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Abstract

A public ledger is a tamperproof sequence of data that can be read and augmented by everyone.
Public ledgers have innumerable and compelling uses. They can secure, in plain sight, all kinds
of transactions —such as titles, sales, and payments— in the exact order in which they occur.
Public ledgers not only curb corruption, but also enable very sophisticated applications —such as
cryptocurrencies and smart contracts. They stand to revolutionize the way a democratic society
operates. As currently implemented, however, they scale poorly and cannot achieve their potential.

Algorand is a truly democratic and efficient way to implement a public ledger. Unlike prior
implementations based on proof of work, it requires a negligible amount of computation, and
generates a transaction history that will not “fork” with overwhelmingly high probability.

Algorand is based on (a novel and super fast) message-passing Byzantine agreement.

For concreteness, we shall describe Algorand only as a money platform.

1 Introduction

Money is becoming increasingly virtual. It has been estimated that about 80% of United States
dollars today only exist as ledger entries [5]. Other financial instruments are following suit.

In an ideal world, in which we could count on a universally trusted central entity, immune
to all possible cyber attacks, money and other financial transactions could be solely electronic.
Unfortunately, we do not live in such a world. Accordingly, decentralized cryptocurrencies, such
as Bitcoin [29], and “smart contract” systems, such as Ethereum, have been proposed [4]. At
the heart of these systems is a shared ledger that reliably records a sequence of transactions,

∗This is the more formal (and asynchronous) version of the ArXiv paper by the second author [24], a paper
itself based on that of Gorbunov and Micali [18]. Algorand’s technologies are the object of the following
patent applications: US62/117,138 US62/120,916 US62/142,318 US62/218,817 US62/314,601 PCT/US2016/018300
US62/326,865 62/331,654 US62/333,340 US62/343,369 US62/344,667 US62/346,775 US62/351,011 US62/653,482
US62/352,195 US62/363,970 US62/369,447 US62/378,753 US62/383,299 US62/394,091 US62/400,361 US62/403,403
US62/410,721 US62/416,959 US62/422,883 US62/455,444 US62/458,746 US62/459,652 US62/460,928 US62/465,931
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as varied as payments and contracts, in a tamperproof way. The technology of choice to
guarantee such tamperproofness is the blockchain. Blockchains are behind applications such as
cryptocurrencies [29], financial applications [4], and the Internet of Things [3]. Several techniques
to manage blockchain-based ledgers have been proposed: proof of work [29], proof of stake [2],
practical Byzantine fault-tolerance [8], or some combination.

Currently, however, ledgers can be inefficient to manage. For example, Bitcoin’s proof-of-work
approach (based on the original concept of [14]) requires a vast amount of computation, is wasteful
and scales poorly [1]. In addition, it de facto concentrates power in very few hands.

We therefore wish to put forward a new method to implement a public ledger that offers the
convenience and efficiency of a centralized system run by a trusted and inviolable authority, without
the inefficiencies and weaknesses of current decentralized implementations. We call our approach
Algorand, because we use algorithmic randomness to select, based on the ledger constructed so far,
a set of verifiers who are in charge of constructing the next block of valid transactions. Naturally,
we ensure that such selections are provably immune from manipulations and unpredictable until
the last minute, but also that they ultimately are universally clear.

Algorand’s approach is quite democratic, in the sense that neither in principle nor de facto it
creates different classes of users (as “miners” and “ordinary users” in Bitcoin). In Algorand “all
power resides with the set of all users”.

One notable property of Algorand is that its transaction history may fork only with very small
probability (e.g., one in a trillion, that is, or even 10−18). Algorand can also address some legal
and political concerns.

The Algorand approach applies to blockchains and, more generally, to any method of generating
a tamperproof sequence of blocks. We actually put forward a new method —alternative to, and
more efficient than, blockchains— that may be of independent interest.

1.1 Bitcoin’s Assumption and Technical Problems

Bitcoin is a very ingenious system and has inspired a great amount of subsequent research. Yet, it
is also problematic. Let us summarize its underlying assumption and technical problems —which
are actually shared by essentially all cryptocurrencies that, like Bitcoin, are based on proof-of-work.

For this summary, it suffices to recall that, in Bitcoin, a user may own multiple public keys
of a digital signature scheme, that money is associated with public keys, and that a payment is a
digital signature that transfers some amount of money from one public key to another. Essentially,
Bitcoin organizes all processed payments in a chain of blocks, B1, B2, . . ., each consisting of multiple
payments, such that, all payments of B1, taken in any order, followed by those of B2, in any order,
etc., constitute a sequence of valid payments. Each block is generated, on average, every 10 minutes.

This sequence of blocks is a chain, because it is structured so as to ensure that any change, even
in a single block, percolates into all subsequent blocks, making it easier to spot any alteration of
the payment history. (As we shall see, this is achieved by including in each block a cryptographic
hash of the previous one.) Such block structure is referred to as a blockchain.

Assumption: Honest Majority of Computational Power Bitcoin assumes that no malicious
entity (nor a coalition of coordinated malicious entities) controls the majority of the computational
power devoted to block generation. Such an entity, in fact, would be able to modify the blockchain,
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and thus re-write the payment history, as it pleases. In particular, it could make a payment ℘,
obtain the benefits paid for, and then “erase” any trace of ℘.

Technical Problem 1: Computational Waste Bitcoin’s proof-of-work approach to block
generation requires an extraordinary amount of computation. Currently, with just a few hundred
thousands public keys in the system, the top 500 most powerful supercomputers can only muster
a mere 12.8% percent of the total computational power required from the Bitcoin players. This
amount of computation would greatly increase, should significantly more users join the system.

Technical Problem 2: Concentration of Power Today, due to the exorbitant amount of
computation required, a user, trying to generate a new block using an ordinary desktop (let alone a
cell phone), expects to lose money. Indeed, for computing a new block with an ordinary computer,
the expected cost of the necessary electricity to power the computation exceeds the expected reward.
Only using pools of specially built computers (that do nothing other than “mine new blocks”), one
might expect to make a profit by generating new blocks. Accordingly, today there are, de facto, two
disjoint classes of users: ordinary users, who only make payments, and specialized mining pools,
that only search for new blocks.

It should therefore not be a surprise that, as of recently, the total computing power for block
generation lies within just five pools. In such conditions, the assumption that a majority of the
computational power is honest becomes less credible.

Technical Problem 3: Ambiguity In Bitcoin, the blockchain is not necessarily unique. Indeed
its latest portion often forks: the blockchain may be —say— B1, . . . , Bk, B

′
k+1, B

′
k+2, according to

one user, and B1, . . . , Bk, B
′′
k+1, B

′′
k+2, B

′′
k+3 according another user. Only after several blocks have

been added to the chain, can one be reasonably sure that the first k + 3 blocks will be the same
for all users. Thus, one cannot rely right away on the payments contained in the last block of
the chain. It is more prudent to wait and see whether the block becomes sufficiently deep in the
blockchain and thus sufficiently stable.

Separately, law-enforcement and monetary-policy concerns have also been raised about Bitcoin.1

1.2 Algorand, in a Nutshell

Setting Algorand works in a very tough setting. Briefly,

(a) Permissionless and Permissioned Environments. Algorand works efficiently and securely even
in a totally permissionless environment, where arbitrarily many users are allowed to join the
system at any time, without any vetting or permission of any kind. Of course, Algorand works
even better in a permissioned environment.

1The (pseudo) anonymity offered by Bitcoin payments may be misused for money laundering and/or the financing
of criminal individuals or terrorist organizations. Traditional banknotes or gold bars, that in principle offer perfect
anonymity, should pose the same challenge, but the physicality of these currencies substantially slows down money
transfers, so as to permit some degree of monitoring by law-enforcement agencies.

The ability to “print money” is one of the very basic powers of a nation state. In principle, therefore, the massive
adoption of an independently floating currency may curtail this power. Currently, however, Bitcoin is far from being
a threat to governmental monetary policies, and, due to its scalability problems, may never be.
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(b) Very Adversarial Environments. Algorand withstands a very powerful Adversary, who can

(1) instantaneously corrupt any user he wants, at any time he wants, provided that, in a
permissionless environment, 2/3 of the money in the system belongs to honest user. (In a
permissioned environment, irrespective of money, it suffices that 2/3 of the users are honest.)

(2) totally control and perfectly coordinate all corrupted users; and

(3) schedule the delivery of all messages, provided that each message m sent by a honest user
reaches 95% of the honest users within a time λm, which solely depends on the size of m.

Main Properties Despite the presence of our powerful adversary, in Algorand

• The amount of computation required is minimal. Essentially, no matter how many users are
present in the system, each of fifteen hundred users must perform at most a few seconds of
computation.

• A New Block is Generated in less than 10 minutes, and will de facto never leave the blockchain.
For instance, in expectation, the time to generate a block in the first embodiment is less
than Λ + 12.4λ, where Λ is the time necessary to propagate a block, in a peer-to-peer gossip
fashion, no matter what block size one may choose, and λ is the time to propagate 1,500 200B-
long messages. (Since in a truly decentralized system, Λ essentially is an intrinsic latency, in
Algorand the limiting factor in block generation is network speed.) The second embodiment has
actually been tested experimentally ( by ?), indicating that a block is generated in less than 40
seconds.

In addition, Algorand’s blockchain may fork only with negligible probability (i.e., less than one
in a trillion), and thus users can relay on the payments contained in a new block as soon as the
block appears.

• All power resides with the users themselves. Algorand is a truy distributed system. In particular,
there are no exogenous entities (as the “miners” in Bitcoin), who can control which transactions
are recognized.

Algorand’s Techniques.

1. A New and Fast Byzantine Agreement Protocol. Algorand generates a new block via
a new cryptographic, message-passing, binary Byzantine agreement (BA) protocol, BA⋆. Protocol
BA⋆ not only satisfies some additional properties (that we shall soon discuss), but is also very fast.
Roughly said, its binary-input version consists of a 3-step loop, in which a player i sends a single
message mi to all other players. Executed in a complete and synchronous network, with more
than 2/3 of the players being honest, with probability > 1/3, after each loop the protocol ends in
agreement. (We stress that protocol BA⋆ satisfies the original definition of Byzantine agreement
of Pease, Shostak, and Lamport [31], without any weakenings.)

Algorand leverages this binary BA protocol to reach agreement, in our different communication
model, on each new block. The agreed upon block is then certified, via a prescribed number of
digital signature of the proper verifiers, and propagated through the network.

2. Cryptographic Sortition. Although very fast, protocol BA⋆ would benefit from further
speed when played by millions of users. Accordingly, Algorand chooses the players of BA⋆ to be
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a much smaller subset of the set of all users. To avoid a different kind of concentration-of-power
problem, each new block Br will be constructed and agreed upon, via a new execution of BA⋆,
by a separate set of selected verifiers, SV r. In principle, selecting such a set might be as hard as
selecting Br directly. We traverse this potential problem by an approach that we term, embracing
the insightful suggestion of Maurice Herlihy, cryptographic sortition. Sortition is the practice of
selecting officials at random from a large set of eligible individuals [6]. (Sortition was practiced
across centuries: for instance, by the republics of Athens, Florence, and Venice. In modern judicial
systems, random selection is often used to choose juries. Random sampling has also been recently
advocated for elections by David Chaum [9].) In a decentralized system, of course, choosing the
random coins necessary to randomly select the members of each verifier set SV r is problematic.
We thus resort to cryptography in order to select each verifier set, from the population of all users,
in a way that is guaranteed to be automatic (i.e., requiring no message exchange) and random.
In essence, we use a cryptographic function to automatically determine, from the previous block
Br−1, a user, the leader, in charge of proposing the new block Br, and the verifier set SV r, in
charge to reach agreement on the block proposed by the leader. Since malicious users can affect
the composition of Br−1 (e.g., by choosing some of its payments), we specially construct and use
additional inputs so as to prove that the leader for the rth block and the verifier set SV r are indeed
randomly chosen.

3. The Quantity (Seed) Qr. We use the the last block Br−1 in the blockchain in order to
automatically determine the next verifier set and leader in charge of constructing the new block
Br. The challenge with this approach is that, by just choosing a slightly different payment in the
previous round, our powerful Adversary gains a tremendous control over the next leader. Even if he
only controlled only 1/1000 of the players/money in the system, he could ensure that all leaders are
malicious. (See the Intuition Section 4.1.) This challenge is central to all proof-of-stake approaches,
and, to the best of our knowledge, it has not, up to now, been satisfactorily solved.

To meet this challenge, we purposely construct, and continually update, a separate and carefully
defined quantity, Qr, which provably is, not only unpredictable, but also not influentiable, by our
powerful Adversary. We may refer to Qr as the rth seed, as it is from Qr that Algorand selects,
via secret cryptographic sortition, all the users that will play a special role in the generation of the
rth block.

4. Secret Crytographic Sortition and Secret Credentials. Randomly and unambigu-
ously using the current last block, Br−1, in order to choose the verifier set and the leader in charge
of constructing the new block, Br, is not enough. Since Br−1 must be known before generating Br,
the last non-influentiable quantity Qr−1 contained in Br−1 must be known too. Accordingly, so
are the verifiers and the leader in charge to compute the block Br. Thus, our powerful Adversary
might immediately corrupt all of them, before they engage in any discussion about Br, so as to get
full control over the block they certify.

To prevent this problem, leaders (and actually verifiers too) secretly learn of their role, but can
compute a proper credential, capable of proving to everyone that indeed have that role. When
a user privately realizes that he is the leader for the next block, first he secretly assembles his
own proposed new block, and then disseminates it (so that can be certified) together with his own
credential. This way, though the Adversary will immediately realize who the leader of the next
block is, and although he can corrupt him right away, it will be too late for the Adversary to
influence the choice of a new block. Indeed, he cannot “call back” the leader’s message no more
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than a powerful government can put back into the bottle a message virally spread by WikiLeaks.
As we shall see, we cannot guarantee leader uniqueness, nor that everyone is sure who the leader

is, including the leader himself! But, in Algorand, unambiguous progress will be guaranteed.

5. Player Replaceability. After he proposes a new block, the leader might as well “die” (or be
corrupted by the Adversary), because his job is done. But, for the verifiers in SV r, things are less
simple. Indeed, being in charge of certifying the new block Br with sufficiently many signatures,
they must first run Byzantine agreement on the block proposed by the leader. The problem is that,
no matter how efficient it is, BA⋆ requires multiple steps and the honesty of > 2/3 of its players.
This is a problem, because, for efficiency reasons, the player set of BA⋆ consists the small set SV r

randomly selected among the set of all users. Thus, our powerful Adversary, although unable to
corrupt 1/3 of all the users, can certainly corrupt all members of SV r!

Fortunately we’ll prove that protocol BA⋆, executed by propagating messages in a peer-to-
peer fashion, is player-replaceable. This novel requirement means that the protocol correctly and
efficiently reaches consensus even if each of its step is executed by a totally new, and randomly
and independently selected, set of players. Thus, with millions of users, each small set of players
associated to a step of BA⋆ most probably has empty intersection with the next set.

In addition, the sets of players of different steps of BA⋆ will probably have totally different
cardinalities. Furthermore, the members of each set do not know who the next set of players will
be, and do not secretly pass any internal state.

The replaceable-player property is actually crucial to defeat the dynamic and very powerful
Adversary we envisage. We believe that replaceable-player protocols will prove crucial in lots of
contexts and applications. In particular, they will be crucial to execute securely small sub-protocols
embedded in a larger universe of players with a dynamic adversary, who, being able to corrupt even
a small fraction of the total players, has no difficulty in corrupting all the players in the smaller
sub-protocol.

An Additional Property/Technique: Lazy Honesty A honest user follows his prescribed
instructions, which include being online and run the protocol. Since, Algorand has only modest
computation and communication requirement, being online and running the protocol “in the
background” is not a major sacrifice. Of course, a few “absences” among honest players, as those
due to sudden loss of connectivity or the need of rebooting, are automatically tolerated (because
we can always consider such few players to be temporarily malicious). Let us point out, however,
that Algorand can be simply adapted so as to work in a new model, in which honest users to be
offline most of the time. Our new model can be informally introduced as follows.

Lazy Honesty. Roughly speaking, a user i is lazy-but-honest if (1) he follows all his prescribed
instructions, when he is asked to participate to the protocol, and (2) he is asked to participate
to the protocol only rarely, and with a suitable advance notice.

With such a relaxed notion of honesty, we may be even more confident that honest people will be
at hand when we need them, and Algorand guarantee that, when this is the case,

The system operates securely even if, at a given point in time,
the majority of the participating players are malicious.
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1.3 Closely Related work

Proof-of-work approaches (like the cited [29] and [4]) are quite orthogonal to our ours. So are the
approaches based on message-passing Byzantine agreement or practical Byzantine fault tolerance
(like the cited [8]). Indeed, these protocols cannot be run among the set of all users and cannot,
in our model, be restricted to a suitably small set of users. In fact, our powerful adversary my
immediately corrupt all the users involved in a small set charged to actually running a BA protocol.

Our approach could be considered related to proof of stake [2], in the sense that users’ “power”
in block building is proportional to the money they own in the system (as opposed to —say— to
the money they have put in “escrow”).

The paper closest to ours is the Sleepy Consensus Model of Pass and Shi [30]. To avoid the
heavy computation required in the proof-of-work approach, their paper relies upon (and kindly
credits) Algorand’s secret cryptographic sortition. With this crucial aspect in common, several
significant differences exist between our papers. In particular,

(1) Their setting is only permissioned. By contrast, Algorand is also a permissionless system.
(2) They use a Nakamoto-style protocol, and thus their blockchain forks frequently. Although

dispensing with proof-of-work, in their protocol a secretly selected leader is asked to elongate the
longest valid (in a richer sense) blockchain. Thus, forks are unavoidable and one has to wait that
the block is sufficiently “deep” in the chain. Indeed, to achieve their goals with an adversary
capable of adaptive corruptions, they require a block to be poly(N) deep, where N represents the
total number of users in the system. Notice that, even assuming that a block could be produced
in a minute, if there were N = 1M users, then one would have to wait for about 2M years for
a block to become N2-deep, and for about 2 years for a block to become N -deep. By contrast,
Algorand’s blockchain forks only with negligible probability, even though the Adversary corrupt
users immediately and adaptively, and its new blocks can immediately be relied upon.

(3) They do not handle individual Byzantine agreements. In a sense, they only guarantee
“eventual consensus on a growing sequence of values”. Theirs is a state replication protocol, rather
than a BA one, and cannot be used to reach Byzantine agreement on an individual value of interest.
By contrast, Algorand can also be used only once, if so wanted, to enable millions of users to quickly
reach Byzantine agreement on a specific value of interest.

(4) They require weakly synchronized clocks. That is, all users’ clocks are offset by a small time
δ. By contrast, in Algorand, clocks need only have (essentially) the same “speed”.

(5) Their protocol works with lazy-but-honest users or with honest majority of online users.
They kindly credit Algorand for raising the issue of honest users going offline en masse, and for
putting forward the lazy honesty model in response. Their protocol not only works in the lazy
honesty model, but also in their adversarial sleepy model, where an adversary chooses which users
are online and which are offline, provided that, at all times, the majority of online users are honest.2

2The original version of their paper actually considered only security in their adversarial sleepy model. The
original version of Algorand, which precedes theirs, also explicitly envisaged assuming that a given majority of the
online players is always honest, but explicitly excluded it from consideration, in favor of the lazy honesty model.
(For instance, if at some point in time half of the honest users choose to go off-line, then the majority of the users
on-line may very well be malicious. Thus, to prevent this from happening, the Adversary should force most of his
corrupted players to go off-line too, which clearly is against his own interest.) Notice that a protocol with a majority
of lazy-but-honest players works just fine if the majority of the users on-line are always malicious. This is so, because
a sufficient number of honest players, knowing that they are going to be crucial at some rare point in time, will elect
not to go off-line in those moments, nor can they be forced off-line by the Adversary, since he does not know who the
crucial honest players might be.
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(6) They require a simple honest majority. By contrast, the current version of Algorand requires
a 2/3 honest majority.

Another paper close to us is Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol,
by Kiayias, Russell, David, and Oliynykov [20]. Also their system appeared after ours. It also
uses crytpographic sortition to dispense with proof of work in a provable manner. However, their
system is, again, a Nakamoto-style protocol, in which forks are both unavoidable and frequent.
(However, in their model, blocks need not as deep as the sleepy-consensus model.) Moreover,
their system relies on the following assumptions: in the words of the authors themselves, “(1) the
network is highly synchronous, (2) the majority of the selected stakeholders is available as needed
to participate in each epoch, (3) the stakeholders do not remain offline for long periods of time,
(4) the adaptivity of corruptions is subject to a small delay that is measured in rounds linear in
the security parameter.” By contrast, Algorand is, with overwhelming probability, fork-free, and
does not rely on any of these 4 assumptions. In particular, in Algorand, the Adversary is able to
instantaneously corrupt the users he wants to control.

2 Preliminaries

2.1 Cryptographic Primitives

Ideal Hashing. We shall rely on an efficiently computable cryptographic hash function, H, that
maps arbitrarily long strings to binary strings of fixed length. Following a long tradition, we model
H as a random oracle, essentially a function mapping each possible string s to a randomly and
independently selected (and then fixed) binary string, H(s), of the chosen length.

In this paper, H has 256-bit long outputs. Indeed, such length is short enough to make the
system efficient and long enough to make the system secure. For instance, we wantH to be collision-
resilient. That is, it should be hard to find two different strings x and y such that H(x) = H(y).
When H is a random oracle with 256-bit long outputs, finding any such pair of strings is indeed
difficult. (Trying at random, and relying on the birthday paradox, would require 2256/2 = 2128

trials.)

Digital Signing. Digital signatures allow users to to authenticate information to each other
without sharing any sharing any secret keys. A digital signature scheme consists of three fast
algorithms: a probabilistic key generator G, a signing algorithm S, and a verification algorithm V .

Given a security parameter k, a sufficiently high integer, a user i uses G to produce a pair of
k-bit keys (i.e., strings): a “public” key pki and a matching “secret” signing key ski. Crucially, a
public key does not “betray” its corresponding secret key. That is, even given knowledge of pki, no
one other than i is able to compute ski in less than astronomical time.

User i uses ski to digitally sign messages. For each possible message (binary string) m, i first
hashes m and then runs algorithm S on inputs H(m) and ski so as to produce the k-bit string

sigpki(m) , S(H(m), ski) .3

3Since H is collision-resilient it is practically impossible that, by signing m one “accidentally signs” a different
message m′.
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The binary string sigpki(m) is referred to as i’s digital signature of m (relative to pki), and can be
more simply denoted by sigi(m), when the public key pki is clear from context.

Everyone knowing pki can use it to verify the digital signatures produced by i. Specifically, on
inputs (a) the public key pki of a player i, (b) a message m, and (c) a string s, that is, i’s alleged
digital signature of the message m, the verification algorithm V outputs either YES or NO.

The properties we require from a digital signature scheme are:

1. Legitimate signatures are always verified: If s = sigi(m), then V (pki,m, s) = Y ES; and

2. Digital signatures are hard to forge: Without knowledge of ski the time to find a string s such
that V (pki,m, s) = Y ES, for a message m never signed by i, is astronomically long.

(Following the strong security requirement of Goldwasser, Micali, and Rivest [17], this is true
even if one can obtain the signature of any other message.)

Accordingly, to prevent anyone else from signing messages on his behalf, a player i must keep his
signing key ski secret (hence the term “secret key”), and to enable anyone to verify the messages
he does sign, i has an interest in publicizing his key pki (hence the term “public key”).

In general, a message m is not retrievable from its signature sigi(m). In order to virtually deal
with digital signatures that satisfy the conceptually convenient “retrievability” property (i.e., to
guarantee that the signer and the message are easily computable from a signature, we define

SIGpki(m) = (i,m, sigpki(m)) and SIGi(m) = (i,m, sigi(m)), if pki is clear.

Unique Digital Signing. We also consider digital signature schemes (G,S, V ) satisfying the
following additional property.

3. Uniqueness. It is hard to find strings pk′, m, s, and s′ such that

s 6= s′ and V (pk′,m, s) = V (pk′,m, s′) = 1.

(Note that the uniqueness property holds also for strings pk′ that are not legitimately generated
public keys. In particular, however, the uniqueness property implies that, if one used the
specified key generator G to compute a public key pk together with a matching secret key sk,
and thus knew sk, it would be essentially impossible also for him to find two different digital
signatures of a same message relative to pk.)

Remarks

• From Unique signatures to verifiable random functions. Relative to a digital
signature scheme with the uniqueness property, the mapping m → H(sigi(m)) associates to
each possible string m, a unique, randomly selected, 256-bit string, and the correctness of this
mapping can be proved given the signature sigi(m).

That is, ideal hashing and digital signature scheme satisfying the uniqueness property essentially
provide an elementary implementation of a verifiable random function, as introduced and by
Micali, Rabin, and Vadhan [27]. (Their original implementation was necessarily more complex,
since they did not rely on ideal hashing.)
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• Three different needs for digital signatures. In Algorand, a user i relies on digital
signatures for

(1) Authenticating i’s own payments. In this application, keys can be “long-term” (i.e., used to
sign many messages over a long period of time) and come from a ordinary signature scheme.

(2) Generating credentials proving that i is entitled to act at some step s of a round r. Here,
keys can be long-term, but must come from a scheme satisfying the uniqueness property.

(3) Authenticating the message i sends in each step in which he acts. Here, keys must be
ephemeral (i.e., destroyed after their first use), but can come from an ordinary signature scheme.

• A small-cost simplification. For simplicity, we envision each user i to have a single long-
term key. Accordingly, such a key must come from a signature scheme with the uniqueness
property. Such simplicity has a small computational cost. Typically, in fact, unique digital
signatures are slightly more expensive to produce and verify than ordinary signatures.

2.2 The Idealized Public Ledger

Algorand tries to mimic the following payment system, based on an idealized public ledger.

1. The Initial Status. Money is associated with individual public keys (privately generated and
owned by users). Letting pk1, . . . , pkj be the initial public keys and a1, . . . , aj their respective
initial amounts of money units, then the initial status is

S0 = (pk1, a1), . . . , (pkj , aj) ,

which is assumed to be common knowledge in the system.

2. Payments. Let pk be a public key currently having a ≥ 0 money units, pk′ another public
key, and a′ a non-negative number no greater than a. Then, a (valid) payment ℘ is a digital
signature, relative to pk, specifying the transfer of a′ monetary units from pk to pk′, together
with some additional information. In symbols,

℘ = SIGpk(pk, pk
′, a′, I,H(I)),

where I represents any additional information deemed useful but not sensitive (e.g., time
information and a payment identifier), and I any additional information deemed sensitive (e.g.,
the reason for the payment, possibly the identities of the owners of pk and the pk′, and so on).

We refer to pk (or its owner) as the payer, to each pk′ (or its owner) as a payee, and to a′ as
the amount of the payment ℘.

Free Joining Via Payments. Note that users may join the system whenever they want by
generating their own public/secret key pairs. Accordingly, the public key pk′ that appears in
the payment ℘ above may be a newly generated public key that had never “owned” any money
before.

3. The Magic Ledger. In the Idealized System, all payments are valid and appear in a tamper-proof
list L of sets of payments “posted on the sky” for everyone to see:

L = PAY 1, PAY 2, . . . ,

10



Each block PAY r+1 consists of the set of all payments made since the appearance of block
PAY r. In the ideal system, a new block appears after a fixed (or finite) amount of time.

Discussion.

• More General Payments and Unspent Transaction Output. More generally, if a public key
pk owns an amount a, then a valid payment ℘ of pk may transfer the amounts a′1, a

′
2, . . .,

respectively to the keys pk′1, pk
′
2, . . ., so long as

∑
j a

′
j ≤ a.

In Bitcoin and similar systems, the money owned by a public key pk is segregated into separate
amounts, and a payment ℘ made by pk must transfer such a segregated amount a in its entirety.
If pk wishes to transfer only a fraction a′ < a of a to another key, then it must also transfer the
balance, the unspent transaction output, to another key, possibly pk itself.

Algorand also works with keys having segregated amounts. However, in order to focus on the
novel aspects of Algorand, it is conceptually simpler to stick to our simpler forms of payments
and keys having a single amount associated to them.

• Current Status. The Idealized Scheme does not directly provide information about the current
status of the system (i.e., about how many money units each public key has). This information
is deducible from the Magic Ledger.

In the ideal system, an active user continually stores and updates the latest status information,
or he would otherwise have to reconstruct it, either from scratch, or from the last time he
computed it. (In the next version of this paper, we shall augment Algorand so as to enable its
users to reconstruct the current status in an efficient manner.)

• Security and “Privacy”. Digital signatures guarantee that no one can forge a payment by
another user. In a payment ℘, the public keys and the amount are not hidden, but the sensitive
information I is. Indeed, only H(I) appears in ℘, and since H is an ideal hash function, H(I)
is a random 256-bit value, and thus there is no way to figure out what I was better than by
simply guessing it. Yet, to prove what I was (e.g., to prove the reason for the payment) the
payer may just reveal I. The correctness of the revealed I can be verified by computing H(I)
and comparing the resulting value with the last item of ℘. In fact, since H is collision resilient,
it is hard to find a second value I ′ such that H(I) = H(I ′).

2.3 Basic Notions and Notations

Keys, Users, and Owners Unless otherwise specified, each public key (“key” for short) is long-
term and relative to a digital signature scheme with the uniqueness property. A public key i joins
the system when another public key j already in the system makes a payment to i.

For color, we personify keys. We refer to a key i as a “he”, say that i is honest, that i sends
and receives messages, etc. User is a synonym for key. When we want to distinguish a key from
the person to whom it belongs, we respectively use the term “digital key” and “owner”.

Permissionless and Permissioned Systems. A system is permissionless, if a digital key is free
to join at any time and an owner can own multiple digital keys; and its permissioned, otherwise.
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Unique Representation Each object in Algorand has a unique representation. In particular,
each set {(x, y, z, . . .) : x ∈ X, y ∈ Y, z ∈ Z, . . .} is ordered in a pre-specified manner: e.g., first
lexicographically in x, then in y, etc.

Same-Speed Clocks There is no global clock: rather, each user has his own clock. User clocks
need not be synchronized in any way. We assume, however, that they all have the same speed.

