
The notes below describe the approach in designing and writing the initial
reference implementation of Handshake. This is not a prescriptive document and
should not be used as such. This document's goal is to provide a referenece on
the rationale and initial design of the protocol.

Abstract

The foundation for the internet's security has relied upon trusted Certificate
Authorities (CAs) which attest that a user is connecting to the correct server
or node. This has created a reliance upon a handful of trusted actors, many of
whom are for-profit corporations or other actors who may not have long-term
incentive towards stewardship of the internet. The net-effect is a "1-of-m
multisig" whereby if any one of the trusted CAs fail, the entire security of
the internet fails. This failure has occurred and will continue to occur with
the trusted-CA design, with catastrophic risks as more and more infrastructure
becomes networked.

Many replacements have been proposed to properly secure the internet, but none
have been successful. Fundamentally, a trust anchor is needed to provide a
secure association between names and servers who claim to be the correct
endpoint for those names. There has been a tradeoff between federated nodes
(CAs) and a single trusted entity controlling the network (DNSSEC). Handshake
is an ongoing project to establish a decentralized network whereby
cryptoeconomic incentives are established to coordinate consensus on the
association between names and certificates.

This document describes a proposal, operational functionality, and intention
to replace centralized trusted internet infrastructure, with a decentralized
Certificate Authority and globally unique namespace composed of a
decentralized blockchain and cryptographic proofs backed by cryptoeconomic
mechanisms. This construction enables the namespaces to point directly to a
compact certificate representing a trust anchor which does not rely upon a
single trusted authority to create attestations as in the existing federated
Certificate Authority model. Handshake builds in compact verifiable proofs to
ensure compatibility with embedded and mobile devices, with significant
committed merkelized state proof-size and performance improvements.

Further, a method is proposed to achieve decentralized, large-scale community
coordination inspired by the free and open source software aesthetic. The free
and open source community has provided the most critical contribution towards
development of the internet and has produced software which humanity relies
upon worldwide. This coordination is achieved by building a decentralized
infrastructure backed by a blockchain to support collective agreement on
certificates and coordination using direct ownership of a commodity token by
those who are most capable of integrating and using the Handshake blockchain,
which optimizes for the long-term incentives of the free and open source
community. The Handshake project and community is a performance experimenting
on replacing the social function of centralized corporations in favor of
self-interested gift economies, which achieve coordinated goals.

Project Summary

Many understand the green lock icon on the web browser as meaning the connection
is secure and encrypted between themselves and the server identifying as the
website. However, the security has always been entrusted in a handful of
centralized Certificate Authorities (CAs). These entities are the guardians of
the internet and there has been many documented cases of
failure[fakecert-fr][fakecert-ir]. As the internet connects more devices and
economic infrastructure becomes internetworked, the impact of any one failure
dramatically increases.

Historically, a trilemma known as Zooko's Triangle[zooko] was believed to
exist where one must pick two of three possible properties consisting of:
Human-meaningful names, Decentralized, and Secure. This trilemma reflected the
perceived constraint revolving around the notion that it may be necessary for a
single point of trust for a consensus around short names (e.g. a website
address), otherwise a lack of global consensus around the owner of the name
eliminates the name's meaningfulness and security.

Recent innovations with the blockchain has possibly maneuvered around this
trilemma by creating a single point of consensus around the association between
names and certificates, in a single decentralized blockchain represented by many
actors verifying the network[aaron]. Achieving this security property
requires not only redesigning the trust anchor in certificate authorities, but
also requires deep integration in the naming infrastructure itself.

A blockchain is proposed which optimizes for correcting prior weaknesses around
acknowledging stakeholders such as existing top-level domain (TLD) holders and
optimizes for decentralization (while still allowing for n-of-m attestations).
Users use the native token (coin) to register TLDs which are pinned to a
specific certificate as the identity. A committed merkelized proof of all
top-level names allow for compact, shareable inclusion and exclusion proofs.
This blockchain exists to attempt to resolve the need for a globally unique
namespace which is necessary to have an association with unique names and
certificates. While it's possible to create a singular centralized globally
unique association (DNSSEC), a decentralized system can be resolved by creating
a blockchain with its own cryptoeconomic incentives (coin), including name
auctions of a unique namespace and block creation. Scarce resources require
sybil protection, usually managed by a central trusted authority (CAs, ICANN),
but can be resolved by having a blockchain based mechanism for global consensus
and resource allocation.

As a blockchain is needed for global consensus on a namespace, there needs to be
a choice upon how to allocate resources for this system. The intent behind
Handshake is to allocate a representative portion of the resources to the
stakeholders which may be potentially contributive towards development and
adoption, hence the overwhelming majority of the resources being allocated to
the free and open source community. It is possible that this project may spur
other projects to allocate the overwhelming majority of economic resources to
the free and open source community in the form of an obligation-free
distribution. This document describes an emergent mechanism and game whereby
decentralized blockchain project developers and investors, in the face of
competition from other projects, may have significant self-interested incentives
to distribute an overwhelming majority of token/coin ownership to the free and
open source community, and ultimately the whole of humanity.

In order to achieve new games of distribution and a new economy predicated upon
true gifts over contracted labor, it must be achieved via a self-perpetuating
and self-interested mechanism which is game-theoretically sound. One of the
principal of this project is sparking a mechanism whereby individuals have
self-interested incentives towards creating decentralized projects as well as a
wide distribution via gifts. Consequently, its goal is to fulfill the
self-interested imperative of a return by the principals initiating, developing,
and scaling the project worldwide. However, to scale up, there is a game between
projects which distribute ownership of the chain itself to as wide of a set of
participants as possible. Handshake aims to distribute 15% of the coins to the
individuals and companies responsible for creating the coin (with the
developers/organizations/advisors, and early investors split evenly at 7.5%
each). This ensures a self-interested game can perpetuate for future projects,
and future projects without significant front-loaded development costs may be
even lower.

The Handshake project aims to distribute around 70% of the coin supply to open
source developers, projects, and non-profits without any contractual expectation
of work by the individual free and open source developers.

Fundamentally, the self-interested mechanism requires all developers and users
to be receiving coins as an incentive. A summary of the mechanism is as follows:
Presume in the future there are three hypothetical projects released which
achieve the same goal, let's say it's a decentralized mesh networking
blockchain. Two of the three give 90% of its value to the creators of the
project. The third gives 85% of the value to FOSS developers and those who put
up nodes. It would stand to reason that the third would have significantly
greater odds of success. The Handshake mechanism is designed to create a
competitive game of asset ownership distribute more to FOSS developers, and
perhaps all of humanity.

Much as capitalism creates a competitive game between participants which
competitive self-interest reduces the price of goods in non-monopolistic
commodity environments, the handshake mechanism is a project exploring a similar
concurrent game to maximize ownership for FOSS developers and the public. No
single producer reduces the prices of their own good for altruism in
capitalist marketplaces, it is done through self-interested competitive
incentives, "I make more money when I lower my prices". Similarly, the
handshake mechanism is experimenting with a process whereby "I make more money
the more is gifted to FOSS developers and the whole of humanity".

Decentralized Certificate Authorities and the Blockchain

The resolution to the trilemma, Zooko's Triangle, is between the relationship
with the name and the cryptographic identity of the owner. By making the owner
of the name a cryptographic key, one can create a certificate chain of the owner
down to the key by creating a signature signed by that owner's key (a chain of
custody). This is not possible under the current system as the current owner of
the name is not owned by a cryptographic key, but rather trusted records held by
custodians with non-cryptographic records of named owners, e.g. the TLD ".com"
is held by Verisign.

However, cryptographic attestation of certificate chains for SSL/HTTPS is
insufficient in creating decentralized certificate authorities. If there are no
canonical points of truth for a decentralized record of the relationship between
keys and names, then the record can be disputed. Alice can claim to own the TLD
".example", and Bob can think he's the correct owner. It is uncertain who the
true owner of of ".example" could be.

The blockchain creates the ability for canonical ownership records by recording
in order which record exists before another (thereby letting one know that Alice
registered a name before Bob could possibly register one, and therefore only
Alice's is correct). Without this canonicalization, it would not be possible to
have confidence that one is talking to the correct owner of a name and hence is
fundamental to canonical name resolution.

This canonicalization introduces an interesting dilemma, namely that of the
ability to sybil the network. Even with canonical ordering, the problem of
namespace allocation remains. A single party could spam the network registering
all possible short names in existence, monopolizing the network. This would
severely reduce the usefulness as one or a handful of parties monopolize the
resources. To correctly mitigate this problem, a currency native to the
blockchain is necessary to create a cost function for the names. When a name is
auction and sold, the coins are permanently destroyed from the system. Without a
cost, there is no cost to spamming and a single party owning everything. A
native coin is necessary, as a dollar-pegged coin would depend on an external
environment and have a trusted 3rd party operate as a gatekeeper to the system,
whereas a native coin would not depend on any single trusted third party.

As a consequence, it then becomes a question of resource allocation as a method
of prevention against sybil attacks. Should the majority go to initial
developers/investors, majority to miners, or majority to FOSS developers
in the early days of the coin? Handshake is an experiment in the possibility
that the majority of ownership claimed by the FOSS community is a
rational and game theoretically superior strategy to traditional models of
corporate growth and development for some project types; those where a
decentralized blockchain is ideal.

Consensus

Proof of Work

Proof of work[pow] saw its first use in cryptocurrency with the advent
Bitcoin[bitcoin]. Bitcoin's PoW function is a further iteration of a specific
proof-of-work construction known as Hashcash[hashcash]. The use of
proof-of-work led to the creation of specialized chip hardware intended to
optimize this function. While specialized hardware can ensure that a
proof-of-work network is protected, we concede that it does have the capacity
to enable the existence of hardware monopolies.

However, we submit that this is an acceptable risk due to the benefits
proof-of-work offers in the way of SPV. Our protocol is not usable in practice
without proper SPV proofs.

There is currently no known sufficiently _decentralized_ proof-of-stake system
in production resilient against fraudulent SPV proofs.

Proof of Work Functions

A Hashcash proof-of-work function using SHA3 and blake2b is used. SHA3 is
currently under-represented in proof-of-work functions. We find that simplistic
nature of Hashcash limits the room for unforeseen optimizations, and that the
current lack of SHA3 usage in combination with blake2b in proof-of-work
functions creates a more level playing field for hardware manufacturers.

Cuckoo Cycle[cuckoo-1][cuckoo-2] was considered, however, throughout the course
of the development of our protocol, we witnessed frequent optimizations to
cuckoo cycle mining algorithms by Tromp and other contributors. Given these
optimizations and the complexity of the underlying algorithm itself, we began
to strongly consider the room for unforeseen optimizations in the mining
process.

