 if (_loss) {
 totalLent -= _amount;
 } else {
 _determineProtocolFees(_amount);
 totalLent += _amount;
 }
 // increase the totalLent by the amount of deposits that havent yet been sent to
 toDeposit = want.balanceOf(address(this));
 totalLent += toDeposit;
 lastUpdate = block.timestamp;
 emit StrategyUpdate(_amount, _loss, toDeposit);
 if (toDeposit > 0) {
 want.approve(strategy, toDeposit);
 want.safeTransfer(msg.sender, toDeposit);
 }
 }

Next, the harvest will update the vault of the profit/loss. The vault will update its totalLent which is
the funds it has lent to the vault; if there is a profit then totalLent will increase and the protocol
fees will be determined. If there is a loss then totalLent will decrease. Finally, funds that have been
deposited after the previous harvest will be recorded and transferred to the strategy contract.

 /**
 * @notice split an amount of assets into three:
 * the short position which represents the short perpetual position
 * the long position which represents the long spot position
 * the buffer position which represents the funds to be left idle in the ma
 * @param _amount the amount to be split in want
 * @return shortPosition the size of the short perpetual position in want
 * @return longPosition the size of the long spot position in long
 * @return bufferPosition the size of the buffer position in want
 */
 function _calculateSplit(uint256 _amount)
 internal
 returns (
 uint256 shortPosition,
 uint256 longPosition,
 uint256 bufferPosition
)
 {
 require(_amount > 0, "_calculateSplit: _amount is 0");
 // remove the buffer from the amount
 bufferPosition = (_amount * buffer) / MAX_BPS;
 // decrement the amount by buffer position
 _amount -= bufferPosition;
 // determine the longPosition in want then convert it to long
 uint256 longPositionWant = _amount / 2;
 longPosition = _swap(longPositionWant, want, long);
 // determine the short position
 shortPosition = _amount - longPositionWant;
 }

The harvest will then calculate the split of the gains (deposits and/or profits) and split them first
into the buffer position, then the long position, then the short position. The long position is
swapped from the deposit asset to the long asset using a Uniswap v2 or Uniswap v3 interfaced
AMM.

 /**
 * @notice deposit to the margin account without opening a perpetual position
 * @param _amount the amount to deposit into the margin account
 */
 function _depositToMarginAccount(uint256 _amount) internal {
 IERC20(want).approve(address(mcLiquidityPool), _amount);
 mcLiquidityPool.deposit(
 perpetualIndex,
 address(this),
 int256(_amount) * DECIMAL_SHIFT
);
 emit DepositToMarginAccount(_amount, perpetualIndex);
 }

The harvest will then deposit the short position and buffer position deposit asset into the
strategy's MCDEX margin account.

 /**
 * @notice open the perpetual short position on MCDEX
 * @param _amount the collateral used to purchase the perpetual short position
 * @return tradeAmount the amount of perpetual contracts opened
 */
 function _openPerpPosition(uint256 _amount, bool deposit)
 internal
 returns (int256 tradeAmount)
 {
 if (deposit) {
 // deposit funds to the margin account to enable trading
 _depositToMarginAccount(_amount);
 }

 // get the long asset mark price from the MCDEX oracle
 (int256 price,) = oracle.priceTWAPLong();
 // calculate the number of contracts (*1e12 because USDC is 6 decimals)
 int256 contracts = ((int256(_amount) * DECIMAL_SHIFT) * 1e18) / price;
 int256 longBalInt = -int256(IERC20(long).balanceOf(address(this)));
 // check that the long and short positions will be equal after the deposit
 if (-contracts + getMarginPositions() >= longBalInt) {
 // open short position
 tradeAmount = mcLiquidityPool.trade(
 perpetualIndex,
 address(this),
 -contracts,
 price - slippageTolerance,
 block.timestamp,
 referrer,
 tradeMode
);
 } else {
 tradeAmount = mcLiquidityPool.trade(
 perpetualIndex,
 address(this),
 -(getMarginPositions() - longBalInt),
 price - slippageTolerance,
 block.timestamp,
 referrer,
 tradeMode
);
 }
 emit PerpPositionOpened(tradeAmount, perpetualIndex, _amount);
 }

The harvest will then open a short perpetual position on MCDEX using the short position collateral.
The MCDEX internal oracle is used to determine the number of short contracts to open.

Finally, a few parameters are updated and a harvest event is emitted. Fin.

Contract Design
Previous

🧑💻 Integration guide
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/contract-design
https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/integration-guide
https://akropolis.gitbook.io/akropolis/

🧑💻 Integration guide
Guide for smart contract interactions with the vault

To interact with the system via smart contract there are only two functions you need to use,
deposit() and withdraw():

deposit(uint256 _amount, address _recipient)

 /**
 * @notice deposit function - where users can join the vault and
 * receive shares in the vault proportional to their ownership
 * of the funds.
 * @param _amount amount of want to be deposited
 * @param _recipient recipient of the shares as the recipient may not
 * be the sender
 * @return shares the amount of shares being minted to the recipient
 * for their deposit
 */
 function deposit(uint256 _amount, address _recipient)
 external
 nonReentrant
 whenNotPaused
 returns (uint256 shares)
 {
 require(_amount > 0, "!_amount");
 require(_recipient != address(0), "!_recipient");
 require(totalAssets() + _amount <= depositLimit, "!depositLimit");

 shares = _issueShares(_amount, _recipient);
 // transfer want to the vault
 want.safeTransferFrom(msg.sender, address(this), _amount);

 emit Deposit(_recipient, _amount, shares);
 }

The recipient will receive vault shares that represent their share of funds in the vault at the time of
deposit. Deposited funds are not deployed to the strategy immediately; they instead remain idle in
the vault until a harvest is called where they are deployed to the strategy.

This function will revert if:

The amount to be deposited is 0;

The recipient is not a valid address;

The deposit limit is reached;

The caller has not approved funds to be used by the vault;

The caller does not have _amount of the asset in their wallet.

withdraw(uint256 _shares, address _recipient)

/**
 * @notice withdraw function - where users can exit their positions in a vault
 * users provide an amount of shares that will be returned to a recipient.
 * @param _shares amount of shares to be redeemed
 * @param _recipient recipient of the amount as the recipient may not
 * be the sender
 * @return amount the amount being withdrawn for the shares redeemed
 */
function withdraw(uint256 _shares, address _recipient)
 external
 nonReentrant
 whenNotPaused
 returns (uint256 amount)
{
 require(_shares > 0, "!_shares");
 require(_shares <= balanceOf(msg.sender), "insufficient balance");
 amount = _calcShareValue(_shares);
 uint256 vaultBalance = want.balanceOf(address(this));
 uint256 loss;

 // if the vault doesnt have free funds then funds should be taken from the strategy
 if (amount > vaultBalance) {
 uint256 needed = amount - vaultBalance;
 needed = Math.min(needed, totalLent);
 uint256 withdrawn;
 (loss, withdrawn) = IStrategy(strategy).withdraw(needed);
 vaultBalance = want.balanceOf(address(this));
 if (loss > 0) {
 amount = vaultBalance;
 totalLent -= loss;
 // all assets have been withdrawn so now the vault must deal with the loss i
 // _shares = _sharesForAmount(amount);
 }
 // reduce the totallent by the amount withdrawn, if the amount withdrawn is grea
 // then make it 0
 if (totalLent >= withdrawn) {
 totalLent -= withdrawn;
 } else {
 totalLent = 0;
 }
 }

 _burn(msg.sender, _shares);
 if (amount > vaultBalance) {
 amount = vaultBalance;
 }
 emit Withdraw(_recipient, amount, _shares);
 want.safeTransfer(_recipient, amount);
}

The withdraw function is slightly more complicated as funds are taken from the strategy if there
are insufficient idle funds held in the vault contract.