For instance, when it is 12pm according to the clock of a user i, it may be 2:30pm according to
the clock of another user j, but when it will be 12:01 according to i’s clock, it will 2:31 according
to j’s clock. That is, “one minute is the same (sufficiently, essentially the same) for every user”.

Rounds Algorand is organized in logical units, r = 0, 1, . . ., called rounds.
We consistently use superscripts to indicate rounds. To indicate that a non-numerical quantity Q

(e.g., a string, a public key, a set, a digital signature, etc.) refers to a round r, we simply write Qr.
Only when Q is a genuine number (as opposed to a binary string interpretable as a number), do
we write Q(r), so that the symbol r could not be interpreted as the exponent of Q.

At (the start of a) round r > 0, the set of all public keys is PKr, and the system status is

Sr =
{(

i, a
(r)
i , . . .

)
: i ∈ PKr

}
,

where a
(r)
i is the amount of money available to the public key i. Note that PKr is deducible from

Sr, and that Sr may also specify other components for each public key i.
For round 0, PK0 is the set of initial public keys, and S0 is the initial status. Both PK0 and

S0 are assumed to be common knowledge in the system. For simplicity, at the start of round r, so
are PK1, . . . , PKr and S1, . . . , Sr.

In a round r, the system status transitions from Sr to Sr+1: symbolically,

Round r: Sr −→ Sr+1.

Payments In Algorand, the users continually make payments (and disseminate them in the way
described in subsection 2.7). A payment ℘ of a user i ∈ PKr has the same format and semantics
as in the Ideal System. Namely,

℘ = SIGi(i, i
′, a, I,H(I)) .

Payment ℘ is individually valid at a round r (is a round-r payment, for short) if (1) its amount

a is less than or equal to a
(r)
i , and (2) it does not appear in any official payset PAY r′ for r′ < r.

(As explained below, the second condition means that ℘ has not already become effective.

A set of round-r payments of i is collectively valid if the sum of their amounts is at most a
(r)
i .

Paysets A round-r payset P is a set of round-r payments such that, for each user i, the payments
of i in P (possibly none) are collectively valid. The set of all round-r paysets is PAY(r). A round-r
payset P is maximal if no superset of P is a round-r payset.

We actually suggest that a payment ℘ also specifies a round ρ, ℘ = SIGi(ρ, i, i
′, a, I,H(I)) ,

and cannot be valid at any round outside [ρ, ρ+ k], for some fixed non-negative integer k.4

4This simplifies checking whether ℘ has become “effective” (i.e., it simplifies determining whether some payset
PAY r contains ℘. When k = 0, if ℘ = SIGi(r, i, i

′, a, I,H(I)) , and ℘ /∈ PAY r, then i must re-submit ℘.
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Official Paysets For every round r, Algorand publicly selects (in a manner described later on)
a single (possibly empty) payset, PAY r, the round’s official payset. (Essentially, PAY r represents
the round-r payments that have “actually” happened.)

As in the Ideal System (and Bitcoin), (1) the only way for a new user j to enter the system
is to be the recipient of a payment belonging to the official payset PAY r of a given round r; and
(2) PAY r determines the status of the next round, Sr+1, from that of the current round, Sr.
Symbolically,

PAY r : Sr −→ Sr+1.

Specifically,

1. the set of public keys of round r + 1, PKr+1, consists of the union of PKr and the set of all
payee keys that appear, for the first time, in the payments of PAY r; and

2. the amount of money a
(r+1)
i that a user i owns in round r + 1 is the sum of ai(r) —i.e., the

amount of money i owned in the previous round (0 if i 6∈ PKr)— and the sum of amounts
paid to i according to the payments of PAY r.

In sum, as in the Ideal System, each status Sr+1 is deducible from the previous payment history:

PAY 0, . . . , PAY r.

2.4 Blocks and Proven Blocks

In Algorand0, the block Br corresponding to a round r specifies: r itself; the set of payments of
round r, PAY r; a quantity Qr, to be explained, and the hash of the previous block, H(Br−1).
Thus, starting from some fixed block B0, we have a traditional blockchain:

B1 = (1, PAY 1, Q0,H(B0)), B2 = (2, PAY 2, Q1,H(B1)), B3 = (3, PAY 3, Q2,H(B2)), . . .

In Algorand, the authenticity of a block is actually vouched by a separate piece of information,
a “block certificate” CERT r, which turns Br into a proven block, Br. The Magic Ledger, therefore,
is implemented by the sequence of the proven blocks,

B1, B2, . . .

Discussion As we shall see, CERT r consists of a set of digital signatures for H(Br), those of a
majority of the members of SV r, together with a proof that each of those members indeed belongs
to SV r. We could, of course, include the certificates CERT r in the blocks themselves, but find it
conceptually cleaner to keep it separate.)

In Bitcoin each block must satisfy a special property, that is, must “contain a solution of a
crypto puzzle”, which makes block generation computationally intensive and forks both inevitable
and not rare. By contrast, Algorand’s blockchain has two main advantages: it is generated with
minimal computation, and it will not fork with overwhelmingly high probability. Each block Bi is
safely final as soon as it enters the blockchain.
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2.5 Acceptable Failure Probability

To analyze the security of Algorand we specify the probability, F , with which we are willing to
accept that something goes wrong (e.g., that a verifier set SV r does not have an honest majority).
As in the case of the output length of the cryptographic hash function H, also F is a parameter.
But, as in that case, we find it useful to set F to a concrete value, so as to get a more intuitive
grasp of the fact that it is indeed possible, in Algorand, to enjoy simultaneously sufficient security
and sufficient efficiency. To emphasize that F is parameter that can be set as desired, in the first
and second embodiments we respectively set

F = 10−12 and F = 10−18 .

Discussion Note that 10−12 is actually less than one in a trillion, and we believe that such a
choice of F is adequate in our application. Let us emphasize that 10−12 is not the probability
with which the Adversary can forge the payments of an honest user. All payments are digitally
signed, and thus, if the proper digital signatures are used, the probability of forging a payment is
far lower than 10−12, and is, in fact, essentially 0. The bad event that we are willing to tolerate
with probability F is that Algorand’s blockchain forks. Notice that, with our setting of F and
one-minute long rounds, a fork is expected to occur in Algorand’s blockchain as infrequently as
(roughly) once in 1.9 million years. By contrast, in Bitcoin, a forks occurs quite often.

A more demanding person may set F to a lower value. To this end, in our second embodiment
we consider setting F to 10−18. Note that, assuming that a block is generated every second, 1018

is the estimated number of seconds taken by the Universe so far: from the Big Bang to present
time. Thus, with F = 10−18, if a block is generated in a second, one should expect for the age of
the Universe to see a fork.

2.6 The Adversarial Model

Algorand is designed to be secure in a very adversarial model. Let us explain.

Honest and Malicious Users A user is honest if he follows all his protocol instructions, and
is perfectly capable of sending and receiving messages. A user is malicious (i.e., Byzantine, in the
parlance of distributed computing) if he can deviate arbitrarily from his prescribed instructions.

The Adversary The Adversary is an efficient (technically polynomial-time) algorithm, personi-
fied for color, who can immediately make malicious any user he wants, at any time he wants (subject
only to an upperbound to the number of the users he can corrupt).

The Adversary totally controls and perfectly coordinates all malicious users. He takes all actions
on their behalf, including receiving and sending all their messages, and can let them deviate from
their prescribed instructions in arbitrary ways. Or he can simply isolate a corrupted user sending
and receiving messages. Let us clarify that no one else automatically learns that a user i is malicious,
although i’s maliciousness may transpire by the actions the Adversary has him take.

This powerful adversary however,

• Does not have unbounded computational power and cannot successfully forge the digital
signature of an honest user, except with negligible probability; and
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• Cannot interfere in any way with the messages exchanges among honest users.

Furthermore, his ability to attack honest users is bounded by one of the following assumption.

Honesty Majority of Money We consider a continuum of Honest Majority of Money (HMM)
assumptions: namely, for each non-negative integer k and real h > 1/2,

HHMk > h: the honest users in every round r owned a fraction greater than h of all money in
the system at round r − k.

Discussion. Assuming that all malicious users perfectly coordinate their actions (as if controlled
by a single entity, the Adversary) is a rather pessimistic hypothesis. Perfect coordination among too
many individuals is difficult to achieve. Perhaps coordination only occurs within separate groups
of malicious players. But, since one cannot be sure about the level of coordination malicious users
may enjoy, we’d better be safe than sorry.

Assuming that the Adversary can secretly, dynamically, and immediately corrupt users is also
pessimistic. After all, realistically, taking full control of a user’s operations should take some time.

The assumption HMMk > h implies, for instance, that, if a round (on average) is implemented
in one minute, then, the majority of the money at a given round will remain in honest hands for
at least two hours, if k = 120, and at least one week, if k = 10, 000.

Note that the HMM assumptions and the previous Honest Majority of Computing Power
assumptions are related in the sense that, since computing power can be bought with money,
if malicious users own most of the money, then they can obtain most of the computing power.

2.7 The Communication Model

We envisage message propagation —i.e., “peer-to-peer gossip”5— to be the only means of
communication.

Temporary Assumption: Timely Delivery of Messages in the Entire Network. For
most part of this paper we assume that every propagated message reaches almost all honest users
in a timely fashion. We shall remove this assumption in Section 10, where we deal with network
partitions, either naturally occurring or adversarially induced. (As we shall see, we only assume
timely delivery of messages within each connected component of the network.)

One concrete way to capture timely delivery of propagated messages (in the entire network) is
the following:

For all reachability ρ > 95% and message size µ ∈ Z+, there exists λρ,µ such that,

if a honest user propagates µ-byte message m at time t,

then m reaches, by time t+ λρ,µ, at least a fraction ρ of the honest users.

5Essentially, as in Bitcoin, when a user propagates a message m, every active user i receiving m for the first time,
randomly and independently selects a suitably small number of active users, his “neighbors”, to whom he forwards m,
possibly until he receives an acknowledgement from them. The propagation of m terminates when no user receives
m for the first time.
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The above property, however, cannot support our Algorand protocol, without explicitly and sep-
arately envisaging a mechanism to obtain the latest blockchain —by another user/depository/etc.
In fact, to construct a new block Br not only should a proper set of verifiers timely receive round-r
messages, but also the messages of previous rounds, so as to know Br−1 and all other previous
blocks, which is necessary to determine whether the payments in Br are valid. The following
assumption instead suffices.

Message Propagation (MP) Assumption: For all ρ > 95% and µ ∈ Z+, there exists λρ,µ

such that, for all times t and all µ-byte messages m propagated by an honest user before t− λρ,µ,
m is received, by time t, by at least a fraction ρ of the honest users.

Protocol Algorand ′ actually instructs each of a small number of users (i.e., the verifiers of a
given step of a round in Algorand ′, to propagate a separate message of a (small) prescribed size,
and we need to bound the time required to fulfill these instructions. We do so by enriching the MP
assumption as follows.

For all n, ρ > 95%, and µ ∈ Z+, there exists λn,ρ,µ such that, for all times t and all µ-byte
messages m1, . . . ,mn, each propagated by an honest user before t−λn,ρ,µ, m1, . . . ,mn are received,
by time t, by at least a fraction ρ of the honest users.

Note

• The above assumption is deliberately simple, but also stronger than needed in our paper.6

• For simplicity, we assume ρ = 1, and thus drop mentioning ρ.

• We pessimistically assume that, provided he does not violate the MP assumption, the Adversary
totally controls the delivery of all messages. In particular, without being noticed by the honest
users, the Adversary he can arbitrarily decide which honest player receives which message when,
and arbitrarily accelerate the delivery of any message he wants.7

3 The BA Protocol BA⋆ in a Traditional Setting

As already emphasized, Byzantine agreement is a key ingredient of Algorand. Indeed, it is through
the use of such a BA protocol that Algorand is unaffected by forks. However, to be secure against our
powerful Adversary, Algorand must rely on a BA protocol that satisfies the new player-replaceability
constraint. In addition, for Algorand to be efficient, such a BA protocol must be very efficient.

BA protocols were first defined for an idealized communication model, synchronous complete
networks (SC networks). Such a model allows for a simpler design and analysis of BA protocols.

6Given the honest percentage h and the acceptable failure probability F , Algorand computes an upperbound, N ,
to the maximum number of member of verifiers in a step. Thus, the MP assumption need only hold for n ≤ N .

In addition, as stated, the MP assumption holds no matter how many other messages may be propagated alongside
the mj ’s. As we shall see, however, in Algorand messages at are propagated in essentially non-overlapping time
intervals, during which either a single block is propagated, or at most N verifiers propagate a small (e.g., 200B)
message. Thus, we could restate the MP assumption in a weaker, but also more complex, way.

7For instance, he can immediately learn the messages sent by honest players. Thus, a malicious user i′, who is
asked to propagate a message simultaneously with a honest user i, can always choose his own message m′ based on
the message m actually propagated by i. This ability is related to rushing, in the parlance of distributed-computation
literature.
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Accordingly, in this section, we introduce a new BA protocol, BA⋆, for SC networks and ignoring
the issue of player replaceability altogether. The protocol BA⋆ is a contribution of separate value.
Indeed, it is the most efficient cryptographic BA protocol for SC networks known so far.

To use it within our Algorand protocol, we modify BA⋆ a bit, so as to account for our different
communication model and context, but make sure, in section X, to highlight how BA⋆ is used
within our actual protocol Algorand ′.

We start by recalling the model in which BA⋆ operates and the notion of a Byzantine agreement.

3.1 Synchronous Complete Networks and Matching Adversaries

In a SC network, there is a common clock, ticking at each integral times r = 1, 2, . . .
At each even time click r, each player i instantaneously and simultaneously sends a single

message mr
i,j (possibly the empty message) to each player j, including himself. Each mr

i,j is received
at time click r + 1 by player j, together with the identity of the sender i.

Again, in a communication protocol, a player is honest if he follows all his prescribed
instructions, and malicious otherwise. All malicious players are totally controlled and perfectly
coordinated by the Adversary, who, in particular, immediately receives all messages addressed to
malicious players, and chooses the messages they send.

The Adversary can immediately make malicious any honest user he wants at any odd time click
he wants, subject only to a possible upperbound t to the number of malicious players. That is,
the Adversary “cannot interfere with the messages already sent by an honest user i”, which will be
delivered as usual.

The Adversary also has the additional ability to see instantaneously, at each even round, the
messages that the currently honest players send, and instantaneously use this information to choose
the messages the malicious players send at the same time tick.

Remarks

• Adversary Power. The above setting is very adversarial. Indeed, in the Byzantine agreement
literature, many settings are less adversarial. However, some more adversarial settings have
also been considered, where the Adversary, after seeing the messages sent by an honest player i
at a given time click r, has the ability to erase all these messages from the network, immediately
corrupt i, choose the message that the now malicious i sends at time click r, and have them
delivered as usual. The envisaged power of the Adversary matches that he has in our setting.

• Physical Abstraction. The envisaged communication model abstracts a more physical model,
in which each pair of players (i, j) is linked by a separate and private communication line li,j .
That is, no one else can inject, interfere with, or gain information about the messages sent over
li,j . The only way for the Adversary to have access to li,j is to corrupt either i or j.

• Privacy and Authentication. In SC networks message privacy and authentication are guaranteed
by assumption. By contrast, in our communication network, where messages are propagated
from peer to peer, authentication is guaranteed by digital signatures, and privacy is non-existent.
Thus, to adopt protocol BA⋆ to our setting, each message exchanged should be digitally signed
(further identifying the state at which it was sent). Fortunately, the BA protocols that we
consider using in Algorand do not require message privacy.
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3.2 The Notion of a Byzantine Agreement

The notion of Byzantine agreement was introduced by Pease Shostak and Lamport [31] for the
binary case, that is, when every initial value consists of a bit. However, it was quickly extended
to arbitrary initial values. (See the surveys of Fischer [16] and Chor and Dwork [10].) By a BA
protocol, we mean an arbitrary-value one.

Definition 3.1. In a synchronous network, let P be a n-player protocol, whose player set is common
knowledge among the players, t a positive integer such that n ≥ 2t + 1. We say that P is an
arbitrary-value (respectively, binary) (n, t)-Byzantine agreement protocol with soundness σ ∈ (0, 1)
if, for every set of values V not containing the special symbol ⊥ (respectively, for V = {0, 1}), in an
execution in which at most t of the players are malicious and in which every player i starts with an
initial value vi ∈ V , every honest player j halts with probability 1, outputting a value outi ∈ V ∪{⊥}
so as to satisfy, with probability at least σ, the following two conditions:

1. Agreement: There exists out ∈ V ∪ {⊥} such that outi = out for all honest players i.

2. Consistency: if, for some value v ∈ V , vi = v for all honest players, then out = v.

We refer to out as P’s output, and to each outi as player i’s output.

3.3 The BA Notation #

In our BA protocols, a player is required to count how many players sent him a given message in
a given step. Accordingly, for each possible value v that might be sent,

#s
i (v)

(or just #i(v) when s is clear) is the number of players j from which i has received v in step s.
Recalling that a player i receives exactly one message from each player j, if the number of

players is n, then, for all i and s,
∑

v #
s
i (v) = n.

3.4 The Binary BA Protocol BBA⋆

In this section we present a new binary BA protocol, BBA⋆, which relies on the honesty of more
than two thirds of the players and is very fast: no matter what the malicious players might do,
each execution of its main loop brings the players into agreement with probability 1/3.

Each player has his own public key of a digital signature scheme satisfying the unique-signature
property. Since this protocol is intended to be run on synchronous complete network, there is no
need for a player i to sign each of his messages.

Digital signatures are used to generate a sufficiently common random bit in Step 3. (In Algorand,
digital signatures are used to authenticate all other messages as well.)

The protocol requires a minimal set-up: a common random string r, independent of the players’
keys. (In Algorand, r is actually replaced by the quantity Qr.)

Protocol BBA⋆ is a 3-step loop, where the players repeatedly exchange Boolean values, and
different players may exit this loop at different times. A player i exits this loop by propagating,
at some step, either a special value 0∗ or a special value 1∗, thereby instructing all players to
“pretend” they respectively receive 0 and 1 from i in all future steps. (Alternatively said: assume
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that the last message received by a player j from another player i was a bit b. Then, in any step
in which he does not receive any message from i, j acts as if i sent him the bit b.)

The protocol uses a counter γ, representing how many times its 3-step loop has been executed.
At the start of BBA⋆, γ = 0. (One may think of γ as a global counter, but it is actually increased
by each individual player every time that the loop is executed.)

There are n ≥ 3t+ 1, where t is the maximum possible number of malicious players. A binary
string x is identified with the integer whose binary representation (with possible leadings 0s) is x;
and lsb(x) denotes the least significant bit of x.

Protocol BBA⋆

(Communication) Step 1. [Coin-Fixed-To-0 Step] Each player i sends bi.

1.1 If #1
i (0) ≥ 2t+ 1, then i sets bi = 0, sends 0∗, outputs outi = 0, and HALTS.

1.2 If #1
i (1) ≥ 2t+ 1, then, then i sets bi = 1.

1.3 Else, i sets bi = 0.

(Communication) Step 2. [Coin-Fixed-To-1 Step] Each player i sends bi.

2.1 If #2
i (1) ≥ 2t+ 1, then i sets bi = 1, sends 1∗, outputs outi = 1, and HALTS.

2.2 If #2
i (0) ≥ 2t+ 1, then i set bi = 0.

2.3 Else, i sets bi = 1.

(Communication) Step 3. [Coin-Genuinely-Flipped Step] Each player i sends bi and SIGi(r, γ).

3.1 If #3
i (0) ≥ 2t+ 1, then i sets bi = 0.

3.2 If #3
i (1) ≥ 2t+ 1, then i sets bi = 1.

3.3 Else, letting Si = {j ∈ N who have sent i a proper message in this step 3 },
i sets bi = c , lsb(minj∈Si

H(SIGi(r, γ))); increases γi by 1; and returns to Step 1.

Theorem 3.1. Whenever n ≥ 3t+ 1, BBA⋆ is a binary (n, t)-BA protocol with soundness 1.

A proof of Theorem 3.1 is given in [26]. Its adaptation to our setting, and its player-replaceability
property are novel.

Historical Remark Probabilistic binary BA protocols were first proposed by Ben-Or in
asynchronous settings [7]. Protocol BBA⋆ is a novel adaptation, to our public-key setting, of the
binary BA protocol of Feldman and Micali [15]. Their protocol was the first to work in an expected
constant number of steps. It worked by having the players themselves implement a common coin,
a notion proposed by Rabin, who implemented it via an external trusted party [32].
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3.5 Graded Consensus and the Protocol GC

Let us recall, for arbitrary values, a notion of consensus much weaker than Byzantine agreement.

Definition 3.2. Let P be a protocol in which the set of all players is common knowledge, and each
player i privately knows an arbitrary initial value v′i.

We say that P is an (n, t)-graded consensus protocol if, in every execution with n players, at
most t of which are malicious, every honest player i halts outputting a value-grade pair (vi, gi),
where gi ∈ {0, 1, 2}, so as to satisfy the following three conditions:

1. For all honest players i and j, |gi − gj | ≤ 1.

2. For all honest players i and j, gi, gj > 0 ⇒ vi = vj .

3. If v′1 = · · · = v′n = v for some value v, then vi = v and gi = 2 for all honest players i.

Historical Note The notion of a graded consensus is simply derived from that of a graded
broadcast, put forward by Feldman and Micali in [15], by strengthening the notion of a crusader
agreement, as introduced by Dolev [12], and refined by Turpin and Coan [33].8

In [15], the authors also provided a 3-step (n, t)-graded broadcasting protocol, gradecast, for
n ≥ 3t+1. A more complex (n, t)-graded-broadcasting protocol for n > 2t+1 has later been found
by Katz and Koo [19].

The following two-step protocol GC consists of the last two steps of gradecast, expressed in our
notation. To emphasize this fact, and to match the steps of protocol Algorand ′ of section 4.1, we
respectively name 2 and 3 the steps of GC.

Protocol GC

Step 2. Each player i sends v′i to all players.

Step 3. Each player i sends to all players the string x if and only if #2
i (x) ≥ 2t+ 1.

Output Determination. Each player i outputs the pair (vi, gi) computed as follows:

• If, for some x, #3
i (x) ≥ 2t+ 1, then vi = x and gi = 2.

• If, for some x, #3
i (x) ≥ t+ 1, then vi = x and gi = 1.

• Else, vi = ⊥ and gi = 0.

Theorem 3.2. If n ≥ 3t+ 1, then GC is a (n, t)-graded broadcast protocol.

The proof immediately follows from that of the protocol gradecast in [15], and is thus omitted.9

8In essence, in a graded-broadcasting protocol, (a) the input of every player is the identity of a distinguished
player, the sender, who has an arbitrary value v as an additional private input, and (b) the outputs must satisfy the
same properties 1 and 2 of graded consensus, plus the following property 3′: if the sender is honest, then vi = v and

gi = 2 for all honest player i.
9Indeed, in their protocol, in step 1, the sender sends his own private value v to all players, and each player i lets

v′i consist of the value he has actually received from the sender in step 1.
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3.6 The Protocol BA⋆

We now describe the arbitrary-value BA protocol BA⋆ via the binary BA protocol BBA⋆ and the
graded-consensus protocol GC. Below, the initial value of each player i is v′i.

Protocol BA⋆

Steps 1 and 2. Each player i executes GC, on input v′i, so as to compute a pair (vi, gi).

Step 3, . . . Each player i executes BBA⋆ —with initial input 0, if gi = 2, and 1 otherwise— so
as to compute the bit outi.

Output Determination. Each player i outputs vi, if outi = 0, and ⊥ otherwise.

Theorem 3.3. Whenever n ≥ 3t+ 1, BA⋆ is a (n, t)-BA protocol with soundness 1.

Proof. We first prove Consistency, and then Agreement.

Proof of Consistency. Assume that, for some value v ∈ V , v′i = v. Then, by property 3 of
graded consensus, after the execution of GC, all honest players output (v, 2). Accordingly, 0 is
the initial bit of all honest players in the end of the execution of BBA⋆. Thus, by the Agreement
property of binary Byzantine agreement, at the end of the execution of BA⋆, outi = 0 for all honest
players. This implies that the output of each honest player i in BA⋆ is vi = v. ✷

Proof of Agreement. Since BBA⋆ is a binary BA protocol, either
(A) outi = 1 for all honest player i, or
(B) outi = 0 for all honest player i.

In case A, all honest players output ⊥ in BA⋆, and thus Agreement holds. Consider now case B. In
this case, in the execution of BBA⋆, the initial bit of at least one honest player i is 0. (Indeed, if
initial bit of all honest players were 1, then, by the Consistency property of BBA⋆, we would have
outj = 1 for all honest j.) Accordingly, after the execution of GC, i outputs the pair (v, 2) for some
value v. Thus, by property 1 of graded consensus, gj > 0 for all honest players j. Accordingly, by
property 2 of graded consensus, vj = v for all honest players j. This implies that, at the end of
BA⋆, every honest player j outputs v. Thus, Agreement holds also in case B. ✷

Since both Consistency and Agreement hold, BA⋆ is an arbitrary-value BA protocol.

Historical Note Turpin and Coan were the first to show that, for n ≥ 3t+1, any binary (n, t)-BA
protocol can be converted to an arbitrary-value (n, t)-BA protocol. The reduction arbitrary-value
Byzantine agreement to binary Byzantine agreement via graded consensus is more modular and
cleaner, and simplifies the analysis of our Algorand protocol Algorand ′.

Generalizing BA⋆ for use in Algorand Algorand works even when all communication is via
gossiping. However, although presented in a traditional and familiar communication network, so as
to enable a better comparison with the prior art and an easier understanding, protocol BA⋆ works
also in gossiping networks. In fact, in our detailed embodiments of Algorand, we shall present it
directly for gossiping networks. We shall also point out that it satisfies the player replaceability
property that is crucial for Algorand to be secure in the envisaged very adversarial model.
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Any BA player-replaceable protocol working in a gossiping communication network can be
securely employed within the inventive Algorand system. In particular, Micali and Vaikunthanatan
have extended BA⋆ to work very efficiently also with a simple majority of honest players. That
protocol too could be used in Algorand.

4 Two Embodiments of Algorand

As discussed, at a very high level, a round of Algorand ideally proceeds as follows. First, a randomly
selected user, the leader, proposes and circulates a new block. (This process includes initially
selecting a few potential leaders and then ensuring that, at least a good fraction of the time, a
single common leader emerges.) Second, a randomly selected committee of users is selected, and
reaches Byzantine agreement on the block proposed by the leader. (This process includes that
each step of the BA protocol is run by a separately selected committee.) The agreed upon block
is then digitally signed by a given threshold (TH) of committee members. These digital signatures
are circulated so that everyone is assured of which is the new block. (This includes circulating the
credential of the signers, and authenticating just the hash of the new block, ensuring that everyone
is guaranteed to learn the block, once its hash is made clear.)

In the next two sections, we present two embodiments of Algorand, Algorand ′
1 and Algorand ′

2,
that work under a majority-of-honest-users assumption. In Section 8 we show how to adopts these
embodiments to work under a honest-majority-of-money assumption.

Algorand ′
1 only envisages that > 2/3 of the committee members are honest. In addition, in

Algorand ′
1, the number of steps for reaching Byzantine agreement is capped at a suitably high

number, so that agreement is guaranteed to be reached with overwhelming probability within a
fixed number of steps (but potentially requiring longer time than the steps of Algorand ′

2). In the
remote case in which agreement is not yet reached by the last step, the committee agrees on the
empty block, which is always valid.

Algorand ′
2 envisages that the number of honest members in a committee is always greater than

or equal to a fixed threshold tH (which guarantees that, with overwhelming probability, at least
2/3 of the committee members are honest). In addition, Algorand ′

2 allows Byzantine agreement to
be reached in an arbitrary number of steps (but potentially in a shorter time than Algorand ′

1).
It is easy to derive many variants of these basic embodiments. In particular, it is easy, given

Algorand ′
2, to modify Algorand ′

1 so as to enable to reach Byzantine agreement in an arbitrary
number of steps.

Both embodiments share the following common core, notations, notions, and parameters.

4.1 A Common Core

Objectives Ideally, for each round r, Algorand would satisfy the following properties:

1. Perfect Correctness. All honest users agree on the same block Br.

2. Completeness 1. With probability 1, the payset of Br, PAY r, is maximal.10

10Because paysets are defined to contain valid payments, and honest users to make only valid payments, a maximal
PAY r contains the “currently outstanding” payments of all honest users.
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Of course, guaranteeing perfect correctness alone is trivial: everyone always chooses the official
payset PAY r to be empty. But in this case, the system would have completeness 0. Unfortunately,
guaranteeing both perfect correctness and completeness 1 is not easy in the presence of malicious
users. Algorand thus adopts a more realistic objective. Informally, letting h denote the percentage
of users who are honest, h > 2/3, the goal of Algorand is

Guaranteeing, with overwhelming probability, perfect correctness and completeness close to h.

Privileging correctness over completeness seems a reasonable choice: payments not processed in
one round can be processed in the next, but one should avoid forks, if possible.

Led Byzantine Agreement Perfect Correctness could be guaranteed as follows. At the start
of round r, each user i constructs his own candidate block Br

i , and then all users reach Byzantine
agreement on one candidate block. As per our introduction, the BA protocol employed requires
a 2/3 honest majority and is player replaceable. Each of its step can be executed by a small and
randomly selected set of verifiers, who do not share any inner variables.

Unfortunately, this approach has no completeness guarantees. This is so, because the candidate
blocks of the honest users are most likely totally different from each other. Thus, the ultimately
agreed upon block might always be one with a non-maximal payset. In fact, it may always be the
empty block, Bε, that is, the block whose payset is empty. well be the default, empty one.

Algorand ′ avoids this completeness problem as follows. First, a leader for round r, ℓr, is selected.
Then, ℓr propagates his own candidate block, Br

ℓr . Finally, the users reach agreement on the block
they actually receive from ℓr. Because, whenever ℓr is honest, Perfect Correctness and Completeness
1 both hold, Algorand ′ ensures that ℓr is honest with probability close to h. (When the leader is
malicious, we do not care whether the agreed upon block is one with an empty payset. After all, a
malicious leader ℓr might always maliciously choose Br

ℓr to be the empty block, and then honestly
propagate it, thus forcing the honest users to agree on the empty block.)