We fear that an unforeseen optimization, if kept secret after its eventual
discovery, could lead to even harsher monopolistic conditions among hardware
manufacturers. Furthermore, we find that the Cuckoo Cycle verification and
mining algorithms are lacking in the area of formal academic analysis. If
economic incentives are created to optimize Cuckoo Cycle, we expect that graph
theorists and other experts will be involved with the creation of optimized
mining algorithms and hardware.

We see these as unreconcilable issues, as they impede the ability to properly
choose Cuckoo Cycle parameters for a blockchain. Cuckoo Cycle parameters
themselves are difficult to adjust on the consensus layer, and perhaps cannot
be dynamically adjusted safely.

Difficulty Adjustment

Given the prevalence of edge cases such as _timewarp attacks_[timewarp] and
stalling during abrupt hashpower changes on the Bitcoin retargetting algorithm,
we sought alternatives.

We examined DigiByte's DigiShield[digishield-1][digishield-2], MegaCoin's
Kimoto Gravity Well[kimoto-1][kimoto-2], and DarkCoin's Dark Gravity Wave[dgw],
as potential retargetting algorithms for our protocol.

Due to the uncertainty of exactly how much mining power will enter the network
upon launch, and, initially, the added uncertainty of a new PoW algorithm, we
desired an approach which would retarget on every block. DigiShield seems to
perform especially well in the case that mining power abruptly enters or exits
the network.

The formulation of the _Zcash_ retargetting
algorithm[zcash-1][zcash-2][zcash-3] is also of particular relevance, given the
similarities of the protocols' respective PoW functions. Zcash has had success
with their variation of DigiShield, and as such, our protocol's retargetting is
more-or-less a faithful reimplementation of the Zcash algorithm.

Unspent Transaction Outputs (UTXOs)

The UTXO-based blockchain, also introduced by Bitcoin, transfers money from one
party to another using a series of _transaction outputs_. Transaction outputs
inherently enforce _order_ of transactions within a _block_. Order-enforcement
in particular is necessary for our protocol to function with the utmost
security.

Our naming system requires on-chain smart-contract-like behavior. It deals in
outputs which need to update a global state. This is atypical of UTXO systems.
But as such, we require that these operations occur in a predictable order.

This order-preservation mechanism is especially necessary for maintaining the
transaction _mempool_ state in a predictable manner. This model ensures that
block assembly is a fast and simple process.

Naming History

The history of naming has been profoundly effective, exploratory, and has had
many skilled teams and projects. From the beginning, the DNS system and SSL/CAs
have been elegant and the Certificate Authority system's existence since the mid
1990s to now has been a testament to its resilience, with the hard work of
thousands of individuals and organizations. Since then, there have been many
other attempts to replace, upgrade, or distribute this system.

The pioneers of naming cryptocurrencies include Namecoin[namecoin-1],
ENS[ens-1][ens-2], and Blockstack[blockstack-1] (among others).

Namecoin's model requires a user to run a fully validating node in order to
securely resolve domain names. Although Namecoin was the first cryptocurrency
project to attempt to implement a DNS bridge[namecoin-2] for a cryptocurrency
naming protocol, the protocol itself is lacking in the area of SPV.

The _Ethereum Name Service_[ens-3][ens-4][ens-5] lends itself to a bit of
centralized control as the ENS root[ens-6][ens-7] is centrally maintained by a
select group of signatories. As is the case with Namecoin, there is no easy
avenue for _compact_ proofs on ENS.

Of our three predecessors, Blockstack came the closest to providing
easy-to-verify compact proofs for names.

SPV name verification in the Blockstack _SNV_ protocol first involves
retrieving a state root (also known as the _consensus hash_) from a _trusted
node_ and securely requesting the name record from an unstrusted node.
Unfortunately, one can not verify that the name record served is the most
recent revision[blockstack-2]. Furthermore, requesting the state root from a
trusted node leads to a similar construction as Namecoin, wherein one must run
a fully validating node in order to securely retrieve name data.

This full node requirement, which all naming predecessors are encumbered by in
some form, may be one of the primary hurdles to widespread adoption of a naming
cryptocurrency. To allow for SPV name resolution in the absence of a trusted
full node, provability of names must be an inherent feature of the protocol.

There has also been prior work on alternative root zones. The most significant
example of an alternate root zone is OpenNIC[opennic]. This is a proposed
alternative to ICANN via an alternate namespace of unused names. This shifts a
singular root source of truth to a federated model where a namespace is
controlled by different entities, however, does not remove trust in those
organizations. It does not create additive security, as the trust is partitioned
according to TLD to a single root zone.

The Convergence Project[convergence], initially proposed by Moxie
Marlinspike, created a system of certificate pinning and attestation. Notaries
would attest to the endpoint's certificate. This system created an additive
federated model of trust. This provides a significant improvement to the
existing single CA trust model. However, there is no canonical trust anchor,
which means that two people can have a different view on the correct certificate
in adversarial or faulty notaries.

Certificate Transparency[ct] provides a method to ensure committed proofs of
name records and significant increases the security of the system. It creates a
method of accountability for failure and rapid detection. This is primarily a
detection mechanism in the event of failure of CAs.

Provable Data Sets

In order to be free of the full node requirement, our protocol requires an
authenticated data structure. In particular, we require a data structure
which can efficiently map keys to values. In order for our protocol to be a
suitable replacement for the DNS root zone, speed and size were our primary
concerns.

In our benchmarks of various data structures, we found that while many of them
are indeed performant, they have an unacceptably large proof size, frequently
exceeding 1-3 kilobytes. This led us to do further research.

Our strict requirements include minimal storage, exceptional performance on
SSDs, small proof size, and _history independence_, wherein order of insertion
has no effect on the final state of the tree. The latter requirement is
something which every re-balancing data structure inherently lacks.

These requirements severely reduced our options. We examined in particular the
Merkelized Base-16 Trie[ept-1][ept-2] used in Ethereum[ethereum], and the
Sparse Merkle Tree[smt-1] used in Google's certificate transparency
project[smt-2].

We found that while Ethereum's base-16 trie was performant, the proof size was
not suitable for our protocol. The storage requirements were also excessive.

We further discovered that Google's Sparse Merkle Tree was unsuitable in terms
of performance, as each insertion requires a large number of database lookups
without heavy caching, as well as several rounds of hashing for each item
inserted. A typical insertion of 5,000 leaves required at least 1.2 million
rounds of hashing in our benchmarks, as well as a significant number of
database reinsertions.

As a result of this research, we consider authenticated data structures
implemented, or intended to be implemented, on top of existing data stores to
be inherently flawed in terms of scalability.

FFMT (Flat-File Merkle Tree)

We devise an authenticated data structure, which unlike the Ethereum Trie or
Sparse Merkle Tree, is intended for storage in flat files. This removes the
overhead of database lookups entirely by making the data structure its own
database implementation.

By storing a merkelized data structure in a series of append-only files, we are
able to provide traditional database features such as snapshotting, atomicity,
and crash consistency. Given our requirements, a trie is the obvious choice as
a backing data structure.

The initial implementation of our FFMT is a simple base-2 merkelized trie, and
results in a construction which shares many similarities to earlier work done
by Bram Cohen[merkleset].

Later iterations of our data structure began storing colliding prefix bits on
internal nodes, resulting in a base-2 merkelized radix tree similar to the
Merklix Tree[merklix-1][merklix-2] proposed by Amaury Séchet.

As the backbone of our FFMT, we propose one of the two aforementioned data
structures.

Our initial FFMT implementation resulted in over a 50x speedup over Ethereum's
Base-16 Trie and over a 500x speedup over Google's Sparse Merkle Tree. We also
found that proof sizes are comparable to compressed Sparse Merkle Tree proofs
and roughly four times smaller than base-16 trie proofs.

The FFMT storage requirements, while steeper than those of the Sparse Merkle
Tree, are still much smaller than the Ethereum base-16 trie. We benchmarked
insertions of 50 million 300-byte leaves into our FFMT in batches of 500 with a
periodic commission of 44,000 values to the tree. Our benchmarks were run on a
high-end but consumer-grade laptop, containing a Intel Core i7-7500U 2.70GHz
and an NVMe PCIe SSD. Near peak capacity, the 500-value insertions themselves
averaged roughly 100-150ms, with a commission time averaging 400-600ms for
44,000 leaves. Note that the committing of the tree involves a call to
`fsync(2)`.

These insertion and commission times are acceptable with 5 minute blocks. We
add the extra fail-safe of limiting any tree updates to a maximum of 600 per
block, giving us a predictable worst-case insertion complexity.

Description

Typical of any trie-like structure, the FFMT follows a path down each key in
order to find the target leaf node.

Insertion

We start with a simple insertion of value `a` with a key of `0000`. It becomes
the root of the tree.

fig. 1

```
Map:
  0000 = a

Tree:
       a
```

We insert value `b` with a key of `1100`. The tree grows down and is now 1
level deep. Note that we only traversed right once despite the 3 extra bits in
the key.

fig. 2

```
Map:
  0000 = a
  1100 = b

Tree:
       R
      / \
     /   \
    a     b
```

The following step is important as to how our simplified FFMT handles key
collisions. We insert value `c` with a key of `1101`. It has a three bit
collision with leaf `b` which has a key of `1100`. In order to maintain a
proper key path within the tree, we grow the subtree down and add _null_ (or
dead-end) nodes (represented by `x`) as children of internal nodes. Dead-end
nodes are more tangibly represented by a sentinel hash of all zero bits.

This differs from the Merklix-like version of our tree, which would store bit
collisions within a single parent internal node.

fig. 3

```
Map:
  0000 = a
  1100 = b
  1101 = c

Tree:
       R
      / \
     /   \
    a    /\
        /  \
       x   /\
          /  \
         /\   x
        /  \
       b    c
```

We add value `d` with a key of `1000`. It is free to consume one of the
null nodes.

fig. 4

```
Map:
  0000 = a
  1100 = b
  1101 = c
  1000 = d

Tree:
       R
      / \
     /   \
    a    /\
        /  \
       d   /\
          /  \
         /\   x
        /  \
       b    c
```

Adding value `e` with a key of `1001` results in further growing.

fig. 5

```
Map:
  0000 = a
  1100 = b
  1101 = c
  1000 = d
  1001 = e

Tree:
           R
          / \
         /   \
        a    /\
            /  \
           /    \
          /      \
         /        \
        /\        /\
       /  \      /  \
      /\   x    /\   x
     /  \      /  \
    d    e    b    c
```

Removal

Removal may seem non-intuitive when dead-end nodes are present in the subtree.
All previously executed subtree growing must be un-done.

fig. 6

```
Map:
  0000 = a
  1100 = b
  1101 = c
  1000 = d

Tree:
       R
      / \
     /   \
    a    /\
        /  \
       d   /\
          /  \
         /\   x
        /  \
       b    c
```

If we were to remove leaf `d` from the above tree, we must replace it with a
dead-end node.