The caller will have their share tokens burnt in exchange for the want value of their shares, this is
determined by calcShareValue(shares). If the vault doesn't have funds available immediately it will
withdraw funds from the strategy. This involves closing the correct number of short positions, long
positions and buffer positions which will output a withdrawal amount equivalent to the amount
needed to fulfil the withdrawal. In the event of a loss, the amount returned will be reduced and this
will be reflected in the share value and totalLent.

Key Function - harvest
Previous

Risk Management
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/key-function-harvest
https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/risk-management
https://akropolis.gitbook.io/akropolis/

Position Buffer

Vortex v1 will remain at 1x leverage, but, as USDC is used as collateral, positions are at risk of
liquidation. To manage this risk, a percentage of funds are held idle in an address as a Position
Buffer. This is done to increase the available collateral in the margin account such that the margin
account is always overcollateralised, dramatically reducing any liquidation risk.

This Buffer is a set size and will be maintained so long as active positions are open.

The Buffer can be changed at any time by the Vortex Manager; remargin() must be called after the
buffer change.

For more information, on how this is managed during strategy operation see remargin

Risk Management
Previous

remargin()
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/risk-management/remargin
https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/risk-management
https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/risk-management/remargin
https://akropolis.gitbook.io/akropolis/

remargin()

During operation of the vault it is possible for the leverage of the strategy's margin account to
deviate away from 1x. If the strategy's leverage goes below 1x there is no financial risk, but the
vault is not capital efficient as the non-profiting buffer represents a disproportionate amount of the
strategy. More dangerously, however, is if the strategy's leverage goes above 1x, as then it is
possible for the vault to fall below the margin ratio and for the margin account to get liquidated,
which would result in a substantial loss.

The remargin() function solves this problem.

If the position's leverage is greater than 1x then a certain amount of the short and long positions
are sold and added to the buffer. This brings the Position Buffer back to its correct value and
resets the leverage back to 1x.

If the position's leverage is less than 1x then a certain amount of the buffer position is used to open
short and long positions. This brings the Position Buffer back to its correct value and resets the
leverage back to 1x.

Position sizes will also increase based on returns accumulated by the strategy. These
returns are compounded into positions during remargins.

The remargin() function ensures that the Position Buffer is consistently maintained and
that derivative positions remain at 1x leverage.

A description of the remargin() code and the maths behind it are shown below.

/**
 * @notice remargin the strategy such that margin call risk is reduced
 * @dev only callable by owner
 */
 function remargin() external onlyOwner {
 // harvest the funds so the positions are up to date
 harvest();
 // ratio of the short in the short and buffer
 int256 K = (((int256(MAX_BPS) - int256(buffer)) / 2) * 1e18) /
 (((int256(MAX_BPS) - int256(buffer)) / 2) + int256(buffer));
 // get the price of ETH
 (int256 price,) = oracle.priceTWAPLong();
 // calculate amount to unwind
 int256 unwindAmount = (((price * -getMarginPositions()) -
 K *
 getMargin()) * 1e18) / ((1e18 + K) * price);
 require(unwindAmount != 0, "no changes to margin necessary");
 // check if leverage is to be reduced or increased then act accordingly
 if (unwindAmount > 0) {
 // swap unwindAmount long to want
 uint256 wantAmount = _swap(uint256(unwindAmount), long, want);
 // close unwindAmount short to margin account
 mcLiquidityPool.trade(
 perpetualIndex,
 address(this),
 unwindAmount,
 price + slippageTolerance,
 block.timestamp,
 referrer,
 tradeMode
);
 // deposit long swapped collateral to margin account
 _depositToMarginAccount(wantAmount);
 } else if (unwindAmount < 0) {
 // the buffer is too high so reduce it to the correct size
 // open a perpetual short position using the unwindAmount
 mcLiquidityPool.trade(
 perpetualIndex,
 address(this),
 unwindAmount,
 price - slippageTolerance,
 block.timestamp,
 referrer,
 tradeMode
);
 // withdraw funds from the margin account
 int256 withdrawAmount = (price * -unwindAmount) / 1e18;
 mcLiquidityPool.withdraw(
 perpetualIndex,
 address(this),
 withdrawAmount
);
 // open a long position with the withdrawn funds
 _swap(uint256(withdrawAmount / DECIMAL_SHIFT), want, long);
 }
 positions.margin = getMargin();
 positions.unitAccumulativeFunding = getUnitAccumulativeFunding();
 positions.perpContracts = getMarginPositions();
 emit Remargined(unwindAmount);
 }

The remargin() begins by harvesting the strategy - this updates all positions.

Next the ratio of expected short:buffer, K, is calculated. This is calculated using the following
equation:

K =

((1 − buffer)/2) + buffer

(1 − buffer)/2

Then the unwindAmount, Z, is calculated. After remargin(), the value of long and short should be
equal, thus we have the following equation - where P is the index price, X is the long or short size
and Y is the margin size:

P (X − Z) = PZ + Y K

Rearranging for Z:

Z =

2P
(PX − KY)

The proof that this resets leverage is at the bottom of the page.

If Z is greater than 0, the vault is over-leveraged. Z positions are then closed from the short
position and Z positions are closed on the long. This combined amount is then deposited to the
margin account.

If Z is less than 0, the vault is under-leveraged. Z positions are then opened in the short position
and Z positions are opened on the long - the funds to collateralise these positions are taken from
the Position Buffer.

Proof that leverage, L is reset, after remargin(), the leverage is as follows:

L =

KY + PZ

P (X − Z)

Replace Z with the remargined Z value:

L =

KY + P 2P
PX−KY

P (X −)2P
PX−KY

L =

KY + 2
PX−KY

PX − 2
PX−KY

L =
KY + PX

PX + KY

L = 1

Position Buffer
Previous

unwind()
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/risk-management/position-buffer
https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/risk-management/unwind
https://akropolis.gitbook.io/akropolis/

unwind()

In historic crypto-market conditions the funding rate has consistently been positive, which is an
assumption that this strategy relies on. The Managers of Vortex are constantly monitoring the
funding rate and ensuring that it remains positive; if it stays negative for a prolonged amount of
time then the Manager can unwind() the funds to prevent any further losses. This function can also
be used to prevent a liquidation. The unwind() function is described below:

 /**
 * @notice unwind the position in adverse funding rate scenarios, settle short posi
 * and pull funds from the margin account. Then converts the long position
 * to want.
 * @dev only callable by the owner
 */
 function unwind() public onlyAuthorised {
 require(!isUnwind, "unwound");
 isUnwind = true;
 mcLiquidityPool.forceToSyncState();
 // swap long asset back to want
 _swap(IERC20(long).balanceOf(address(this)), long, want);
 // check if the perpetual is in settlement, if it is then settle it
 // otherwise unwind the fund as normal.
 if (!_settle()) {
 // close the short position
 _closeAllPerpPositions();
 // withdraw all cash in the margin account
 mcLiquidityPool.withdraw(
 perpetualIndex,
 address(this),
 getMargin()
);
 }
 // reset positions
 positions.perpContracts = 0;
 positions.margin = getMargin();
 positions.unitAccumulativeFunding = getUnitAccumulativeFunding();
 emit StrategyUnwind(IERC20(want).balanceOf(address(this)));
 }

unwind() will close all long positions, then check if the MCDEX perpetual market has been settled.
If it has been settled, then all funds will be withdrawn as all positions have already been closed by
MCDEX. If the perpetual pool is not settled, then all short positions are closed and withdrawn from
the margin account to the strategy contract.

remargin()
Previous

emergencyExit()
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/risk-management/remargin
https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/risk-management/emergencyexit
https://akropolis.gitbook.io/akropolis/

emergencyExit()

In a situation where an immediate exit is required - such as if positions were to be liquidated or in
the event of an exploit that may affect the system - a Manager can perform an emergencyExit().
This is where all positions are unwound and sent to the Vortex Governance multisig.

 /**
 * @notice emergency exit the entire strategy in extreme circumstances
 * unwind the strategy and send the funds to governance
 * @dev only callable by governance
 */
 function emergencyExit() external onlyGovernance {
 // unwind strategy unless it is already unwound
 if (!isUnwind) {
 unwind();
 }
 uint256 wantBalance = IERC20(want).balanceOf(address(this));
 // send funds to governance
 IERC20(want).safeTransfer(governance, wantBalance);
 emit EmergencyExit(governance, wantBalance);
 }

This is a function of last resort, but is important to maintain security over funds.

unwind()
Previous

Funding Rate Monitoring
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/risk-management/unwind
https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/risk-management/funding-rate-monitoring
https://akropolis.gitbook.io/akropolis/

Funding Rate Monitoring

To function correctly, the Funding Rate must be favorable to Vortex. If the Funding Rate is
consistently against Vortex, positions will be managed/unwound accordingly. This funding rate is
constantly managed by the Vortex Manager and, if is determined that the funding rate will remain
unfavourable for a prolonged amount of time, then the strategy will be unwound to prevent further
losses.

emergencyExit()
Previous

Deployed Contracts
Next - Developer documentation

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.gitbook.io/akropolis/developer-documentation/vortex/risk-management/emergencyexit
https://akropolis.gitbook.io/akropolis/developer-documentation/deployed-contracts
https://akropolis.gitbook.io/akropolis/

Amun Ra

What is Amun Ra?
Amun Ra is an AMM which is focused on providing low transaction costs, high throughput and
best-in-class asset pricing. Amun Ra is built upon an Ethereum layer 2, StarkNet.

Advantages of using Amun Ra
Advantages of using Amun Ra include:

Low Cost - Amun Ra has a low base trading fee and, thanks to StarkNet's infrastructure, a
significantly lower transaction cost per trade.

High Throughput - Amun Ra can facilitate more trades per second than its competitors on
Ethereum layer 1, making it more suitable for time-sensitive or higher frequency trades.

Better Prices - Amun Ra will offer the best prices for asset swaps on StarkNet due to its deep
liquidity and, due to technical and product improvements, these will only get better in v2
onwards.

Yield Generation - Amun Ra allows users to passively provide liquidity to capture a share of all
trading fees accumulated by their selected pool.

Ecosystem Benefits - Amun Ra will be able to facilitate the necessary liquidity for all new
projects native to the StarkNet ecosystem.

Open Source Development
Developer documentation - Previous

Pensify
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/pensify
https://akropolis.gitbook.io/akropolis/

Pensify

Pensify is a secure, non-custodial, no-loss and no-risk Pension Fund built on Ethereum blockchain.

By using Robo-Advisor for Yield (RAY) from Staked.US, Fund constantly generates interest from
different DeFi protocols

Compound, Aave, dYdX, Fulcrum (latest is turned off atm), MCD, DSR.

Members can also use Flash Loans to earn additional income via a browser bot for automatic
arbitrage between Uniswap and Balancer pools.

The fund is built using AkropolisOS framework, which allows automated liquidity provision
enabled by the bonding curve, treasury management & automated yield rebalancing.

Github repo:

GitHub - AlexanderMazaletskiy/pensify: Pensify is a secure, non-custodial and risk-m…
GitHub

Watch on

PensifyPensify
ShareShare

How it's made

We used AkropolisOS framework to build a basic architecture for Pensify. It is based on
 and allows automated liquidity provision enabled by the bonding curve, treasury

management & automated yield rebalancing. To enable mobile support, we used . It
provides secure storage and access to Pensify from any device. We use and
protocols as a part of arbitrage strategies for fund members. They can earn additional income by
utilizing Flash Loans and performing arbitrage between Uniswap and Balancer. We use
and as an interest source through rebalancer - from Staked.Us. It allows
us to accumulate interest on all Pensify funds.

OpenZeppelin
Portis Wallet

Uniswap Balancer

Compound
Aave Robo Yield Advisor

Amun Ra
Previous

C2FC
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://github.com/AlexanderMazaletskiy/pensify
https://www.youtube.com/watch?v=Sw8ki5fnWt0&embeds_referring_euri=https%3A%2F%2Fcdn.iframe.ly%2F&feature=emb_imp_woyt
https://www.youtube.com/watch?v=Sw8ki5fnWt0
http://openzeppelin.io/
https://www.portis.io/
https://uniswap.exchange/
https://balancer.finance/
https://compound.finance/
https://aave.com/
https://staked.us/v/robo-advisor-yield/
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/amun-ra
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/c2fc
https://akropolis.gitbook.io/akropolis/

C2FC
Commitments to Future Cashflows

A place to set up and trade Commitments to Future Cashflows (C2FC), a new financial primitive
and a DeFi equivalent of .cashflow financing

Github repo:

GitHub - akropolisio/cashflowrelay: Cashflow Relay Mainnet (Live)
GitHub

C2FC bridges traditional finance and Web3 by providing DeFi and Web3 entrepreneurs with capital
to grow.

Accelerate growth without giving up equity if you are an company or unlock new ways of funding
your future if you are an independent.

No equity, no fundraising, no dilution

No warrants, no covenants, no bullshit

Quick way to improve cashflow - get funds in faster

Pay back as you grow

Simple

Acquire more customers

Built with + + MakerDAO 0x MetaMask

https://www.youtube.com/watch?v=-FPbc-ttMd4c
www.youtube.com

What is C2FC

The C2FC is a digital token, which acts as automatically executed right to claim a defined part of
the future cashflow that arrives at issuer Ethereum address within a given time frame.