Leader Selection In Algorand’s, the rth block is of the form Br = (r, PAY r, Qr,H(Br−1).
As already mentioned in the introduction, the quantity Qr−1 is carefully constructed so as to be
essentially non-manipulatable by our very powerful Adversary. (Later on in this section, we shall
provide some intuition about why this is the case.) At the start of a round r, all users know the
blockchain so far, B0, . . . , Br−1, from which they deduce the set of users of every prior round: that
is, PK1, . . . , PKr−1. A potential leader of round r is a user i such that

.H
(
SIGi

(
r, 1, Qr−1

))
≤ p .

Let us explain. Note that, since the quantity Qr−1 is part of block Br−1, and the underlying
signature scheme satisfies the uniqueness property, SIGi

(
r, 1, Qr−1

)
is a binary string uniquely

associated to i and r. Thus, since H is a random oracle, H
(
SIGi

(
r, 1, Qr−1

))
is a random 256-bit

long string uniquely associated to i and r. The symbol “.” in front of H
(
SIGi

(
r, 1, Qr−1

))
is the

decimal (in our case, binary) point, so that ri , .H
(
SIGi

(
r, 1, Qr−1

))
is the binary expansion of a

random 256-bit number between 0 and 1 uniquely associated to i and r. Thus the probability that
ri is less than or equal to p is essentially p. (Our potential-leader selection mechanism has been
inspired by the micro-payment scheme of Micali and Rivest [28].)

The probability p is chosen so that, with overwhelming (i.e., 1 − F ) probability, at least one
potential verifier is honest. (If fact, p is chosen to be the smallest such probability.)
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Note that, since i is the only one capable of computing his own signatures, he alone can
determine whether he is a potential verifier of round 1. However, by revealing his own credential,
σr
i , SIGi

(
r, 1, Qr−1

)
, i can prove to anyone to be a potential verifier of round r.

The leader ℓr is defined to be the potential leader whose hashed credential is smaller that the
hashed credential of all other potential leader j: that is, H(σr,s

ℓr ) ≤ H(σr,s
j ).

Note that, since a malicious ℓr may not reveal his credential, the correct leader of round r may
never be known, and that, barring improbable ties, ℓr is indeed the only leader of round r.

Let us finally bring up a last but important detail: a user i can be a potential leader (and thus
the leader) of a round r only if he belonged to the system for at least k rounds. This guarantees
the non-manipulatability of Qr and all future Q-quantities. In fact, one of the potential leaders
will actually determine Qr.

Verifier Selection Each step s > 1 of round r is executed by a small set of verifiers, SV r,s.
Again, each verifier i ∈ SV r,s is randomly selected among the users already in the system k rounds
before r, and again via the special quantity Qr−1. Specifically, i ∈ PKr−k is a verifier in SV r,s, if

.H
(
SIGi

(
r, s,Qr−1

))
≤ p′ .

Once more, only i knows whether he belongs to SV r,s,but, if this is the case, he could prove it by
exhibiting his credential σr,s

i , H(SIGi

(
r, s,Qr−1

)
). A verifier i ∈ SV r,s sends a message, mr,s

i , in
step s of round r, and this message includes his credential σr,s

i , so as to enable the verifiers f the
nest step to recognize that mr,s

i is a legitimate step-s message.
The probability p′ is chosen so as to ensure that, in SV r,s, letting #good be the number of

honest users and #bad the number of malicious users, with overwhelming probability the following
two conditions hold.

For embodiment Algorand ′
1:

(1) #good > 2 ·#bad and
(2) #good+ 4 ·#bad < 2n, where n is the expected cardinality of SV r,s.

For embodiment Algorand ′
2:

(1) #good > tH and
(2) #good+ 2#bad < 2tH , where tH is a specified threshold.

These conditions imply that, with sufficiently high probability, (a) in the last step of the BA
protocol, there will be at least given number of honest players to digitally sign the new block Br,
(b) only one block per round may have the necessary number of signatures, and (c) the used BA
protocol has (at each step) the required 2/3 honest majority.

Clarifying Block Generation If the round-r leader ℓr is honest, then the corresponding block
is of the form

Br =
(
r, PAY r, SIGℓr

(
Qr−1

)
,H
(
Br−1

))
,

where the payset PAY r is maximal. (recall that all paysets are, by definition, collectively valid.)
Else (i.e., if ℓr is malicious), Br has one of the following two possible forms:

Br =
(
r, PAY r, SIGi

(
Qr−1

)
,H
(
Br−1

))
and Br = Br

ε ,
(
r, ∅, Qr−1,H

(
Br−1

))
.

24



In the first form, PAY r is a (non-necessarily maximal) payset and it may be PAY r = ∅; and i is
a potential leader of round r. (However, i may not be the leader ℓr. This may indeed happen if if
ℓr keeps secret his credential and does not reveal himself.)

The second form arises when, in the round-r execution of the BA protocol, all honest players
output the default value, which is the empty block Br

ε in our application. (By definition, the possible
outputs of a BA protocol include a default value, generically denoted by ⊥. See section 3.2.)

Note that, although the paysets are empty in both cases, Br =
(
r, ∅, SIGi

(
Qr−1

)
,H
(
Br−1

))

and Br
ε are syntactically different blocks and arise in two different situations: respectively, “all

went smoothly enough in the execution of the BA protocol”, and “something went wrong in the
BA protocol, and the default value was output”.

Let us now intuitively describe how the generation of block Br proceeds in round r of Algorand ′.
In the first step, each eligible player, that is, each player i ∈ PKr−k, checks whether he is a potential
leader. If this is the case, then i is asked, using of all the payments he has seen so far, and the
current blockchain, B0, . . . , Br−1, to secretly prepare a maximal payment set, PAY r

i , and secretly
assembles his candidate block, Br =

(
r, PAY r

i , SIGi

(
Qr−1

)
,H
(
Br−1

))
. That,is, not only does he

include in Br
i , as its second component the just prepared payset, but also, as its third component,

his own signature of Qr−1, the third component of the last block, Br−1. Finally, he propagate his
round-r-step-1 message, mr,1

i , which includes (a) his candidate block Br
i , (b) his proper signature

of his candidate block (i.e., his signature of the hash of Br
i , and (c) his own credential σr,1

i , proving
that he is indeed a potential verifier of round r.

(Note that, until an honest i produces his message mr,1
i , the Adversary has no clue that i is a

potential verifier. Should he wish to corrupt honest potential leaders, the Adversary might as well
corrupt random honest players. However, once he sees mr,1

i , since it contains i’s credential, the

Adversary knows and could corrupt i, but cannot prevent mr,1
i , which is virally propagated, from

reaching all users in the system.)
In the second step, each selected verifier j ∈ SV r,2 tries to identify the leader of the round.

Specifically, j takes the step-1 credentials, σr,1
i1

, . . . , σr,1
in

, contained in the proper step-1 messagemr,1
i

he has received; hashes all of them, that is, computes H
(
σr,1
i1

)
, . . . ,H

(
σr,1
in

)
; finds the credential,

σr,1
ℓj

, whose hash is lexicographically minimum; and considers ℓrj to be the leader of round r.

Recall that each considered credential is a digital signature of Qr−1, that SIGi

(
r, 1, Qr−1

)
is

uniquely determined by i andQr−1, thatH is random oracle, and thus that eachH(SIGi

(
r, 1, Qr−1

)

is a random 256-bit long string unique to each potential leader i of round r.
From this we can conclude that, if the 256-bit stringQr−1 were itself randomly and independently

selected, than so would be the hashed credentials of all potential leaders of round r. In fact, all
potential leaders are well defined, and so are their credentials (whether actually computed or
not). Further, the set of potential leaders of round r is a random subset of the users of round
r− k, and an honest potential leader i always properly constructs and propagates his message mr

i ,
which contains i’s credential. Thus, since the percentage of honest users is h, no matter what the
malicious potential leaders might do (e.g., reveal or conceal their own credentials), the minimum
hashed potential-leader credential belongs to a honest user, who is necessarily identified by everyone
to be the leader ℓr of the round r. Accordingly, if the 256-bit string Qr−1 were itself randomly and
independently selected, with probability exactly h (a) the leader ℓr is honest and (b) ℓj = ℓr for all
honest step-2 verifiers j.

In reality, the hashed credential are, yes, randomly selected, but depend on Qr−1, which is
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not randomly and independently selected. We shall prove in our analysis, however, that Qr−1 is
sufficiently non-manipulatable to guarantee that the leader of a round is honest with probability
h′ sufficiently close to h: namely, h′ > h2(1 + h− h2). For instance, if h = 80%, then h′ > .7424.

Having identified the leader of the round (which they correctly do when the leader ℓr is honest),
the task of the step-2 verifiers is to start executing the BA using as initial values what they believe
to be the block of the leader. Actually, in order to minimize the amount of communication required,
a verifier j ∈ SV r,2 does not use, as his input value v′j to the Byzantine protocol, the block Bj that
he has actually received from ℓj (the user j believes to be the leader), but the the leader, but the
hash of that block, that is, v′j = H(Bi). Thus, upon termination of the BA protocol, the verifiers
of the last step do not compute the desired round-r block Br, but compute (authenticate and
propagate) H(Br). Accordingly, since H(Br) is digitally signed by sufficiently many verifiers of the
last step of the BA protocol, the users in the system will realize that H(Br) is the hash of the new
block. However, they must also retrieve (or wait for, since the execution is quite asynchronous) the
block Br itself, which the protocol ensures that is indeed available, no matter what the Adversary
might do.

Asynchrony and Timing Algorand ′
1 and Algorand ′

2 have a significant degree of asynchrony.
This is so because the Adversary has large latitude in scheduling the delivery of the messages being
propagated. In addition, whether the total number of steps in a round is capped or not, there is
the variance contribute by the number of steps actually taken.

As soon as he learns the certificates of B0, . . . , Br−1, a user i computes Qr−1 and starts working
on round r, checking whether he is a potential leader, or a verifier in some step s of round r.

Assuming that i must act at step s, in light of the discussed asynchrony, i relies on various
strategies to ensure that he has sufficient information before he acts.

For instance, he might wait to receive at least a given number of messages from the verifiers of
the previous step, or wait for a sufficient time to ensure that he receives the messages of sufficiently
many verifiers of the previous step.

The Seed Qr and the Look-Back Parameter k Recall that, ideally, the quantities Qr should
random and independent, although it will suffice for them to be sufficiently non-manipulatable by
the Adversary.

At a first glance, we could choose Qr−1 to coincide with H
(
PAY r−1

)
, and thus avoid to

specify Qr−1 explicitly in Br−1. An elementary analysis reveals, however, that malicious users may
take advantage of this selection mechanism.11 Some additional effort shows that myriads of other

11We are at the start of round r − 1. Thus, Qr−2 = PAY r−2 is publicly known, and the Adversary privately
knows who are the potential leaders he controls. Assume that the Adversary controls 10% of the users, and
that, with very high probability, a malicious user w is the potential leader of round r − 1. That is, assume that
H

(

SIGw

(

r − 2, 1, Qr−2
))

is so small that it is highly improbable an honest potential leader will actually be the
leader of round r− 1. (Recall that, since we choose potential leaders via a secret cryptographic sortition mechanism,
the Adversary does not know who the honest potential leaders are.) The Adversary, therefore, is in the enviable
position of choosing the payset PAY ′ he wants, and have it become the official payset of round r − 1. However,
he can do more. He can also ensure that, with high probability, (*) one of his malicious users will be the leader
also of round r, so that he can freely select what PAY r will be. (And so on. At least for a long while, that is,
as long as these high-probability events really occur.) To guarantee (*), the Adversary acts as follows. Let PAY ′

be the payset the Adversary prefers for round r − 1. Then, he computes H(PAY ′) and checks whether, for some
already malicious player z, SIGz(r, 1, H(PAY ′)) is particularly small, that is, small enough that with very high
probability z will be the leader of round r. If this is the case, then he instructs w to choose his candidate block to be
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alternatives, based on traditional block quantities are easily exploitable by the Adversary to ensure
that malicious leaders are very frequent. We instead specifically and inductively define our brand
new quantity Qr so as to be able to prove that it is non-manipulatable by the Adversary. Namely,

Qr , H(SIGℓr(Q
r−1), r), if Br is not the empty block, and Qr , H(Qr−1, r) otherwise.

The intuition of why this construction of Qr works is as follows. Assume for a moment that
Qr−1 is truly randomly and independently selected. Then, will so be Qr? When ℓr is honest the
answer is (roughly speaking) yes. This is so because

H(SIGℓr (·), r) : {0, 1}
256 −→ {0, 1}256

is a random function. When ℓr is malicious, however, Qr is no longer univocally defined from Qr−1

and ℓr. There are at least two separate values for Qr. One continues to beQr , H(SIGℓr (Q
r−1), r),

and the other is H(Qr−1, r). Let us first argue that, while the second choice is somewhat arbitrary,
a second choice is absolutely mandatory. The reason for this is that a malicious ℓr can always cause
totally different candidate blocks to be received by the honest verifiers of the second step.12 Once
this is the case, it is easy to ensure that the block ultimately agreed upon via the BA protocol of
round r will be the default one, and thus will not contain anyone’s digital signature of Qr−1. But
the system must continue, and for this, it needs a leader for round r. If this leader is automatically
and openly selected, then the Adversary will trivially corrupt him. If it is selected by the previous
Qr−1 via the same process, than ℓr will again be the leader in round r+1. We specifically propose to
use the same secret cryptographic sortition mechanism, but applied to a new Q-quantity: namely,
H(Qr−1, r). By having this quantity to be the output of H guarantees that the output is random,
and by including r as the second input of H, while all other uses of H have one or 3+ inputs,
“guarantees” that such a Qr is independently selected. Again, our specific choice of alternative Qr

does not matter, what matter is that ℓr has two choice for Qr, and thus he can double his chances
to have another malicious user as the next leader.

The options for Qr may even be more numerous for the Adversary who controls a malicious ℓr.
For instance, let x, y, and z be three malicious potential leaders of round r such that

H
(
σr,1
x

)
< H

(
σr,1
y

)
< H

(
σr,1
z

)

and H
(
σr,1
z

)
is particulary small. That is, so small that there is a good chance that H

(
σr,1
z

)
is

smaller of the hashed credential of every honest potential leader. Then, by asking x to hide his
credential, the Adversary has a good chance of having y become the leader of round r − 1. This
implies that he has another option for Qr: namely, SIGy

(
Qr−1

)
. Similarly, the Adversary may

ask both x and y of withholding their credentials, so as to have z become the leader of round r− 1
and gaining another option for Qr: namely, SIGz

(
Qr−1

)
.

Of course, however, each of these and other options has a non-zero chance to fail, because the
Adversary cannot predict the hash of the digital signatures of the honest potential users.

Br−1
i = (r− 1, PAY ′, H(Br−2). Else, he has two other malicious users x and y to keep on generating a new payment

℘′, from one to the other, until, for some malicious user z (or even for some fixed user z) H (SIGz (PAY ′ ∪ {℘})) is
particularly small too. This experiment will stop quite quickly. And when it does the Adversary asks w to propose
the candidate block Br−1

i = (r − 1, PAY ′ ∪ {℘},H(Br−2).
12For instance, to keep it simple (but extreme), “when the time of the second step is about to expire”, ℓr could

directly email a different candidate block Bi to each user i. This way, whoever the step-2 verifiers might be, they
will have received totally different blocks.
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A careful, Markov-chain-like analysis shows that, no matter what options the Adversary chooses
to make at round r−1, as long as he cannot inject new users in the system, he cannot decrease the
probability of an honest user to be the leader of round r+40 much below h. This is the reason for
which we demand that the potential leaders of round r are users already existing in round r − k.
It is a way to ensure that, at round r− k, the Adversary cannot alter by much the probability that
an honest user become the leader of round r. In fact, no matter what users he may add to the
system in rounds r−k through r, they are ineligible to become potential leaders (and a fortiori the
leader) of round r. Thus the look-back parameter k ultimately is a security parameter. (Although,
as we shall see in section 7, it can also be a kind of “convenience parameter” as well.)

Ephemeral Keys Although the execution of our protocol cannot generate a fork, except with
negligible probability, the Adversary could generate a fork, at the rth block, after the legitimate
block r has been generated.

Roughly, once Br has been generated, the Adversary has learned who the verifiers of each step
of round r are. Thus, he could therefore corrupt all of them and oblige them to certify a new block
B̃r. Since this fake block might be propagated only after the legitimate one, users that have been
paying attention would not be fooled.13 Nonetheless, B̃r would be syntactically correct and we
want to prevent from being manufactured.

We do so by means of a new rule. Essentially, the members of the verifier set SV r,s of a step s
of round r use ephemeral public keys pkr,si to digitally sign their messages. These keys are single-
use-only and their corresponding secret keys skr,si are destroyed once used. This way, if a verifier is
corrupted later on, the Adversary cannot force him to sign anything else he did not originally sign.

Naturally, we must ensure that it is impossible for the Adversary to compute a new key p̃r,si

and convince an honest user that it is the right ephemeral key of verifier i ∈ SV r,s to use in step s.

4.2 Common Summary of Notations, Notions, and Parameters

Notations

• r ≥ 0: the current round number.

• s ≥ 1: the current step number in round r.

• Br: the block generated in round r.

• PKr: the set of public keys by the end of round r − 1 and at the beginning of round r.

• Sr: the system status by the end of round r − 1 and at the beginning of round r.14

• PAY r: the payset contained in Br.

• ℓr: round-r leader. ℓr chooses the payset PAY r of round r (and determines the next Qr).

• Qr: the seed of round r, a quantity (i.e., binary string) that is generated at the end of round r
and is used to choose verifiers for round r + 1. Qr is independent of the paysets in the blocks
and cannot be manipulated by ℓr.

13Consider corrupting the news anchor of a major TV network, and producing and broadcasting today a newsreel
showing secretary Clinton winning the last presidential election. Most of us would recognize it as a hoax. But
someone getting out of a coma might be fooled.

14In a system that is not synchronous, the notion of “the end of round r − 1” and “the beginning of round r”
need to be carefully defined. Mathematically, PKr and Sr are computed from the initial status S0 and the blocks
B1, . . . , Br−1.

28



• SV r,s: the set of verifiers chosen for step s of round r.

• SV r: the set of verifiers chosen for round r, SV r = ∪s≥1SV
r,s.

• MSV r,s and HSV r,s: respectively, the set of malicious verifiers and the set of honest verifiers
in SV r,s. MSV r,s ∪HSV r,s = SV r,s and MSV r,s ∩HSV r,s = ∅.

• n1 ∈ Z
+ and n ∈ Z

+: respectively, the expected numbers of potential leaders in each SV r,1,
and the expected numbers of verifiers in each SV r,s, for s > 1.
Notice that n1 << n, since we need at least one honest honest member in SV r,1, but at least
a majority of honest members in each SV r,s for s > 1.

• h ∈ (0, 1): a constant greater than 2/3. h is the honesty ratio in the system. That is, the
fraction of honest users or honest money, depending on the assumption used, in each PKr is
at least h.

• H: a cryptographic hash function, modelled as a random oracle.

• ⊥: A special string of the same length as the output of H.

• F ∈ (0, 1): the parameter specifying the allowed error probability. A probability ≤ F is
considered “negligible”, and a probability ≥ 1− F is considered “overwhelming”.

• ph ∈ (0, 1): the probability that the leader of a round r, ℓr, is honest. Ideally ph = h. With
the existence of the Adversary, the value of ph will be determined in the analysis.

• k ∈ Z
+: the look-back parameter. That is, round r − k is where the verifiers for round r are

chosen from —namely, SV r ⊆ PKr−k.15

• p1 ∈ (0, 1): for the first step of round r, a user in round r − k is chosen to be in SV r,1 with
probability p1 ,

n1

|PKr−k|
.

• p ∈ (0, 1): for each step s > 1 of round r, a user in round r − k is chosen to be in SV r,s with
probability p , n

|PKr−k|
.

• CERT r: the certificate for Br. It is a set of tH signatures of H(Br) from proper verifiers in
round r.

• Br , (Br, CERT r) is a proven block.
A user i knows Br if he possesses (and successfully verifies) both parts of the proven block.
Note that the CERT r seen by different users may be different.

• τ ri : the (local) time at which a user i knows Br. In the Algorand protocol each user has his
own clock. Different users’ clocks need not be synchronized, but must have the same speed.
Only for the purpose of the analysis, we consider a reference clock and measure the players’
related times with respect to it.

• αr,s
i and βr,s

i : respectively the (local) time a user i starts and ends his execution of Step s of
round r.

• Λ and λ: essentially, the upper-bounds to, respectively, the time needed to execute Step 1 and
the time needed for any other step of the Algorand protocol.
Parameter Λ upper-bounds the time to propagate a single 1MB block. (In our notation,
Λ = λρ,1MB. Recalling our notation, that we set ρ = 1 for simplicity, and that blocks are
chosen to be at most 1MB-long, we have Λ = λ1,1,1MB .)

15Strictly speaking, “r − k” should be “max{0, r − k}”.
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Parameter λ upperbounds the time to propagate one small message per verifier in a Step s > 1.
(Using, as in Bitcoin, elliptic curve signatures with 32B keys, a verifier message is 200B long.
Thus, in our notation, λ = λn,ρ,200B.)
We assume that Λ = O(λ).

Notions

• Verifier selection.

For each round r and step s > 1, SV r,s , {i ∈ PKr−k : .H(SIGi(r, s,Q
r−1)) ≤ p}. Each

user i ∈ PKr−k privately computes his signature using his long-term key and decides whether
i ∈ SV r,s or not. If i ∈ SV r,s, then SIGi(r, s,Q

r−1) is i’s (r, s)-credential, compactly denoted
by σr,s

i .

For the first step of round r, SV r,1 and σr,1
i are similarly defined, with p replaced by p1. The

verifiers in SV r,1 are potential leaders.

• Leader selection.

User i ∈ SV r,1 is the leader of round r, denoted by ℓr, if H(σr,1
i ) ≤ H(σr,1

j ) for all potential

leaders j ∈ SV r,1. Whenever the hashes of two players’ credentials are compared, in the unlikely
event of ties, the protocol always breaks ties lexicographically according to the (long-term public
keys of the) potential leaders.

By definition, the hash value of player ℓr’s credential is also the smallest among all users in
PKr−k. Note that a potential leader cannot privately decide whether he is the leader or not,
without seeing the other potential leaders’ credentials.

Since the hash values are uniform at random, when SV r,1 is non-empty, ℓr always exists and is
honest with probability at least h. The parameter n1 is large enough so as to ensure that each
SV r,1 is non-empty with overwhelming probability.

• Block structure.

A non-empty block is of the form Br = (r, PAY r, SIGℓr (Q
r−1),H(Br−1)), and an empty block

is of the form Br
ǫ = (r, ∅, Qr−1,H(Br−1)).

Note that a non-empty block may still contain an empty payset PAY r, if no payment occurs in
this round or if the leader is malicious. However, a non-empty block implies that the identity of
ℓr, his credential σr,1

ℓr and SIGℓr(Q
r−1) have all been timely revealed. The protocol guarantees

that, if the leader is honest, then the block will be non-empty with overwhelming probability.

• Seed Qr.

If Br is non-empty, then Qr , H(SIGℓr(Q
r−1), r), otherwise Qr , H(Qr−1, r).

Parameters

• Relationships among various parameters.

— The verifiers and potential leaders of round r are selected from the users in PKr−k,
where k is chosen so that the Adversary cannot predict Qr−1 back at round r − k − 1
with probability better than F : otherwise, he will be able to introduce malicious users
for round r − k, all of which will be potential leaders/verifiers in round r, succeeding in
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having a malicious leader or a malicious majority in SV r,s for some steps s desired by
him.

— For Step 1 of each round r, n1 is chosen so that with overwhelming probability, SV r,1 6= ∅.

• Example choices of important parameters.

— The outputs of H are 256-bit long.

— h = 80%, n1 = 35.

— Λ = 1 minute and λ = 10 seconds.

• Initialization of the protocol.
The protocol starts at time 0 with r = 0. Since there does not exist “B−1” or “CERT−1”,
syntactically B−1 is a public parameter with its third component specifying Q−1, and all users
know B−1 at time 0.

5 Algorand ′

1

In this section, we construct a version of Algorand ′ working under the following assumption.

Honest Majority of Users Assumption: More than 2/3 of the users in each PKr are honest.

In Section 8, we show how to replace the above assumption with the desired Honest Majority of
Money assumption.

5.1 Additional Notations and Parameters

Notations

• m ∈ Z
+: the maximum number of steps in the binary BA protocol, a multiple of 3.

• Lr ≤ m/3: a random variable representing the number of Bernoulli trials needed to see a 1,
when each trial is 1 with probability ph

2 and there are at most m/3 trials. If all trials fail then

Lr , m/3. Lr will be used to upper-bound the time needed to generate block Br.

• tH = 2n
3 + 1: the number of signatures needed in the ending conditions of the protocol.

• CERT r: the certificate for Br. It is a set of tH signatures of H(Br) from proper verifiers in
round r.

Parameters

• Relationships among various parameters.

— For each step s > 1 of round r, n is chosen so that, with overwhelming probability,
|HSV r,s| > 2|MSV r,s| and |HSV r,s|+ 4|MSV r,s| < 2n.

The closer to 1 the value of h is, the smaller n needs to be. In particular, we use (variants
of) Chernoff bounds to ensure the desired conditions hold with overwhelming probability.

— m is chosen such that Lr < m/3 with overwhelming probability.

• Example choices of important parameters.

— F = 10−12.

— n ≈ 1500, k = 40 and m = 180.
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5.2 Implementing Ephemeral Keys in Algorand ′
1

As already mentioned, we wish that a verifier i ∈ SV r,s digitally signs his message mr,s
i of step

s in round r, relative to an ephemeral public key pkr,si , using an ephemeral secrete key skr,si that
he promptly destroys after using. We thus need an efficient method to ensure that every user can
verify that pkr,si is indeed the key to use to verify i’s signature of mr,s

i . We do so by a (to the best
of our knowledge) new use of identity-based signature schemes.

At a high level, in such a scheme, a central authority A generates a public master key, PMK,
and a corresponding secret master key, SMK. Given the identity, U , of a player U , A computes,
via SMK, a secret signature key skU relative to the public key U , and privately gives skU to
U . (Indeed, in an identity-based digital signature scheme, the public key of a user U is U itself!)
This way, if A destroys SMK after computing the secret keys of the users he wants to enable to
produce digital signatures, and does not keep any computed secret key, then U is the only one who
can digitally sign messages relative to the public key U . Thus, anyone who knows “U ’s name”,
automatically knows U ’s public key, and thus can verify U ’s signatures (possibly using also the
public master key PMK).

In our application, the authority A is user i, and the set of all possible users U coincides with
the round-step pair (r, s) in —say— S = {i}×{r′, . . . , r′+106}×{1, . . . ,m+3}, where r′ is a given
round, and m + 3 the upperbound to the number of steps that may occur within a round. This
way, pkr,si , (i, r, s), so that everyone seeing i’s signature SIGr,s

pkr,si

(mr,s
i ) can, with overwhelming

probability, immediately verify it for the first million rounds r following r′.
In other words, i first generates PMK and SMK. Then, he publicizes that PMK is i’s master

public key for any round r ∈ [r′, r′+106], and uses SMK to privately produce and store the secret
key skr,si for each triple (i, r, s) ∈ S. This done, he destroys SMK. If he determines that he is not
part of SV r,s, then i may leave skr,si alone (as the protocol does not require that he aunthenticates
any message in Step s of round r). Else, i first uses skr,si to digitally sign his message mr,s

i , and
then destroys skr,si .

Note that i can publicize his first public master key when he first enters the system. That is,
the same payment ℘ that brings i into the system (at a round r′ or at a round close to r′), may also
specify, at i’s request, that i’s public master key for any round r ∈ [r′, r′ +106] is PMK —e.g., by
including a pair of the form (PMK, [r′, r′ + 106]).

Also note that, since m+3 is the maximum number of steps in a round, assuming that a round
takes a minute, the stash of ephemeral keys so produced will last i for almost two years. At the same
time, these ephemeral secret keys will not take i too long to produce. Using an elliptic-curve based
system with 32B keys, each secret key is computed in a few microseconds. Thus, if m+ 3 = 180,
then all 180M secret keys can be computed in less than one hour.

When the current round is getting close to r′ + 106, to handle the next million rounds, i
generates a new (PMK ′, SMK ′) pair, and informs what his next stash of ephemeral keys is by
—for example— having SIGi(PMK ′, [r′ + 106 + 1, r′ + 2 · 106 + 1]) enter a new block, either as a
separate “transaction” or as some additional information that is part of a payment. By so doing,
i informs everyone that he/she should use PMK ′ to verify i’s ephemeral signatures in the next
million rounds. And so on.

(Note that, following this basic approach, other ways for implementing ephemeral keys without
using identity-based signatures are certainly possible. For instance, via Merkle trees.16)

16In this method, i generates a public-secret key pair (pkr,s
i , skr,s

i ) for each round-step pair (r, s) in —say—
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Other ways for implementing ephemeral keys are certainly possible —e.g., via Merkle trees.

5.3 Matching the Steps of Algorand ′

1 with those of BA⋆

As we said, a round in Algorand ′
1 has at most m+ 3 steps.

Step 1. In this step, each potential leader i computes and propagates his candidate block Br
i ,

together with his own credential, σr,1
i .

Recall that this credential explicitly identifies i. This is so, because σr,1
i , SIGi(r, 1, Q

r−1).

Potential verifier i also propagates, as part of his message, his proper digital signature of H(Br
i ).

Not dealing with a payment or a credential, this signature of i is relative to his ephemeral public
key pkr,1i : that is, he propagates sigpkr,1i

(H(Br
i )).

Given our conventions, rather than propagating Br
i and sig

pkr,1i
(H(Br

i )), he could have

propagated SIG
pkr,1i

(H(Br
i )). However, in our analysis we need to have explicit access to

sigpkr,1
i
(H(Br

i )).