Removing leaf `d` (we must replace with a dead-end):

fig. 7

```
Map:
  0000 = a
  1100 = b
  1101 = c

Tree:
       R
      / \
     /   \
    a    /\
        /  \
       x   /\
          /  \
         /\   x
        /  \
       b    c
```

Removing leaf `c` (shrink the subtree):

fig. 8

```
Map:
  0000 = a
  1100 = b

Tree:
       R
      / \
     /   \
    a     b
```

Removing leaf `b` (`a` becomes the root):

fig. 9

```
Map:
  0000 = a

Tree:
       a
```

With our final removal, we are back in the initial state.

Proofs

Our FFMT proof is similar to a standard merkle tree proof with some extra
caveats. Leaf hashes are computed as:

```
HASH(0x00 || 256-bit-key || HASH(value))
```

Where `||` denotes concatenation.

It is important to have the full key as part of the preimage. If a
non-existence proof is necessary, the full preimage must be sent to prove that
the node is a leaf which contains a different key with a colliding path. If the
key path stops at one of the dead-end nodes, no preimage is necessary. Any
dead-end nodes up the subtree can be compressed, as they are redundant
zero-hashes.

If we were asked to prove the existence or non-existence of key `1110`, with
our original tree of:

fig. 10

```
Map:
  0000 = a
  1100 = b
  1101 = c
  1000 = d

Tree:
       R
      / \
     /   \
    a    /\
        /  \
       d   /\
          /  \
         /\   x
        /  \
       b    c
```

Key `1110` does not exist in this case, so we must provide the hashes of nodes
`a`, `d`, the parent hash of `b` and `c`, and finally a dead-end node `x`. The
fact that a final leaf node was a dead-end node proves non-existence.

fig. 11

```
Proving non-existence for: 1110

Map:
  0000 = a
  1100 = b
  1101 = c
  1000 = d

Tree:
       R
      / \
     /   \
   (a)   /\
        /  \
      (d)  /\
          /  \
        (/\) [x]
        /  \
       b    c
```

The dead-end node `x` can be compressed into a single bit, since it is a
zero-hash.

Proving non-existence for key `0100` is more difficult. Node `a` has a key of
`0000`. In this case, we must provide the parent node's hash for `d` and its
right sibling, as well as `a` and its original key `0000`. This makes the
non-existence proof larger because we have to provide the full preimage, thus
proving that node `a` is indeed a leaf, but that it has a different key than
the one requested. Due to our hashing of values before computing the leaf hash,
the full preimage is a constant size of 64 bytes, rather than it being the size
of the key in addition to the full value size.

fig. 12

```
Proving non-existence for: 0100

Map:
  0000 = a
  1100 = b
  1101 = c
  1000 = d

Tree:
       R
      / \
     /   \
   [a]  (/\)
        /  \
       d   /\
          /  \
         /\   x
        /  \
       b    c
```

We need only send the preimage for `a` (the value hash of `a` itself and its
key `0000`). Sending its hash would be a redundant 32 bytes.

An existence proof is rather straight-forward. Proving leaf `c` (`1101`), we
would send the leaf hashes of `a`, and `d`, with one dead-end node, and finally
the sibling of `c`: `b`. The leaf hash of `c` is not transmitted, only its
value (`c`). The full preimage is known on the other side, allowing us to
compute `HASH(0x00 || 1101 || HASH("c"))` to re-create the leaf hash.

fig. 13

```
Proving existence for: 1101 (c)

Map:
  0000 = a
  1100 = b
  1101 = c
  1000 = d

Tree:
       R
      / \
     /   \
   (a)   /\
        /  \
      (d)  /\
          /  \
         /\  (x) <-- compressed
        /  \
      (b)  [c]
```

Our goal is to keep the proof size under 1 kilobyte, at least for the first
several years.

With 50,000,000 leaves in the tree, the average depth of any given key path
down the tree should be around 27 or 28 (due the inevitable key prefix
collisions). This results in a proof size slightly over 800 bytes, pushing a
1-2ms proof creation time on our previously mentioned hardware.

Disk Optimization

Due to the sheer number of nodes, a flat-file store is necessary. The amount of
database lookups would be overwhelming for a data store such as _LevelDB_. Our
FFMT is much simpler than the Ethereum Base-16 Trie in that we need only store
two nodes: internal nodes and leaves.

Internal nodes are stored as:

fig. 14

``` c
struct internal_node_s {
  uint8_t left_hash[32];
  uint16_t left_file;
  uint32_t left_position;
  uint8_t right_hash[32];
  uint16_t right_file;
  uint32_t right_position;
} internal_node;
```

Leaf nodes are stored as:

fig. 15

``` c
struct leaf_node_s {
  uint8_t key[32];
  uint16_t value_file;
  uint32_t value_position;
  uint16_t value_size;
} leaf_node;
```

The leaf data itself is stored at `value_position` in `value_file`.

We store the tree in a series of append-only files, with a particularly large
write buffer used to batch all insertions with a minimal amount of writes.

Atomicity with a parent database can be achieved by calling `fsync(2)` after
every commission and inserting the best root hash and file position into the
database.

Because our database is append-only, traditional crash consistency can also be
achieved by writing a metadata root on every commit. This metadata root
contains a pointer to the latest tree root, a pointer to the previous metadata
root, and a 20 byte checksum. On boot, the database can parse up the files in
reverse order to find the last intact state.

Compaction

The FFMT database can be compacted periodically through user intervention,
though it's a rather expensive operation. In our benchmarks, 1,136 commits of
44,000 300-byte leaves each (50,000,000 leaves total), resulted in a database
size of 49GB. This could be compacted to use approximately 20GB of storage.

Collision Attacks

It goes without saying that it is most definitely possible for an attacker to
grind a key in order to create bit collisions. Currently, the Bitcoin network
produces 72-80 bit collisions on block hashes. In the worst case, that would
delve 72-80 levels deep in our tree, but while storage increases, the rounds of
hashing are far less than that of the sparse merkle tree.

With small modifications, our initial FFMT implementation was able to be
converted to a base-2 merkelized radix tree, or Merklix tree. We found that
while the Merklix tree offers better DoS protection, in practice, it does not
seem to have significant performance or storage benefits over the simplified
base-2 trie described above.

We see these potential modifications as a trade-off between space efficiency
and simplicity. The radix tree modifications to the trie result in a slight
increase in complexity as far as the tree's implementation and proof
verification are concerned. The most unfortunate aspect of these modifications
to be the requirement of variable sized nodes when stored on disk. Unlike the
simplified trie, the radix tree must store a variable number of prefix bits on
each internal node.

We hope to observe how each of these trees behave on future iterations of the
Handshake testnet in order to better determine the proper data structure for
our protocol.

Naming Markets

Similar to ENS, our naming protocol seeks to determine the true market value of
names before allowing registration. In particular, our system requires an
auction system for names. In order to prevent _price sniping_, we implement a
blind second-price auction, also known as a _Vickrey Auction_.

In a Vickrey Auction, a participant is only aware of their own bid. The bids
are revealed at the end of the auction when a winner is chosen. The winner pays
the second highest bid instead of his or her own.

This auction structure was first described by William Vickrey[vickrey]. Vickrey
argues that the result of a simple non-blind auction is virtually identical to
a blind second-price auction. In an auction where bids are public, bidders will
announce their bids until the _second highest price_ is reached. At this point,
only one bidder will remain who is willing to pay, and he or she ends up paying
the second highest price. We agree with Vickrey's analysis, and our conclusion
is that if we are to do a blind auction, it is only logical to make it a
second-price auction.

However, a Vickrey Auction system requires that we are capable of executing
rather complex consensus-layer smart contract behavior on top of a UTXO set.
This kind of functionality rarely exists in the UTXO-based world. Our initial
implementation sought to add dynamic functionality at the _transaction_ level.
This approach was unmanageable. Whatever dynamic behavior that is added must
occur at the output level.

Covenants

Bitcoin Covenants, first explored by Maxwell[maxwell-1][maxwell-2] and later
formally described by Möser et al[covenants], are a form of smart contracts
that exist on a UTXO-based blockchain such as Bitcoin. The word "covenant"
itself refers to a legally binding covenant, in which a party agrees to refrain
from or participate in a certain action in the future. Covenants, at their most
fundamental level, restrict the path of money as it passes from output to
output. Once money enters a covenant, it is _locked_ into a specific path and
may not under any circumstances deviate from said path. Actors who have the
ability to create and sign transactions must create them according to the
covenant's state.

In order for covenants on Bitcoin to restrict the path of money, there are
several wildly different mechanisms currently in thought.
Bitcoin-NG[bitcoin-ng] proposes consensus-level covenants in the form of a new
bitcoin script opcode, `OP_CHECKOUTPUTVERIFY`. The widely discussed counterpart
to consensus covenants is cryptographic covenants, which are executed via
cryptographic trickery. This trickery ranges from novel usage of ECDSA key
recovery combined with a special kind of transaction signature hashing, to the
usage of SNARKs.

Although never enabled on Bitcoin due to fungibility and AML/KYC surveillance
concerns, we believe that the core idea of covenants is the proper framework
for implementing complex smart contracts in conjunction with a UTXO set.

The approach elected for our protocol is most similar to the consensus-level
covenants proposed by Bitcoin-NG.

Our construction is a deeply consensus-level covenant, and differs from the
earlier proposals, which required layer-two blockchain monitoring in order for
dynamic behavior, such as asset ownership, to be achieved. Instead of a
layer-two node determining these details, the blockchain itself maintains the
state of these assets. In our case, the assets in question are _names_.

Output Structuring

In a UTXO-based blockchain, the typical transaction output consists of a
locking script, or _predicate_, combined with an output value.

A typical bitcoin output exists as a struct of:

fig. 16

``` c
struct output_s {
  int64_t value;
  uint8_t script[];
} output;
```

With `script` being the locking script; the predicate which locks up money for
redemption. We add a new field called `covenant`:

fig. 17

``` c
struct output_s {
  int64_t value;
  uint8_t script[];
  struct covenant_s {
    uint8_t action;
    uint8_t arguments[][];
  } covenant;
} output;
```

The money can still be locked up by the predicate just the same. However, when
money is sent into a covenant, it limits where the output may be redeemed _to_.

Due to the fact that the covenant behavior is only prescribed at the consensus
level, this construction should be resistant to fungibility attacks in
comparison to other covenants proposals.

Auction System

Using our generic consensus-level covenant system, we are able to implement
almost any kind of smart contract on the blockchain layer.

In a normal UTXO system, the order of inputs and outputs has almost no meaning.
We enforce positional requirements of inputs and outputs when covenants are
used.