C2FC is materially different to the current implementations of ERC948 (EIP 1337) and EIP1620. The
improvement is in the following features:

Direct debit initialisation by the sender

Ability to realize escrow logic for payments receiver

Ability to transfer ownership to receive recurring payments: transferred to another person

Tokens are composable and can be grouped into a portfolio according to pre-defined
characteristics

What are the benefits

C2FC issuance allows to present future cashflows of any business or individual in as a single token,
that can be easily exchanged, traded or used as collateral, thus materially simplifying workflows
and opening up a potential for new DeFi instruments and interactions.

You can attract additional liquidity without using a 150% ensuring in digital assets by trading C2FC.

How does it work

An already operating business or an individual who has regular income payments, that needs
additional liquidity at the moment can issue C2FC for defined future periods and trade them at
marketplace. It looks like exchanging future cashflows for "money now" by selling discounted C2FC
or borrowing funds, using C2FC as collateral.

Are there any risks involved in issuing or trading C2FCs?

C2FC issuance itself does not provide any risks until it is involved in the open market. When it is
exchanged to other unit of value and changed ownership, there is a risk that future cashflow would
be lower than estimated or there would no money arrived at all. This issue primarily is connected
with the correct risk assessment of the C2FC issuer.

Considering the transparency of the C2FC itself and related indicators, the risk assessment would
be no harder and in some cases can even be more reliable than in centralized finance.

Use cases

 relayer or any node holder attracts additional capital to fund growth0x

 operator forward-funds her coding bootcampSpankchain

 developers forward-fund their expensesGitcoin

 land owner receives funding against a leased assetDecentraland

Digital entrepreneurs forward-fund ad spend and attract customers

Pensify
Previous

AkropolisOS
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://www.investopedia.com/terms/c/cash-flow-financing.asp
https://github.com/akropolisio/cashflowrelay
https://makerdao.com/
http://0x.org/
https://metamask.io/
https://www.youtube.com/watch?v=-FPbc-ttMd4c
http://0x.org/
https://spankchain.com/
https://gitcoin.co/
https://decentraland.org/
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/pensify
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/akropolisos
https://akropolis.gitbook.io/akropolis/

AkropolisOS

AkropolisOS is A Solidity framework for building complex dApps and protocols (savings, pensions,
loans, investments).

AkropolisOS is a framework for creating and managing distributed digital financial organisations.
Anybody can use AkropolisOS to set up and collectively manage distributed capital pools with
customisable user incentives, automated liquidity provision enabled by the bonding curve
mechanism, and programmatic liquidity and treasury management. Designed as an upgradeable
modular framework based on OpenZeppelin, AkropolisOS provides lego-like scalability without the
loss of coherence and security.

 is an undercollaterized credit pool based on AkropolisOS, where members of which can
earn high-interest rates by providing undercollateralized loans to other members and by pooling
and investing capital through various liquid DeFi instruments.

Sparta

 is a yield farming aggregator with dollar cost averaging tooling. Delphi allows users to gain
yield on synthetic savings, farm tokens from integrated protocols/pools, and invest in volatile
assets using an active “all in” approach or a passive dollar cost averaging strategy.

Delphi

Github repo:

GitHub - akropolisio/akropolisOS: 💢 A Solidity framework for building complex dApp…
GitHub

C2FC
Previous

Sparta
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/sparta
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/delphi
https://github.com/akropolisio/akropolisOS
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/c2fc
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/sparta
https://akropolis.gitbook.io/akropolis/

Sparta

Sparta is an undercollaterized credit pool based on AkropolisOS, where members of which can
earn high-interest rates by providing undercollateralized loans to other members and by pooling
and investing capital through various liquid DeFi instruments.

Github repo:

GitHub - akropolisio/sparta: 💫 Access under-collateralised credit based on trust.
GitHub

Mainnet deployment

DAI: 0x6b175474e89094c44da98b954eedeac495271d0f

Pool: 0x73067fdd366Cb678E9b539788F4C0f34C5700246

AccessModule: 0xfE7B0aeb84D134c5be6b217e51B2b040F5B7cB7B

PToken: 0xAA2edc0E5CDE4Da80628972c501e79326741dB17

CurveModule: 0xFb6b0103063CDf701b733db3Fa3F1c0686F19668

FundsModule: 0xc88F54A79CaE4C125D7A8c2Cf811daaE78b07D64

LiquidityModule: 0x543cBc6693f8cBCf0AE5f2cfd9922203cc13b10A

LoanLimitsModule: 0x42b41f636C9eBB150F859f65e3c0f938b0347f59

LoanProposalsModule: 0xd3bdEdA5e165E67985a4Dc7927E4651Bedd1950c

LoanModule: 0x42E24De51db5baf6E18F91619195375FBAe63b13

Developer tools

 Openzeppelin SDK

 Openzepplin Contracts

 Truffle

Diagrams

Modules

User Interactions

Deployment

Required data:

Address of liquidity token (LToken.address)

Deployment sequence:

1. Pool

1. Deploy proxy and contract instance

2. Call initialize()

2. Liquidity token

1. Register in pool: Pool.set("ltoken", LToken.address)

3. PToken

1. Deploy proxy and contract instance

2. Call initialize(Pool.address)

3. Register in pool: Pool.set("ptoken", PToken.address)

4. CurveModule

1. Deploy proxy and contract instance

2. Call initialize(Pool.address)

3. Register in pool: Pool.set("curve", CurveModule.address)

5. AccessModule

1. Deploy proxy and contract instance

2. Call initialize(Pool.address)

3. Register in pool: Pool.set("access", CurveModule.address)

6. LiquidityModule

1. Deploy proxy and contract instance

2. Call initialize(Pool.address)

3. Register in pool: Pool.set("liquidity", LiquidityModule.address)

7. LoanModule, LoanLimitsModule, LoanProposalsModule

1. Deploy proxy and contract instance of LoanLimitsModule

2. Call LoanLimitsModule.initialize(Pool.address)

3. Register in pool: Pool.set("loan_limits", LoanLimitsModule.address)

4. Deploy proxy and contract instance of LoanProposalsModule

5. Call LoanProposalsModule.initialize(Pool.address)

6. Register in pool: Pool.set("loan_proposals", LoanProposalsModule.address)

7. Deploy proxy and contract instance of LoanModule

8. Call LoanModule.initialize(Pool.address)

9. Register in pool: Pool.set("loan", LoanModule.address)

8. FundsModule

1. Deploy proxy and contract instance

2. Call initialize(Pool.address)

3. Register in pool: Pool.set("funds", FundsModule.address)

4. Add LiquidityModule as FundsOperator:
FundsModule.addFundsOperator(LiquidityModule.address)

5. Add LoanModule as FundsOperator:
FundsModule.addFundsOperator(LoanModule.address)

6. Add FundsModule as a Minter for PToken: PToken.addMinter(FundsModule.address)

Liquidity

Deposit

Required data:

lAmount : Deposit amount, DAI

Required conditions:

All contracts are deployed

Workflow:

1. Call FundsModule.calculatePoolEnter(lAmount) to determine expected PTK amount
(pAmount)

2. Determine minimum acceptable amount of PTK pAmountMin <= pAmount , which user
expects to get when deposit lAmount of DAI. Zero value is allowed.