Steps 2. In this step, each verifier i sets ℓri to be the potential leader whose hashed credential
is the smallest, and Br

i to be the block proposed by ℓri . Since, for the sake of efficiency, we
wish to agree on H(Br), rather than directly on Br, i propagates the message he would have
propagated in the first step of BA⋆ with initial value v′i = H(Br

i ). That is, he propagates v′i,
after ephemerally signing it, of course. (Namely, after signing it relative to the right ephemeral
public key, which in this case is pkr,2i .) Of course too, i also transmits his own credential.

Since the first step of BA⋆ consists of the first step of the graded consensus protocol GC, Step
2 of Algorand ′ corresponds to the first step of GC.

Steps 3. In this step, each verifier i ∈ SV r,2 executes the second step of BA⋆. That is, he sends the
same message he would have sent in the second step of GC. Again, i’s message is ephemerally
signed and accompanied by i’s credential. (From now on, we shall omit saying that a verifier
ephemerally signs his message and also propagates his credential.)

Step 4. In this step, every verifier i ∈ SV r,4 computes the output of GC, (vi, gi), and ephemerally
signs and sends the same message he would have sent in the third step of BA⋆, that is, in the
first step of BBA⋆, with initial bit 0 if gi = 2, and 1 otherwise.

Step s = 5, . . . ,m+ 2. Such a step, if ever reached, corresponds to step s− 1 of BA⋆, and thus to
step s− 3 of BBA⋆.

Since our propagation model is sufficiently asynchronous, we must account for the possibility
that, in the middle of such a step s, a verifier i ∈ SV r,s is reached by information proving him
that block Br has already been chosen. In this case, i stops his own execution of round r of
Algorand ′, and starts executing his round-(r + 1) instructions.

{r′, . . . , r′ + 106} × {1, . . . ,m + 3}. Then he orders these public keys in a canonical way, stores the jth public
key in the jth leaf of a Merkle tree, and computes the root value Ri, which he publicizes. When he wants to sign
a message relative to key pkr,s

i , i not only provides the actual signature, but also the authenticating path for pkr,s
i

relative to Ri. Notice that this authenticating path also proves that pkr,s
i is stored in the jth leaf. The rest of the

details can be easily filled.
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Accordingly, the instructions of a verifier i ∈ SV r,s, in addition to the instructions corresponding
to Step s− 3 of BBA⋆, include checking whether the execution of BBA⋆ has halted in a prior
Step s′. Since BBA⋆ can only halt is a Coin-Fixed-to-0 Step or in a Coin-Fixed-to-1 step, the
instructions distinguish whether

A (Ending Condition 0): s′ − 2 ≡ 0 mod 3, or

B (Ending Condition 1): s′ − 2 ≡ 1 mod 3.

In fact, in case A, the block Br is non-empty, and thus additional instructions are necessary to
ensure that i properly reconstructs Br, together with its proper certificate CERT r. In case B,
the block Br is empty, and thus i is instructed to set Br = Br

ε = (r, ∅,H(Qr−1, r),H(Br−1)),
and to compute CERT r.

If, during his execution of step s, i does not see any evidence that the block Br has already
been generated, then he sends the same message he would have sent in step s− 3 of BBA⋆.

Step m+ 3. If, during step m+ 3, i ∈ SV r,m+3 sees that the block Br was already generated in
a prior step s′, then he proceeds just as explained above.

Else, rather then sending the same message he would have sent in step m of BBA⋆, i is
instructed, based on the information in his possession, to compute Br and its corresponding
certificate CERT r.

Recall, in fact, that we upperbound by m+ 3 the total number of steps of a round.

5.4 The Actual Protocol

Recall that, in each step s of a round r, a verifier i ∈ SV r,s uses his long-term public-secret key pair
to produce his credential, σr,s

i , SIGi(r, s,Q
r−1), as well as SIGi

(
Qr−1

)
in case s = 1. Verifier i

uses his ephemeral secret key skr,si to sign his (r, s)-message mr,s
i . For simplicity, when r and s are

clear, we write esigi(x) rather than sigpkr,si
(x) to denote i’s proper ephemeral signature of a value

x in step s of round r, and write ESIGi(x) instead of SIGpkr,si
(x) to denote (i, x, esigi(x)).

Step 1: Block Proposal

Instructions for every user i ∈ PKr−k: User i starts his own Step 1 of round r as soon as he
knows Br−1.

• User i computes Qr−1 from the third component of Br−1 and checks whether i ∈ SV r,1 or
not.

• If i /∈ SV r,1, then i stops his own execution of Step 1 right away.

• If i ∈ SV r,1, that is, if i is a potential leader, then he collects the round-r payments that have
been propagated to him so far and computes a maximal payset PAY r

i from them. Next, he
computes his “candidate block” Br

i = (r, PAY r
i , SIGi(Q

r−1),H(Br−1)). Finally, he computes
the message mr,1

i = (Br
i , esigi(H(Br

i )), σ
r,1
i ), destroys his ephemeral secret key skr,1i , and then

propagates mr,1
i .
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Remark. In practice, to shorten the global execution of Step 1, it is important that the (r, 1)-
messages are selectively propagated. That is, for every user i in the system, for the first (r, 1)-
message that he ever receives and successfully verifies,17 player i propagates it as usual. For all the
other (r, 1)-messages that player i receives and successfully verifies, he propagates it only if the hash
value of the credential it contains is the smallest among the hash values of the credentials contained
in all (r, 1)-messages he has received and successfully verified so far. Furthermore, as suggested
by Georgios Vlachos, it is useful that each potential leader i also propagates his credential σr,1

i

separately: those small messages travel faster than blocks, ensure timely propagation of the mr,1
j ’s

where the contained credentials have small hash values, while make those with large hash values
disappear quickly.

Step 2: The First Step of the Graded Consensus Protocol GC

Instructions for every user i ∈ PKr−k: User i starts his own Step 2 of round r as soon as he
knows Br−1.

• User i computes Qr−1 from the third component of Br−1 and checks whether i ∈ SV r,2 or
not.

• If i /∈ SV r,2 then i stops his own execution of Step 2 right away.

• If i ∈ SV r,2, then after waiting an amount of time t2 , λ+Λ, i acts as follows.

1. He finds the user ℓ such that H(σr,1
ℓ ) ≤ H(σr,1

j ) for all credentials σr,1
j that are part of

the successfully verified (r, 1)-messages he has received so far.a

2. If he has received from ℓ a valid message mr,1
ℓ = (Br

ℓ , esigℓ(H(Br
ℓ )), σ

r,1
ℓ ),b then i sets

v′i , H(Br
ℓ ); otherwise i sets v′i , ⊥.

3. i computes the message mr,2
i , (ESIGi(v

′
i), σ

r,2
i ),c destroys his ephemeral secret key

skr,2i , and then propagates mr,2
i .

aEssentially, user i privately decides that the leader of round r is user ℓ.
bAgain, player ℓ’s signatures and the hashes are all successfully verified, and PAY r

ℓ in Br
ℓ is a valid payset for

round r —although i does not check whether PAY r
ℓ is maximal for ℓ or not.

cThe message mr,2
i signals that player i considers v′i to be the hash of the next block, or considers the next

block to be empty.

17That is, all the signatures are correct and both the block and its hash are valid —although i does not check
whether the included payset is maximal for its proposer or not.
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Step 3: The Second Step of GC

Instructions for every user i ∈ PKr−k: User i starts his own Step 3 of round r as soon as he
knows Br−1.

• User i computes Qr−1 from the third component of Br−1 and checks whether i ∈ SV r,3 or
not.

• If i /∈ SV r,3, then i stops his own execution of Step 3 right away.

• If i ∈ SV r,3, then after waiting an amount of time t3 , t2 + 2λ = 3λ+ Λ, i acts as follows.

1. If there exists a value v′ 6= ⊥ such that, among all the valid messages mr,2
j he has received,

more than 2/3 of them are of the form (ESIGj(v
′), σr,2

j ), without any contradiction,a

then he computes the message mr,3
i , (ESIGi(v

′), σr,3
i ). Otherwise, he computes mr,3

i ,

(ESIGi(⊥), σr,3
i ).

2. i destroys his ephemeral secret key skr,3i , and then propagates mr,3
i .

aThat is, he has not received two valid messages containing ESIGj(v
′) and a different ESIGj(v

′′) respectively,
from a player j. Here and from here on, except in the Ending Conditions defined later, whenever an honest player
wants messages of a given form, messages contradicting each other are never counted or considered valid.
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Step 4: Output of GC and The First Step of BBA⋆

Instructions for every user i ∈ PKr−k: User i starts his own Step 4 of round r as soon as he
knows Br−1.

• User i computes Qr−1 from the third component of Br−1 and checks whether i ∈ SV r,4 or
not.

• If i /∈ SV r,4, then i his stops his own execution of Step 4 right away.

• If i ∈ SV r,4, then after waiting an amount of time t4 , t3 + 2λ = 5λ+ Λ, i acts as follows.

1. He computes vi and gi, the output of GC, as follows.

(a) If there exists a value v′ 6= ⊥ such that, among all the valid messages mr,3
j he has

received, more than 2/3 of them are of the form (ESIGj(v
′), σr,3

j ), then he sets

vi , v′ and gi , 2.

(b) Otherwise, if there exists a value v′ 6= ⊥ such that, among all the valid messages
mr,3

j he has received, more than 1/3 of them are of the form (ESIGj(v
′), σr,3

j ), then

he sets vi , v′ and gi , 1.a

(c) Else, he sets vi , H(Br
ǫ ) and gi , 0.

2. He computes bi, the input of BBA⋆, as follows:
bi , 0 if gi = 2, and bi , 1 otherwise.

3. He computes the message mr,4
i , (ESIGi(bi), ESIGi(vi), σ

r,4
i ), destroys his ephemeral

secret key skr,4i , and then propagates mr,4
i .

aIt can be proved that the v′ in case (b), if exists, must be unique.
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Step s, 5 ≤ s ≤ m+ 2, s− 2 ≡ 0 mod 3: A Coin-Fixed-To-0 Step of BBA⋆

Instructions for every user i ∈ PKr−k: User i starts his own Step s of round r as soon as he
knows Br−1.

• User i computes Qr−1 from the third component of Br−1 and checks whether i ∈ SV r,s.

• If i /∈ SV r,s, then i stops his own execution of Step s right away.

• If i ∈ SV r,s then he acts as follows.

– He waits until an amount of time ts , ts−1 + 2λ = (2s − 3)λ+ Λ has passed.

– Ending Condition 0: If, during such waiting and at any point of time, there exists a
string v 6= ⊥ and a step s′ such that

(a) 5 ≤ s′ ≤ s, s′ − 2 ≡ 0 mod 3 —that is, Step s′ is a Coin-Fixed-To-0 step,

(b) i has received at least tH = 2n
3 + 1 valid messages mr,s′−1

j = (ESIGj(0),

ESIGj(v), σ
r,s′−1
j ),a and

(c) i has received a valid message mr,1
j = (Br

j , esigj(H(Br
j )), σ

r,1
j ) with v = H(Br

j ),

then, i stops his own execution of Step s (and in fact of round r) right away without
propagating anything; sets Br = Br

j ; and sets his own CERT r to be the set of messages

mr,s′−1
j of sub-step (b).b

– Ending Condition 1: If, during such waiting and at any point of time, there exists a
step s′ such that

(a’) 6 ≤ s′ ≤ s, s′ − 2 ≡ 1 mod 3 —that is, Step s′ is a Coin-Fixed-To-1 step, and

(b’) i has received at least tH valid messages mr,s′−1
j = (ESIGj(1), ESIGj(vj),

σr,s′−1
j ),c

then, i stops his own execution of Step s (and in fact of round r) right away without
propagating anything; sets Br = Br

ǫ ; and sets his own CERT r to be the set of messages

mr,s′−1
j of sub-step (b’).

– Otherwise, at the end of the wait, user i does the following.
He sets vi to be the majority vote of the vj ’s in the second components of all the valid

mr,s−1
j ’s he has received.

He computes bi as follows.

If more than 2/3 of all the valid mr,s−1
j ’s he has received are of the form

(ESIGj(0), ESIGj(vj), σ
r,s−1
j ), then he sets bi , 0.

Else, if more than 2/3 of all the valid mr,s−1
j ’s he has received are of the form

(ESIGj(1), ESIGj(vj), σ
r,s−1
j ), then he sets bi , 1.

Else, he sets bi , 0.

He computes the message mr,s
i , (ESIGi(bi), ESIGi(vi), σ

r,s
i ), destroys his ephemeral

secret key skr,si , and then propagates mr,s
i .

aSuch a message from player j is counted even if player i has also received a message from j signing for 1.
Similar things for Ending Condition 1. As shown in the analysis, this is done to ensure that all honest users know
Br within time λ from each other.

bUser i now knows Br and his own round r finishes. He still helps propagating messages as a generic user, but
does not initiate any propagation as a (r, s)-verifier. In particular, he has helped propagating all messages in his
CERT r, which is enough for our protocol. Note that he should also set bi , 0 for the binary BA protocol, but bi
is not needed in this case anyway. Similar things for all future instructions.

cIn this case, it does not matter what the vj ’s are.
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Step s, 6 ≤ s ≤ m+ 2, s− 2 ≡ 1 mod 3: A Coin-Fixed-To-1 Step of BBA⋆

Instructions for every user i ∈ PKr−k: User i starts his own Step s of round r as soon as he
knows Br−1.

• User i computes Qr−1 from the third component of Br−1 and checks whether i ∈ SV r,s or
not.

• If i /∈ SV r,s, then i stops his own execution of Step s right away.

• If i ∈ SV r,s then he does the follows.

– He waits until an amount of time ts , (2s− 3)λ+ Λ has passed.

– Ending Condition 0: The same instructions as Coin-Fixed-To-0 steps.

– Ending Condition 1: The same instructions as Coin-Fixed-To-0 steps.

– Otherwise, at the end of the wait, user i does the following.

He sets vi to be the majority vote of the vj’s in the second components of all the valid

mr,s−1
j ’s he has received.

He computes bi as follows.

If more than 2/3 of all the valid mr,s−1
j ’s he has received are of the form

(ESIGj(0), ESIGj(vj), σ
r,s−1
j ), then he sets bi , 0.

Else, if more than 2/3 of all the valid mr,s−1
j ’s he has received are of the form

(ESIGj(1), ESIGj(vj), σ
r,s−1
j ), then he sets bi , 1.

Else, he sets bi , 1.

He computes the message mr,s
i , (ESIGi(bi), ESIGi(vi), σ

r,s
i ), destroys his ephemeral

secret key skr,si , and then propagates mr,s
i .
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Step s, 7 ≤ s ≤ m+ 2, s− 2 ≡ 2 mod 3: A Coin-Genuinely-Flipped Step of BBA⋆

Instructions for every user i ∈ PKr−k: User i starts his own Step s of round r as soon as he
knows Br−1.

• User i computes Qr−1 from the third component of Br−1 and checks whether i ∈ SV r,s or
not.

• If i /∈ SV r,s, then i stops his own execution of Step s right away.

• If i ∈ SV r,s then he does the follows.

– He waits until an amount of time ts , (2s− 3)λ+ Λ has passed.

– Ending Condition 0: The same instructions as Coin-Fixed-To-0 steps.

– Ending Condition 1: The same instructions as Coin-Fixed-To-0 steps.

– Otherwise, at the end of the wait, user i does the following.

He sets vi to be the majority vote of the vj’s in the second components of all the valid

mr,s−1
j ’s he has received.

He computes bi as follows.

If more than 2/3 of all the valid mr,s−1
j ’s he has received are of the form

(ESIGj(0), ESIGj(vj), σ
r,s−1
j ), then he sets bi , 0.

Else, if more than 2/3 of all the valid mr,s−1
j ’s he has received are of the form

(ESIGj(1), ESIGj(vj), σ
r,s−1
j ), then he sets bi , 1.

Else, let SV r,s−1
i be the set of (r, s− 1)-verifiers from whom he has received a valid

message mr,s−1
j . He sets bi , lsb(minj∈SV r,s−1

i
H(σr,s−1

j )).

He computes the message mr,s
i , (ESIGi(bi), ESIGi(vi), σ

r,s
i ), destroys his ephemeral

secret key skr,si , and then propagates mr,s
i .
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Step m+ 3: The Last Step of BBA⋆ a

Instructions for every user i ∈ PKr−k: User i starts his own Step m+3 of round r as soon as he
knows Br−1.

• User i computes Qr−1 from the third component of Br−1 and checks whether i ∈ SV r,m+3 or
not.

• If i /∈ SV r,m+3, then i stops his own execution of Step m+ 3 right away.

• If i ∈ SV r,m+3 then he does the follows.

– He waits until an amount of time tm+3 , tm+2 + 2λ = (2m+ 3)λ+ Λ has passed.

– Ending Condition 0: The same instructions as Coin-Fixed-To-0 steps.

– Ending Condition 1: The same instructions as Coin-Fixed-To-0 steps.

– Otherwise, at the end of the wait, user i does the following.

He sets outi , 1 and Br , Br
ǫ .

He computes the message mr,m+3
i = (ESIGi(outi), ESIGi(H(Br)), σr,m+3

i ), destroys his

ephemeral secret key skr,m+3
i , and then propagates mr,m+3

i to certify Br.b

aWith overwhelming probability BBA⋆ has ended before this step, and we specify this step for completeness.
bA certificate from Step m + 3 does not have to include ESIGi(outi). We include it for uniformity only: the

certificates now have a uniform format no matter in which step they are generated.

41



Reconstruction of the Round-r Block by Non-Verifiers

Instructions for every user i in the system: User i starts his own round r as soon as he knows
Br−1, and waits for block information as follows.

– If, during such waiting and at any point of time, there exists a string v and a step s′ such
that

(a) 5 ≤ s′ ≤ m+ 3 with s′ − 2 ≡ 0 mod 3,

(b) i has received at least tH valid messages mr,s′−1
j = (ESIGj(0), ESIGj(v), σ

r,s′−1
j ), and

(c) i has received a valid message mr,1
j = (Br

j , esigj(H(Br
j )), σ

r,1
j ) with v = H(Br

j ),

then, i stops his own execution of round r right away; sets Br = Br
j ; and sets his own CERT r

to be the set of messages mr,s′−1
j of sub-step (b).

– If, during such waiting and at any point of time, there exists a step s′ such that

(a’) 6 ≤ s′ ≤ m+ 3 with s′ − 2 ≡ 1 mod 3, and

(b’) i has received at least tH valid messages mr,s′−1
j = (ESIGj(1), ESIGj(vj), σ

r,s′−1
j ),

then, i stops his own execution of round r right away; sets Br = Br
ǫ ; and sets his own CERT r

to be the set of messages mr,s′−1
j of sub-step (b’).

– If, during such waiting and at any point of time, i has received at least tH valid messages
mr,m+3

j = (ESIGj(1), ESIGj(H(Br
ǫ )), σ

r,m+3
j ), then i stops his own execution of round r

right away, sets Br = Br
ǫ , and sets his own CERT r to be the set of messages mr,m+3

j for 1
and H(Br

ǫ ).

5.5 Analysis of Algorand ′

1

We introduce the following notations for each round r ≥ 0, used in the analysis.

• Let T r be the time when the first honest user knows Br−1.

• Let Ir+1 be the interval [T r+1, T r+1 + λ].

Note that T 0 = 0 by the initialization of the protocol. For each s ≥ 1 and i ∈ SV r,s, recall that
αr,s
i and βr,s

i are respectively the starting time and the ending time of player i’s step s. Moreover,
recall that ts = (2s − 3)λ+ Λ for each 2 ≤ s ≤ m+ 3. In addition, let I0 , {0} and t1 , 0.

Finally, recall that Lr ≤ m/3 is a random variable representing the number of Bernoulli trials
needed to see a 1, when each trial is 1 with probability ph

2 and there are at most m/3 trials. If all

trials fail then Lr , m/3.
In the analysis we ignore computation time, as it is in fact negligible relative to the time needed

to propagate messages. In any case, by using slightly larger λ and Λ, the computation time can
be incorporated into the analysis directly. Most of the statements below hold “with overwhelming
probability,” and we may not repeatedly emphasize this fact in the analysis.
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5.6 Main Theorem

Theorem 5.1. The following properties hold with overwhelming probability for each round r ≥ 0:

1. All honest users agree on the same block Br.

2. When the leader ℓr is honest, the block Br is generated by ℓr, Br contains a maximal payset
received by ℓr by time αr,1

ℓr , T
r+1 ≤ T r + 8λ + Λ and all honest users know Br in the time

interval Ir+1.

3. When the leader ℓr is malicious, T r+1 ≤ T r + (6Lr + 10)λ+ Λ and all honest users know Br

in the time interval Ir+1.

4. ph = h2(1 + h− h2) for Lr, and the leader ℓr is honest with probability at least ph.

Before proving our main theorem, let us make two remarks.

Remarks.

• Block-Generation and True Latency. The time to generate block Br is defined to be T r+1−T r.
That is, it is defined to be the difference between the first time some honest user learns Br and
the first time some honest user learns Br−1. When the round-r leader is honest, Property 2 our
main theorem guarantees that the exact time to generate Br is 8λ + Λ time, no matter what
the precise value of h > 2/3 may be. When the leader is malicious, Property 3 implies that the
expected time to generate Br is upperbounded by ( 12ph + 10)λ + Λ, again no matter the precise

value of h.18 However, the expected time to generate Br depends on the precise value of h.
Indeed, by Property 4, ph = h2(1 + h − h2) and the leader is honest with probability at least
ph, thus

E[T r+1 − T r] ≤ h2(1 + h− h2) · (8λ+ Λ) + (1− h2(1 + h− h2))((
12

h2(1 + h− h2)
+ 10)λ + Λ).

For instance, if h = 80%, then E[T r+1 − T r] ≤ 12.7λ + Λ.

• λ vs. Λ. Note that the size of the messages sent by the verifiers in a step Algorand ′ is dominated
by the length of the digital signature keys, which can remain fixed, even when the number of
users is enormous. Also note that, in any step s > 1, the same expected number n of verifiers
can be used whether the number of users is 100K, 100M, or 100M. This is so because n solely
depends on h and F . In sum, therefore, barring a sudden need to increase secret key length,
the value of λ should remain the same no matter how large the number of users may be in the
foreseeable future.

By contrast, for any transaction rate, the number of transactions grows with the number of
users. Therefore, to process all new transactions in a timely fashion, the size of a block should
also grow with the number of users, causing Λ to grow too. Thus, in the long run, we should have
λ << Λ. Accordingly, it is proper to have a larger coefficient for λ, and actually a coefficient
of 1 for Λ.

Proof of Theorem 5.1. We prove Properties 1–3 by induction: assuming they hold for round r − 1
(without loss of generality, they automatically hold for “round -1” when r = 0), we prove them for
round r.

18Indeed, E[T r+1 − T r] ≤ (6E[Lr] + 10)λ+ Λ = (6 · 2
ph

+ 10)λ+ Λ = ( 12
ph

+ 10)λ+ Λ.
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Since Br−1 is uniquely defined by the inductive hypothesis, the set SV r,s is uniquely defined
for each step s of round r. By the choice of n1, SV

r,1 6= ∅ with overwhelming probability. We now
state the following two lemmas, proved in Sections 5.7 and 5.8. Throughout the induction and in
the proofs of the two lemmas, the analysis for round 0 is almost the same as the inductive step,
and we will highlight the differences when they occur.

Lemma 5.2. [Completeness Lemma] Assuming Properties 1–3 hold for round r−1, when the leader
ℓr is honest, with overwhelming probability,

• All honest users agree on the same block Br, which is generated by ℓr and contains a maximal
payset received by ℓr by time αr,1

ℓr ∈ Ir; and

• T r+1 ≤ T r + 8λ+Λ and all honest users know Br in the time interval Ir+1.

Lemma 5.3. [Soundness Lemma] Assuming Properties 1–3 hold for round r − 1, when the leader
ℓr is malicious, with overwhelming probability, all honest users agree on the same block Br, T r+1 ≤
T r + (6Lr + 10)λ+ Λ and all honest users know Br in the time interval Ir+1.

Properties 1–3 hold by applying Lemmas 5.2 and 5.3 to r = 0 and to the inductive step. Finally,
we restate Property 4 as the following lemma, proved in Section 5.9.

Lemma 5.4. Given Properties 1–3 for each round before r, ph = h2(1 + h − h2) for Lr, and the
leader ℓr is honest with probability at least ph.

Combining the above three lemmas together, Theorem 5.1 holds. �

The lemma below states several important properties about round r given the inductive
hypothesis, and will be used in the proofs of the above three lemmas.

Lemma 5.5. Assume Properties 1–3 hold for round r − 1. For each step s ≥ 1 of round r and
each honest verifier i ∈ HSV r,s, we have that

(a) αr,s
i ∈ Ir;

(b) if player i has waited an amount of time ts, then βr,s
i ∈ [T r + ts, T

r + λ + ts] for r > 0 and
βr,s
i = ts for r = 0; and

(c) if player i has waited an amount of time ts, then by time βr,s
i , he has received all messages

sent by all honest verifiers j ∈ HSV r,s′ for all steps s′ < s.

Moreover, for each step s ≥ 3, we have that

(d) there do not exist two different players i, i′ ∈ SV r,s and two different values v, v′ of the same
length, such that both players have waited an amount of time ts, more than 2/3 of all the
valid messages mr,s−1

j player i receives have signed for v, and more than 2/3 of all the valid

messages mr,s−1
j player i′ receives have signed for v′.

Proof. Property (a) follows directly from the inductive hypothesis, as player i knows Br−1 in the
time interval Ir and starts his own step s right away. Property (b) follows directly from (a): since
player i has waited an amount of time ts before acting, βr,s

i = αr,s
i + ts. Note that αr,s

i = 0 for
r = 0.

We now prove Property (c). If s = 2, then by Property (b), for all verifiers j ∈ HSV r,1 we have

βr,s
i = αr,s

i + ts ≥ T r + ts = T r + λ+ Λ ≥ βr,1
j + Λ.
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Since each verifier j ∈ HSV r,1 sends his message at time βr,1
j and the message reaches all honest

users in at most Λ time, by time βr,s
i player i has received the messages sent by all verifiers in

HSV r,1 as desired.
If s > 2, then ts = ts−1 +2λ. By Property (b), for all steps s′ < s and all verifiers j ∈ HSV r,s′ ,

βr,s
i = αr,s

i + ts ≥ T r + ts = T r + ts−1 + 2λ ≥ T r + ts′ + 2λ = T r + λ+ ts′ + λ ≥ βr,s′

j + λ.

Since each verifier j ∈ HSV r,s′ sends his message at time βr,s′

j and the message reaches all honest
users in at most λ time, by time βr,s

i player i has received all messages sent by all honest verifiers
in HSV r,s′ for all s′ < s. Thus Property (c) holds.

Finally, we prove Property (d). Note that the verifiers j ∈ SV r,s−1 sign at most two things in
Step s − 1 using their ephemeral secret keys: a value vj of the same length as the output of the
hash function, and also a bit bj ∈ {0, 1} if s − 1 ≥ 4. That is why in the statement of the lemma
we require that v and v′ have the same length: many verifiers may have signed both a hash value
v and a bit b, thus both pass the 2/3 threshold.

Assume for the sake of contradiction that there exist the desired verifiers i, i′ and values v, v′.
Note that some malicious verifiers in MSV r,s−1 may have signed both v and v′, but each honest
verifier in HSV r,s−1 has signed at most one of them. By Property (c), both i and i′ have received
all messages sent by all honest verifiers in HSV r,s−1.

Let HSV r,s−1(v) be the set of honest (r, s − 1)-verifiers who have signed v, MSV r,s−1
i the set

of malicious (r, s − 1)-verifiers from whom i has received a valid message, and MSV r,s−1
i (v) the

subset of MSV r,s−1
i from whom i has received a valid message signing v. By the requirements for

i and v, we have

ratio ,
|HSV r,s−1(v)| + |MSV r,s−1

i (v)|

|HSV r,s−1|+ |MSV r,s−1
i |

>
2

3
. (1)

We first show
|MSV r,s−1

i (v)| ≤ |HSV r,s−1(v)|. (2)

Assuming otherwise, by the relationships among the parameters, with overwhelming probability
|HSV r,s−1| > 2|MSV r,s−1| ≥ 2|MSV r,s−1

i |, thus

ratio <
|HSV r,s−1(v)| + |MSV r,s−1

i (v)|

3|MSV r,s−1
i |

<
2|MSV r,s−1

i (v)|

3|MSV r,s−1
i |

≤
2

3
,

contradicting Inequality 1.
Next, by Inequality 1 we have

2|HSV r,s−1|+ 2|MSV r,s−1
i | < 3|HSV r,s−1(v)| + 3|MSV r,s−1

i (v)|

≤ 3|HSV r,s−1(v)|+ 2|MSV r,s−1
i |+ |MSV r,s−1

i (v)|.

Combining with Inequality 2,

2|HSV r,s−1| < 3|HSV r,s−1(v)|+ |MSV r,s−1
i (v)| ≤ 4|HSV r,s−1(v)|,

which implies

|HSV r,s−1(v)| >
1

2
|HSV r,s−1|.
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Similarly, by the requirements for i′ and v′, we have

|HSV r,s−1(v′)| >
1

2
|HSV r,s−1|.

Since an honest verifier j ∈ HSV r,s−1 destroys his ephemeral secret key skr,s−1
j before propagating

his message, the Adversary cannot forge j’s signature for a value that j did not sign, after
learning that j is a verifier. Thus, the two inequalities above imply |HSV r,s−1| ≥ |HSV r,s−1(v)|+
|HSV r,s−1(v′)| > |HSV r,s−1|, a contradiction. Accordingly, the desired i, i′, v, v′ do not exist, and
Property (d) holds. �

5.7 The Completeness Lemma

Lemma 5.2. [Completeness Lemma, restated] Assuming Properties 1–3 hold for round r−1, when
the leader ℓr is honest, with overwhelming probability,

• All honest users agree on the same block Br, which is generated by ℓr and contains a maximal
payset received by ℓr by time αr,1

ℓr ∈ Ir; and

• T r+1 ≤ T r + 8λ+Λ and all honest users know Br in the time interval Ir+1.