The behavior of our covenants is prescribed with consensus code in the
implementation of the blockchain itself. Our system is generic enough that new
covenant types can be _soft-forked_ into the protocol later.

We prescribe a covenant type known as `BID`, which enters a bid into the
system, associated with a name and with its corresponding output. The bid
itself carries with it some _arguments_: namely, the name a participant is
bidding on and the _blind value_. The blind value is the digest of the
participant's _bid value_ concatenated with a 256 bit nonce.

The value tied to the output itself must be greater than or equal to the bid
value (although, the blockchain has no way of verifying this initially). Once
entered into the `BID` covenant, the value may no longer be redeemed to a
normal output. The value associated with this output is called the _lockup
value_.

The first participant to enter an opening bid initiates the _bidding period_,
wherein other participants are free to join in the bidding.

fig. 18

```
             TX #1 (txid=f3ce)

 Input #0          |  Output #0
   ...             |    covenant_type=BID
                   |    covenant_items={name, blind}
                   |    address=0d1a
                   |    value=15
```

After the bidding period has ended, a _reveal period_ is automatically
initiated by the blockchain. Any participant who entered a bid during the
bidding period now has a limited amount of time to _reveal_ their bid. This is
accomplished by revealing their blind value's full preimage in a `REVEAL`
covenant.

fig. 19

```
             TX #2 (txid=c1d3)

 Input #0          |  Output #0
   prev_txid=f3ce  |    covenant_type=REVEAL
   prev_index=0    |    covenant_items={name, nonce}
                   |    address=0d1a
                   |    value=5
                   |
                   |  Output #1
                   |    covenant_type=NONE
                   |    covenant_items={}
                   |    address=c0a8
                   |    value=10
                   |
```

The full preimage includes the participant's 256 bit nonce, which was kept
secret up until this point, as well as their bid value. At this point, the
`REVEAL` output's value must be equal to the participant's bid value. The
remainder of the lockup value can be taken as change. In the case of _fig. 19,
the bid had a value of 5 coins, with the 15 coin lockup value successfully
concealing the true value of the bid. This participant is able to immediately
redeem 10 coins as change.

Once the reveal period has ended, a winner is chosen. This winner is able to
redeem their `REVEAL` output to a `REGISTER` covenant. The `REGISTER` output
must have a value equal to the second highest bid, or in the case of only one
bid, the participant's own bid value. We call this value the _name value_.
Similar to the `REVEAL` covenant, the remainder of the bid value can be taken
as change.

fig. 20

```
             TX #3 (txid=a7be)

 Input #0          |  Output #0
   prev_txid=c1d3  |    covenant_type=REGISTER
   prev_index=0    |    covenant_items={name, name_data}
                   |    address=0d1a
                   |    value=3
                   |
                   |  Output #1
                   |    covenant_type=NONE
                   |    covenant_items={}
                   |    address=b1c9
                   |    value=2
                   |
```

Once entered into the `REGISTER` covenant, the name value can _never_ be
redeemed normally and cannot be used for transfer of value or for regular
payments. It is effectively _burned_ from the system by its inability to leave
the covenant's path.

However, in the case that a participant loses, their funds can exit the
covenant path with a `REDEEM` output.

fig. 21

```
             TX #3 (txid=c0c1)

 Input #0          |  Output #0
   prev_txid=c1d3  |    covenant_type=REDEEM
   prev_index=0    |    covenant_items={name}
                   |    address=0d1a
                   |    value=5
```

The `REGISTER` output allows for a second parameter known as _name data_. The
name data by consensus standards is a 512 byte blob with no required format. By
policy standards it should be in a format akin to the DNS message
format[rfc1035].

fig. 22

```
             TX #4 (txid=cc1e)

 Input #0          |  Output #0
   prev_txid=a7be  |    covenant_type=UPDATE
   prev_index=0    |    covenant_items={name, [name_data], block_hash}
                   |    address=0d1a
                   |    value=3
```

Once a name is registered, a one-year timeout is initiated before a name
renewal is required. Renewals and updates to the name data are achieved through
the `UPDATE` covenant action.

The `UPDATE` covenant is similar to the `REGISTER` covenant, but it accepts a
third argument, _block hash_. In order to refresh the renewal timer, the owner
of the name is required to provide a recent block hash (one that occurred on
the main-chain within the past 6 months). We require this to prevent an owner
from pre-signing many thousands of years worth of renewals. A renewal should
amount to a proof that the owner is still in possession of his or her private
key.

Throughout this entire process, the address must remain the same as the one
provided in the original bid output. If a change in ownership is desired, the
output must be redeemed to a `TRANSFER` covenant. The `TRANSFER` covenant has
parameters which require the owner to commit to the address they intend to
change ownership to after a 48-hour delay. After 48 hours worth of blocks, the
owner can redeem the `TRANSFER` output to a `FINALIZE` output.

fig. 23

```
             TX #5 (txid=0b17)

 Input #0          |  Output #0
   prev_txid=cc1e  |    covenant_type=TRANSFER
   prev_index=0    |    covenant_items={name, address=fe13}
                   |    address=0d1a
                   |    value=3
```

fig. 24

```
             TX #6 (txid=11a3)

 Input #0          |  Output #0
   prev_txid=0b17  |    covenant_type=FINALIZE
   prev_index=0    |    covenant_items={name, name_data}
                   |    address=fe13
                   |    value=3
```

The 48 hour delay mentioned before is necessary in order to dis-incentivize
theft of names. During the delay, an owner may redeem the `TRANSFER` output to
a `REVOKE` output. The `REVOKE` output renders the name's output forever
unspendable, and puts the name back up for bidding.

fig. 25

```
             TX #6 (txid=d1da)

 Input #0          |  Output #0
   prev_txid=0b17  |    covenant_type=REVOKE
   prev_index=0    |    covenant_items={name}
                   |    address=0d1a
                   |    value=3
```

For increased security throughout this process, we define a new script opcode:
`OP_PUSHTYPETOSTACK`. This particular opcode makes use of _transaction
introspection_ in order to push the covenant type of the _next_ output to the
script execution stack. This allows for a name owner to assign a _hot key_ and
a _cold key_. The former key is used for updates to name data, while the latter
is intended to be used only for transfers and revocations.

An example script utilizing this feature may look something like what is
displayed in fig. 26.

fig. 26

```
OP_7
OP_PUSHTYPETOSTACK
OP_GREATERTHANOREQUAL
OP_IF
[cold-key]
OP_ELSE
[hot-key]
OP_ENDIF
OP_CHECKSIG
```

More advanced script code can also be used for example by requiring transfers
and revocations to require signatures from multiple parties.

A participant can assign this script to a pay-to-scripthash address and use it
when they enter their initial bid, or perhaps later transfer their name to it.

We intend for scripts to be the primary mechanism for robust security of name
ownership. In contrast, we intend for the `REVOKE` output to be a last resort
on the part of the name owner. It exists primarily to make the for-profit theft
of names all but impossible.

Commission

Name data is periodically committed to our authenticated tree at regular
intervals. Because our tree is implemented as a series of append-only files, a
commission interval is required to prevent history bloat, which may otherwise
require the user of the software to compact their history regularly.

Names and name data is batch inserted into the tree four times per day on a
six-hour interval on average (defined by blockheight). This means that the
time-to-live for any resource on the blockchain is at least six hours in
practice.

Context Optimizations

In cryptocurrency implementation, there is a notion of _contextual_ and
non-contextual validation. Non-contextual verification functions perform
basic sanity checks on transaction data before executing any resource-intensive
code such as database lookups or elliptic curve operations. This is done for
logic separation as well as for a measure for denial-of-service prevention.

In contrast, contextual verification is only executed once the majority of the
network state, such as UTXOs, is readily available.

In the implementation of our protocol we found it was easier to separate
blockchain validation into three logical categories: non-contextual,
contextual, and super-contextual.

We define _super-contextual_ verification as the validation functions which
execute only once a _global state_ is readily available. Our global state is
the state of the auctions and names. Whereas UTXOs are localized to a specific
transaction, auction and name state is globally accessible by any transaction.

Our prescription of covenant types is specifically designed to make
super-contextual verification easier and more performant.

Our system deals with a number of transaction locktimes which are enforced by
the covenants in a transaction. One particular example of our difficulty with
this was a number of edge cases we discovered in our implementation of the
transaction mempool. Because a blockchain reorganization can cause a change in
height of the main chain, a reorganization has the potential to invalidate
hundreds or even thousands of transactions in our mempool. Bitcoin also has
these issues when dealing with transaction locktimes and spends from coinbases
(which are required to have a maturity of 100 blocks). These edge cases are
much more severe in our system, and initially required a full revalidation of
the entire mempool whenever a reorganization occurred.

Typically, cryptocurrency mempool implementations do not hold any UTXOs in
memory, and optimize for only the state required to assemble a block. By
designing our specified covenant types with some redundant data, and by
separating super-contextual verification from contextual verification, we were
able to optimize this process.

In order to validate covenant-related locktimes, our implementation requires no
access to contextual information such as UTXOs. It only needs access to the
global state, and non-contextual data such as the outputs on the
transactions themselves.

This separation of logic enforced by a deliberate design, among other things,
allows us to avoid having to store an in-memory UTXO cache specifically for the
mempool.

We believe that having small amounts of redundant data in the covenant
parameter vectors, along with some redundant covenant types, also helps with
implementation of wallets, particularly SPV wallets.

Naming Architecture

The naming system of the internet is DNS[rfc1035]. DNS currently operates with a
multi-layer model. Operating systems typically expose a _stub resolver_. A stub
resolver has no recursive capabilities, and is only capable of sending simple
DNS message queries to remote nameservers. They are intended to be pointed at
recursive servers. Recursive servers perform full DNS iteration on behalf of
stub resolvers by traversing each _zone_'s nameserver until an _answer_ is
received. A zone's nameserver is referred to as an _authoritative server_.
Authoritative servers are capable of serving their own records, but also
sending _referrals_ to _child zones_.

Recursive servers are typically public and maintained by either internet
service providers or other organizations, such as Google, Cloudflare, or
OpenDNS.

Currently, recursive DNS resolvers, such as Google's Public DNS[google], hit a
number of root servers[root] maintained by various entities. These root servers
serve the _root zone_. The root zone is collection of _top-level domains_
(TLDs). The information necessary to resolve these TLDs is stored in a root
zone file distributed and maintained by IANA[iana], a branch of ICANN[icann].
ICANN currently acts as a gatekeeper as to which domains are allowed an entry
in the root zone file.

A zone file, in its most general definition, can be thought of as a database
which houses all the information necessary to serve the domain name records in
a given _zone_. In the case of the root zone, the domain names are TLDs such as
`com`, `net`, and `org`, and the zone file itself is quite literally a plain
text file[internic] in the RFC 1035[rfc1035] presentation format.