3. Call LToken.approve(FundsModule.address, lAmount) to allow exchange

4. Call LiquidityModule.deposit(lAmount, pAmountMin) to execute exchange

Withdraw

Required data:

pAmount : Withdraw amount, PTK

Required conditions:

Available liquidity LToken.balanceOf(FundsModule.address) is greater than expected
amount of DAI

User has enough PTK: PToken.balanceOf(userAddress) >= pAmount

Workflow:

1. Call FundsModule.calculatePoolExitInverse(pAmount) to determine expected amount
of DAI (lAmount). The response has 3 values, use the second one.

2. Determine minimum acceptable amount lAmountMin <= lAmount of DAI , which user
expects to get when deposit pAmount of PTK. Zero value is allowed.

3. Call PToken.approve(FundsModule.address, pAmount) to allow exchange

4. Call LiquidityModule.withdraw(pAmount, lAmountMin) to execute exchange

Credits

Create Loan Request

Required data:

debtLAmount : Loan amount, DAI

interest : Interest rate, percents

pAmountMax : Maximal amount of PTK to use as borrower's own pledge

descriptionHash : Hash of loan description stored in Swarm

Required conditions:

User has enough PTK: PToken.balanceOf(userAddress) >= pAmount

Workflow:

1. Call FundsModule.calculatePoolExitInverse(pAmount) to determine expected pledge
in DAI (lAmount). The response has 3 values, use the first one.

2. Determine minimum acceptable amount lAmountMin <= lAmount of DAI, which user
expects to lock as a pledge, sending pAmount of PTK. Zero value is allowed.

3. Call PToken.approve(FundsModule.address, pAmount) to allow operation.

4. Call LoanModule.createDebtProposal(debtLAmount, interest, pAmountMax,
descriptionHash) to create loan proposal.

Data required for future calls:

Proposal index: proposalIndex from event DebtProposalCreated .

Add Pledge

Required data:

Loan proposal identifiers:

borrower Address of borrower

proposal Proposal index

pAmount Pledge amount, PTK

Required conditions:

Loan proposal created

Loan proposal not yet executed

Loan proposal is not yet fully filled: LoanModule.getRequiredPledge(borrower,
proposal) > 0

User has enough PTK: PToken.balanceOf(userAddress) >= pAmount

Workflow:

1. Call FundsModule.calculatePoolExitInverse(pAmount) to determine expected pledge
in DAI (lAmount). The response has 3 values, use the first one.

2. Determine minimum acceptable amount lAmountMin <= lAmount of DAI, which user
expects to lock as a pledge, sending pAmount of PTK. Zero value is allowed.

3. Call PToken.approve(FundsModule.address, pAmount) to allow operation.

4. Call LoanModule.addPledge(borrower, proposal, pAmount, lAmountMin) to execute
operation.

Withdraw Pledge

Required data:

Loan proposal identifiers:

borrower Address of borrower

proposal Proposal index

pAmount Amount to withdraw, PTK

Required conditions:

Loan proposal created

Loan proposal not yet executed

User pledge amount >= pAmount

Workflow:

1. Call LoanModule.withdrawPledge(borrower, proposal, pAmount) to execute
operation.

Loan issuance

Required data:

proposal Proposal index

Required conditions:

Loan proposal created, user (transaction sender) is the borrower

Loan proposal not yet executed

Loan proposal is fully funded: LoanModule.getRequiredPledge(borrower, proposal) ==
0

Pool has enough liquidity

Workflow:

1. Call LoanModule.executeDebtProposal(proposal) to execute operation.

Data required for future calls:

Loan index: debtIdx from event DebtProposalExecuted .

Loan repayment (partial or full)

Required data:

debt Loan index

lAmount Repayable amount, DAI

Required conditions:

User (transaction sender) is the borrower

Loan is not yet fully repaid

Workflow:

1. Call LToken.approve(FundsModule.address, lAmount) to allow operation.

2. Call LoanModule.repay(debt, lAmount) to execute operation.

Distributions

When borrower repays some part of his loan, he uses some PTK (either from his balance or minted
when he sends DAI to the pool). This PTKs are distributed to supporters, proportionally to the part
of the loan they covered. The borrower himself also covered half of the loan, and his part is
distributed over the whole pool. All users of the pool receive part of this distributions proportional
to the amount of PTK they hold on their balance and in loan proposals, PTK locked as collateral for
loans is not counted.

Distribution mechanics

When you need to distribute some amount of tokens over all token holders one's first straight-
forward idea might be to iterate through all token holders, check their balance and increase it by
their part of the distribution. Unfortunately, this approach can hardly be used in Ethereum
blockchain. All operations in EVM cost some gas. If we have a lot of token holders, gas cost for
iteration through all may be higher than a gas limit for transaction (which is currently equal to gas
limit for block). Instead, during distribution we just store amount of PTK to be distributed and
current amount of all PTK qualified for distribution. And user balance is only updated by separate
request or when it is going to be changed by transfer, mint or burn. During this "lazy" update we go
through all distributions occured between previous and current update. Now, one may ask what if
there is too much distributions occurred in the pool between this updated and the gas usage to
iterate through all of them is too high again? Obvious solution would be to allow split such
transaction to several smaller ones, and we've implemented this approach. But we also decided to
aggregate all distributions during a day. This way we can protect ourself from dust attacks, when
somebody may do a lot of small repays which cause a lot of small distributions. When a distribution
request is received by PToken we check if it's time to actually create new distribution. If it's not, we
just add distribution amount to the accumulator. When time comes (and this condition is also
checked by transfers, mints and burns), actual distribution is created using accumulated amount of
PTK and total supply of qualified PTK.

AkropolisOS
Previous

Delphi
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://github.com/akropolisio/sparta
https://openzeppelin.com/sdk/
https://openzeppelin.com/contracts/
https://www.trufflesuite.com/
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/akropolisos
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/delphi
https://akropolis.gitbook.io/akropolis/

Delphi

Delphi is a yield farming aggregator. Delphi allows users to gain yield on synthetic savings & farm
tokens from integrated protocols/pools.

What is Delphi v1?

Delphi v1 is the first version of a DeFi yield-farming aggregator tool, build on AkropolisOS. Delphi v1
contains stablecoins savings and ADEL staking pools integrated.

Pools

Save

Savings is all about stablecoins pools. Currently, you can choose where to supply liquidity from
selected Curve.fi and Compound pools. You can allocate in one or several pools in once click - just
choose amounts & currencies, click on Allocate - your funds will be sent to the corresponding
pools, earn interest & farm different tokens all at once.

Stake

Mechanics here are simple - you just send token to the chosen pool & farm additional tokens. No
lock-up for the staked funds.

Github repo:

GitHub - akropolisio/delphi: 💥 Earn Rewards for Saving and Liquidity Provision (work …
GitHub

Sparta
Previous

Polkahub
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://github.com/akropolisio/delphi
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/sparta
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/polkahub
https://akropolis.gitbook.io/akropolis/

Polkahub

Introduction

PolkaHub aims to create a managed container system, with one-click services for deploying and
running different parachain nodes. The proposed system enables automatic updates and resource
management for running nodes, additionally providing templates for launching parachains.

Github Repo:

GitHub - akropolisio/polkahub-monorepo: Fast, scalable cloud infrastructure for Subs…
GitHub

What is PolkaHub?