Proof. By the inductive hypothesis and Lemma 5.5, for each step s and verifier i ∈ HSV r,s,
αr,s
i ∈ Ir. Below we analyze the protocol step by step.

Step 1. By definition, every honest verifier i ∈ HSV r,1 propagates the desired message mr,1
i at

time βr,1
i = αr,1

i , where mr,1
i = (Br

i , esigi(H(Br
i )), σ

r,1
i ), Br

i = (r, PAY r
i , SIGi(Q

r−1),H(Br−1)),

and PAY r
i is a maximal payset among all payments that i has seen by time αr,1

i .

Step 2. Arbitrarily fix an honest verifier i ∈ HSV r,2. By Lemma 5.5, when player i is done
waiting at time βr,2

i = αr,2
i + t2, he has received all messages sent by verifiers in HSV r,1, including

mr,1
ℓr . By the definition of ℓr, there does not exist another player in PKr−k whose credential’s hash

value is smaller than H(σr,1
ℓr ). Of course, the Adversary can corrupt ℓr after seeing that H(σr,1

ℓr )

is very small, but by that time player ℓr has destroyed his ephemeral key and the message mr,1
ℓr

has been propagated. Thus verifier i sets his own leader to be player ℓr. Accordingly, at time βr,2
i ,

verifier i propagates mr,2
i = (ESIGi(v

′
i), σ

r,2
i ), where v′i = H(Br

ℓr). When r = 0, the only difference

is that βr,2
i = t2 rather than being in a range. Similar things can be said for future steps and we

will not emphasize them again.

Step 3. Arbitrarily fix an honest verifier i ∈ HSV r,3. By Lemma 5.5, when player i is done
waiting at time βr,3

i = αr,3
i + t3, he has received all messages sent by verifiers in HSV r,2.

By the relationships among the parameters, with overwhelming probability |HSV r,2| >
2|MSV r,2|. Moreover, no honest verifier would sign contradicting messages, and the Adversary
cannot forge a signature of an honest verifier after the latter has destroyed his corresponding
ephemeral secret key. Thus more than 2/3 of all the valid (r, 2)-messages i has received are from
honest verifiers and of the form mr,2

j = (ESIGj(H(Br
ℓr )), σ

r,2
j ), with no contradiction.

Accordingly, at time βr,3
i player i propagates mr,3

i = (ESIGi(v
′), σr,3

i ), where v′ = H(Br
ℓr).
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Step 4. Arbitrarily fix an honest verifier i ∈ HSV r,4. By Lemma 5.5, player i has received all
messages sent by verifiers in HSV r,3 when he is done waiting at time βr,4

i = αr,4
i + t4. Similar to

Step 3, more than 2/3 of all the valid (r, 3)-messages i has received are from honest verifiers and
of the form mr,3

j = (ESIGj(H(Br
ℓr)), σ

r,3
j ).

Accordingly, player i sets vi = H(Br
ℓr), gi = 2 and bi = 0. At time βr,4

i = αr,4
i + t4 he propagates

mr,4
i = (ESIGi(0), ESIGi(H(Br

ℓr)), σ
r,4
i ).

Step 5. Arbitrarily fix an honest verifier i ∈ HSV r,5. By Lemma 5.5, player i would have
received all messages sent by the verifiers in HSV r,4 if he has waited till time αr,5

i + t5. Note that
|HSV r,4| ≥ tH .19 Also note that all verifiers in HSV r,4 have signed for H(Br

ℓr).
As |MSV r,4| < tH , there does not exist any v′ 6= H(Br

ℓr) that could have been signed by tH
verifiers in SV r,4 (who would necessarily be malicious), so player i does not stop before he has
received tH valid messages mr,4

j = (ESIGj(0), ESIGj(H(Br
ℓr)), σ

r,4
j ). Let T be the time when

the latter event happens. Some of those messages may be from malicious players, but because
|MSV r,4| < tH , at least one of them is from an honest verifier in HSV r,4 and is sent after time
T r+ t4. Accordingly, T ≥ T r+ t4 > T r+λ+Λ ≥ βr,1

ℓr +Λ, and by time T player i has also received

the message mr,1
ℓr . By the construction of the protocol, player i stops at time βr,5

i = T without
propagating anything; sets Br = Br

ℓr ; and sets his own CERT r to be the set of (r, 4)-messages for
0 and H(Br

ℓr) that he has received.

Step s > 5. Similarly, for any step s > 5 and any verifier i ∈ HSV r,s, player i would have
received all messages sent by the verifiers in HSV r,4 if he has waited till time αr,s

i + ts. By the
same analysis, player i stops without propagating anything, setting Br = Br

ℓr (and setting his own
CERT r properly). Of course, the malicious verifiers may not stop and may propagate arbitrary
messages, but because |MSV r,s| < tH , by induction no other v′ could be signed by tH verifiers
in any step 4 ≤ s′ < s, thus the honest verifiers only stop because they have received tH valid
(r, 4)-messages for 0 and H(Br

ℓr).

Reconstruction of the Round-r Block. The analysis of Step 5 applies to a generic honest
user i almost without any change. Indeed, player i starts his own round r in the interval Ir and
will only stop at a time T when he has received tH valid (r, 4)-messages for H(Br

ℓr). Again because
at least one of those messages are from honest verifiers and are sent after time T r + t4, player i has
also received mr,1

ℓr by time T . Thus he sets Br = Br
ℓr with the proper CERT r.

It only remains to show that all honest users finish their round r within the time interval Ir+1.
By the analysis of Step 5, every honest verifier i ∈ HSV r,5 knows Br on or before αr,5

i + t5 ≤
T r + λ+ t5 = T r +8λ+Λ. Since T r+1 is the time when the first honest user ir knows Br, we have

T r+1 ≤ T r + 8λ+ Λ

as desired. Moreover, when player ir knows Br, he has already helped propagating the messages in
his CERT r. Note that all those messages will be received by all honest users within time λ, even if

19Strictly speaking, this happens with very high probability but not necessarily overwhelming. However, this
probability slightly effects the running time of the protocol, but does not affect its correctness. When h = 80%, then
|HSV r,4| ≥ tH with probability 1 − 10−8. If this event does not occur, then the protocol will continue for another
3 steps. As the probability that this does not occur in two steps is negligible, the protocol will finish at Step 8. In
expectation, then, the number of steps needed is almost 5.
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player ir were the first player to propagate them. Moreover, following the analysis above we have
T r+1 ≥ T r + t4 ≥ βr,1

ℓr +Λ, thus all honest users have received mr,1
ℓr by time T r+1 +λ. Accordingly,

all honest users know Br in the time interval Ir+1 = [T r+1, T r+1 + λ].
Finally, for r = 0 we actually have T 1 ≤ t4 + λ = 6λ + Λ. Combining everything together,

Lemma 5.2 holds. �

5.8 The Soundness Lemma

Lemma 5.3. [Soundness Lemma, restated] Assuming Properties 1–3 hold for round r − 1, when
the leader ℓr is malicious, with overwhelming probability, all honest users agree on the same block
Br, T r+1 ≤ T r + (6Lr + 10)λ+ Λ and all honest users know Br in the time interval Ir+1.

Proof. We consider the two parts of the protocol, GC and BBA⋆, separately.

GC. By the inductive hypothesis and by Lemma 5.5, for any step s ∈ {2, 3, 4} and any honest
verifier i ∈ HSV r,s, when player i acts at time βr,s

i = αr,s
i + ts, he has received all messages sent

by all the honest verifiers in steps s′ < s. We distinguish two possible cases for step 4.

Case 1. No verifier i ∈ HSV r,4 sets gi = 2.
In this case, by definition bi = 1 for all verifiers i ∈ HSV r,4. That is, they start with an
agreement on 1 in the binary BA protocol. They may not have an agreement on their vi’s,
but this does not matter as we will see in the binary BA.

Case 2. There exists a verifier î ∈ HSV r,4 such that gî = 2.
In this case, we show that

(1) gi ≥ 1 for all i ∈ HSV r,4,

(2) there exists a value v′ such that vi = v′ for all i ∈ HSV r,4, and

(3) there exists a valid message mr,1
ℓ from some verifier ℓ ∈ SV r,1 such that v′ = H(Br

ℓ ).

Indeed, since player î is honest and sets gî = 2, more than 2/3 of all the valid messages mr,3
j

he has received are for the same value v′ 6= ⊥, and he has set vî = v′.
By Property (d) in Lemma 5.5, for any other honest (r, 4)-verifier i, it cannot be that more
than 2/3 of all the valid messages mr,3

j that i′ has received are for the same value v′′ 6= v′.
Accordingly, if i sets gi = 2, it must be that i has seen > 2/3 majority for v′ as well and set
vi = v′, as desired.

Now consider an arbitrary verifier i ∈ HSV r,4 with gi < 2. Similar to the analysis of Property
(d) in Lemma 5.5, because player î has seen > 2/3 majority for v′, more than 1

2 |HSV r,3| honest
(r, 3)-verifiers have signed v′. Because i has received all messages by honest (r, 3)-verifiers by
time βr,4

i = αr,4
i + t4, he has in particular received more than 1

2 |HSV r,3| messages from them
for v′. Because |HSV r,3| > 2|MSV r,3|, i has seen > 1/3 majority for v′. Accordingly, player
i sets gi = 1, and Property (1) holds.

Does player i necessarily set vi = v′? Assume there exists a different value v′′ 6= ⊥ such that
player i has also seen > 1/3 majority for v′′. Some of those messages may be from malicious
verifiers, but at least one of them is from some honest verifier j ∈ HSV r,3: indeed, because
|HSV r,3| > 2|MSV r,3| and i has received all messages from HSV r,3, the set of malicious
verifiers from whom i has received a valid (r, 3)-message counts for < 1/3 of all the valid
messages he has received.
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By definition, player j must have seen > 2/3 majority for v′′ among all the valid (r, 2)-messages
he has received. However, we already have that some other honest (r, 3)-verifiers have seen
> 2/3 majority for v′ (because they signed v′). By Property (d) of Lemma 5.5, this cannot
happen and such a value v′′ does not exist. Thus player i must have set vi = v′ as desired,
and Property (2) holds.

Finally, given that some honest (r, 3)-verifiers have seen > 2/3 majority for v′, some (actually,
more than half of) honest (r, 2)-verifiers have signed for v′ and propagated their messages.
By the construction of the protocol, those honest (r, 2)-verifiers must have received a valid
message mr,1

ℓ from some player ℓ ∈ SV r,1 with v′ = H(Br
ℓ ), thus Property (3) holds.

BBA⋆. We again distinguish two cases.

Case 1. All verifiers i ∈ HSV r,4 have bi = 1.
This happens following Case 1 of GC. As |MSV r,4| < tH , in this case no verifier in SV r,5

could collect or generate tH valid (r, 4)-messages for bit 0. Thus, no honest verifier in HSV r,5

would stop because he knows a non-empty block Br.
Moreover, although there are at least tH valid (r, 4)-messages for bit 1, s′ = 5 does not satisfy
s′ − 2 ≡ 1 mod 3, thus no honest verifier in HSV r,5 would stop because he knows Br = Br

ǫ .
Instead, every verifier i ∈ HSV r,5 acts at time βr,5

i = αr,5
i + t5, by when he has received all

messages sent by HSV r,4 following Lemma 5.5. Thus player i has seen > 2/3 majority for 1
and sets bi = 1.

In Step 6 which is a Coin-Fixed-To-1 step, although s′ = 5 satisfies s′ − 2 ≡ 0 mod 3, there
do not exist tH valid (r, 4)-messages for bit 0, thus no verifier in HSV r,6 would stop because
he knows a non-empty block Br. However, with s′ = 6, s′ − 2 ≡ 1 mod 3 and there do exist
|HSV r,5| ≥ tH valid (r, 5)-messages for bit 1 from HSV r,5.
For every verifier i ∈ HSV r,6, following Lemma 5.5, on or before time αr,6

i + t6 player i
has received all messages from HSV r,5, thus i stops without propagating anything and sets
Br = Br

ǫ . His CERT r is the set of tH valid (r, 5)-messages mr,5
j = (ESIGj(1), ESIGj(vj), σ

r,5
j )

received by him when he stops.

Next, let player i be either an honest verifier in a step s > 6 or a generic honest user (i.e.,
non-verifier). Similar to the proof of Lemma 5.2, player i sets Br = Br

ǫ and sets his own
CERT r to be the set of tH valid (r, 5)-messages mr,5

j = (ESIGj(1), ESIGj(vj), σ
r,5
j ) he has

received.

Finally, similar to Lemma 5.2,

T r+1 ≤ min
i∈HSV r,6

αr,6
i + t6 ≤ T r + λ+ t6 = T r + 10λ+ Λ,

and all honest users know Br in the time interval Ir+1, because the first honest user i who
knows Br has helped propagating the (r, 5)-messages in his CERT r.

Case 2. There exists a verifier î ∈ HSV r,4 with b̂i = 0.
This happens following Case 2 of GC and is the more complex case. By the analysis of GC,
in this case there exists a valid message mr,1

ℓ such that vi = H(Br
ℓ ) for all i ∈ HSV r,4. Note

that the verifiers in HSV r,4 may not have an agreement on their bi’s.
For any step s ∈ {5, . . . ,m + 3} and verifier i ∈ HSV r,s, by Lemma 5.5 player i would have
received all messages sent by all honest verifiers in HSV r,4 ∪ · · · ∪HSV r,s−1 if he has waited
for time ts.
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We now consider the following event E: there exists a step s∗ ≥ 5 such that, for the first
time in the binary BA, some player i∗ ∈ SV r,s∗ (whether malicious or honest) should stop
without propagating anything. We use “should stop” to emphasize the fact that, if player i∗

is malicious, then he may pretend that he should not stop according to the protocol and
propagate messages of the Adversary’s choice.

Moreover, by the construction of the protocol, either

(E.a) i∗ is able to collect or generate at least tH valid messagesmr,s′−1
j = (ESIGj(0), ESIGj(v),

σr,s′−1
j ) for the same v and s′, with 5 ≤ s′ ≤ s∗ and s′ − 2 ≡ 0 mod 3; or

(E.b) i∗ is able to collect or generate at least tH valid messagesmr,s′−1
j = (ESIGj(1), ESIGj(vj),

σr,s′−1
j ) for the same s′, with 6 ≤ s′ ≤ s∗ and s′ − 2 ≡ 1 mod 3.

Because the honest (r, s′ − 1)-messages are received by all honest (r, s′)-verifiers before they
are done waiting in Step s′, and because the Adversary receives everything no later than the
honest users, without loss of generality we have s′ = s∗ and player i∗ is malicious. Note that
we did not require the value v in E.a to be the hash of a valid block: as it will become clear
in the analysis, v = H(Br

ℓ ) in this sub-event.

Below we first analyze Case 2 following event E, and then show that the value of s∗ is essentially
distributed accordingly to Lr (thus event E happens before Step m + 3 with overwhelming
probability given the relationships for parameters). To begin with, for any step 5 ≤ s < s∗,
every honest verifier i ∈ HSV r,s has waited time ts and set vi to be the majority vote of the
valid (r, s−1)-messages he has received. Since player i has received all honest (r, s−1)-messages
following Lemma 5.5, since all honest verifiers in HSV r,4 have signed H(Br

ℓ ) following Case
2 of GC, and since |HSV r,s−1| > 2|MSV r,s−1| for each s, by induction we have that player i
has set

vi = H(Br
ℓ ).

The same holds for every honest verifier i ∈ HSV r,s∗ who does not stop without propagating
anything. Now we consider Step s∗ and distinguish four subcases.

Case 2.1.a. Event E.a happens and there exists an honest verifier i′ ∈ HSV r,s∗ who should
also stop without propagating anything.
In this case, we have s∗ − 2 ≡ 0 mod 3 and Step s∗ is a Coin-Fixed-To-0 step. By
definition, player i′ has received at least tH valid (r, s∗ − 1)-messages of the form

(ESIGj(0), ESIGj(v), σ
r,s∗−1
j ). Since all verifiers in HSV r,s∗−1 have signed H(Br

ℓ ) and

|MSV r,s∗−1| < tH , we have v = H(Br
ℓ ).

Since at least tH − |MSV r,s∗−1| ≥ 1 of the (r, s∗ − 1)-messages received by i′ for 0 and v
are sent by verifiers in HSV r,s∗−1 after time T r+ ts∗−1 ≥ T r+ t4 ≥ T r+λ+Λ ≥ βr,1

ℓ +Λ,

player i′ has received mr,1
ℓ by the time he receives those (r, s∗ − 1)-messages. Thus player

i′ stops without propagating anything; sets Br = Br
ℓ ; and sets his own CERT r to be the

set of valid (r, s∗ − 1)-messages for 0 and v that he has received.

Next, we show that, any other verifier i ∈ HSV r,s∗ has either stopped with Br = Br
ℓ , or

has set bi = 0 and propagated (ESIGi(0), ESIGi(H(Br
ℓ )), σ

r,s
i ). Indeed, because Step s∗

is the first time some verifier should stop without propagating anything, there does not
exist a step s′ < s∗ with s′ − 2 ≡ 1 mod 3 such that tH (r, s′ − 1)-verifiers have signed 1.
Accordingly, no verifier in HSV r,s∗ stops with Br = Br

ǫ .
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Moreover, as all honest verifiers in steps {4, 5, . . . , s∗ − 1} have signed H(Br
ℓ ), there does

not exist a step s′ ≤ s∗ with s′−2 ≡ 0 mod 3 such that tH (r, s′−1)-verifiers have signed
some v′′ 6= H(Br

ℓ ) —indeed, |MSV r,s′−1| < tH . Accordingly, no verifier in HSV r,s∗ stops
with Br 6= Br

ǫ and Br 6= Br
ℓ . That is, if a player i ∈ HSV r,s∗ has stopped without

propagating anything, he must have set Br = Br
ℓ .

If a player i ∈ HSV r,s∗ has waited time ts∗ and propagated a message at time
βr,s∗

i = αr,s∗

i + ts∗, he has received all messages from HSV r,s∗−1, including at least
tH − |MSV r,s∗−1| of them for 0 and v. If i has seen > 2/3 majority for 1, then he
has seen more than 2(tH − |MSV r,s∗−1|) valid (r, s∗ − 1)-messages for 1, with more
than 2tH − 3|MSV r,s∗−1| of them from honest (r, s∗ − 1)-verifiers. However, this implies
|HSV r,s∗−1| ≥ tH−|MSV r,s∗−1|+2tH−3|MSV r,s∗−1| > 2n−4|MSV r,s∗−1|, contradicting
the fact that

|HSV r,s∗−1|+ 4|MSV r,s∗−1| < 2n,

which comes from the relationships for the parameters. Accordingly, i does not see > 2/3
majority for 1, and he sets bi = 0 because Step s∗ is a Coin-Fixed-To-0 step. As we have
seen, vi = H(Br

ℓ ). Thus i propagates (ESIGi(0), ESIGi(H(Br
ℓ )), σ

r,s
i ) as we wanted to

show.

For Step s∗ + 1, since player i′ has helped propagating the messages in his CERT r

on or before time αr,s∗

i′ + ts∗, all honest verifiers in HSV r,s∗+1 have received at least
tH valid (r, s∗ − 1)-messages for bit 0 and value H(Br

ℓ ) on or before they are done
waiting. Furthermore, verifiers inHSV r,s∗+1 will not stop before receiving those (r, s∗−1)-
messages, because there do not exist any other tH valid (r, s′ − 1)-messages for bit 1 with
s′ − 2 ≡ 1 mod 3 and 6 ≤ s′ ≤ s∗ + 1, by the definition of Step s∗. In particular, Step
s∗ + 1 itself is a Coin-Fixed-To-1 step, but no honest verifier in HSV r,s∗ has propagated
a message for 1, and |MSV r,s∗| < tH .
Thus all honest verifiers in HSV r,s∗+1 stop without propagating anything and set Br =
Br

ℓ : as before, they have receivedmr,1
ℓ before they receive the desired (r, s∗−1)-messages.20

The same can be said for all honest verifiers in future steps and all honest users in general.
In particular, they all know Br = Br

ℓ within the time interval Ir+1 and

T r+1 ≤ αr,s∗

i′ + ts∗ ≤ T r + λ+ ts∗.

Case 2.1.b. Event E.b happens and there exists an honest verifier i′ ∈ HSV r,s∗ who should
also stop without propagating anything.
In this case we have s∗−2 ≡ 1 mod 3 and Step s∗ is a Coin-Fixed-To-1 step. The analysis
is similar to Case 2.1.a and many details have been omitted.

20If ℓ is malicious, he might send out mr,1
ℓ late, hoping that some honest users/verifiers have not received mr,1

ℓ yet
when they receive the desired certificate for it. However, since verifier î ∈ HSV r,4 has set bî = 0 and vî = H(Br

ℓ ), as
before we have that more than half of honest verifiers i ∈ HSV r,3 have set vi = H(Br

ℓ ). This further implies more
than half of honest verifiers i ∈ HSV r,2 have set vi = H(Br

ℓ ), and those (r, 2)-verifiers have all received mr,1
ℓ . As the

Adversary cannot distinguish a verifier from a non-verifier, he cannot target the propagation of mr,1
ℓ to (r, 2)-verifiers

without having the non-verifiers seeing it. In fact, with high probability, more than half (or a good constant fraction)
of all honest users have seen mr,1

ℓ after waiting for t2 from the beginning of their own round r. From here on, the
time λ′ needed for mr,1

ℓ to reach the remaining honest users is much smaller than Λ, and for simplicity we do not
write it out in the analysis. If 4λ ≥ λ′ then the analysis goes through without any change: by the end of Step 4, all
honest users would have received mr,1

ℓ . If the size of the block becomes enormous and 4λ < λ′, then in Steps 3 and 4,
the protocol could ask each verifier to wait for λ′/2 rather than 2λ, and the analysis continues to hold.
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As before, player i′ must have received at least tH valid (r, s∗ − 1)-messages of the form

(ESIGj(1), ESIGj(vj), σ
r,s∗−1
j ). Again by the definition of s∗, there does not exist a step

5 ≤ s′ < s∗ with s′−2 ≡ 0 mod 3, where at least tH (r, s′−1)-verifiers have signed 0 and
the same v. Thus player i′ stops without propagating anything; sets Br = Br

ǫ ; and sets
his own CERT r to be the set of valid (r, s∗ − 1)-messages for bit 1 that he has received.

Moreover, any other verifier i ∈ HSV r,s∗ has either stopped with Br = Br
ǫ , or has set bi =

1 and propagated (ESIGi(1), ESIGi(vi), σ
r,s∗

i ). Since player i′ has helped propagating

the (r, s∗ − 1)-messages in his CERT r by time αr,s∗

i′ + ts∗ , again all honest verifiers in
HSV r,s∗+1 stop without propagating anything and set Br = Br

ǫ . Similarly, all honest
users know Br = Br

ǫ within the time interval Ir+1 and

T r+1 ≤ αr,s∗

i′ + ts∗ ≤ T r + λ+ ts∗.

Case 2.2.a. Event E.a happens and there does not exist an honest verifier i′ ∈ HSV r,s∗ who
should also stop without propagating anything.
In this case, note that player i∗ could have a valid CERT r

i∗ consisting of the tH desired
(r, s∗ − 1)-messages the Adversary is able to collect or generate. However, the malicious
verifiers may not help propagating those messages, so we cannot conclude that the honest
users will receive them in time λ. In fact, |MSV r,s∗−1| of those messages may be from
malicious (r, s∗ − 1)-verifiers, who did not propagate their messages at all and only send
them to the malicious verifiers in step s∗.

Similar to Case 2.1.a, here we have s∗ − 2 ≡ 0 mod 3, Step s∗ is a Coin-Fixed-To-0 step,
and the (r, s∗ − 1)-messages in CERT r

i∗ are for bit 0 and v = H(Br
ℓ ). Indeed, all honest

(r, s∗−1)-verifiers sign v, thus the Adversary cannot generate tH valid (r, s∗−1)-messages
for a different v′.
Moreover, all honest (r, s∗)-verifiers have waited time ts∗ and do not see > 2/3 majority
for bit 1, again because |HSV r,s∗−1| + 4|MSV r,s∗−1| < 2n. Thus every honest verifier

i ∈ HSV r,s∗ sets bi = 0, vi = H(Br
ℓ ) by the majority vote, and propagates mr,s∗

i =

(ESIGi(0), ESIGi(H(Br
ℓ )), σ

r,s∗

i ) at time αr,s∗

i + ts∗ .

Now consider the honest verifiers in Step s∗ +1 (which is a Coin-Fixed-To-1 step). If the
Adversary actually sends the messages in CERT r

i∗ to some of them and causes them to
stop, then similar to Case 2.1.a, all honest users know Br = Br

ℓ within the time interval
Ir+1 and

T r+1 ≤ T r + λ+ ts∗+1.

Otherwise, all honest verifiers in Step s∗+1 have received all the (r, s∗)-messages for 0 and
H(Br

ℓ ) from HSV r,s∗ after waiting time ts∗+1, which leads to > 2/3 majority, because
|HSV r,s∗ | > 2|MSV r,s∗|. Thus all the verifiers in HSV r,s∗+1 propagate their messages for
0 and H(Br

ℓ ) accordingly. Note that the verifiers in HSV r,s∗+1 do not stop with Br = Br
ℓ ,

because Step s∗ + 1 is not a Coin-Fixed-To-0 step.

Now consider the honest verifiers in Step s∗+2 (which is a Coin-Genuinely-Flipped step).
If the Adversary sends the messages in CERT r

i∗ to some of them and causes them to stop,
then again all honest users know Br = Br

ℓ within the time interval Ir+1 and

T r+1 ≤ T r + λ+ ts∗+2.
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Otherwise, all honest verifiers in Step s∗ +2 have received all the (r, s∗ +1)-messages for
0 and H(Br

ℓ ) from HSV r,s∗+1 after waiting time ts∗+2, which leads to > 2/3 majority.
Thus all of them propagate their messages for 0 and H(Br

ℓ ) accordingly: that is they do
not “flip a coin” in this case. Again, note that they do not stop without propagating,
because Step s∗ + 2 is not a Coin-Fixed-To-0 step.

Finally, for the honest verifiers in Step s∗+3 (which is another Coin-Fixed-To-0 step), all
of them would have received at least tH valid messages for 0 and H(Br

ℓ ) from HSV s∗+2,
if they really wait time ts∗+3. Thus, whether or not the Adversary sends the messages
in CERT r

i∗ to any of them, all verifiers in HSV r,s∗+3 stop with Br = Br
ℓ , without

propagating anything. Depending on how the Adversary acts, some of them may have
their own CERT r consisting of those (r, s∗−1)-messages in CERT r

i∗ , and the others have
their own CERT r consisting of those (r, s∗ + 2)-messages. In any case, all honest users
know Br = Br

ℓ within the time interval Ir+1 and

T r+1 ≤ T r + λ+ ts∗+3.

Case 2.2.b. Event E.b happens and there does not exist an honest verifier i′ ∈ HSV r,s∗ who
should also stop without propagating anything.
The analysis in this case is similar to those in Case 2.1.b and Case 2.2.a, thus many details
have been omitted. In particular, CERT r

i∗ consists of the tH desired (r, s∗ − 1)-messages
for bit 1 that the Adversary is able to collect or generate, s∗ − 2 ≡ 1 mod 3, Step s∗ is a
Coin-Fixed-To-1 step, and no honest (r, s∗)-verifier could have seen > 2/3 majority for 0.

Thus, every verifier i ∈ HSV r,s∗ sets bi = 1 and propagatesmr,s∗

i = (ESIGi(1), ESIGi(vi),

σr,s∗

i ) at time αr,s∗

i + ts∗. Similar to Case 2.2.a, in at most 3 more steps (i.e., the protocol
reaches Step s∗+3, which is another Coin-Fixed-To-1 step), all honest users know Br = Br

ǫ

within the time interval Ir+1. Moreover, T r+1 may be ≤ T r+λ+ts∗+1, or ≤ T r+λ+ts∗+2,
or ≤ T r + λ+ ts∗+3, depending on when is the first time an honest verifier is able to stop
without propagating.

Combining the four sub-cases, we have that all honest users know Br within the time interval
Ir+1, with

T r+1 ≤ T r + λ+ ts∗ in Cases 2.1.a and 2.1.b, and

T r+1 ≤ T r + λ+ ts∗+3 in Cases 2.2.a and 2.2.b.

It remains to upper-bound s∗ and thus T r+1 for Case 2, and we do so by considering how
many times the Coin-Genuinely-Flipped steps are actually executed in the protocol: that is,
some honest verifiers actually have flipped a coin.

In particular, arbitrarily fix a Coin-Genuinely-Flipped step s′ (i.e., 7 ≤ s′ ≤ m + 2 and

s′ − 2 ≡ 2 mod 3), and let ℓ′ , argminj∈SV r,s′−1 H(σr,s′−1
j ). For now let us assume s′ < s∗,

because otherwise no honest verifier actually flips a coin in Step s′, according to previous
discussions.

By the definition of SV r,s′−1, the hash value of the credential of ℓ′ is also the smallest among
all users in PKr−k. Since the hash function is a random oracle, ideally player ℓ′ is honest with
probability at least h. As we will show later, even if the Adversary tries his best to predict the
output of the random oracle and tilt the probability, player ℓ′ is still honest with probability
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at least ph = h2(1 + h − h2). Below we consider the case when that indeed happens: that is,
ℓ′ ∈ HSV r,s′−1.

Note that every honest verifier i ∈ HSV r,s′ has received all messages from HSV r,s′−1 by

time αr,s′

i + ts′ . If player i needs to flip a coin (i.e., he has not seen > 2/3 majority for

the same bit b ∈ {0, 1}), then he sets bi = lsb(H(σr,s′−1
ℓ′ )). If there exists another honest

verifier i′ ∈ HSV r,s′ who has seen > 2/3 majority for a bit b ∈ {0, 1}, then by Property
(d) of Lemma 5.5, no honest verifier in HSV r,s′ would have seen > 2/3 majority for a bit

b′ 6= b. Since lsb(H(σr,s′−1
ℓ′ )) = b with probability 1/2, all honest verifiers in HSV r,s′ reach

an agreement on b with probability 1/2. Of course, if such a verifier i′ does not exist, then all

honest verifiers in HSV r,s′ agree on the bit lsb(H(σr,s′−1
ℓ′ )) with probability 1.