Provability

The current method for proving DNS is known as _DNSSEC_[dnssec]. DNSSEC
includes cryptographic signatures of DNS resource records in every DNS message.
This prevents an attacker from altering any DNS record as it is in flight.

In order to avoid having to distribute every domain name's public keys to
every DNS resolver, a _chain of trust_ is verified starting with the root zone
as the trust anchor. This means IANA's public keys must be stored by any
participant of this network, and limitations must also be placed in the notion
that the _root key-signing keys_[anchors] never become compromised[signing].
Furthermore, in order for a domain to be considered secure, IANA acts a
gatekeeper for security for top non-auction name registrations only, signing
off on keys in order to add them to the trust chain.

Handshake Architecture

The Handshake naming protocol differs from its predecessors in that it has no
concept of _namespacing_ or subdomains at the consensus layer. Its role is
not to replace all of DNS, but to replace the root zone file and the root
servers.

The goal is to maintain our own root zone file in a decentralized manner,
making the root zone uncensorable, permissionless, and free of centralized
gatekeepers such as ICANN and Certificate Authorities. In our protocol, every
full node peer on the network acts as a root server, serving a _provable_
version of the root zone file. Our blockchain is essentially a larger, but
distributed, zone file, permissionless, which any participant has the right to
add an entry in.

Proof of Work as a Trust Anchor

Proof-of-work is an interesting mechanism, as it is one of the few mechanisms
known which is completely immune to _man-in-the-middle_ attacks. Because of
this, a proof-of-work blockchain is able to act as a decentralized trust anchor
for anything we may need to prove. In our case, we are able to use it as a
permissionless mechanism to "sign off" on child DNS keys.

DNS currently has a feature for storing fingerprints of a child zone's DNS keys
in its parent zone. Because the root zone in our protocol is a blockchain, the
protocol itself can act as a trust anchor for these keys, allowing anyone to
prove not only their name on on the blockchain, but any subdomain they may have
as well. This involves simply committing one's key fingerprints to a record on
the blockchain.

Even after the trust chain has been validated all the way down each zone via
regular DNS, a user of this system still ends up with similar security to a
blockchain. This is because the trust anchor is, in fact, a blockchain.

Compatibility

In contrast to other naming projects, our goal is to work with DNS, not against
it. We intend to transparently provide an alternative to existing centralized
systems, all while requiring zero or minimal intervention from most users.

DNS is a very mature piece of internet architecture. Several tools we need are
already built. For example, it is already possible to store SSH fingerprints in
DNS[sshfp]. This feature is currently supported in OpenSSH[openssh]. This
allows one to verify SSH fingerprints in a decentralized way without installing
any extra software beyond the Handshake daemon.

DNS also has a feature for verifying SSL/TLS certificates[tlsa] by storing a
hash of the SubjectPublicKeyInfo in a DNS resource record. Using this feature,
one is able to run a recursive DNS resolver locally, with root hints pointed
at a blockchain. If this were the case, there would be no reason to mistrust a
self-signed certificate as long as a valid DNSSEC chain were present.

We believe these technologies, when used together, can remove the need for
Certificate Authorities.

Implementation

Our consensus protocol is usable as a suitable replacement for ICANN root zone
servers. An alternative to the ICANN Root Zone is, of course, not a new idea.
This avenue has been previously explored by the Open Root Server Network, or
ORSN[orsn].

In order for the root zone to be replaced transparently, recursive resolvers
must point at an authoritative nameserver which serves records committed to the
blockchain rather than ICANN's root zonefile. This is a difficult dynamic to
work with, as virtually no consumer devices currently ship with a recursive
resolver running locally.

There are multiple full DNS implementations include ISC's BIND[bind], as well
as LDNS[ldns] and Unbound[unbound] maintained by NLnetLabs[nlnetlabs]. We were
inspired by these implementations and created our own full DNS
implementation[bns] throughout the course of our research.

Network Bootstrapping

In order to bootstrap the network, all entries in ICANN's existing zonefile are
pre-reserved by consensus rules. Names in the list of Alexa top
100,000[alexa] domains are also pre-reserved for further inclusion of existing
stakeholders (with deduplication and common words down to above ~80,000 names).
The latter names are converted to top-level domains by selecting their first
domain name label.

Owners of these reserved names are be able to claim them directly on the
blockchain, bypassing the auction process. We aim to migrate existing
nameholders to the handshake blockchain in a permissionless manner. To
accomplish this, we propose _DNSSEC Ownership Proofs_.

While DNSSEC itself is intended to mitigate man-in-the-middle attacks, we have
found that, with some modifications, DNSSEC proofs can be used as secure proofs
of name ownership.

Smaller names may be unreliable as it is unknown whether they are the
perceived rightful owner of the names. Our project has a sunrise period
whereby rightsholders may claim their name.

DNSSEC Ownership Proofs

We propose DNSSEC ownership proofs as a much stricter subset of DNSSEC proofs
in that they do not allow for CNAME glue or wildcards. Furthermore, every label
must be separated by a zone cut using a typical DS-to-DNSKEY setup for
referrals. All zone referrals are retrieved and combined, in aggregate, to
produce the final proof.

These proofs must stem from ICANN's _key-signing keys_ (KSKs) to the final ZSK
in the target zone. The final _zone-signing key_ (ZSK) must sign a TXT record
which commits to the name's desired address on the blockchain. The proof is
broadcast to the peer-to-peer network and included by miners in the coinbase
transaction of a block. Consensus rules dictate that the miner must create an
output for the associated proof, thereby granting the name to the committed
address.

By consensus rules, the proofs are verified against ICANN's existing trust
anchors (KSK-2010 and KSK-2017). Although KSK-2017 is not currently in use,
ICANN did publish the key last year (2017). This allows us to include it in the
blockchain's consensus rules from day one.

Relying on only trust anchors for verification results in large proofs
(typically ranging between 3 and 10 kilobytes), however, this method allows
nameholders who lack an existing DNSSEC setup to upgrade and claim their name
in the future.

We design the DNSSEC claim system to be operational for a total of 4 years on
the blockchain.

Security Concerns

For a time, ICANN will indirectly be a limited arbiter of this system due to
their control of the root trust anchors used for ownership proofs. This raises
potential concerns.

During our analysis of the root zone file, we discovered that a significant
majority of domains use SHA1 for RSA signatures and key fingerprints. This is
unfortunate, as SHA1's security against collision resistance was recently
compromised[shattered]. Our consensus rules must disallow for the use of
insecure algorithms, like SHA1, even with existing DNSSEC setups.

As a result of this, in order for an RSA-SHA1 nameholder to claim their name on
the handshake blockchain, they must upgrade their key-signing key to at least
RSA-SHA256 before creating an ownership proof. Unfortunately, to accomplish
this, the nameholder must contact their parent zone and request that they sign
off on a new key.

With this in mind, we must consider the possibility that ICANN may become
uncooperative and refuse to sign a higher security key for an existing
nameholder. If this were to happen, RSA-SHA1 root zone names would be
unredeemable on the blockchain. To mitigate this attack, our DNSSEC ownership
verification algorithm implicitly upgrades RSA-SHA1 keys to RSA-SHA256,
allowing a reserved nameholder to publish the same RSA key in their own zone
with a differing algorithm field (RSA-SHA256 or RSA-SHA512). This allows the
nameholder to bypass ICANN's root zonefile update process when creating the
necessary ownership proof.

In addition to the SHA1 vulnerability, we discovered that several major root
nameholders use 1024-bit moduli in their RSA zone signing keys. We believe this
is the result of BIND's default behavior when generating keys with
`dnssec-keygen`. RSA-1024 has long been considered insecure, and while no
practical factorization of a 1024 bit modulus has ever been executed, we
consider this a weakness, particularly for an economically incentivized system.

If we consider, by way of consensus rules, requiring 2048 bit moduli or higher,
we find ourselves in a similar situation to the SHA1 vulnerablity: nameholders
may wind up at the mercy of uncooperative parent zone maintainers.

As a final fail-safe against an attack by uncooperative entities, we allow
RSA-1024 and offer a versionbit-activated soft-fork. This soft-fork is
responsible for hardening the consensus RSA implementation by requiring at
least 2048 bit moduli in ownership proofs. In the case that 1024 bit RSA is
compromised, we turn to miner consensus to resolve the issue. This allows the
blockchain to support RSA-1024 until a practical attack is demonstrated against
it.

As a necessary effect of the activation of this fork, all names which were
originally redeemed with RSA-1024 will be immediately revoked until redeemed
again with a stronger key. This construction requires us to place a 6 month
locktime on trasfers for names redeemed with RSA-1024.

The final risk we have considered, and perhaps the most major, is ICANN's key
revocation process. ICANN's stated KSK-2017 rollover plan involves setting the
`REVOKE` bit on KSK-2010. Unfortunately, publishing a revoked key does very
little to truly invalidate old states. A clever attacker can withhold
revocation key records and signatures, serving only older states. Because of
this, DNSSEC's revocation mechanism is all but useless to our blockchain.

Our primary concern is that ICANN may decide to revoke KSK-2010 at some point
by publishing its corresponding private key. To deal with this issue, a final
consensus rule can be added to _disable_ KSK-2010 once a separate proof is
published which demonstrates that KSK-2017 is now active. This proof would
include the KSK-2017 signature of ICANN's DNSKEY RRset. We are convinced that
ICANN will not be able to ethically justify publishing KSK-2010 before the
rollover to KSK-2017 is complete. As such, we find that this mitigation
provides adequate security against an attack of this sort.

Economic Incentives for DNSSEC implementation

DNSSEC has rather sparse support, with only a handful top-level and
second-level domains supporting it to its fullest extent[nameandshame]. Those
that do implement DNSSEC often implement it _insecurely_ (by way of SHA1 or
RSA-1024).

We find this to be a major impediment to the adoption of a system which bases
its security on a validating recursive resolver. To incentivize proper
implementation of secure DNSSEC, reserved names may only be redeemed on the
blockchain by a proper DNSSEC setup. We hope that this adds a great deal of
security to the existing root zone and to a fair majority of the Alexa top
100,000.

To further increase incentives, the blockchain attaches a coin reward to the
redemption of any reserved name. The value attached to the name is weighted
according to how many child zones are present in the zone.

SPV Name Resolution

Our SPV implementation's architecture consists of the following 4 components:

1. A peer-to-peer layer for synchronizing block headers and verifying name tree
 proofs.

2. An authoritative nameserver which translates on-chain resources to DNS
 responses, depending on the request. This nameserver behaves as if it were a
 root server, serving zone `.`.

3. A recursive server which sets its root hints and trust anchors to its own
 authoritative root server, rather than ICANN's.