1. Polkahub is a fast, scalable blockchain infrastructure component for Substrate parachains.

2. Polkahub provides parachain developers with the ability to launch and manage network
infrastructure using our command line utility and the ability to provide public node access.

3. Polkahub provides developers with a unified standard for packaging and deploying
applications to cloud infrastructure.

4. Polkahub provides the functionality to track and control the parachain’s versions. So in the
event of critical bugs arising, developers can update or roll back the version of the parachain
using simple commands (via running specific commands in a command line).

5. Polkahub supports Substrate node deployment to remote servers or cloud infrastructure via
git.

6. Polkahub infrastructure is based on Docker Container Services such as Kubernetes.

7. Docker provides high-level interfaces for isolated environments within the node's execution.
Easily scaled, managed and updated.

8. No need to rely on DevOps and System Administration for managing parachain’s infrastructure
- thanks to PolkaHub. You only need git, command line and a simple web-interface.

Polkahub

Quick Start

Install CLI

MacOS / Linux You can just use bash script:

$ bash <(curl http://get.polkahub.org/ -L)

This will install polkahub binary in your /usr/local/bin(MacOS) or /usr/bin(Linux) directory Then you
can use it:

$ polkahub <action> [ARGS]

Or use docker image like this:

$ mkdir $HOME/.polkahub
$ docker run --rm -ti -v $HOME/.polkahub_docker:/tmp/home -e POLKAHUB_HOME=/tmp/home reg

Usage CLI

Authentication

$ polkahub auth
Email: user@example.com
Password:

Login user with email user@example.com
 ���
done

Use email and password created via https://polkahub.org or create new email and password via
CLI (see Registration section)

Registration

$ polkahub register
Email: user@example.com
Password:
Confirm Password:

Registration new user with email user@example.com
 ���
done

Create a new project

$ polkahub create akropolisos

 ���
done
https -> "https://steadfast-surprise-6647-akropolisos-rpc.polkahub.tech"
ws -> "wss://steadfast-surprise-6647-akropolisos.polkahub.tech"
remote -> "https://git.polkahub.org/steadfast-surprise-6647-akropolisos.git"

Then you can add remote to your project, push it and it will automatically start CI build.

Find a project

$ polkahub find akropolisos

Looking for akropolisos project
 ���
steadfast-surprise-6647/akropolisos@0.8.2
steadfast-surprise-6647/akropolisos@v1
steadfast-surprise-6647/akropolisos@v2

Install a exists project

$ polkahub install steadfast-surprise-6647/akropolisos@0.8.2 -a alexander

Deploying akropolisos project with version 0.8.2
 ���
done
https -> "https://frightened-brick-8071-alexander-rpc.polkahub.tech"
ws -> "wss://frightened-brick-8071-alexander.polkahub.tech"

Deploying private Polkahub

Preliminary steps

1. Install Rust on host, where Polkahub components will be build. Manual documentation:
https://www.rust-lang.org/learn/get-started

2. Buy a VPS, minimal requirements are 2CPU and 8GB RAM. The more CPU - the faster
deployment of projects in Cl

3. Install the Docker and the Docker Compose on host, where Polkahub components will run.
Manual documentation: https://docs.docker.com/

4. Install the Docker Registry. You can use public or private one from the cloud provider of your
choice. Also you can set up your own one. Manual documentation: https://docs.docker.com/

5. Install and configure the Kubernetes cluster. You can buy a cluster from the cloud provider of
your choice or deploy your own one on your server. Manual documentation:
https://kubernetes.io/docs/home/

6. Sign up on https://www.cloudflare.com/ and get the token, key_auth, zone_name and zone_id
to create the DNS records via https://api.cloudflare.com/

7. Sign up on https://www.mailgun.com/ and get the api_key and domain_name to sending emails
via https://api.mailgun.net/

8. Install packages for Debian-like Linux distributives: apt-get install -y libssl-dev ca-certificates
git curl

Building the components

1. CLI. Building manual:https://github.com/akropolisio/polkahub-cli . To change URL REST API you
need to edit constants INSTALL_URL, FIND_URL, POLKAHUB_URL in /src/parsing.rs

2. REST API. Building manual: https://github.com/akropolisio/polkahub-backend

3. Deployer. Building manual: https://github.com/akropolisio/polkahub-deployer

4. Cloudflare Manager. Building manual: https://github.com/akropolisio/cloudflare-manager

5. Mailgun Sender. Building manual: https://github.com/akropolisio/mailgun-sender

Running the components in the Kubernetes

1. Pack the Deployer in the Docker-image. Files and environment variables descriptions are here:
https://github.com/akropolisio/cloudflare-manager Push to Docker Registry, run the Deployer
in Kubernetes cluster and configure the access via HTTP to the Deployer for CI.

2. Pack the Cloud Manager in the Docker-image. Files and environment variables descriptions are
here: https://github.com/akropolisio/cloudflare-manager. Secret Files content can be found in
point 6 of Preliminary steps section. Push to Docker Registry, run the Cloudflare Manager in
Kubernetes cluster and configure the access via HTTP to the Cloudflare Manager for CI.

3. Pack the Mailgun Sender in the Docker-image. Files and environment variables descriptions
are here: https://github.com/akropolisio/mailgun-sender. Secret Files content can be found in
point 6 of Preliminary steps section. Push to Docker Registry, run the Mailgun Sender in
Kubernetes cluster and configure the access via HTTP to the Mailgun Sender for REST API.

Running the components on VPS

1. Install Jenkins. Manual documentation: https://jenkins.io/download/. Add the access token to
REST API, configure 2 jobs: build-new-version and deploy-fixed-version. You may find
examples of jobs at jenkins-test.polkahub.org. Configure the access to the Docker server and
Docker registry for Jenkins.

2. Deploy the REST API. Environment variables descriptions are here:
https://github.com/akropolisio/polkahub-backend Token and job (build-new-version) name can
be found in the point 1 of “Running the components on VPS”. Configure the access via HTTP to
the REST API for CLI.

3. Deploy the Git server, configure the access via HTTP to the git repositories directories (e.g. via
Nginx + fcgiwrap + git-http-backend)

4. Deploy the PostgreSQL, configure the access for REST API

Project Components

Name Version Purpose

 cloudflare-manager 0.1.0 DNS management

 mailgun-sender 0.1.0 Email sender via Mailgun

 polkahub-backend 0.2.0
Manage user command
execution

 polkahub-cli 0.4.0
Process user input and
trigger api calls

 polkahub-deployer 0.2.0
Form docker manifest for
Kubernetes API

 polkahub-installer 0.4.0
Shell script to install latest
Polkahub CLI build

Docker images built

All images available at registry.polkahub.org/ <name> : <tag>

General

Name Tag Purpose

 deployer v2
Microservice to deploy the
projects in Kubernetes

 cloudflare-manager v1
Microservice to create DNS-
records in Cloudflare

 mailgun-sender v1 Email sender via Mailgun

substrate-builder rust-1.41-v3
Docker-image with the
environment for projects
building in CI