Combining the probability for ℓ′ ∈ HSV r,s′−1, we have that the honest verifiers in HSV r,s′

reach an agreement on a bit b ∈ {0, 1} with probability at least ph
2 = h2(1+h−h2)

2 . Moreover,

by induction on the majority vote as before, all honest verifiers in HSV r,s′ have their vi’s set
to be H(Br

ℓ ). Thus, once an agreement on b is reached in Step s′, T r+1 is

either ≤ T r + λ+ ts′+1 or ≤ T r + λ+ ts′+2,

depending on whether b = 0 or b = 1, following the analysis of Cases 2.1.a and 2.1.b. In
particular, no further Coin-Genuinely-Flipped step will be executed: that is, the verifiers in
such steps still check that they are the verifiers and thus wait, but they will all stop without
propagating anything. Accordingly, before Step s∗, the number of times the Coin-Genuinely-
Flipped steps are executed is distributed according to the random variable Lr. Letting Step s′

be the last Coin-Genuinely-Flipped step according to Lr, by the construction of the protocol
we have

s′ = 4 + 3Lr.

When should the Adversary make Step s∗ happen if he wants to delay T r+1 as much as
possible? We can even assume that the Adversary knows the realization of Lr in advance. If
s∗ > s′ then it is useless, because the honest verifiers have already reached an agreement in
Step s′. To be sure, in this case s∗ would be s′+1 or s′+2, again depending on whether b = 0
or b = 1. However, this is actually Cases 2.1.a and 2.1.b, and the resulting T r+1 is exactly the
same as in that case. More precisely,

T r+1 ≤ T r + λ+ ts∗ ≤ T r + λ+ ts′+2.

If s∗ < s′ − 3 —that is, s∗ is before the second-last Coin-Genuinely-Flipped step— then by
the analysis of Cases 2.2.a and 2.2.b,

T r+1 ≤ T r + λ+ ts∗+3 < T r + λ+ ts′ .

That is, the Adversary is actually making the agreement on Br happen faster.

If s∗ = s′ − 2 or s′ − 1 —that is, the Coin-Fixed-To-0 step or the Coin-Fixed-To-1 step
immediately before Step s′— then by the analysis of the four sub-cases, the honest verifiers in
Step s′ do not get to flip coins anymore, because they have either stopped without propagating,
or have seen > 2/3 majority for the same bit b. Therefore we have

T r+1 ≤ T r + λ+ ts∗+3 ≤ T r + λ+ ts′+2.
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In sum, no matter what s∗ is, we have

T r+1 ≤ T r + λ+ ts′+2 = T r + λ+ t3Lr+6

= T r + λ+ (2(3Lr + 6)− 3)λ+ Λ

= T r + (6Lr + 10)λ+ Λ,

as we wanted to show. The worst case is when s∗ = s′ − 1 and Case 2.2.b happens.

Combining Cases 1 and 2 of the binary BA protocol, Lemma 5.3 holds. �

5.9 Security of the Seed Qr and Probability of An Honest Leader

It remains to prove Lemma 5.4. Recall that the verifiers in round r are taken from PKr−k and
are chosen according to the quantity Qr−1. The reason for introducing the look-back parameter k
is to make sure that, back at round r − k, when the Adversary is able to add new malicious users
to PKr−k, he cannot predict the quantity Qr−1 except with negligible probability. Note that the
hash function is a random oracle and Qr−1 is one of its inputs when selecting verifiers for round r.
Thus, no matter how malicious users are added to PKr−k, from the Adversary’s point of view each
one of them is still selected to be a verifier in a step of round r with the required probability p (or
p1 for Step 1). More precisely, we have the following lemma.

Lemma 5.6. With k = O(log1/2 F ), for each round r, with overwhelming probability the Adversary

did not query Qr−1 to the random oracle back at round r − k.

Proof. We proceed by induction. Assume that for each round γ < r, the Adversary did not query
Qγ−1 to the random oracle back at round γ − k.21 Consider the following mental game played by
the Adversary at round r − k, trying to predict Qr−1.

In Step 1 of each round γ = r − k, . . . , r − 1, given a specific Qγ−1 not queried to the random
oracle, by ordering the players i ∈ PKγ−k according to the hash values H(SIGi(γ, 1, Q

γ−1))
increasingly, we obtain a random permutation over PKγ−k. By definition, the leader ℓγ is the
first user in the permutation and is honest with probability h. Moreover, when PKγ−k is large
enough, for any integer x ≥ 1, the probability that the first x users in the permutation are all
malicious but the (x+ 1)st is honest is (1− h)xh.

If ℓγ is honest, then Qγ = H(SIGℓγ (Q
γ−1), γ). As the Adversary cannot forge the signature

of ℓγ , Qγ is distributed uniformly at random from the Adversary’s point of view and, except
with exponentially small probability,22 was not queried to H at round r − k. Since each
Qγ+1, Qγ+2, . . . , Qr−1 respectively is the output of H with Qγ , Qγ+1, . . . , Qr−2 as one of the inputs,
they all look random to the Adversary and the Adversary could not have queried Qr−1 to H at
round r − k.

Accordingly, the only case where the Adversary can predict Qr−1 with good probability at round
r−k is when all the leaders ℓr−k, . . . , ℓr−1 are malicious. Again consider a round γ ∈ {r−k . . . , r−1}
and the random permutation over PKγ−k induced by the corresponding hash values. If for some
x ≥ 2, the first x − 1 users in the permutation are all malicious and the x-th is honest, then the
Adversary has x possible choices for Qγ : either of the form H(SIGi(Q

γ−1, γ)), where i is one of

21As k is a small integer, without loss of generality one can assume that the first k rounds of the protocol are run
under a safe environment and the inductive hypothesis holds for those rounds.

22That is, exponential in the length of the output of H . Note that this probability is way smaller than F .
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the first x−1 malicious users, by making player i the actually leader of round γ; or H(Qγ−1, γ), by
forcing Bγ = Bγ

ǫ . Otherwise, the leader of round γ will be the first honest user in the permutation
and Qr−1 becomes unpredictable to the Adversary.

Which of the above x options of Qγ should the Adversary pursue? To help the Adversary
answer this question, in the mental game we actually make him more powerful than he actually
is, as follows. First of all, in reality, the Adversary cannot compute the hash of a honest user’s
signature, thus cannot decide, for each Qγ , the number x(Qγ) of malicious users at the beginning
of the random permutation in round γ + 1 induced by Qγ . In the mental game, we give him the
numbers x(Qγ) for free. Second of all, in reality, having the first x users in the permutation all
being malicious does not necessarily mean they can all be made into the leader, because the hash
values of their signatures must also be less than p1. We have ignored this constraint in the mental
game, giving the Adversary even more advantages.

It is easy to see that in the mental game, the optimal option for the Adversary, denoted by Q̂γ ,
is the one that produces the longest sequence of malicious users at the beginning of the random
permutation in round γ + 1. Indeed, given a specific Qγ , the protocol does not depend on Qγ−1

anymore and the Adversary can solely focus on the new permutation in round γ+1, which has the
same distribution for the number of malicious users at the beginning. Accordingly, in each round
γ, the above mentioned Q̂γ gives him the largest number of options for Qγ+1 and thus maximizes
the probability that the consecutive leaders are all malicious.

Therefore, in the mental game the Adversary is following a Markov Chain from round r − k
to round r − 1, with the state space being {0} ∪ {x : x ≥ 2}. State 0 represents the fact that the
first user in the random permutation in the current round γ is honest, thus the Adversary fails the
game for predicting Qr−1; and each state x ≥ 2 represents the fact that the first x− 1 users in the
permutation are malicious and the x-th is honest, thus the Adversary has x options for Qγ . The
transition probabilities P (x, y) are as follows.

• P (0, 0) = 1 and P (0, y) = 0 for any y ≥ 2. That is, the Adversary fails the game once the first
user in the permutation becomes honest.

• P (x, 0) = hx for any x ≥ 2. That is, with probability hx, all the x random permutations have
their first users being honest, thus the Adversary fails the game in the next round.

• For any x ≥ 2 and y ≥ 2, P (x, y) is the probability that, among the x random permutations
induced by the x options of Qγ , the longest sequence of malicious users at the beginning of
some of them is y − 1, thus the Adversary has y options for Qγ+1 in the next round. That is,

P (x, y) =

(
y−1∑

i=0

(1− h)ih

)x

−

(
y−2∑

i=0

(1− h)ih

)x

= (1− (1− h)y)x − (1− (1− h)y−1)x.

Note that state 0 is the unique absorbing state in the transition matrix P , and every other state
x has a positive probability of going to 0. We are interested in upper-bounding the number k of
rounds needed for the Markov Chain to converge to 0 with overwhelming probability: that is, no
matter which state the chain starts at, with overwhelming probability the Adversary loses the game
and fails to predict Qr−1 at round r − k.

Consider the transition matrix P (2) , P ·P after two rounds. It is easy to see that P (2)(0, 0) = 1
and P (2)(0, x) = 0 for any x ≥ 2. For any x ≥ 2 and y ≥ 2, as P (0, y) = 0, we have

P (2)(x, y) = P (x, 0)P (0, y) +
∑

z≥2

P (x, z)P (z, y) =
∑

z≥2

P (x, z)P (z, y).
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Letting h̄ , 1− h, we have
P (x, y) = (1− h̄y)x − (1− h̄y−1)x

and
P (2)(x, y) =

∑

z≥2

[(1− h̄z)x − (1− h̄z−1)x][(1− h̄y)z − (1− h̄y−1)z].

Below we compute the limit of P (2)(x,y)
P (x,y) as h goes to 1 —that is, h̄ goes to 0. Note that the highest

order of h̄ in P (x, y) is h̄y−1, with coefficient x. Accordingly,

lim
h→1

P (2)(x, y)

P (x, y)
= lim

h̄→0

P (2)(x, y)

P (x, y)
= lim

h̄→0

P (2)(x, y)

xh̄y−1 +O(h̄y)

= lim
h̄→0

∑
z≥2[xh̄

z−1 +O(h̄z)][zh̄y−1 +O(h̄y)]

xh̄y−1 +O(h̄y)
= lim

h̄→0

2xh̄y +O(h̄y+1)

xh̄y−1 +O(h̄y)

= lim
h̄→0

2xh̄y

xh̄y−1
= lim

h̄→0
2h̄ = 0.

When h is sufficiently close to 1,23 we have

P (2)(x, y)

P (x, y)
≤

1

2

for any x ≥ 2 and y ≥ 2. By induction, for any k > 2, P (k) , P k is such that

• P (k)(0, 0) = 1, P (k)(0, x) = 0 for any x ≥ 2, and

• for any x ≥ 2 and y ≥ 2,

P (k)(x, y) = P (k−1)(x, 0)P (0, y) +
∑

z≥2

P (k−1)(x, z)P (z, y) =
∑

z≥2

P (k−1)(x, z)P (z, y)

≤
∑

z≥2

P (x, z)

2k−2
· P (z, y) =

P (2)(x, y)

2k−2
≤

P (x, y)

2k−1
.

As P (x, y) ≤ 1, after 1− log2 F rounds, the transition probability into any state y ≥ 2 is negligible,
starting with any state x ≥ 2. Although there are many such states y, it is easy to see that

lim
y→+∞

P (x, y)

P (x, y + 1)
= lim

y→+∞

(1− h̄y)x − (1− h̄y−1)x

(1− h̄y+1)x − (1− h̄y)x
= lim

y→+∞

h̄y−1 − h̄y

h̄y − h̄y+1
=

1

h̄
=

1

1− h
.

Therefore each row x of the transition matrix P decreases as a geometric sequence with rate 1
1−h > 2

when y is large enough, and the same holds for P (k). Accordingly, when k is large enough but still
on the order of log1/2 F ,

∑
y≥2 P

(k)(x, y) < F for any x ≥ 2. That is, with overwhelming probability

the Adversary loses the game and fails to predict Qr−1 at round r − k. For h ∈ (2/3, 1], a more
complex analysis shows that there exists a constant C slightly larger than 1/2, such that it suffices
to take k = O(logC F ). Thus Lemma 5.6 holds. �

Lemma 5.4. (restated) Given Properties 1–3 for each round before r, ph = h2(1 + h− h2) for Lr,
and the leader ℓr is honest with probability at least ph.

23For example, h = 80% as suggested by the specific choices of parameters.
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Proof. Following Lemma 5.6, the Adversary cannot predict Qr−1 back at round r − k except with
negligible probability. Note that this does not mean the probability of an honest leader is h for
each round. Indeed, given Qr−1, depending on how many malicious users are at the beginning of
the random permutation of PKr−k, the Adversary may have more than one options for Qr and
thus can increase the probability of a malicious leader in round r + 1 —again we are giving him
some unrealistic advantages as in Lemma 5.6, so as to simplify the analysis.

However, for each Qr−1 that was not queried to H by the Adversary back at round r − k, for
any x ≥ 1, with probability (1 − h)x−1h the first honest user occurs at position x in the resulting
random permutation of PKr−k. When x = 1, the probability of an honest leader in round r+ 1 is
indeed h; while when x = 2, the Adversary has two options for Qr and the resulting probability is
h2. Only by considering these two cases, we have that the probability of an honest leader in round
r + 1 is at least h · h+ (1− h)h · h2 = h2(1 + h− h2) as desired.

Note that the above probability only considers the randomness in the protocol from round r−k
to round r. When all the randomness from round 0 to round r is taken into consideration, Qr−1 is
even less predictable to the Adversary and the probability of an honest leader in round r + 1 is at
least h2(1 + h− h2). Replacing r+1 with r and shifts everything back by one round, the leader ℓr

is honest with probability at least h2(1 + h− h2), as desired.
Similarly, in each Coin-Genuinely-Flipped step s, the “leader” of that step —that is the verifier

in SV r,s whose credential has the smallest hash value, is honest with probability at least h2(1 +
h− h2). Thus ph = h2(1 + h− h2) for Lr and Lemma 5.4 holds. �

6 Algorand ′

2

In this section, we construct a version of Algorand ′ working under the following assumption.

Honest Majority of Users Assumption: More than 2/3 of the users in each PKr are honest.

In Section 8, we show how to replace the above assumption with the desired Honest Majority of
Money assumption.

6.1 Additional Notations and Parameters for Algorand ′

2

Notations

• µ ∈ Z
+: a pragmatic upper-bound to the number of steps that, with overwhelming probability,

will actually taken in one round. (As we shall see, parameter µ controls how many ephemeral
keys a user prepares in advance for each round.)

• Lr: a random variable representing the number of Bernoulli trials needed to see a 1, when each
trial is 1 with probability ph

2 . Lr will be used to upper-bound the time needed to generate
block Br.

• tH : a lower-bound for the number of honest verifiers in a step s > 1 of round r, such that with
overwhelming probability (given n and p), there are > tH honest verifiers in SV r,s.

Parameters

• Relationships among various parameters.

— For each step s > 1 of round r, n is chosen so that, with overwhelming probability,
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|HSV r,s| > tH and |HSV r,s|+ 2|MSV r,s| < 2tH .
Note that the two inequalities above together imply |HSV r,s| > 2|MSV r,s|: that is, there
is a 2/3 honest majority among selected verifiers.
The closer to 1 the value of h is, the smaller n needs to be. In particular, we use (variants
of) Chernoff bounds to ensure the desired conditions hold with overwhelming probability.

• Example choices of important parameters.

— F = 10−18.

— n ≈ 4000, tH ≈ 0.69n, k = 70.

6.2 Implementing Ephemeral Keys in Algorand ′
2

Recall that a verifier i ∈ SV r,s digitally signs his message mr,s
i of step s in round r, relative to

an ephemeral public key pkr,si , using an ephemeral secrete key skr,si that he promptly destroys
after using. When the number of possible steps that a round may take is capped by a given
integer µ, we have already seen how to practically handle ephemeral keys. For example, as we
have explained in Algorand ′

1 (where µ = m + 3), to handle all his possible ephemeral keys, from
a round r′ to a round r′ + 106, i generates a pair (PMK,SMK), where PMK public master
key of an identity based signature scheme, and SMK its corresponding secret master key. User i
publicizes PMK and uses SMK to generate the secret key of each possible ephemeral public key
(and destroys SMK after having done so). The set of i’s ephemeral public keys for the relevant
rounds is S = {i}×{r′, . . . , r′+106}×{1, . . . , µ}. (As discussed, as the round r′+106 approaches,
i “refreshes” his pair (PMK,SMK).)

In practice, if µ is large enough, a round of Algorand ′
2 will not take more than µ steps. In

principle, however, there is the remote possibility that, for some round r the number of steps
actually taken will exceed µ. When this happens, i would be unable to sign his message mr,s

i for
any step s > µ, because he has prepared in advance only µ secret keys for round r. Moreover, he
could not prepare and publicize a new stash of ephemeral keys, as discussed before. In fact, to do
so, he would need to insert a new public master key PMK ′ in a new block. But, should round r
take more and more steps, no new blocks would be generated.

However, solutions exist. For instance, i may use the last ephemeral key of round r, pkr,µi ,
as follows. He generates another stash of key-pairs for round r —e.g., by (1) generating another
master key pair (PMK,SMK); (2) using this pair to generate another, say, 106 ephemeral keys,

sk
r,µ+1
i , . . . , sk

r,µ+106

i , corresponding to steps µ+1, ..., µ+106 of round r; (3) using skr,µi to digitally
sign PMK (and any (r, µ)-message if i ∈ SV r,µ), relative to pkr,µi ; and (4) erasing SMK and skr,µi .
Should i become a verifier in a step µ+ s with s ∈ {1, . . . , 106}, then i digitally signs his (r, µ+ s)-

message mr,µ+s
i relative to his new key pk

r,µ+s
i = (i, r, µ + s). Of course, to verify this signature

of i, others need to be certain that this public key corresponds to i’s new public master key PMK.
Thus, in addition to this signature, i transmits his digital signature of PMK relative to pkr,µi .

Of course, this approach can be repeated, as many times as necessary, should round r continue
for more and more steps! The last ephemeral secret key is used to authenticate a new master public
key, and thus another stash of ephemeral keys for round r. And so on.
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6.3 The Actual Protocol Algorand ′

2

Recall again that, in each step s of a round r, a verifier i ∈ SV r,s uses his long-term public-secret
key pair to produce his credential, σr,s

i , SIGi(r, s,Q
r−1), as well as SIGi

(
Qr−1

)
in case s = 1.

Verifier i uses his ephemeral key pair, (pkr,si , skr,si ), to sign any other message m that may be
required. For simplicity, we write esigi(m), rather than sigpkr,si

(m), to denote i’s proper ephemeral

signature of m in this step, and write ESIGi(m) instead of SIGpkr,si
(m) , (i,m, esigi(m)).

Step 1: Block Proposal

Instructions for every user i ∈ PKr−k: User i starts his own Step 1 of round r as soon as he has
CERT r−1, which allows i to unambiguously compute H(Br−1) and Qr−1.

• User i uses Qr−1 to check whether i ∈ SV r,1 or not. If i /∈ SV r,1, he does nothing for Step 1.

• If i ∈ SV r,1, that is, if i is a potential leader, then he does the following.

(a) If i has seen B0, . . . , Br−1 himself (any Bj = Bj
ǫ can be easily derived from its hash value

in CERT j and is thus assumed “seen”), then he collects the round-r payments that have
been propagated to him so far and computes a maximal payset PAY r

i from them.

(b) If i hasn’t seen all B0, . . . , Br−1 yet, then he sets PAY r
i = ∅.

(c) Next, i computes his “candidate block” Br
i = (r, PAY r

i , SIGi(Q
r−1),H(Br−1)).

(c) Finally, i computes the message mr,1
i = (Br

i , esigi(H(Br
i )), σ

r,1
i ), destroys his ephemeral

secret key skr,1i , and then propagates two messages, mr,1
i and (SIGi(Q

r−1), σr,1
i ),

separately but simultaneously.a

aWhen i is the leader, SIGi(Q
r−1) allows others to compute Qr = H(SIGi(Q

r−1), r).
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Selective Propagation

To shorten the global execution of Step 1 and the whole round, it is important that the (r, 1)-
messages are selectively propagated. That is, for every user j in the system,

• For the first (r, 1)-message that he ever receives and successfully verifies,a whether it contains
a block or is just a credential and a signature of Qr−1, player j propagates it as usual.

• For all the other (r, 1)-messages that player j receives and successfully verifies, he propagates
it only if the hash value of the credential it contains is the smallest among the hash values
of the credentials contained in all (r, 1)-messages he has received and successfully verified so
far.

• However, if j receives two different messages of the form mr,1
i from the same player i,b he

discards the second one no matter what the hash value of i’s credential is.

Note that, under selective propagation it is useful that each potential leader i propagates his
credential σr,1

i separately from mr,1
i :c those small messages travel faster than blocks, ensure

timely propagation of the mr,1
i ’s where the contained credentials have small hash values, while

make those with large hash values disappear quickly.

aThat is, all the signatures are correct and, if it is of the form mr,1
i , both the block and its hash are valid

—although j does not check whether the included payset is maximal for i or not.
bWhich means i is malicious.
cWe thank Georgios Vlachos for suggesting this.

61



Step 2: The First Step of the Graded Consensus Protocol GC

Instructions for every user i ∈ PKr−k: User i starts his own Step 2 of round r as soon as he has
CERT r−1.

• User i waits a maximum amount of time t2 , λ+ Λ. While waiting, i acts as follows.

1. After waiting for time 2λ, he finds the user ℓ such that H(σr,1
ℓ ) ≤ H(σr,1

j ) for all

credentials σr,1
j that are part of the successfully verified (r, 1)-messages he has received

so far.a

2. If he has received a block Br−1, which matches the hash value H(Br−1)
contained in CERT r−1,b and if he has received from ℓ a valid message mr,1

ℓ =

(Br
ℓ , esigℓ(H(Br

ℓ )), σ
r,1
ℓ ),c then i stops waiting and sets v′i , (H(Br

ℓ ), ℓ).

3. Otherwise, when time t2 runs out, i sets v′i , ⊥.

4. When the value of v′i has been set, i computes Qr−1 from CERT r−1 and checks whether
i ∈ SV r,2 or not.

5. If i ∈ SV r,2, i computes the message mr,2
i , (ESIGi(v

′
i), σ

r,2
i ),d destroys his ephemeral

secret key skr,2i , and then propagates mr,2
i . Otherwise, i stops without propagating

anything.

aEssentially, user i privately decides that the leader of round r is user ℓ.
bOf course, if CERT r−1 indicates that Br−1 = Br−1

ǫ , then i has already “received” Br−1 the moment he has
CERT r−1.

cAgain, player ℓ’s signatures and the hashes are all successfully verified, and PAY r
ℓ in Br

ℓ is a valid payset for
round r —although i does not check whether PAY r

ℓ is maximal for ℓ or not. If Br
ℓ contains an empty payset, then

there is actually no need for i to see Br−1 before verifying whether Br
ℓ is valid or not.

dThe message mr,2
i signals that player i considers the first component of v′i to be the hash of the next block, or

considers the next block to be empty.
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Step 3: The Second Step of GC

Instructions for every user i ∈ PKr−k: User i starts his own Step 3 of round r as soon as he has
CERT r−1.

• User i waits a maximum amount of time t3 , t2 + 2λ = 3λ + Λ. While waiting, i acts as
follows.

1. If there exists a value v such that he has received at least tH valid messages mr,2
j of

the form (ESIGj(v), σ
r,2
j ), without any contradiction,a then he stops waiting and sets

v′ = v.

2. Otherwise, when time t3 runs out, he sets v′ = ⊥.

3. When the value of v′ has been set, i computes Qr−1 from CERT r−1 and checks whether
i ∈ SV r,3 or not.

4. If i ∈ SV r,3, then i computes the message mr,3
i , (ESIGi(v

′), σr,3
i ), destroys his

ephemeral secret key skr,3i , and then propagates mr,3
i . Otherwise, i stops without

propagating anything.

aThat is, he has not received two valid messages containing ESIGj(v) and a different ESIGj(v̂) respectively,
from a player j. Here and from here on, except in the Ending Conditions defined later, whenever an honest player
wants messages of a given form, messages contradicting each other are never counted or considered valid.
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Step 4: Output of GC and The First Step of BBA⋆

Instructions for every user i ∈ PKr−k: User i starts his own Step 4 of round r as soon as he
finishes his own Step 3.

• User i waits a maximum amount of time 2λ.a While waiting, i acts as follows.

1. He computes vi and gi, the output of GC, as follows.

(a) If there exists a value v′ 6= ⊥ such that he has received at least tH valid messages
mr,3

j = (ESIGj(v
′), σr,3

j ), then he stops waiting and sets vi , v′ and gi , 2.

(b) If he has received at least tH valid messages mr,3
j = (ESIGj(⊥), σr,3

j ), then he stops

waiting and sets vi , ⊥ and gi , 0.b

(c) Otherwise, when time 2λ runs out, if there exists a value v′ 6= ⊥ such that he has
received at least ⌈ tH2 ⌉ valid messages mr,j

j = (ESIGj(v
′), σr,3

j ), then he sets vi , v′

and gi , 1.c

(d) Else, when time 2λ runs out, he sets vi , ⊥ and gi , 0.

2. When the values vi and gi have been set, i computes bi, the input of BBA⋆, as follows:
bi , 0 if gi = 2, and bi , 1 otherwise.

3. i computes Qr−1 from CERT r−1 and checks whether i ∈ SV r,4 or not.

4. If i ∈ SV r,4, he computes the message mr,4
i , (ESIGi(bi), ESIGi(vi), σ

r,4
i ), destroys his

ephemeral secret key skr,4i , and propagates mr,4
i . Otherwise, i stops without propagating

anything.

aThus, the maximum total amount of time since i starts his Step 1 of round r could be t4 , t3 + 2λ = 5λ+ Λ.
bWhether Step (b) is in the protocol or not does not affect its correctness. However, the presence of Step (b)

allows Step 4 to end in less than 2λ time if sufficiently many Step-3 verifiers have “signed ⊥.”
cIt can be proved that the v′ in this case, if exists, must be unique.
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Step s, 5 ≤ s ≤ m+ 2, s− 2 ≡ 0 mod 3: A Coin-Fixed-To-0 Step of BBA⋆

Instructions for every user i ∈ PKr−k: User i starts his own Step s of round r as soon as he
finishes his own Step s− 1.

• User i waits a maximum amount of time 2λ.a While waiting, i acts as follows.

– Ending Condition 0: If at any point there exists a string v 6= ⊥ and a step s′ such that

(a) 5 ≤ s′ ≤ s, s′ − 2 ≡ 0 mod 3 —that is, Step s′ is a Coin-Fixed-To-0 step,

(b) i has received at least tH valid messages mr,s′−1
j = (ESIGj(0), ESIGj(v), σ

r,s′−1
j ),b

and

(c) i has received a valid message (SIGj(Q
r−1), σr,1

j ) with j being the second
component of v,

then, i stops waiting and ends his own execution of Step s (and in fact of round r)
right away without propagating anything as a (r, s)-verifier; sets H(Br) to be the first

component of v; and sets his own CERT r to be the set of messages mr,s′−1
j of step (b)

together with (SIGj(Q
r−1), σr,1

j ).c

– Ending Condition 1: If at any point there exists a step s′ such that

(a’) 6 ≤ s′ ≤ s, s′ − 2 ≡ 1 mod 3 —that is, Step s′ is a Coin-Fixed-To-1 step, and

(b’) i has received at least tH valid messages mr,s′−1
j = (ESIGj(1), ESIGj(vj),

σr,s′−1
j ),d

then, i stops waiting and ends his own execution of Step s (and in fact of round r) right
away without propagating anything as a (r, s)-verifier; sets Br = Br

ǫ ; and sets his own

CERT r to be the set of messages mr,s′−1
j of sub-step (b’).

– If at any point he has received at least tH valid mr,s−1
j ’s of the form

(ESIGj(1), ESIGj(vj), σ
r,s−1
j ), then he stops waiting and sets bi , 1.

– If at any point he has received at least tH valid mr,s−1
j ’s of the form

(ESIGj(0), ESIGj(vj), σ
r,s−1
j ), but they do not agree on the same v, then he stops

waiting and sets bi , 0.

– Otherwise, when time 2λ runs out, i sets bi , 0.

– When the value bi has been set, i computes Qr−1 from CERT r−1 and checks whether
i ∈ SV r,s.

– If i ∈ SV r,s, i computes the message mr,s
i , (ESIGi(bi), ESIGi(vi), σ

r,s
i ) with vi being

the value he has computed in Step 4, destroys his ephemeral secret key skr,si , and then
propagates mr,s

i . Otherwise, i stops without propagating anything.

aThus, the maximum total amount of time since i starts his Step 1 of round r could be ts , ts−1 + 2λ =
(2s− 3)λ+ Λ.

bSuch a message from player j is counted even if player i has also received a message from j signing for 1.
Similar things for Ending Condition 1. As shown in the analysis, this is to ensure that all honest users know
CERT r within time λ from each other.

cUser i now knows H(Br) and his own round r finishes. He just needs to wait until the actually block Br is
propagated to him, which may take some additional time. He still helps propagating messages as a generic user,
but does not initiate any propagation as a (r, s)-verifier. In particular, he has helped propagating all messages in
his CERT r, which is enough for our protocol. Note that he should also set bi , 0 for the binary BA protocol, but
bi is not needed in this case anyway. Similar things for all future instructions.

dIn this case, it does not matter what the vj ’s are. 65



Step s, 6 ≤ s ≤ m+ 2, s− 2 ≡ 1 mod 3: A Coin-Fixed-To-1 Step of BBA⋆

Instructions for every user i ∈ PKr−k: User i starts his own Step s of round r as soon as he
finishes his own Step s− 1.

• User i waits a maximum amount of time 2λ. While waiting, i acts as follows.

– Ending Condition 0: The same instructions as in a Coin-Fixed-To-0 step.

– Ending Condition 1: The same instructions as in a Coin-Fixed-To-0 step.