4. A second non-recursive resolver which resides in the authoritative layer and
 acts as a fallback to ICANN's system. This is used in the event that a
 reserved top-level domain has not yet been claimed. Resolutions through
 ICANN's system only occur if a proper name absence proof was received from a
 peer.

fig. 27

```
 +-------------+     +------------------+     +----------------------+
 | OS Resolver | --> | Recursive Server | --> | Authoritative Server | --+
 +-------------+     +------------------+     +----------------------+   |
                                                                         |
  +----------------------------------------------------------------------+
  |
  |    +--------------------+     +---------------+     +-------------+
  +--> | Peer-to-peer Layer | --> | Proof Request | --> | Remote Peer |
       +--------------------+     +---------------+     +-------------+
```

fig. 28

```
 +-------------+     +----------------+     +--------------------+
 | Remote Peer | --> | Proof Response | --> | Peer-to-peer Layer | --+
 +-------------+     +----------------+     +--------------------+   |
                                                                     |
  +------------------------------------------------------------------+
  |
  |    +----------------------+     +------------------+     +-------------+
  +--> | Authoritative Server | --> | Recursive Server | --> | OS Resolver |
       +----------------------+     +------------------+     +-------------+
```

Our peer-to-peer layer is end-to-end encrypted by default, using a Noise
Protocol[noise] handshake, similar to the handshake used by the Lightning
Network[lightning]. To further enhance privacy at this layer, a peer resolving
a name on one's behalf is only permitted to see the top-level domain (or
rather, a hash of the name).

Due to the peer-to-peer encryption, the only plaintext aspect of this
architecture resides in the recursive resolver traversing child zones. To
improve privacy here, QNAME minimization[qname] can be utilized by the
recursive resolver. QNAME minimization is surprisingly non-trivial, because not
every domain name label originates from a zone cut, making it non-obvious in
how to "trick" an authoritative server into sending a proper nameserver
referral. Luckily, validating resolvers such as Unbound currently implement
this functionality.

Despite child zones being unencrypted, they can still be validated via DNSSEC.
Because the ICANN root zone is replaced with a blockchain, the recursive
resolver must also change its trust anchors. Currently, recursive resolvers set
their trust anchors to IANA's two DNSKEYs (KSKs) which sign the root zone's
zone signing keys (ZSKs). For compatibility purposes with existing resolvers,
we propose that an SPV node's authoritative nameserver use a static trust
anchor whose private key is known by all.

Of course, signatures at the root zone are no longer necessary due to
proof-of-work acting as the security mechanism rather than digital signatures.
However, DNSSEC signatures at the root must be included in order for existing
DNS implementations to consider the trust chain intact. With the private key
publicly known, conforming SPV nodes can create the appropriate RRSIG records
in real-time when serving a response. These responses can be cached to avoid
repetition of expensive signing operations.

While dummy RRSIGs can be created to fool existing recursive resolvers in to
validating a complete trust chain, NX proofs present a different challenge. The
most modern non-existence proof verification currently in DNS is NSEC3[nsec3].
NX proofs operate by maintaining a sorted linked list of child zones. When an
NX proof is generated, the authoritative server responds with a signed DNS
record showing where the requested child zone _should_ reside within the list,
thereby proving its non-existence. Unfortunately, NSEC3 obfuscates child zones
by hashing labels with the now insecure SHA1. Were NSEC3 to use a more modern
hash function, a DNS NX proof at the root zone _could_ be generated by a full
node by iterating over our name FFMT. Unfortunately, SPV resolvers would still
have trouble generating this dummy proof, due to their lack of ability to
arbitrarily seek through the tree.

To work around this difficulty, we generate _dummy_ NSEC3 proofs which imply an
empty zone.

Root Zone Fallback

Due to the fact that not all reserved root names will be claimed by nameholders
immediately, we propose two solutions for eventual transparent rollover to the
new system: _Hardcoded Fallback_, and _Dynamic Fallback_.

Hardcoded fallback involves hard-coding the existing ICANN zonefile into the
SPV software. When an absence proof is received by the authoritative server for
a pre-existing TLD, the hardcoded fallback is checked for records and returned
as a DNS response.

Dynamic fallback is similar, but involves querying ICANN's root servers and
validating the response against their trust anchors. This provides better
liveness, but bestows more power upon a centralized authority.

In both constructions, once a pre-reserved name is claimed by the proper owner,
the software will transparently begin to follow the blockchain instead of
either hardcoded records or ICANN's records.

Library Integration

We offer a library integration as an alternative to an SPV resolver or full
node. This removes the need for an average user to install extra software, and
instead places the responsibility on the developers of software.

We consider this the _lowest security mode_ of our protocol. It is, however,
still more secure and more permissionless than the current state of DNS, albeit
slightly more centralized than the local recursive resolver model.

Unix-based operating systems, including Mac OSX, configure their OS stub
resolver to use nameservers listed in `/etc/resolv.conf`.

The resolv.conf format points to a list of recursive servers for the operating
system's stub resolver to make use of. The stub resolver is invoked during a
call to `gethostbyname(3)` and `getaddrinfo(3)`.

We propose a new standard OS configuration file, `hns.conf`, residing in
`/etc/hns.conf` on Unix, and `%SystemRoot\Drivers\etc\hns.conf` on Windows.
This configuration file is reminiscent of the standard resolv.conf, however,
its sole purpose is to list nameservers while other options are simply
inherited from the regular resolv.conf parsing.

In order to make use of our protocol's resolvers, we require a 33 byte
compressed ECDSA public key for each nameserver listing. This key will be used
for a _SIG(0)_[sig0] verification of a signed DNS message. DNSSEC is currently
insufficient for this purpose, being that it only signs a DNS response's
individual records. TSIG[tsig] is also insufficient due to its requirement of
symmetric keys. Our SIG(0) usage appends a regular SIG record to the additional
section of a DNS message as a pseudo-section. This record signs all data before
it on the ECDSA secp256k1 curve.

A user with a local SPV resolver running may point his or her `hns.conf` to
`127.0.0.1` (where no SIG(0) verification is necessary). If not present, the
hns.conf parser should fall back to a list of hardcoded recursive servers run
by respected community members. These entries will be paired with a known ECDSA
public key.

Ideally, requests to the public recursive servers should be routed through an
Anycast[anycast] network in order to provide comparable speed to Google or
Cloudflare's public DNS.

This setup is necessary to allow all users to make use of the new root zone. If
some users are not willing to run a SPV node, our system falls back to a more
centralized model. Note that this centralized model still carries with it a
number of improvements over the current ICANN root zone. The root zone is still
permissionless, and the data is still authenticated (something which is not
present in today's stub resolvers).

The final integration library consists of a simple stub resolver which is aware
of our new hns.conf format, as well as capable of verifying SIG(0) records.

Integration

We are convinced that, in order for adoption to be widespread, the SPV daemon
and integration library must be runtime-less and written in portable C. The
integration library is especially necessary if this protocol is to be used on
embedded and IoT devices.

Future Directions

Proof of DNS iteration

To remove the requirement of a local recursive resolver for SPV, a hypothetical
proof of DNS traversal could be useful. A proof of this kind would involve
aggregating glue records, DNSSEC signatures and keys for each zone, producing a
final semi-compact proof. This would allow clients to securely off-load the
recursion to untrusted servers. This construction is similar to our DNSSEC
ownership proof, which is also an aggregate proof of DNS referrals.

In comparison to a local recursive resolver, this would save on CPU time and
bandwidth due to the signature aggregation. It would furthermore reduce memory
usage by avoiding the need for a message cache. This would result in massively
reduced complexity for SPV resolvers as they also no longer need to maintain a
recursive or authoritative root server.

Zone Replication and DNSCurve

Daniel Bernstein's DNSCurve[dnscurve] is an extension to DNS which performs an
ECDH and establishes a stream cipher with an authoritative nameserver before
exchanging messages. It is backwardly-compatible with DNS as identity keys are
encoded as base32 labels in normal NS records.

Unfortunately, DNSCurve adoption is minimal. As mentioned before, the only
unencrypted portion of our name resolution protocol occurs during regular DNS
iteration through authoritative servers.

If we envision a peer-to-peer network where peers can act as "proxies" for a
zone, they would be capable of layering DNSCurve support on top of existing
zones' nameservers as a public service. They could then advertise themselves as
a DNSCurve enabled proxy for a specific zone on the peer-to-peer layer.

There are many security and incentives questions this raises, but we consider
this an idea worth pursuing in the future.

Subdomains

Subdomains are out of scope for this system. Blockchains should be storing the
minimal data needed, and domains/subdomains with defined owners should be able
to prove the validity of that name out-of-band. If the data is already disclosed
in the root zone, then it makes sense for that data to be in a TLD anyway. The
load on a chain is the same whether it is a TLD, domain, or subdomain. As there
are no efficiencies, any potential use of subdomains on-chain should have a
separate name record in the root zone.

Reorg Safety and Name Expiration

It is strongly recommended that client implementations verify whether a chain
has a deep reorganization. This can be achieved by having third parties attest
to the current blockheight which is widely regarded as non-controversial. This
is materially different than existing CA infrastructure, as the security is
additive in that everyone is attesting to the same information. Any party can
provide this information and attestation (and can even be published/proven
on-chain).

In the future, it may be desirable by community consensus changes to have a
hybrid proof-of-stake construction similar to the Casper Finality
Gadget[casper-finality-gadget] proposed in Ethereum whereby blocks are committed
by bonded coins.

It is strongly recommended that certificate pinning[certpinning] is used to
associate identity by clients and user agents. This is achievable by pinning the
name owner's scripthash to the name itself, so when the ownership record
changes, the user must approve this change.

Stakeholders

The principal function behind the Handshake mechanism is maximizing allocation
of ownership of tokens, coins, or non-fungible assets towards the most relevant
stakeholders. To make effective change, all relevant existing and future
stakeholders must be acknowledged. By maximizing correct stakeholder allocation,
one maximizes the efficacy of the change. In the case of Handshake, it is the
shift from centralized Certificate Authorities and naming, towards a
decentralized infrastructure.

All stakeholders are incentivized for development and growth of the project in
their own self-interested incentive. In order to do so, many of the individuals
require some ownership or value of the coins in order to establish sufficient
motivation.

These allocations are this paper's proposed allocations, and the Handshake
community will ultimately determine the final allocation in mainnet.

A total of 1,360,000,000 coins are minted in the genesis block to be distributed
to relevant stakeholders

Pre-Launch Blockchain Development - 7.5%

This allocation goes to fund development across various stakeholders who have
been involved with creation of this project. These coins are used to pay for
work prior to mainnet launch and is the only source of development funds. A
iterated tit-for-tat game exists whereby there is self-interested benefit for
distribution of value ("the more I give away, the more value I accrue") across
many projects and development teams emulating this model.