Pre-Built for test environment

Name Tag Purpose

 polkahub-backend v3
API image for Polkahub test
launch via Docker-compose

polkahub-git-backend v1
Git server image for
Polkahub test launch via
Docker-compose

polkahub-jenkins v1
Jenkins image for Polkahub
test launch via Docker-
compose

balancer v3
Jenkins image for Polkahub
test launch via Docker-
compose

 polkahub-cli v3
CLI image interacting with
the test environment

akropolis-akropolisos 0.8.2 AkropolisOS Node image

stimulating-plant-3173-
alexander

v0.4
Polkadot-Alexander Node
Image

decisive-picture-8329-
kusama

v0.7 Kusama Node Image

polkahub-frontend v1 Web portal

Delphi
Previous

Ethereum <-> Substrate bridge
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://github.com/akropolisio/polkahub-monorepo
https://github.com/akropolisio/cloudflare-manager
https://github.com/akropolisio/mailgun-sender.git
https://github.com/akropolisio/polkahub-backend
https://github.com/akropolisio/polkahub-cli
https://github.com/akropolisio/polkahub-deployer
https://github.com/akropolisio/polkahub-installer
https://github.com/akropolisio/polkahub-deployer
https://github.com/akropolisio/cloudflare-manager
https://github.com/akropolisio/mailgun-sender.git
https://github.com/akropolisio/polkahub-backend
https://github.com/akropolisio/polkahub-cli
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/delphi
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/ethereum-less-than-greater-than-substrate-bridge
https://akropolis.gitbook.io/akropolis/

Ethereum <-> Substrate bridge
Ethereum <-> Parity Substrate Blockchain bridge for self transfers of ERC20
representation.

Github repo:

GitHub - akropolisio/erc20-substrate-bridge: Ethereum <-> Parity Substrate Blockch…
GitHub

You can try it out in our chain:

1. Make sure you have Ethereum and Substrate extensions. Typical choices would be:
a. Metamask (or any other Ethereum extension) and switch it to Kovan
b. polkadot{.js}

2. Go here

3. Connect with both extensions(two pop-up windows should appear)

4. You will see that your balances from extensions should appear on the page.

5. Transfer some Kovan test DAI to our Substrate-based chain.

6. Transfer some DAI from our chain to your Ethereum account.

 cd ./frontend

 npm i

 npm run codegen

 npm run dev

Polkahub
Previous

Web3 Wallet Kit
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://github.com/akropolisio/erc20-substrate-bridge
https://polkadai-bridge.akropolis.io/
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/polkahub
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/web3-wallet-kit
https://akropolis.gitbook.io/akropolis/

Web3 Wallet Kit

Introduction

This kit will help connect you dApp to different Ethereum wallets, e.g. Metamask. With web3-
wallets-kit, you can create Web3WalletsManager and connect your dApp to the wallet of your
choice using one of the supported wallet integrations.

Github repo:

GitHub - akropolisio/web3-wallets-kit: Package for connecting with Ethereum wallets…
GitHub

Wallet integrations:

Wallet Integration Package Size

Inpage (Extensions like
 or Web3

browsers like)
Metamask

Cipher

@web3-wallets-
kit/inpage-connector

 bundlephobiabundlephobia 429429

 WalletConnect

@web3-wallets-
kit/connect-wallet-
connector

 bundlephobiabundlephobia 429429

 Bitsky

@web3-wallets-
kit/bitski-connector

 bundlephobiabundlephobia 429429

 Fortmatic

@web3-wallets-
kit/fortmatic-
connector

 bundlephobiabundlephobia 429429

 Portis

@web3-wallets-
kit/portis-connector

 bundlephobiabundlephobia 429429

 Squarelink

@web3-wallets-
kit/squarelink-
connector

 bundlephobiabundlephobia 429429

 Torus

@web3-wallets-
kit/torus-connector

 bundlephobiabundlephobia 429429

 Ledger Coming soon

Installation

npm install --save @web3-wallets-kit/core

npm install --save @web3-wallets-kit/inpage-connector or another integration

Creating and managing wallets

import Web3 from 'web3';
import { Web3WalletsManager } from '@web3-wallets-kit/core';
import { InpageConnector } from '@web3-wallets-kit/inpage-connector';

// Create Web3WalletsManager instance
const web3Manager = new Web3WalletsManager<Web3>({
 defaultProvider: {
 network: 'kovan',
 infuraAccessToken: 'INFURA_API_KEY',
 },
 makeWeb3: provider => new Web3(provider), // you can use web3.js, ethers.js or another
});

// Create connector
const connector = new InpageConnector();

// Connect to wallet
await web3Manager.connect(connector);

// Get address and Web3 for sending transaction
const myAddress = web3Manager.account.value;
const txWeb3 = web3Manager.txWeb3.value;

// Create contract
const daiContract = txWeb3.eth.Contract(DAI_ABI, '0x5592ec0cfb4dbc12d3ab100b257153436a1f

// Send transaction
await daiContract.methods
 .transfer('0x00', '1000000000000000000')
 .send({ from: myAddress });

Web3WalletsManager API

class Web3WalletsManager<W> {
 /** default Web3 instance for reading. Uses a provider created based on defaultProvi
 web3: W;
 /** Web3 instance for sending transactions. An instance is created after connecting
 txWeb3: BehaviorSubject<W | null>;
 /** active account address */
 account: BehaviorSubject<string | null>;
 /** active network ID */
 chainId: BehaviorSubject<number | null>;
 /** status of the connection */
 status: BehaviorSubject<ConnectionStatus>;

 constructor(options: Options<W>);

 /** Connect to wallet; Returns account address and Web3 Instance for sending transac
 connect(connector: Connector): Promise<ConnectResult>;
 /** Disconnect wallet, close streams */
 disconnect(): Promise<void>;
}

interface Options<W> {
 defaultProvider: {
 httpRpcUrl?: string;
 wsRpcUrl?: string;
 infuraAccessToken?: string;
 /** default: 'mainnet' */
 network?: InfuraNetwork;
 };
 makeWeb3<W>(provider: Provider): W;
}

Ethereum <-> Substrate bridge
Previous

Substrate Staking portal
Next

Last modified 1yr ago

Akropolis Search ⌘K

https://github.com/akropolisio/web3-wallets-kit
https://metamask.io/
https://www.cipherbrowser.com/
https://wiki.akropolis.io/web3walletkit/packages/inpage-connector
https://bundlephobia.com/result?p=@web3-wallets-kit/inpage-connector@latest
https://walletconnect.org/
https://wiki.akropolis.io/web3walletkit/packages/connect-wallet-connector
https://bundlephobia.com/result?p=@web3-wallets-kit/connect-wallet-connector@latest
https://www.bitski.com/
https://wiki.akropolis.io/web3walletkit/packages/bitski-connector
https://bundlephobia.com/result?p=@web3-wallets-kit/bitski-connector@latest
https://fortmatic.com/
https://wiki.akropolis.io/web3walletkit/packages/fortmatic-connector
https://bundlephobia.com/result?p=@web3-wallets-kit/fortmatic-connector@latest
https://www.portis.io/
https://wiki.akropolis.io/web3walletkit/packages/portis-connector
https://bundlephobia.com/result?p=@web3-wallets-kit/portis-connector@latest
https://squarelink.com/
https://wiki.akropolis.io/web3walletkit/packages/squarelink-connector
https://bundlephobia.com/result?p=@web3-wallets-kit/squarelink-connector@latest
https://tor.us/
https://wiki.akropolis.io/web3walletkit/packages/torus-connector
https://bundlephobia.com/result?p=@web3-wallets-kit/torus-connector@latest
https://www.ledger.com/
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/ethereum-less-than-greater-than-substrate-bridge
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/substrate-staking-portal
https://akropolis.gitbook.io/akropolis/

Substrate Staking portal

Introduction

Existing staking mechanism via has developer-centric UX and is very
complicated for ordinary users. To simplify UX we want to build Staking portal for
AkropolisOSChain users.

https://polkadot.js.org/apps/

Github repo:

GitHub - akropolisio/staking-portal: Akropolis Staking Portal
GitHub

Frontend:

Akropolis Staking Portal
akropolis-polkadot-chain-frontend

What is Polkadot Staking Portal?