– If at any point he has received at least tH valid mr,s−1
j ’s of the form

(ESIGj(0), ESIGj(vj), σ
r,s−1
j ), then he stops waiting and sets bi , 0.a

– Otherwise, when time 2λ runs out, i sets bi , 1.

– When the value bi has been set, i computes Qr−1 from CERT r−1 and checks whether
i ∈ SV r,s.

– If i ∈ SV r,s, i computes the message mr,s
i , (ESIGi(bi), ESIGi(vi), σ

r,s
i ) with vi being

the value he has computed in Step 4, destroys his ephemeral secret key skr,si , and then
propagates mr,s

i . Otherwise, i stops without propagating anything.

aNote that receiving tH valid (r, s− 1)-messages signing for 1 would mean Ending Condition 1.

Step s, 7 ≤ s ≤ m+ 2, s− 2 ≡ 2 mod 3: A Coin-Genuinely-Flipped Step of BBA⋆

Instructions for every user i ∈ PKr−k: User i starts his own Step s of round r as soon as he
finishes his own step s− 1.

• User i waits a maximum amount of time 2λ. While waiting, i acts as follows.

– Ending Condition 0: The same instructions as in a Coin-Fixed-To-0 step.

– Ending Condition 1: The same instructions as in a Coin-Fixed-To-0 step.

– If at any point he has received at least tH valid mr,s−1
j ’s of the form

(ESIGj(0), ESIGj(vj), σ
r,s−1
j ), then he stops waiting and sets bi , 0.

– If at any point he has received at least tH valid mr,s−1
j ’s of the form

(ESIGj(1), ESIGj(vj), σ
r,s−1
j ), then he stops waiting and sets bi , 1.

– Otherwise, when time 2λ runs out, letting SV r,s−1
i be the set of (r, s − 1)-verifiers from

whom he has received a valid message mr,s−1
j , i sets bi , lsb(min

j∈SV r,s−1
i

H(σr,s−1
j )).

– When the value bi has been set, i computes Qr−1 from CERT r−1 and checks whether
i ∈ SV r,s.

– If i ∈ SV r,s, i computes the message mr,s
i , (ESIGi(bi), ESIGi(vi), σ

r,s
i ) with vi being

the value he has computed in Step 4, destroys his ephemeral secret key skr,si , and then
propagates mr,s

i . Otherwise, i stops without propagating anything.

Remark. In principle, as considered in subsection 6.2, the protocol may take arbitrarily many
steps in some round. Should this happens, as discussed, a user i ∈ SV r,s with s > µ has exhausted
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his stash of pre-generated ephemeral keys and has to authenticate his (r, s)-message mr,s
i by a

“cascade” of ephemeral keys. Thus i’s message becomes a bit longer and transmitting these longer
messages will take a bit more time. Accordingly, after so many steps of a given round, the value of
the parameter λ will automatically increase slightly. (But it reverts to the original λ once a new
block is produced and a new round starts.)

Reconstruction of the Round-r Block by Non-Verifiers

Instructions for every user i in the system: User i starts his own round r as soon as he has
CERT r−1.

• i follows the instructions of each step of the protocol, participates the propagation of all
messages, but does not initiate any propagation in a step if he is not a verifier in it.

• i ends his own round r by entering either Ending Condition 0 or Ending Condition 1 in some
step, with the corresponding CERT r.

• From there on, he starts his round r+ 1 while waiting to receive the actual block Br (unless
he has already received it), whose hash H(Br) has been pinned down by CERT r. Again, if
CERT r indicates that Br = Br

ǫ , the i knows Br the moment he has CERT r.

6.4 Analysis of Algorand ′

2

The analysis of Algorand ′
2 is easily derived from that of Algorand ′

1. Essentially, in Algorand ′
2, with

overwhelming probability, (a) all honest users agree on the same block Br; the leader of a new
block is honest with probability at least ph = h2(1 + h− h2).

7 Handling Offline Honest users

As we said, a honest user follows all his prescribed instructions, which include that of being online
and running the protocol. This is not a major burden in Algorand, since the computation and
bandwidth required from a honest user are quite modest. Yet, let us point out that Algorand can
be easily modified so as to work in two models, in which honest users are allowed to be offline in
great numbers.

Before discussing these two models, let us point out that, if the percentage of honest players
were 95%, Algorand could still be run setting all parameters assuming instead that h = 80%.
Accordingly, Algorand would continue to work properly even if at most half of the honest players
chose to go offline (indeed, a major case of“absenteeism”). In fact, at any point in time, at least
80% of the players online would be honest.

From Continual Participation to Lazy Honesty As we saw, Algorand ′
1 and Algorand ′

2 choose
the look-back parameter k. Let us now show that choosing k properly large enables one to remove
the Continual Participation requirement. This requirement ensures a crucial property: namely,
that the underlying BA protocol BBA⋆ has a proper honest majority. Let us now explain how lazy
honesty provides an alternative and attractive way to satisfy this property.
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Recall that a user i is lazy-but-honest if (1) he follows all his prescribed instructions, when
he is asked to participate to the protocol, and (2) he is asked to participate to the protocol only
very rarely —e.g., once a week— with suitable advance notice, and potentially receiving significant
rewards when he participates.

To allow Algorand to work with such players, it just suffices to “choose the verifiers of the
current round among the users already in the system in a much earlier round.” Indeed, recall that
the verifiers for a round r are chosen from users in round r− k, and the selections are made based
on the quantity Qr−1. Note that a week consists of roughly 10,000 minutes, and assume that a
round takes roughly (e.g., on average) 5 minutes, so a week has roughly 2,000 rounds. Assume
that, at some point of time, a user i wishes to plan his time and know whether he is going to be
a verifier in the coming week. The protocol now chooses the verifiers for a round r from users in
round r − k − 2, 000, and the selections are based on Qr−2,001. At round r, player i already knows
the values Qr−2,000, . . . , Qr−1, since they are actually part of the blockchain. Then, for each M
between 1 and 2,000, i is a verifier in a step s of round r +M if and only if

.H
(
SIGi

(
r +M,s,Qr+M−2,001

))
≤ p .

Thus, to check whether he is going to be called to act as a verifier in the next 2,000 rounds, i must
compute σM,s

i = SIGi

(
r +M,s,Qr+M−2,001

)
for M = 1 to 2, 000 and for each step s, and check

whether .H(σM,s
i ) ≤ p for some of them. If computing a digital signature takes a millisecond, then

this entire operation will take him about 1 minute of computation. If he is not selected as a verifier
in any of these rounds, then he can go off-line with an “honest conscience”. Had he continuously
participated, he would have essentially taken 0 steps in the next 2,000 rounds anyway! If, instead,
he is selected to be a verifier in one of these rounds, then he readies himself (e.g., by obtaining all
the information necessary) to act as an honest verifier at the proper round.

By so acting, a lazy-but-honest potential verifier i only misses participating to the propagation
of messages. But message propagation is typically robust. Moreover, the payers and the payees of
recently propagated payments are expected to be online to watch what happens to their payments,
and thus they will participate to message propagation, if they are honest.

8 Protocol Algorand ′ with Honest Majority of Money

We now, finally, show how to replace the Honest Majority of Users assumption with the much more
meaningful Honest Majority of Money assumption. The basic idea is (in a proof-of-stake flavor)
“to select a user i ∈ PKr−k to belong to SV r,s with a weight (i.e., decision power) proportional to
the amount of money owned by i.”24

By our HMM assumption, we can choose whether that amount should be owned at round r− k
or at (the start of) round r. Assuming that we do not mind continual participation, we opt for
the latter choice. (To remove continual participation, we would have opted for the former choice.
Better said, for the amount of money owned at round r − k − 2, 000.)

There are many ways to implement this idea. The simplest way would be to have each key hold

at most 1 unit of money and then select at random n users i from PKr−k such that a
(r)
i = 1.

24We should say PKr−k−2,000 so as to replace continual participation. For simplicity, since one may wish to require
continual participation anyway, we use PKr−k as before, so as to carry one less parameter.
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The Next Simplest Implementation

The next simplest implementation may be to demand that each public key owns a maximum amount
of money M , for some fixed M . The value M is small enough compared with the total amount of
money in the system, such that the probability a key belongs to the verifier set of more than one

step in —say— k rounds is negligible. Then, a key i ∈ PKr−k, owning an amount of money a
(r)
i

in round r, is chosen to belong to SV r,s if

.H
(
SIGi

(
r, s,Qr−1

))
≤ p ·

a
(r)
i

M
.

And all proceeds as before.

A More Complex Implementation

The last implementation “forced a rich participant in the system to own many keys”.
An alternative implementation, described below, generalizes the notion of status and consider

each user i to consist of K +1 copies (i, v), each of which is independently selected to be a verifier,
and will own his own ephemeral key (pkr,si,v , sk

r,s
i,v ) in a step s of a round r. The value K depends

on the amount of money a
(r)
i owned by i in round r.

Let us now see how such a system works in greater detail.

Number of Copies Let n be the targeted expected cardinality of each verifier set, and let a
(r)
i

be the amount of money owned by a user i at round r. Let Ar be the total amount of money owned
by the users in PKr−k at round r, that is,

Ar =
∑

i∈PKr−k

a
(r)
i .

If i is an user in PKr−k, then i’s copies are (i, 1), . . . , (i,K + 1), where

K =

⌊
n · a

(r)
i

Ar

⌋
.

Example. Let n = 1, 000, Ar = 109, and a
(r)
i = 3.7 millions. Then,

K =

⌊
103 · (3.7 · 106)

109

⌋
= ⌊3.7⌋ = 3 .

Verifiers and Credentials Let i be a user in PKr−k with K + 1 copies.
For each v = 1, . . . ,K, copy (i, v) belongs to SV r,s automatically. That is, i’s credential is

σr,s
i,v , SIGi((i, v), r, s,Q

r−1), but the corresponding condition becomes .H(σr,s
i,v ) ≤ 1, which is

always true.

For copy (i,K + 1), for each Step s of round r, i checks whether

.H
(
SIGi

(
(i,K + 1), r, s,Qr−1

))
≤ a

(r)
i

n

Ar
−K .
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If so, copy (i,K + 1) belongs to SV r,s. To prove it, i propagates the credential

σr,1
i,K+1 = SIGi

(
(i,K + 1), r, s,Qr−1

)
.

Example. As in the previous example, let n = 1K, a
(r)
i = 3.7M , Ar = 1B, and i has 4

copies: (i, 1), . . . , (i, 4). Then, the first 3 copies belong to SV r,s automatically. For the 4th one,
conceptually, Algorand ′ independently rolls a biased coin, whose probability of Heads is 0.7. Copy
(i, 4) is selected if and only if the coin toss is Heads.

(Of course, this biased coin flip is implemented by hashing, signing, and comparing —as we
have done all along in this paper— so as to enable i to prove his result.)

Business as Usual Having explained how verifiers are selected and how their credentials are
computed at each step of a round r, the execution of a round is similar to that already explained.

9 Handling Forks

Having reduced the probability of forks to 10−12 or 10−18, it is practically unnecessary to handle
them in the remote chance that they occur. Algorand, however, can also employ various fork
resolution procedures, with or without proof of work.

One possible way of instructing the users to resolve forks is as follows:

• Follow the longest chain if a user sees multiple chains.

• If there are more than one longest chains, follow the one with a non-empty block at the end. If
all of them have empty blocks at the end, consider their second-last blocks.

• If there are more than one longest chains with non-empty blocks at the end, say the chains are
of length r, follow the one whose leader of block r has the smallest credential. If there are ties,
follow the one whose block r itself has the smallest hash value. If there are still ties, follow the
one whose block r is ordered the first lexicographically.

10 Handling Network Partitions

As said, we assume the propagation times of messages among all users in the network are upper-
bounded by λ and Λ. This is not a strong assumption, as today’s Internet is fast and robust, and
the actual values of these parameters are quite reasonable. Here, let us point out that Algorand ′

2

continues to work even if the Internet occasionally got partitioned into two parts. The case when
the Internet is partitioned into more than two parts is similar.

10.1 Physical Partitions

First of all, the partition may be caused by physical reasons. For example, a huge earthquake may
end up completely breaking down the connection between Europe and America. In this case, the
malicious users are also partitioned and there is no communication between the two parts. Thus
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there will be two Adversaries, one for part 1 and the other for part 2. Each Adversary still tries to
break the protocol in its own part.

Assume the partition happens in the middle of round r. Then each user is still selected as a
verifier based on PKr−k, with the same probability as before. Let HSV r,s

i and MSV r,s
i respectively

be the set of honest and malicious verifiers in a step s in part i ∈ {1, 2}. We have

|HSV r,s
1 |+ |MSV r,s

1 |+ |HSV r,s
2 |+ |MSV r,s

2 | = |HSV r,s|+ |MSV r,s|.

Note that |HSV r,s|+ |MSV r,s| < |HSV r,s|+ 2|MSV r,s| < 2tH with overwhelming probability.
If some part i has |HSV r,s

i |+ |MSV r,s
i | ≥ tH with non-negligible probability, e.g., 1%, then the

probability that |HSV r,s
3−i|+ |MSV r,s

3−i| ≥ tH is very low, e.g., 10−16 when F = 10−18. In this case,
we may as well treat the smaller part as going offline, because there will not be enough verifiers in
this part to generate tH signatures to certify a block.

Let us consider the larger part, say part 1 without loss of generality. Although |HSV r,s| <
tH with negligible probability in each step s, when the network is partitioned, |HSV r,s

1 | may be
less than tH with some non-negligible probability. In this case the Adversary may, with some
other non-negligible probability, force the binary BA protocol into a fork in round r, with a non-
empty block Br and the empty block Br

ǫ both having tH valid signatures.25 For example, in a
Coin-Fixed-To-0 step s, all verifiers in HSV r,s

1 signed for bit 0 and H(Br), and propagated their
messages. All verifiers in MSV r,s

1 also signed 0 and H(Br), but withheld their messages. Because
|HSV r,s

1 | + |MSV r,s
1 | ≥ tH , the system has enough signatures to certify Br. However, since the

malicious verifiers withheld their signatures, the users enter step s+ 1, which is a Coin-Fixed-To-
1 step. Because |HSV r,s

1 | < tH due to the partition, the verifiers in HSV r,s+1
1 did not see tH

signatures for bit 0 and they all signed for bit 1. All verifiers in MSV r,s+1
1 did the same. Because

|HSV r,s+1
1 | + |MSV r,s+1

1 | ≥ tH , the system has enough signatures to certify Br
ǫ . The Adversary

then creates a fork by releasing the signatures of MSV r,s
1 for 0 and H(Br).

Accordingly, there will be two Qr’s, defined by the corresponding blocks of round r. However,
the fork will not continue and only one of the two branches may grow in round r + 1.

Additional Instructions for Algorand ′

2
. When seeing a non-empty block Br and the empty

block Br
ǫ , follow the non-empty one (and the Qr defined by it).

Indeed, by instructing the users to go with the non-empty block in the protocol, if a large
amount of honest users in PKr+1−k realize there is a fork at the beginning of round r+1, then the
empty block will not have enough followers and will not grow. Assume the Adversary manages to
partition the honest users so that some honest users see Br (and perhaps Br

ǫ ), and some only see
Br

ǫ . Because the Adversary cannot tell which one of them will be a verifier following Br and which
will be a verifier following Br

ǫ , the honest users are randomly partitioned and each one of them still
becomes a verifier (either with respect to Br or with respect to Br

ǫ ) in a step s > 1 with probability
p. For the malicious users, each one of them may have two chances to become a verifier, one with
Br and the other with Br

ǫ , each with probability p independently.
Let HSV r+1,s

1;Br be the set of honest verifiers in step s of round r+1 following Br. Other notations

such as HSV r+1,s
1;Br

ǫ
, MSV r+1,s

1;Br and MSV r+1,s
1;Br

ǫ
are similarly defined. By Chernoff bound, it is easy

25Having a fork with two non-empty blocks is not possible with or without partitions, except with negligible
probability.
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to see that with overwhelming probability,

|HSV r+1,s
1;Br |+ |HSV r+1,s

1;Br
ǫ

|+ |MSV r+1,s
1;Br |+ |MSV r+1,s

1;Br
ǫ

| < 2tH .

Accordingly, the two branches cannot both have tH proper signatures certifying a block for round
r + 1 in the same step s. Moreover, since the selection probabilities for two steps s and s′ are the
same and the selections are independent, also with overwhelming probability

|HSV r+1,s
1;Br |+ |MSV r+1,s

1;Br |+ |HSV r+1,s′

1;Br
ǫ

|+ |MSV r+1,s′

1;Br
ǫ

| < 2tH ,

for any two steps s and s′. When F = 10−18, by the union bound, as long as the Adversary cannot
partition the honest users for a long time (say 104 steps, which is more than 55 hours with λ = 10
seconds26), with high probability (say 1−10−10) at most one branch will have tH proper signatures
to certify a block in round r + 1.

Finally, if the physical partition has created two parts with roughly the same size, then the
probability that |HSV r,s

i | + |MSV r,s
i | ≥ tH is small for each part i. Following a similar analysis,

even if the Adversary manages to create a fork with some non-negligible probability in each part
for round r, at most one of the four branches may grow in round r + 1.

10.2 Adversarial Partition

Second of all, the partition may be caused by the Adversary, so that the messages propagated
by the honest users in one part will not reach the honest users in the other part directly, but
the Adversary is able to forward messages between the two parts. Still, once a message from one
part reaches an honest user in the other part, it will be propagated in the latter as usual. If the
Adversary is willing to spend a lot of money, it is conceivable that he may be able to hack the
Internet and partition it like this for a while.

The analysis is similar to that for the larger part in the physical partition above (the smaller
part can be considered as having population 0): the Adversary may be able to create a fork and
each honest user only sees one of the branches, but at most one branch may grow.

10.3 Network Partitions in Sum

Although network partitions can happen and a fork in one round may occur under partitions, there
is no lingering ambiguity: a fork is very short-lived, and in fact lasts for at most a single round. In
all parts of the partition except for at most one, the users cannot generate a new block and thus
(a) realize there is a partition in the network and (b) never rely on blocks that will “vanish”.
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ABSTRACT

Algorand is a new cryptocurrency that confirms transactions

with latency on the order of a minute while scaling to many

users. Algorand ensures that users never have divergent

views of confirmed transactions, even if some of the users

are malicious and the network is temporarily partitioned.

In contrast, existing cryptocurrencies allow for temporary

forks and therefore require a long time, on the order of an

hour, to confirm transactions with high confidence.

Algorand uses a new Byzantine Agreement (BA) protocol

to reach consensus among users on the next set of trans-

actions. To scale the consensus to many users, Algorand

uses a novel mechanism based on Verifiable Random Func-

tions that allows users to privately check whether they are

selected to participate in the BA to agree on the next set

of transactions, and to include a proof of their selection in

their network messages. In Algorand’s BA protocol, users

do not keep any private state except for their private keys,

which allows Algorand to replace participants immediately

after they send a message. This mitigates targeted attacks

on chosen participants after their identity is revealed.

We implement Algorand and evaluate its performance on

1,000 EC2 virtual machines, simulating up to 500,000 users.

Experimental results show that Algorand confirms transac-

tions in under a minute, achieves 125× Bitcoin’s throughput,

and incurs almost no penalty for scaling to more users.

1 INTRODUCTION

Cryptographic currencies such as Bitcoin can enable new

applications, such as smart contracts [24, 50] and fair pro-

tocols [2], can simplify currency conversions [12], and can

avoid trusted centralized authorities that regulate transac-

tions. However, current proposals suffer from a trade-off

between latency and confidence in a transaction. For exam-

ple, achieving a high confidence that a transaction has been

SOSP’17, October 28–31, 2017, Shanghai, China.

© 2017 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-5085-3/17/10.

https://doi.org/10.1145/3132747.3132757

confirmed in Bitcoin requires about an hour long wait [7].

On the other hand, applications that require low latency

cannot be certain that their transaction will be confirmed,

and must trust the payer to not double-spend [46].

Double-spending is the core problem faced by any cryp-

tocurrency, where an adversary holding $1 gives his $1 to two

different users. Cryptocurrencies prevent double-spending

by reaching consensus on an ordered log (“blockchain”) of

transactions. Reaching consensus is difficult because of the

open setting: since anyone can participate, an adversary can

create an arbitrary number of pseudonyms (“Sybils”) [21],

making it infeasible to rely on traditional consensus proto-

cols [15] that require a fraction of honest users.

Bitcoin [42] and other cryptocurrencies [23, 54] address

this problem using proof-of-work (PoW), where users must

repeatedly compute hashes to grow the blockchain, and

the longest chain is considered authoritative. PoW ensures

that an adversary does not gain any advantage by creating

pseudonyms. However, PoW allows the possibility of forks,

where two different blockchains have the same length, and

neither one supersedes the other. Mitigating forks requires

two unfortunate sacrifices: the time to grow the chain by one

block must be reasonably high (e.g., 10 minutes in Bitcoin),

and applications must wait for several blocks in order to

ensure their transaction remains on the authoritative chain

(6 blocks are recommended in Bitcoin [7]). The result is that

it takes about an hour to confirm a transaction in Bitcoin.

This paper presents Algorand, a new cryptocurrency de-

signed to confirm transactions on the order of one minute.

The core of Algorand uses a Byzantine agreement protocol

called BA⋆ that scales to many users, which allows Algo-

rand to reach consensus on a new block with low latency and

without the possibility of forks. A key technique that makes

BA⋆ suitable for Algorand is the use of verifiable random

functions (VRFs) [39] to randomly select users in a private

and non-interactive way. BA⋆was previously presented at a

workshop at a high level [38], and a technical report by Chen

and Micali [16] described an earlier version of Algorand.

Algorand faces three challenges. First, Algorand must

avoid Sybil attacks, where an adversary creates many

pseudonyms to influence the Byzantine agreement protocol.

Second, BA⋆ must scale to millions of users, which is far

higher than the scale at which state-of-the-art Byzantine

agreement protocols operate. Finally, Algorand must be re-
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silient to denial-of-service attacks, and continue to operate

even if an adversary disconnects some of the users [30, 52].

Algorand addresses these challenges using several tech-

niques, as follows.

Weighted users. To prevent Sybil attacks, Algorand as-

signs a weight to each user. BA⋆ is designed to guarantee

consensus as long as a weighted fraction (a constant greater

than 2/3) of the users are honest. In Algorand, we weigh

users based on the money in their account. Thus, as long as

more than some fraction (over 2/3) of the money is owned by

honest users, Algorand can avoid forks and double-spending.

Consensus by committee. BA⋆ achieves scalability by

choosing a committee—a small set of representatives ran-

domly selected from the total set of users—to run each step

of its protocol. All other users observe the protocol mes-

sages, which allows them to learn the agreed-upon block.

BA⋆ chooses committee members randomly among all users

based on the users’ weights. This allows Algorand to ensure

that a sufficient fraction of committee members are honest.

However, relying on a committee creates the possibility of

targeted attacks against the chosen committee members.

Cryptographic sortition. To prevent an adversary from

targeting committee members, BA⋆ selects committee mem-

bers in a private and non-interactive way. This means that

every user in the system can independently determine if they

are chosen to be on the committee, by computing a func-

tion (a VRF [39]) of their private key and public information

from the blockchain. If the function indicates that the user

is chosen, it returns a short string that proves this user’s

committee membership to other users, which the user can

include in his network messages. Since membership selec-

tion is non-interactive, an adversary does not know which

user to target until that user starts participating in BA⋆.

Participant replacement. Finally, an adversary may tar-

get a committee member once that member sends a message

in BA⋆. BA⋆mitigates this attack by requiring committee

members to speak just once. Thus, once a committee member

sends his message (exposing his identity to an adversary),

the committee member becomes irrelevant to BA⋆. BA⋆
achieves this property by avoiding any private state (except

for the user’s private key), which makes all users equally

capable of participating, and by electing new committee

members for each step of the Byzantine agreement protocol.

We implement a prototype of Algorand and BA⋆, and use

it to empirically evaluate Algorand’s performance. Experi-

mental results running on 1,000 Amazon EC2 VMs demon-

strate that Algorand can confirm a 1 MByte block of transac-

tions in ∼22 seconds with 50,000 users, that Algorand’s la-

tency remains nearly constant when scaling to half a million

users, that Algorand achieves 125× the transaction through-

put of Bitcoin, and that Algorand achieves acceptable latency

even in the presence of actively malicious users.

2 RELATEDWORK

Proof-of-work. Bitcoin [42], the predominant cryptocur-

rency, uses proof-of-work to ensure that everyone agrees

on the set of approved transactions; this approach is of-

ten called “Nakamoto consensus.” Bitcoin must balance the

length of time to compute a new block with the possibil-

ity of wasted work [42], and sets parameters to generate a

new block every 10 minutes on average. Nonetheless, due

to the possibility of forks, it is widely suggested that users

wait for the blockchain to grow by at least six blocks be-

fore considering their transaction to be confirmed [7]. This

means transactions in Bitcoin take on the order of an hour

to be confirmed. Many follow-on cryptocurrencies adopt

Bitcoin’s proof-of-work approach and inherit its limitations.

The possibility of forks also makes it difficult for new users

to bootstrap securely: an adversary that isolates the user’s

network can convince the user to use a particular fork of the

blockchain [29].

By relying on Byzantine agreement, Algorand eliminates

the possibility of forks, and avoids the need to reason about

mining strategies [8, 25, 47]. As a result, transactions are

confirmed on the order of a minute. To make the Byzan-

tine agreement robust to Sybil attacks, Algorand associates

weights with users according to the money they hold. Other

techniques have been proposed in the past to resist Sybil

attacks in Byzantine-agreement-based cryptocurrencies, in-

cluding having participants submit security deposits and

punishing those who deviate from the protocol [13].

Byzantine consensus. Byzantine agreement protocols

have been used to replicate a service across a small group

of servers, such as in PBFT [15]. Follow-on work has shown

how to make Byzantine fault tolerance perform well and

scale to dozens of servers [1, 17, 34]. One downside of Byzan-

tine fault tolerance protocols used in this setting is that they

require a fixed set of servers to be determined ahead of time;

allowing anyone to join the set of servers would open up the

protocols to Sybil attacks. These protocols also do not scale

to the large number of users targeted by Algorand. BA⋆ is a

Byzantine consensus protocol that does not rely on a fixed

set of servers, which avoids the possibility of targeted attacks

on well-known servers. By weighing users according to their

currency balance, BA⋆ allows users to join the cryptocur-

rency without risking Sybil attacks, as long as the fraction of

the money held by honest users is at least a constant greater

than 2/3. BA⋆’s design also allows it to scale to many users

(e.g., 500,000 shown in our evaluation) using VRFs to fairly

select a random committee.

Most Byzantine consensus protocols require more than

2/3 of servers to be honest, and Algorand’s BA⋆ inherits

this limitation (in the form of 2/3 of the money being held

by honest users). BFT2F [36] shows that it is possible to

achieve “fork
∗
-consensus” with just over half of the servers

being honest, but fork
∗
-consensus would allow an adver-

sary to double-spend on the two forked blockchains, which

Algorand avoids.
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Honey Badger [40] demonstrated how Byzantine fault tol-

erance can be used to build a cryptocurrency. Specifically,

Honey Badger designates a set of servers to be in charge

of reaching consensus on the set of approved transactions.

This allows Honey Badger to reach consensus within 5 min-

utes and achieve a throughput of 200 KBytes/sec of data

appended to the ledger using 10 MByte blocks and 104 par-

ticipating servers. One downside of this design is that the

cryptocurrency is no longer decentralized; there are a fixed

set of servers chosen when the system is first configured.

Fixed servers are also problematic in terms of targeted at-

tacks that either compromise the servers or disconnect them

from the network. Algorand achieves better performance

(confirming transactions in about a minute, reaching similar

throughput) without having to choose a fixed set of servers

ahead of time.

Bitcoin-NG [26] suggests using the Nakamoto consensus

to elect a leader, and then have that leader publish blocks

of transactions, resulting in an order of magnitude of im-

provement in latency of confirming transactions over Bitcoin.

Hybrid consensus [31, 33, 43] refines the approach of using

the Nakamoto consensus to periodically select a group of

participants (e.g., every day), and runs a Byzantine agree-

ment between selected participants to confirm transactions

until new servers are selected. This allows improving perfor-

mance over standard Nakamoto consensus (e.g., Bitcoin); for

example, ByzCoin [33] provides a latency of about 35 sec-

onds and a throughput of 230 KBytes/sec of data appended to

the ledger with an 8 MByte block size and 1000 participants

in the Byzantine agreement. Although Hybrid consensus

makes the set of Byzantine servers dynamic, it opens up the

possibility of forks, due to the use of proof-of-work consen-

sus to agree on the set of servers; this problem cannot arise

in Algorand.

Pass and Shi’s paper [43] acknowledges that the Hybrid

consensus design is secure only with respect to a “mildly

adaptive” adversary that cannot compromise the selected

servers within a day (the participant selection interval), and

explicitly calls out the open problem of handling fully adap-

tive adversaries. Algorand’s BA⋆ explicitly addresses this

open problem by immediately replacing any chosen com-

mittee members. As a result, Algorand is not susceptible to

either targeted compromises or targeted DoS attacks.

Stellar [37] takes an alternative approach to using Byzan-

tine consensus in a cryptocurrency, where each user can trust

quorums of other users, forming a trust hierarchy. Consis-

tency is ensured as long as all transactions share at least one

transitively trusted quorum of users, and sufficiently many

of these users are honest. Algorand avoids this assumption,

which means that users do not have to make complex trust

decisions when configuring their client software.

Proof of stake. Algorand assigns weights to users propor-

tionally to the monetary value they have in the system, in-

spired by proof-of-stake approaches, suggested as an alter-

native or enhancement to proof-of-work [3, 10]. There is a

key difference, however, between Algorand using monetary

value as weights and many proof-of-stake cryptocurrencies.

In many proof-of-stake cryptocurrencies, a malicious leader

(who assembles a new block) can create a fork in the network,

but if caught (e.g., since two versions of the new block are

signed with his key), the leader loses his money. The weights

in Algorand, however, are only to ensure that the attacker

cannot amplify his power by using pseudonyms; as long as

the attacker controls less than 1/3 of the monetary value,

Algorand can guarantee that the probability for forks is neg-

ligible. Algorand may be extended to “detect and punish”

malicious users, but this is not required to prevent forks or

double spending.