Financial Contributors and Pricing - 7.5%

A total of $10,200,00 USD have been allocated to purchasers to price the
initial value of the coins for 7.5% of the total supply, with a total valuation
of the initial coin supply at $136,000,000.

100% of the dollars raised are being given to non-profits and FOSS projects,
and FOSS communities such as hackerspaces. This is effectively a one-way
non-destructive "proof-of-burn" on the dollar side to price the coins.

The role of coin purchasers is critical as an initial stakeholder in the growth
of the project. The purchasers have been curated to maximize effective change by
primarily allocating funds to Venture Capitalists and Token Funds with specialty
in the cryptocurrency and decentralized internet ecosystem. Many of these
purchasers have been effective in disrupting entire industries and have been
involved in large-scale growth of internet services (some even across
generations).

The existence of these participants are necessary and fundamental in pricing the
tokens, as the distribution event requires real value to be established (a sale
of 1% of total initial supply is not credible in pricing the tokens).
Additionally, the sale has occurred as close to launch/announcement as possible.

Other projects replicating this mechanism may require greater capital to fund
development and/or greater claim to the Pre-Launch Development allocation. This
may result in not having a one-way "proof-of-burn", and instead use the
capital to fund development of the project.

The role of pricing the coins for distribution is necessary as the coins need to
have understood value during the distribution process. While it would ostensibly
be ideal to spin-up projects and deploy blockchains without this mechanism,
there may be insufficient coordination and ex-ante expectations of value. The
role of the high-reputation Venture Capital provides a tastemaker function which
provides a signal and Schelling Point for potentially economically and socially
valuable projects. These entities are a significant stakeholder in the current
ecosystem and a continuing game for project selection and curation may persist
as a result ("putting your money where your mouth is").

Free and Open Source Software Developers - 68.0%

The free and open source community is the principal coin owner of the project
upon launch. These coins are distributed without any expectation of work. As
free and open source software is the principle of giving away code without any
direct financial return in exchange, similarly Handshake is about giving away
financial value without any expectation of code in exchange.

If the community is interested and Handshake becomes viable in the future, it is
possible (but without any obligation whatsoever, contractual or implied) for
individuals to have incentive to integrate the functionality into their own
software.

Domain Name Holders - 10%

The Handshake blockchain will allocate all TLDs to the rightful holders upon
submission of a sufficiently secure DNSSEC proof on the blockchain.
Additionally, the Alexa top 100,000 domains were used and filtered (duplicates,
generic dictionary names) to over 80,000 non-generic names to be claimable as a
TLD via a DNSSEC proof. This way, all currently existing domains can work on
Handshake provided it is claimed in a timely manner, as all TLDs can be
claimable on Handshake by the owner of the TLD.

In addition to backwards compatibility with the existing domain name system,
coins are also provided to incentivize adoption by name holders. This creates an
incentive for name registration on Handshake. Unclaimed coins after the claim
period will be burned.

Some domain names may not be claimable until secure DNSSEC records (not SHA1
keyhash) are provided by the domain's TLD DNSSEC record, and there may be a
delay period before the coins are matured and available to use.

2.5% will be allocated to TLDs to be distributed evenly.

2.5% will be allocated to the top 100 Alexa names.

2.5% will be allocated to the Handshake reserved names (over 80,000 names) to be
distributed evenly. These names will also be able to claim a TLD on Handshake.

CA/Naming Corporations and Other Blockchain Projects - 5%

The following corporations and projects are being allocated Handshake coins.
They have not acknowledged or accepted the coins at this time of writing. In
the event the coins are not claimed or accepted, these coins will not be
reallocated and are effectively burned. Some of these allocations may be only
redeemable by submitting a DNSSEC proof of their domain to the blockchain to
claim coins. There is no contractual expectation for any of these entities to
help the Handshake project in any way and is explicitly an obligation-free
distribution with no strings attached.

ICANN has been the root namespace for the internet. ICANN (CA, US) is allocated
24,480,000 of the initial coin supply by the Handshake community.

Cloudflare, Inc. (DE, US) is a corporation doing fundamental research for
naming, caching, and certificate authorities. They are allocated 6,800,000 of the
initial token supply.

Namecoin is a decentralized naming blockchain. 10,200,000 of the initial supply
was allocated to leading current and prior Namecoin developers.

Verisign, Inc. (VA, US) is the registrar for .com and .net. They are allocated
6,800,000 of the initial token supply. The .com and .net TLDs on Handshake will
be given to Verisign with a DNSSEC proof.

Keybase has been innovating in the naming and certificate authority space.
Keybase, Inc. (DE, US) are allocated 0.25% of the total token supply.

Public Internet Registry (VA, US) maintains the .org namespace. They are
allocated 3,400,000 of the initial token supply. The .org TLD on Handshake will
be given to PIR with a DNSSEC proof to pir.org.

Afilias plc (IE) has been the service provider for the .org namespace. They were
allocated 3,400,000 of the initial supply to a DNSSEC proof of afilias.info.
Note for both PIR and Afilias, this allocation was made before the proposed
sale of the .org namespace.

Brave is a browser which has cryptoeconomic incentives. Handshake allocated
3,400,000 to Brave Software, Inc. (CA, US). This is a distribution to the
entity owners itself, and is not an implied distribution to the Basic Attention
Token holders.

Namecheap is a large domain registrar and has support cryptocurrency in the
past. They were allocated 2,720,000 of the initial supply.

Godaddy (AZ, US) is a large domain registrar and has a Certificate Authority as
well. They were allocated 2,720,000 of the initial supply.

Blockstack is a corporation developing a naming blockchain as well as a
decentralized internet stack. The Handshake distribution allocated 408,000 of
the initial supply to Blockstack Token LLC (NJ, USA) under a DNSSEC proof for
blockstack.com. This is to the entity owners itself, and is not implied
distribution to the Blockstack Token holders.

ENS (True Names LTD (SG)) is developing an alternate naming root (.eth) using
an Ethereum smart contract. They were allocated 136,000 of the initial
Handshake coin supply to the entity running ENS (ens.domains).

GnuNet provides PKI infrastructure and provides identity via a DHT. They were
allocated 136,000 of the initial coin supply to gnunet.org (may require DNSSEC
upgrades on the .org namespace).

Non-Profits and FOSS Projects - 2%

Not to be confused with the $10,200,000 USD given to non-profits and FOSS
projects, Handshake coins (HNS) will be given to some of those entities in
addition to the USD.

Miners

Historically, many blockchains have distributed 100\% of the total coin supply
to Proof-of-Work miners or the overwhelming majority to investors (with none
going to free and open source developers directly). These miners capture value
by competitively discover lower operating expense costs with electricity or
optimizing computation with better hardware.

Miners receive a block reward for validating the chain correctly. There is no
promise, implied or explicit of guarantees around future rewards to miners and
may be changed upon future technological progress. Additionally, there are no
guarantees on expenditure upon continued operation of hardware.

Further Distributions

Further incentivized distributions presupposing the incentives derived from
Metcalfe's Law are theoretically possible via a hard-fork but outside the scope
of this document, as it would be wrong to be prescriptive on future actions,
especially as the future is unknown with the ability to achieve coordination of
this activity and programmatic ability to acquire keys.

Coordination

The purpose of this project in addition to developing a decentralized naming
system is to perform and demonstrate a method to conduct wide-scale coordination
without an end-state of centralized power structures, with mechanisms and
incentives for coordination across millions of people without authorities or
contractual obligations.

The blockchain allows for cheap verification, but it does not inherently rally
people to a change in infrastructure. It is exceptionally costly to build a
top-down organization of millions in a hierarchy to replace entrenched
interests, hence a ground-up structure is proposed using gift economies, which
is only possible with emerging technologies which is capable of accounting value
without central authorities (the blockchain), as well as tools for wide-scale
coordination across millions (internet free and open source communications
software). Handshake is an open performance by all parties worldwide to
participate and deliver a new naming system as a gift to wider society.

The Theory of the Firm[natureofthefirm] postulates that organizations exist
due to transaction costs, it is often cheaper to conduct transactions within an
organization rather than between organizations as intra-organizational goals are
aligned, rather than inter-organizational goals, hence the high transaction
costs from due diligence with external parties. Firms become large fundamentally
due to trust and ensures everyone is rallying to the same cause. Power
centralizes into the agents of these firms, we believe we can do better with
technology.

The firm model for alignment faces significant issues around externalizing costs
("is it good for society") and principal-agent problems ("is this person acting
properly on my behalf"). This requires the principal to always watch the
activity of the agent, to ensure the principals' goals are being acted upon. The
more trust complexity required by an activity, the greater the likelihood that
it is within the boundaries of a firm. Shareholders watch the board who watches
the executives who watch the employees, with a hardcoded contractual structure
for organizing and ensuring correct action.

The purpose of smart contracts[smartcontracts] is that it allows the
principal to also be the agent, as computation can allow one to read the code
once and ensure that the code is being followed, significantly reducing
potential information costs. However, smart contracts do not solve social
coordination inherently, they merely make it cheap for those whom have already
agreed with what is being coordinated.

By constructing a capital structure without obligations (gift economies), method
is proposed to create immensely valuable social structures with proper social
incentives for restructuring the current organizational centers of power within
society by participants of this gift economy.

Inability to Verify Actions

It is not possible to ascribe value directly to code. While it is possible for
future projects to reward dependent upon actions using peer-to-peer oracles,
code is far too subjective. Instead this project proposes removing ongoing
verification of reward for code. While future iterations of this design may have
ongoing elements of verification/reward via optimistic tit-for-tat mechanics, it
is believed that it is possible to build systems without inherent enforceability
of labor exchange.

As this is constructed as a blockchain, there is no single entity controlling
this system. The system exists due to the collective belief that this system is
valuable, the unit of account has value, and there is sufficient desire to
improve/maintain this system. Many forms of Commons-Based Peer
Production[wealthofnetworks], including Free and Open Source Software, is a
Bazaar[bazaar], but we've always had the reward mechanisms be a Cathedral up
until now. There have been prior work around reward mechanisms in exchange for
production in Commons-Based Crypto Currencies[primaveradefilippi], and much
exploration has occurred in understanding the implications of the blockchain
having no single owner (hence similarity to the notion of a commons), but
payment for free and open source code are primarily within the context of payment for
proposed acceptable work in exchange for cryptocurrencies. Instead, this project
is about ensuring that free and open source developers are the majority owners of the
system without any direct contractual expectation of return or work.

Previously, FOSS developers have been rewarded by working in large
companies such as Red Hat Software who are able to evaluate payment towards end
goals of financial returns. This construction creates a direct conflict of
interest between the values of FOSS software and the values of
profit-maximization of the firm. Further, the principal-agent problem persists
with firms funding FOSS software, as they are making payments on an
ongoing basis towards the end goals of the firm over the best end goals for open
source projects.