A simple and intuitive interface and Akropolis browser extension will make the staking process
accessible to a wide range of users - you only need an account on Polkadot and Polkadot-js for
signing transactions.

What you can do with our staking portal:

Check your overall balance and amount of all bonded tokens - as well as check each wallet
connected

Check the current validators set, their commission, how much is staked for them, etc. and
decide whether you want to nominate for them or not.

Check and edit stake conditions - add/withdraw funds, edit the list of nominees, stop
nominating, redeem funds, etc.

For frontend (in frontend folder)

Install all dependencies

npm i install frontend and contracts dependencies

To start locally

npm run dev for development environment in watch mode

npm run prod for production environment in watch mode

To build locally (see build folder)

npm run build:dev for development environment without watch mode

npm run build:prod for production environment without watch mode

To start bundle analyzer

npm run analyze:dev for development environment

npm run analyze:prod for production environment

To start test

npm test or npm t for start test, before that you need start network (npm run ganache-
cli)

We used:

[x] polkadot.js/api for interacting with Akropolis Chain

[x] Typescript

[x] React

[x] Redux

[x] Redux-saga for side-effects

[x] Material-UI

Web3 Wallet Kit
Previous

Audits
Next - Security

Last modified 1yr ago

Akropolis Search ⌘K

https://polkadot.js.org/apps/
https://github.com/akropolisio/staking-portal
https://staking-portal.akropolis.io/
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/web3-wallet-kit
https://akropolis.gitbook.io/akropolis/security/audits
https://akropolis.gitbook.io/akropolis/

Audits

Vortex

 Peckshield

 Xtropy

Substrate Staking portal
Previous

Bug Bounty
Next - Security

Last modified 1yr ago

Akropolis Search ⌘K

https://github.com/akropolisio/basis/blob/development/audit/PeckShield-Audit-Report-Akro-v1.0rc.pdf
https://github.com/akropolisio/basis/blob/development/audit/Xtropy-Audit.pdf
https://akropolis.gitbook.io/akropolis/developer-documentation/open-source-development/substrate-staking-portal
https://akropolis.gitbook.io/akropolis/security/bug-bounty
https://akropolis.gitbook.io/akropolis/

FAQ

What is rewards vesting?

Vesting is a lockup model for incentivizing long-term users and tokenholders. All AKRO rewards
come with vesting - they gradually unlock throughout the year after you earn them. You can find
the total vested amount you got and unlocked amount in your tab.Summary

Unlocked amounts available for claiming are updated every two weeks. There is no
timelimit for claiming. Read more on vesting mechanics .here

What's "Infinite unlock"?

Infinite unlock means that you preapprove the contract to be able to spend any amount of tokens
when you interact with it. Enabling infinite unlock means that you approve spending tokens only
once (thus reducing gas costs associated with signing “approve” transaction). Bear in mind - after
enabling infinite unlock, all following transfers/deposit of the asset chosen won’t need approval -
so please use it if you fully trust the contract.

General guide for interacting with pools:

Using Akropolis

To be continued...

Bug Bounty
Security - Previous

Community Channels
Next - Additional Resources

Last modified 1yr ago

Akropolis Search ⌘K

https://www.akropolis.io/app/summary
https://www.akropolis.io/vesting
https://akropolis.gitbook.io/akropolis/using-akropolis
https://akropolis.gitbook.io/akropolis/security/bug-bounty
https://akropolis.gitbook.io/akropolis/additional-resources/community-channels
https://akropolis.gitbook.io/akropolis/

Community Channels

Keep up-to-date with all Akropolis developments by following our and ,
and join our community discussions in , and .

Twitter Medium
Discord Reddit Telegram

 Telegram

 Discord

 Twitter

 Medium

 Governance forum

 Reddit

FAQ
Additional Resources - Previous

Basis Trading and Perpetual Contrac…
Next - Additional Resources

Last modified 1yr ago

Akropolis Search ⌘K

https://twitter.com/akropolisio
https://medium.com/akropolis
https://discord.gg/Y58CGUW
https://www.reddit.com/r/Akropolis/
https://t.me/akropolis_official
https://t.me/akropolis_official
https://discord.gg/Y58CGUW
https://twitter.com/akropolisio
https://medium.com/akropolis
https://gov.akropolis.io/
https://www.reddit.com/r/Akropolis/
https://akropolis.gitbook.io/akropolis/additional-resources/faq
https://akropolis.gitbook.io/akropolis/additional-resources/basis-trading-and-perpetual-contracts
https://akropolis.gitbook.io/akropolis/

Basis Trading and Perpetual
Contracts
This section will provide an overview of key concepts utilized by Vortex.

What is Basis Trading?
Basis Trading is an arbitrage strategy used in financial markets which takes advantage of the
difference between the spot and future price of a commodity (the basis).

As an example of how basis trading works - and without going into too much detail - imagine a
trader had the opportunity to purchase 1 ETH at $3500 and sell the equivalent of 1 ETH of futures
contracts at $4000. The trader would then be able to lock in a profit from the basis, which in this
case is $500.

Vortex works in a similar way, but instead of a centralized futures market, uses decentralized
derivative exchanges that offer Perpetual Contracts to generate yield.

What are Perpetual Contracts?
Perpetual Contracts are similar to traditional futures, but, as their name suggests, have no
expiration or settlement date.

This indefinite-until-closed nature also means that Perpetuals trade much closer to the current
spot price than futures - but, being derivatives, they do still diverge. This price divergence from
spot generally reflects the sentiment of traders on the exchange.

It is crucial that this divergence is controlled and the price of Perpetuals are frequently brought
back to closely match spot prices.

The mechanism to achieve this control and incentivize spot/Perpetual price stability is known as
the Funding Rate.

What is the Funding rate?
The Funding Rate is a fee periodically paid from the ‘more popular’ side of the market to the
opposing ‘less popular’ side to incentivize contract purchases.

If the Perpetuals price is above the spot price, the Funding Rate will be positive and traders with
open long contracts will pay the rate to traders with open short contracts.

Conversely, if the Perpetuals price is below the spot price, the Funding Rate will be negative and
open shorts will pay open longs.

Community Channels
Additional Resources - Previous

Last modified 1yr ago

Akropolis Search ⌘K

https://akropolis.gitbook.io/akropolis/additional-resources/community-channels
https://akropolis.gitbook.io/akropolis/