By constructing a mechanism with coin distribution to FOSS developers
with no expectation of return, this creates a complimentary system whereby
individuals building FOSS software are able to build software for the
commons while also having majority ownership and economic benefit of co-creating
this system during the development phase, there is simply an incentive to
participate and create a valuable system for developers who own the coins. As a
result, FOSS developers can do what they believe to be in the best
interests of a system without power hierarchies determining what is the best use
of resources, in return there is an understanding that the payment will be
imprecise for contributors (much like how those using code receive benefits with
imprecise payment for the commons).

Comparison with Traditional Capital Coordination Models

Two-sided marketplaces are a fundamental problem in displacement of existing
systems. The archetypical example of overcoming two-sided marketplaces is Uber
displacing the taxi, which has two sides of riders and drivers -- it is
difficult to persuade riders to participate if there's insufficient drivers
(long wait times), and difficult to persuade drivers on the platform if there's
insufficient riders (low revenue). One of the earliest efforts for resolving
this two-sided marketplace problem for internet services was initiated by
Paypal, which resolved a side of the marketplace by directly giving money to new
users of PayPal.

Overcoming two-sided marketplaces traditionally has required significant capital
and involves expectations of future market capture. As a result, these companies
have raised significant amounts of capital from venture capital to create the
conditions for disruption of existing business models towards more efficient
systems with centralized providers being an agent for mass coordination. These
venture capital firms have created significant value and have expertise in
replacing existing systems and driving the technical, organizational, and wider
social coordination of society. This has provided significant social benefit in
creating effective change towards social systems, and without which there is
insufficient coordination for actors within an ecosystem to create the
sufficient change necessary for widespread social benefit.

A replication of this coordination of raising a significant amount of capital
towards resolving two-sided marketplaces has been
proposed[fatprotocols][fredblog][navalblog] and attempted in the
cryptocurrency space, which has historically been known as the emerging
phenomena of "ICO" or "Initial Coin Offerings". This uses capital to raise
significant sums of value to establish the capital required to develop a
platform and raise capital to establish a war-chest to resolve a two-sided
marketplace problem. Many of these firms have successfully used significant
amounts of capital raised to establish a developer community, market to users,
and encourage various service providers by subsidizing one side of the
marketplace.

However, while the venture model has been incredibly pro-social and created
significant benefits, there are some limitations to this model in traditional
venture. Additionally, the model being emulated under the ICO model has raised
significant amounts of capital, but there has been insufficient amount of
experiments to demonstrate successful models. One of the largest limitations
are that the network effects do not accrue to the users who are responsible for
developing this system and ensuring its success. Additionally, there is a lack
of association between economic stakeholders benefiting from the network effect
and those which are responsible for establishing those network effects. Further,
there are significant centralization pressures by raising a large amount of
funds into a single foundation.

Instead, the Handshake mechanism does not rely upon altruistic actors, it is
wholly reliant upon self-interested individuals and stakeholders. One's
returns are maximized by giving away value to FOSS developers and wider
humanity, and may be an exploration in a different model for development.

Disclaimers

There are no guarantees provided by the Handshake community developers past and
present, including continued development and leadership. This document is
illustrative and the de-facto community standards are the primary source. All
contents of this document is subject to change according to community consensus.

No guarantees are provided with regards to functionality of the naming and
auction system, including renewal availability, fees, or block availability in
general. Further, no guarantees are provided with coin supply, coin value, or
name value. In the event of a worldwide distribution, it is up to the wider
community to execute this plan.

Those making unilateral advocacy of where the blockchain should go under the
auspicies of being an early developer of the chain, and any rhetoric related
should be seen with suspicion. It is up to the community to suggest changes and
any code forks are initiated with community consensus and approval.

In the event of deep reorganizations, the community should halt processing and
acknowledging new state updates. It is heavily recommended for service providers
to have long deposit times and their own internal controls and software
verification.

Hard forks are presumed to be possible in this system, there are no guarantees
around mining, economics, etc.

Trademark holders are responsible for munging their own renewals and
registrations, and project developers do not have the ability to make
unilateral changes to the system after the sunrise period. Any changes to the
records requires a hard fork and is contingent upon community approval of
fullnodes and miners. Any changes after the sunrise period may be proposed
to the community as a hardfork, or more likely the updates should be made
(without consensus) in the resolver client-side.

No guarantees are provided for transaction formats past one year. Pre-signed
transactions should not be presumed to be permanently available. Private keys
should be kept in the event transaction formats change.

[pow] http://www.hashcash.org/papers/pvp.pdf
[bitcoin] https://bitcoin.org/bitcoin.pdf
[hashcash] http://www.hashcash.org/papers/hashcash.pdf
[cuckoo-1] https://github.com/tromp/cuckoo
[cuckoo-2] https://github.com/tromp/cuckoo/blob/master/doc/cuckoo.pdf?raw=true
[cuckoo-3] https://github.com/tromp/cuckoo/blob/master/doc/spec
[timewarp] https://bitcointalk.org/index.php?topic=43692.msg521772#msg521772
[digishield-1] https://www.reddit.com/r/Digibyte/comments/213t7b/what_is_digishield_how_it_works_to_retarget/
[digishield-2] https://github.com/digibyte/DigiByteProject/blob/master/src/main.cpp
[kimoto-1] https://github.com/megacoin/megacoin/blob/master/src/main.cpp#L1276
[kimoto-2] https://bitcointalk.org/index.php?topic=240861.msg3040291#msg3040291
[dgw] http://www.darkcoin.io/downloads/DarkcoinWhitepaper.pdf
[zcash-1] https://github.com/zcash/zcash/issues/147
[zcash-2] https://github.com/zcash/zcash/issues/696
[zcash-3] https://github.com/zcash/zcash/issues/998
[namecoin-1] https://namecoin.org/
[namecoin-2] https://github.com/namecoin/ncdns
[ens-1] https://ens.domains/
[ens-2] https://github.com/ethereum/EIPs/blob/master/EIPS/eip-137.md
[ens-3] https://github.com/ensdomains/ens
[ens-4] https://github.com/ethereum/eips/issues/137
[ens-5] https://github.com/ethereum/EIPs/issues/162
[ens-6] https://ens.domains/#section-root
[ens-7] https://docs.ens.domains/en/latest/faq.html#who-will-own-the-ens-rootnode-what-powers-does-that-grant-them
[blockstack-1] https://blockstack.org/whitepaper.pdf
[blockstack-2] https://forum.blockstack.org/t/how-do-lightweight-blockstack-nodes-operate-a-snv-protocol/1017
[ept-1] https://ethereum.github.io/yellowpaper/paper.pdf
[ept-2] https://github.com/ethereum/wiki/wiki/Patricia-Tree
[ethereum] https://ethereum.org/pdfs/EthereumWhitePaper.pdf
[smt-1] https://eprint.iacr.org/2016/683
[smt-2] https://github.com/google/trillian
[merklix-1] https://www.deadalnix.me/2016/09/24/introducing-merklix-tree-as-an-unordered-merkle-tree-on-steroid/
[merklix-2] https://www.deadalnix.me/2016/09/29/using-merklix-tree-to-checkpoint-an-utxo-set/
[merkleset] https://github.com/bramcohen/MerkleSet
[vickrey] https://www.jstor.org/stable/2977633
[maxwell-1] https://bitcointalk.org/index.php?topic=277389.0
[maxwell-2] https://bitcointalk.org/index.php?topic=278122.0
[covenants] https://fc16.ifca.ai/bitcoin/papers/MES16.pdf
[bitcoin-ng] https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-eyal.pdf
[rfc1035] https://www.ietf.org/rfc/rfc1035.txt
[orsn] http://www.orsn.org/en/tech/
[bind] https://www.isc.org/downloads/bind/
[ldns] https://www.nlnetlabs.nl/projects/ldns/about/
[unbound] https://www.unbound.net/
[nlnetlabs] https://www.nlnetlabs.nl/
[bns] https://github.com/chjj/bns
[noise] http://noiseprotocol.org/
[lightning] https://github.com/lightningnetwork/lightning-rfc/blob/master/08-transport.md
[qname] https://tools.ietf.org/html/rfc7816
[dnssec] https://tools.ietf.org/html/rfc4033
[google] https://developers.google.com/speed/public-dns/
[root] https://www.iana.org/domains/root/servers
[iana] https://www.iana.org/
[icann] https://www.icann.org/
[internic] https://www.internic.net/domain/root.zone
[anchors] https://www.iana.org/dnssec/files
[signing] https://www.iana.org/dnssec/ceremonies
[sshfp] https://tools.ietf.org/html/rfc4255
[openssh] https://www.google.com/search?q=openssh%20SSHFP
[tlsa] https://tools.ietf.org/html/rfc6698
[sig0] https://tools.ietf.org/html/rfc2931
[anycast] https://tools.ietf.org/html/rfc4786
[tsig] https://www.ietf.org/rfc/rfc2845.txt
[dnscurve] https://dnscurve.org/
[plasma] http://plasma.io/plasma.pdf
[shattered] https://shattered.io/static/shattered.pdf
[nameandshame] https://dnssec-name-and-shame.com/
[alexa] https://www.alexa.com/topsites
[nsec3] https://tools.ietf.org/html/rfc5155
[btcrelay] http://btcrelay.org/
[opennic] https://wiki.opennic.org/opennic:faq#how_did_opennic_start
[convergence] https://www.youtube.com/watch?v=Z7Wl2FW2TcA
[casper-finality-gadget] https://arxiv.org/abs/1710.09437
[certpinning] https://en.wikipedia.org/wiki/HTTP_Public_Key_Pinning
[fakecert-fr] https://www.theregister.co.uk/2013/12/10/french_gov_dodgy_ssl_cert_reprimand/
[fakecert-ir] https://www.computerworld.com/article/2510951/cybercrime-hacking/hackers-spied-on-300-000-iranians-using-fake-google-certificate.html
[zooko] https://web.archive.org/web/20011020191610/http://zooko.com/distnames.html
[aaron] http://www.aaronsw.com/weblog/squarezooko
[natureofthefirm] http://dx.doi.org/10.1111/j.1468-0335.1937.tb00002.x
[smartcontracts] http://journals.uic.edu/ojs/index.php/fm/article/view/548
[wealthofnetworks] http://journals.uic.edu/ojs/index.php/fm/article/view/548#page-60
[bazaar] http://www.catb.org/esr/writings/cathedral-bazaar/
[fredblog] https://blog.coinbase.com/app-coins-and-the-dawn-of-the-decentralized-business-model-8b8c951e734f
[navalblog] https://startupboy.com/2014/03/09/the-bitcoin-model-for-crowdfunding/
[fatprotocols] http://www.usv.com/blog/fat-protocols
[primaveradefilippi] https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2725415