Proof-of-stake avoids the computational overhead of

proof-of-work and therefore allows reducing transaction con-

firmation time. However, realizing proof-of-stake in practice

is challenging [4]. Since no work is involved in generating

blocks, a malicious leader can announce one block, and then

present some other block to isolated users. Attackers may

also split their credits among several “users”, who might

get selected as leaders, to minimize the penalty when a bad

leader is caught. Therefore some proof-of-stake cryptocur-

rencies require a master key to periodically sign the correct

branch of the ledger in order to mitigate forks [32]. This

raises significant trust concerns regarding the currency, and

has also caused accidental forks in the past [44]. Algorand

answers this challenge by avoiding forks, even if the leader

turns out to be malicious.

Ouroboros [31] is a recent proposal for realizing proof-of-

stake. For security, Ouroboros assumes that honest users can

communicate within some bounded delay (i.e., a strongly

synchronous network). Furthermore, it selects some users

to participate in a joint-coin-flipping protocol and assumes

that most of them are incorruptible by the adversary for

a significant epoch (such as a day). In contrast Algorand

assumes that the adversary may temporarily fully control the

network and immediately corrupt users in targeted attacks.

Trees and DAGs instead of chains. GHOST [48], SPEC-

TRE [49], and Meshcash [5] are recent proposals for increas-

ing Bitcoin’s throughput by replacing the underlying chain-

structured ledger with a tree or directed acyclic graph (DAG)

structures, and resolving conflicts in the forks of these data

structures. These protocols rely on the Nakamoto consensus

using proof-of-work. By carefully designing the selection

rule between branches of the trees/DAGs, they are able to

substantially increase the throughput. In contrast, Algorand

is focused on eliminating forks; in future work, it may be

interesting to explore whether tree or DAG structures can

similarly increase Algorand’s throughput.

3 GOALS AND ASSUMPTIONS

Algorand allows users to agree on an ordered log of transac-

tions, and achieves two goals with respect to the log:

Safety goal. With overwhelming probability, all users

agree on the same transactions. More precisely, if one honest
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user accepts transaction A (i.e., it appears in the log), then

any future transactions accepted by other honest users will

appear in a log that already contains A. This holds even for

isolated users that are disconnected from the network—e.g.,

by Eclipse attacks [29].

Liveness goal. In addition to safety, Algorand also makes

progress (i.e., allows new transactions to be added to the log)

under additional assumptions about network reachability

that we describe below. Algorand aims to reach consensus

on a new set of transactions within roughly one minute.

Assumptions. Algorand makes standard cryptographic

assumptions such as public-key signatures and hash func-

tions. Algorand assumes that honest users run bug-free

software. As mentioned earlier, Algorand assumes that the

fraction of money held by honest users is above some thresh-

old h (a constant greater than 2/3), but that an adversary can

participate in Algorand and own some money. We believe

that this assumption is reasonable, since it means that in

order to successfully attack Algorand, the attacker must in-

vest substantial financial resources in it. Algorand assumes

that an adversary can corrupt targeted users, but that an

adversary cannot corrupt a large number of users that hold a

significant fraction of the money (i.e., the amount of money

held by honest, non-compromised users must remain over

the threshold).

To achieve liveness, Algorand makes a “strong synchrony”

assumption that most honest users (e.g., 95%) can send mes-

sages that will be received by most other honest users (e.g.,

95%) within a known time bound. This assumption allows

the adversary to control the network of a few honest users,

but does not allow the adversary to manipulate the network

at a large scale, and does not allow network partitions.

Algorand achieves safety with a “weak synchrony” as-

sumption: the network can be asynchronous (i.e., entirely

controlled by the adversary) for a long but bounded period

of time (e.g., at most 1 day or 1 week). After an asynchrony

period, the network must be strongly synchronous for a rea-

sonably long period again (e.g., a few hours or a day) for

Algorand to ensure safety. More formally, the weak syn-

chrony assumption is that in every period of length b (think

ofb as a day or aweek), theremust be a strongly synchronous

period of length s < b (an s of a few hours suffices).

Finally, Algorand assumes loosely synchronized clocks

across all users (e.g., using NTP) in order to recover liveness

after weak synchrony. Specifically, the clocks must be close

enough in order for most honest users to kick off the recovery

protocol at approximately the same time. If the clocks are

out of sync, the recovery protocol does not succeed.

4 OVERVIEW

Algorand requires each user to have a public key. Algorand

maintains a log of transactions, called a blockchain. Each

transaction is a payment signed by one user’s public key

transferring money to another user’s public key. Algorand

grows the blockchain in asynchronous rounds, similar to

Bitcoin. In every round, a new block, containing a set of

transactions and a pointer to the previous block, is appended

to the blockchain. In the rest of this paper, we refer to Algo-

rand software running on a user’s computer as that user.

Algorand users communicate through a gossip protocol.

The gossip protocol is used by users to submit new transac-

tions. Each user collects a block of pending transactions that

they hear about, in case they are chosen to propose the next

block, as shown in Figure 1. Algorand uses BA⋆ to reach

consensus on one of these pending blocks.

BA⋆ executes in steps, communicates over the same gos-

sip protocol, and produces a new agreed-upon block. BA⋆
can produce two kinds of consensus: final consensus and

tentative consensus. If one user reaches final consensus,

this means that any other user that reaches final or tenta-

tive consensus in the same round must agree on the same

block value (regardless of whether the strong synchrony

assumption held). This ensures Algorand’s safety, since this

means that all future transactions will be chained to this

final block (and, transitively, to its predecessors). Thus, Al-

gorand confirms a transaction when the transaction’s block

(or any successor block) reaches final consensus. On the

other hand, tentative consensus means that other users may

have reached tentative consensus on a different block (as

long as no user reached final consensus). A user will con-

firm a transaction from a tentative block only if and when a

successor block reaches final consensus.

BA⋆ produces tentative consensus in two cases. First,

if the network is strongly synchronous, an adversary may,

with small probability, be able to cause BA⋆ to reach tenta-

tive consensus on a block. In this case, BA⋆will not reach
consensus on two different blocks, but is simply unable to

confirm that the network was strongly synchronous. Algo-

rand will eventually (in a few rounds) reach final consensus

on a successor block, with overwhelming probability, and

thus confirm these earlier transactions.

The second case is that the network was only weakly

synchronous (i.e., it was entirely controlled by the adversary,

with an upper bound on how long the adversary can keep

control). In this case, BA⋆ can reach tentative consensus

on two different blocks, forming multiple forks. This can in

turn prevent BA⋆ from reaching consensus again, because

the users are split into different groups that disagree about

previous blocks. To recover liveness, Algorand periodically

invokes BA⋆ to reach consensus onwhich fork should be used
going forward. Once the network regains strong synchrony,

this will allow Algorand to choose one of the forks, and then

reach final consensus on a subsequent block on that fork.

We now describe how Algorand’s components fit together.

Gossip protocol. Algorand implements a gossip network

(similar to Bitcoin) where each user selects a small random

set of peers to gossipmessages to. To ensuremessages cannot

be forged, every message is signed by the private key of its

original sender; other users check that the signature is valid

before relaying it. To avoid forwarding loops, users do not
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Figure 1: An overview of transaction flow in Algorand.

relay the same message twice. Algorand implements gossip

over TCP and weighs peer selection based on how much

money they have, so as to mitigate pollution attacks.

Block proposal (§6). All Algorand users execute crypto-

graphic sortition to determine if they are selected to propose

a block in a given round. We describe sortition in §5, but at

a high level, sortition ensures that a small fraction of users

are selected at random, weighed by their account balance,

and provides each selected user with a priority, which can be

compared between users, and a proof of the chosen user’s

priority. Since sortition is random, there may be multiple

users selected to propose a block, and the priority deter-

mines which block everyone should adopt. Selected users

distribute their block of pending transactions through the

gossip protocol, together with their priority and proof. To

ensure that users converge on one block with high probabil-

ity, block proposals are prioritized based on the proposing

user’s priority, and users wait for a certain amount of time

to receive the block.

Agreement using BA⋆ (§7). Block proposal does not guar-

antee that all users received the same block, and Algorand

does not rely on the block proposal protocol for safety. To

reach consensus on a single block, Algorand uses BA⋆. Each
user initializes BA⋆with the highest-priority block that they

received. BA⋆ executes in repeated steps, illustrated in Fig-

ure 2. Each step begins with sortition (§5), where all users

check whether they have been selected as committee mem-

bers in that step. Committee members then broadcast a

message which includes their proof of selection. These steps

repeat until, in some step of BA⋆, enough users in the com-

mittee reach consensus. (Steps are not synchronized across

users; each user checks for selection as soon as he observes

the previous step had ended.) As discussed earlier, an impor-

tant feature of BA⋆ is that committee members do not keep

private state except their private keys, and so can be replaced

after every step, to mitigate targeted attacks on them.

Efficiency. When the network is strongly synchronous,

BA⋆ guarantees that if all honest users start with the same

initial block (i.e., the highest priority block proposer was hon-

est), then BA⋆ establishes final consensus over that block

Figure 2: An overview of one step of BA⋆. To simplify

the figure, each user is shown twice: once at the top of the

diagram and once at the bottom. Each arrow color indicates

a message from a particular user.

and terminates precisely in 4 interactive steps between users.

Under the same network conditions, and in the worst case of

a particularly lucky adversary, all honest users reach consen-

sus on the next block within expected 13 steps, as analyzed

in Appendix C of the technical report [27].

5 CRYPTOGRAPHIC SORTITION

Cryptographic sortition is an algorithm for choosing a ran-

dom subset of users according to per-user weights; that

is, given a set of weights wi and the weight of all users

W =
∑

iwi , the probability that user i is selected is propor-

tional towi/W . The randomness in the sortition algorithm

comes from a publicly known random seed; we describe

later how this seed is chosen. To allow a user to prove that

they were chosen, sortition requires each user i to have a

public/private key pair, (pki ,ski ).
Sortition is implemented using verifiable random func-

tions (VRFs) [39]. Informally, on any input string x , VRFsk(x)
returns two values: a hash and a proof. The hash is a hashlen-

bit-long value that is uniquely determined by sk and x , but
is indistinguishable from random to anyone that does not

know sk. The proof π enables anyone that knows pk to check

that the hash indeed corresponds to x , without having to

know sk. For security, we require that the VRF provides

these properties even if pk and sk are chosen by an attacker.

5.1 Selection procedure

Using VRFs, Algorand implements cryptographic sortition

as shown in Algorithm 1. Sortition requires a role parameter

that distinguishes the different roles that a user may be se-

lected for; for example, the user may be selected to propose

a block in some round, or they may be selected to be the

member of the committee at a certain step of BA⋆. Algorand
specifies a threshold τ that determines the expected number

of users selected for that role.

It is important that sortition selects users in proportion to

their weight; otherwise, sortition would not defend against

Sybil attacks. One subtle implication is that users may be

chosen more than once by sortition (e.g., because they have

a high weight). Sortition addresses this by returning the j
parameter, which indicates how many times the user was
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procedure Sortition(sk, seed,τ , role,w,W ):

⟨hash,π ⟩ ← VRFsk(seed| |role)
p← τ

W
j← 0

while
hash

2
hashlen

<
[∑j

k=0B(k ;w,p),
∑j+1

k=0B(k ;w,p)
)
do

j++

return ⟨hash,π , j⟩
Algorithm 1: The cryptographic sortition algorithm.

chosen. Being chosen j times means that the user gets to

participate as j different “sub-users.”
To select users in proportion to their money, we consider

each unit of Algorand as a different “sub-user.” If user i
owns wi (integral) units of Algorand, then simulated user

(i, j) with j ∈ {1, . . . ,wi } represents the jth unit of currency

i owns, and is selected with probability p = τ
W , whereW is

the total amount of currency units in Algorand.

As shown in Algorithm 1, a user performs sortition by

computing ⟨hash,π ⟩ ← VRFsk (seed| |role), where sk is the

user’s secret key. The pseudo-random hash determines

how many sub-users are selected, as follows. The prob-

ability that exactly k out of the w (the user’s weight)

sub-users are selected follows the binomial distribution,

B(k ;w,p)=
(w
k

)
pk (1−p)w−k , where∑w

k=0B(k ;w,p)= 1. Since
B(k1;n1,p) + B(k2;n2,p) = B(k1 + k2;n1 + n2,p), splitting a

user’s weight (currency) among Sybils does not affect the

number of selected sub-users under his/her control.

To determine how many of a user’s w sub-users

are selected, the sortition algorithm divides the inter-

val [0,1) into consecutive intervals of the form I j =[∑j
k=0B(k ;w,p),

∑j+1
k=0B(k ;w,p)

)
for j ∈ {0,1, . . . ,w}. If

hash/2hashlen (where hashlen is the bit-length of hash) falls in

the interval I j , then the user has exactly j selected sub-users.
The number of selected sub-users is publicly verifiable using

the proof π (from the VRF output).

Sortition provides two important properties. First, given a

random seed, the VRF outputs a pseudo-random hash value,

which is essentially uniformly distributed between 0 and

2
hashlen − 1. As a result, users are selected at random based

on their weights. Second, an adversary that does not know

ski cannot guess how many times user i is chosen, or if i was
chosen at all (more precisely, the adversary cannot guess any

better than just by randomly guessing based on the weights).

The pseudocode for verifying a sortition proof, shown in

Algorithm 2, follows the same structure to check if that user

was selected (the weight of the user’s public key is obtained

from the ledger). The function returns the number of selected

sub-users (or zero if the user was not selected at all).

5.2 Choosing the seed

Sortition requires a seed that is chosen at random and pub-

licly known. For Algorand, each round requires a seed that

is publicly known by everyone for that round, but cannot be

controlled by the adversary; otherwise, an adversary may

procedure VerifySort(pk,hash,π , seed,τ , role,w,W ):

if ¬VerifyVRF
pk
(hash,π , seed| |role) then return 0;

p← τ
W

j← 0

while
hash

2
hashlen

<
[∑j

k=0B(k ;w,p),
∑j+1

k=0B(k ;w,p)
)
do

j++

return j

Algorithm 2: Pseudocode for verifying sortition of a user

with public key pk.

be able to choose a seed that favors selection of corrupted

users.

In each round of Algorand a new seed is published. The

seed published at Algorand’s round r is determined using

VRFs with the seed of the previous round r −1. More specifi-

cally, during the block proposal stage of round r −1, every
user u selected for block proposal also computes a proposed

seed for round r as ⟨seedr ,π ⟩ ← VRFsku (seedr−1 | |r ). Algo-
rand requires that sku be chosen by u well in advance of the

seed for that round being determined (§5.3). This ensures that

even if u is malicious, the resulting seedr is pseudo-random.

This seed (and the corresponding VRF proof π ) is included
in every proposed block, so that onceAlgorand reaches agree-

ment on the block for round r −1, everyone knows seedr at
the start of round r . If the block does not contain a valid seed

(e.g., because the block was proposed by a malicious user

and included invalid transactions), users treat the entire pro-

posed block as if it were empty, and use a cryptographic hash

function H (which we assume is a random oracle) to com-

pute the associated seed for round r as seedr = H(seedr−1 | |r ).
The value of seed0, which bootstraps seed selection, can be

chosen at random at the start of Algorand by the initial partic-

ipants (after their public keys are declared) using distributed

random number generation [14].

To limit the adversary’s ability to manipulate sortition,

and thus manipulate the selection of users for different com-

mittees, the selection seed (passed to Algorithm 1 and Algo-

rithm 2) is refreshed once every R rounds. Namely, at round r
Algorand calls the sortition functions with seedr−1−(r mod R).

5.3 Choosing sku well in advance of the seed

Computing seedr requires that every user’s secret key sku
is chosen well in advance of the selection seed used in

that round, i.e., seedr−1−(r mod R). When the network is not

strongly synchronous, the attacker has complete control over

the links, and can therefore drop block proposals and force

users to agree on empty blocks, such that future selection

seeds can be computed. To mitigate such attacks Algorand

relies on the weak synchrony assumption (in every period

of length b, there must be a strongly synchronous period of

length s < b). Whenever Algorand performs cryptographic

sortition for round r , it checks the timestamp included in

the agreed-upon block for round r − 1−(r mod R), and uses

the keys (and associated weights) from the last block that

was created b-time before block r −1−(r mod R). The lower
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bound s on the length of a strongly synchronous period

should allow for sufficiently many blocks to be created in

order to ensure with overwhelming probability that at least

one block was honest. This ensures that, as long as s is suit-
ably large, an adversary u choosing a key sku cannot predict

the seed for round r .

This look-back periodb has the following trade-off: a large
b mitigates the risk that attackers are able break the weak

synchronicity assumption, yet it increases the chance that

users have transferred their currency to someone else and

therefore have nothing to lose if the system’s security breaks.

This is colloquially known as the “nothing at stake” problem;

one possible way to avoid this trade-off, which we do not

explore in Algorand, is to take the minimum of a user’s

current balance and the user’s balance from the look-back

block as the user’s weight.

Appendix A of the technical report [27] formally analyzes

the number of blocks that Algorand needs to be created in the

period s when the network is strongly connected. We show

that to ensure a small probability of failure F , the number of

blocks is logarithmic in
1

F , which allows us to obtain high

security with a reasonably low number of required blocks.

6 BLOCK PROPOSAL

To ensure that some block is proposed in each round, Al-

gorand sets the sortition threshold for the block-proposal

role, τproposer, to be greater than 1 (although Algorand will

reach consensus on at most one of these proposed blocks).

Appendix B of the technical report [27] proves that choosing

τproposer = 26 ensures that a reasonable number of proposers

(at least one, and nomore than 70, as a plausible upper bound)

are chosen with very high probability (e.g., 1−10−11).

Minimizing unnecessary block transmissions. One

risk of choosing several proposers is that each will gossip

their own proposed block. For a large block (say, 1 MByte),

this can incur a significant communication cost. To reduce

this cost, the sortition hash is used to prioritize block propos-

als: For each selected sub-user 1, . . . , j of user i , the priority
for the block proposal is obtained by hashing the (verifiably

random) hash output of VRF concatenated with the sub-user

index. The highest priority of all the block proposer’s se-

lected sub-users is the priority of the block.

Algorand users discard messages about blocks that do not

have the highest priority seen by that user so far. Algorand

also gossips two kinds of messages: one contains just the

priorities and proofs of the chosen block proposers (from

sortition), and the other contains the entire block, which also

includes the proposer’s sortition hash, and proof. The first

kind of message is small (about 200 Bytes), and propagates

quickly through the gossip network. These messages enable

most users to learn who is the highest priority proposer, and

thus quickly discard other proposed blocks.

Waiting for block proposals. Each user must wait a cer-

tain amount of time to receive block proposals via the gossip

protocol. Choosing this time interval does not impact Algo-

rand’s safety guarantees but is important for performance.

Waiting a short amount of time will mean no received pro-

posals. If the user receives no block proposals, he or she

initializes BA⋆with the empty block, and if many users do

so, Algorand will reach consensus on an empty block. On the

other hand, waiting too long will receive all block proposals

but also unnecessarily increase the confirmation latency.

To determine the appropriate amount of time to wait for

block proposals, we consider the plausible scenarios that a

user might find themselves in. When a user starts waiting for

block proposals for round r , theymay be one of the first users

to reach consensus in round r −1. Since that user completed

round r −1, sufficiently many users sent a message for the

last step of BA⋆ in that round, and therefore, most of the

network is at most one step behind this user. Thus, the user

must somehow wait for others to finish the last step of BA⋆
from round r − 1. At this point, some proposer in round r
that happens to have the highest priority will gossip their

priority and proof message, and the user must somehowwait

to receive that message. Then, the user can simply wait until

they receive the block corresponding to the highest priority

proof (with a timeout λblock, on the order of a minute, after

which the user will fall back to the empty block).

It is impossible for a user to wait exactly the correct

amount for the first two steps of the above scenario. Thus,

Algorand estimates these quantities (λstepvar, the variance
in how long it takes different users to finish the last step

of BA⋆, and λpriority, the time taken to gossip the priority

and proof message), and waits for λstepvar + λpriority time

to identify the highest priority. §10 experimentally shows

that these parameters are, conservatively, 5 seconds each.

As mentioned above, Algorand would remain safe even if

these estimates were inaccurate.

Malicious proposers. Even if some block proposers are

malicious, the worst-case scenario is that they trick different

Algorand users into initializing BA⋆ with different blocks.

This could in turn cause Algorand to reach consensus on

an empty block, and possibly take additional steps in doing

so. However, it turns out that even this scenario is relatively

unlikely. In particular, if the adversary is not the highest pri-

ority proposer in a round, then the highest priority proposer

will gossip a consistent version of their block to all users.

If the adversary is the highest priority proposer in a round,

they can propose the empty block, and thus prevent any real

transactions from being confirmed. However, this happens

with probability of at most 1−h, by Algorand’s assumption

that at least h > 2/3 of the weighted user are honest.

7 BA⋆
The execution of BA⋆ consists of two phases. In the first

phase, BA⋆ reduces the problem of agreeing on a block to

agreement on one of two options. In the second phase, BA⋆
reaches agreement on one of these options: either agreeing

on a proposed block, or agreeing on an empty block.
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Each phase consists of several interactive steps; the first

phase always takes two steps, and the second phase takes

two steps if the highest-priority block proposer was honest

(sent the same block to all users), and as we show in our

analysis an expected 11 steps in the worst case of a malicious

highest-priority proposer colluding with a large fraction of

committee participants at every step.

In each step, every committee member casts a vote for

some value, and all users count the votes. Users that receive

more than a threshold of votes for some value will vote

for that value in the next step (if selected as a committee

member). If the users do not receive enough votes for any

value, they time out, and their choice of vote for the next

step is determined by the step number.

In the common case, when the network is strongly syn-

chronous and the highest-priority block proposer was hon-

est, BA⋆ reaches final consensus by using its final step to

confirm that there cannot be any other agreed-upon block

in the same round. Otherwise, BA⋆ may declare tentative

consensus if it cannot confirm the absence of other blocks

due to possible network asynchrony.

A key aspect of BA⋆’s design is that it keeps no secrets,

except for user private keys. This allows any user observing

the messages to “passively participate” in the protocol: verify

signatures, count votes, and reach the agreement decision.

7.1 Main procedure of BA⋆
The top-level procedure implementing BA⋆, as invoked by

Algorand, is shown in Algorithm 3. The procedure takes a

context ctx, which captures the current state of the ledger, a

round number, and a new proposed block, from the highest-

priority block proposer (§6). Algorand is responsible for

ensuring that the block is valid (by checking the proposed

block’s contents and using an empty block if it is invalid,

as described in §8). The context consists of the seed for

sortition, the user weights, and the last agreed-upon block.

For efficiency, BA⋆ votes for hashes of blocks, instead of

entire block contents. At the end of the BA⋆ algorithm, we

use the BlockOfHash() function to indicate that, if BA⋆ has

not yet received the pre-image of the agreed-upon hash, it

must obtain it from other users (and, since the block was

agreed upon, many of the honest users must have received

it during block proposal).

The BA⋆ algorithm also determines whether it established

final or tentative consensus. We will discuss this check in

detail when we discuss Algorithm 8.

7.2 Voting

Sending votes (Algorithm 4). Algorithm 4 shows the

pseudocode for CommitteeVote(), which checks if the user

is selected for the committee in a given round and step of

BA⋆. The CommitteeVote() procedure invokes Sortition()

from Algorithm 1 to check if the user is chosen to partici-

pate in the committee. If the user is chosen for this step, the

user gossips a signed message containing the value passed to

CommitteeVote(), which is typically the hash of some block.

procedure BA⋆(ctx, round,block):

hblock← Reduction(ctx, round,H (block))
hblock⋆← BinaryBA⋆(ctx, round,hblock)
// Check if we reached “final” or “tentative” consensus

r ← CountVotes(ctx, round,final,Tfinal,τfinal,λstep)
if hblock⋆ = r then

return ⟨final,BlockOfHash(hblock⋆)⟩
else

return ⟨tentative,BlockOfHash(hblock⋆)⟩
Algorithm 3: Running BA⋆ for the next round, with a

proposed block. H is a cryptographic hash function.

procedure CommitteeVote(ctx, round, step,τ ,value):

// check if user is in committee using Sortition (Alg. 1)

role← ⟨“committee”, round, step⟩
⟨sorthash,π , j⟩ ← Sortition(user.sk,ctx.seed,τ , role,

ctx.weight[user.pk],ctx.W )
// only committee members originate a message

if j > 0 then

Gossip(⟨user.pk,Signed
user.sk (round, step,

sorthash,π ,H (ctx.last_block),value)⟩)
Algorithm 4: Voting for value by committee members.

user.sk and user.pk are the user’s private and public keys.

To bind the vote to the context, the signed message includes

the hash of the previous block.

Counting votes (Algorithm 5 and Algorithm 6). The

CountVotes() procedure (Algorithm 5) reads messages that

belong to the current round and step from the incomingMsgs

buffer. (For simplicity, our pseudocode assumes that a back-

ground procedure takes incoming votes and stores them into

that buffer, indexed by the messages’ round and step.) It pro-

cesses the votes by calling the ProcessMsg() procedure for

every message (Algorithm 6), which ensures that the vote is

valid. Note that no private state is required to process these

messages.

ProcessMsg() returns not just the value contained in the

message, but also the number of votes associated with that

value. If the message was not from a chosen committee

member, ProcessMsg() returns zero votes. If the committee

member was chosen several times (see §5), the number of

votes returned by ProcessMsg() reflects that as well. Pro-

cessMsg() also returns the sortition hash, which we will use

later in Algorithm 9.

As soon as one value has more than T · τ votes,

CountVotes() returns that value. τ is the expected num-

ber of users that Sortition() selects for the committee, and is

the same for each step (τstep) with the exception of the final

step (τfinal). T is a fraction of that expected committee size

(T > 2

3
) that defines BA⋆’s voting threshold; this is also the

same for every step except the final step, and we analyze it in

§7.5. If not enough messages were received within the allo-

cated λ time window, then CountVotes() produces timeout.
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procedure CountVotes(ctx, round, step,T ,τ ,λ):

start← Time()
counts← {} // hash table, new keys mapped to 0

voters← {}
msgs← incomingMsgs[round, step].iterator()
while True do

m←msgs.next()
if m = ⊥ then

if Time() > start + λ then return timeout;

else

⟨votes,value, sorthash⟩ ← ProcessMsg(ctx,τ ,m)
if pk ∈ voters or votes = 0 then continue;

voters ∪ = {pk}
counts[value] + = votes
// if we got enough votes, then output this value

if counts[value] > T ·τ then

return value

Algorithm 5: Counting votes for round and step.

procedure ProcessMsg(ctx,τ ,m):

⟨pk, signed_m⟩ ←m
if VerifySignature(pk, signed_m) , OK then

return ⟨0,⊥,⊥⟩
⟨round, step, sorthash,π ,hprev,value⟩ ← signed_m

// discard messages that do not extend this chain

if hprev , H (ctx.last_block) then return ⟨0,⊥,⊥⟩;
votes← VerifySort(pk, sorthash,π ,ctx.seed,τ ,

⟨“committee”, round, step⟩,ctx.weight[pk],ctx.W )
return ⟨votes,value, sorthash⟩
Algorithm 6: Validating incoming vote messagem.

The threshold ensures that if one honest user’s CountVotes()

returns a particular value, then all other honest users will

return either the same value or timeout, even under the

weak synchrony assumption (see Lemma 1 in Appendix C.2

of the technical report [27]).

7.3 Reduction

The Reduction() procedure, shown in Algorithm 7, converts

the problem of reaching consensus on an arbitrary value

(the hash of a block) to reaching consensus on one of two

values: either a specific proposed block hash, or the hash

of an empty block. Our reduction is inspired by Turpin and

Coan’s two-step technique [51]. This reduction is important

to ensure liveness.

In the first step of the reduction, each committee member

votes for the hash of the block passed to Reduction() by

BA⋆(). In the second step, committee members vote for

the hash that received at least T · τ votes in the first step,

or the hash of the default empty block if no hash received

enough votes. Reduction() ensures that there is at most one

non-empty block that can be returned by Reduction() for all

honest users.

procedure Reduction(ctx, round,hblock):

// step 1: gossip the block hash

CommitteeVote(ctx, round,reduction_one,
τstep,hblock)

// other users might still be waiting for block proposals,

// so set timeout for λblock+ λstep
hblock1← CountVotes(ctx, round,reduction_one,

Tstep,τstep,λblock+λstep)
// step 2: re-gossip the popular block hash

empty_hash← H (Empty(round,H (ctx.last_block)))
if hblock1 = timeout then

CommitteeVote(ctx, round, reduction_two,

τstep, empty_hash)

else

CommitteeVote(ctx, round, reduction_two,

τstep, hblock1)

hblock2← CountVotes(ctx, round,reduction_two,
Tstep,τstep,λstep)

if hblock2 = timeout then return empty_hash ;

else return hblock2 ;

Algorithm 7: The two-step reduction.

In the common case when the network is strongly syn-

chronous and the highest-priority block proposer was hon-

est, most (e.g., 95%) of the users will call Reduction() with

the same hblock parameter, and Reduction() will return that

same hblock result to most users as well.

On the other hand, if the highest-priority block proposer

was dishonest, different users may start Reduction() with

different hblock parameters. In this case, no single hblock

value may be popular enough to cross the threshold of votes.

As a result, Reduction() will return empty_hash.

7.4 Binary agreement

Algorithm 8 shows BinaryBA⋆(), which reaches consensus

on one of two values: either the hash passed to BinaryBA⋆()
or the hash of the empty block. BinaryBA⋆() relies on Re-

duction() to ensure that at most one non-empty block hash

is passed to BinaryBA⋆() by all honest users.

Safety with strong synchrony. In each step of

BinaryBA⋆(), a user who has seen more than T · τ
votes for some value will vote for that same value in the

next step (if selected). However, if no value receives enough

votes, BinaryBA⋆() chooses the next vote in a way that

ensures consensus in a strongly synchronous network.

Specifically, user Amay receive votes from an adversary

that push the votes observed by A past the threshold, but

the adversary might not send the same votes to other users

(or might not send them in time). As a result, A returns

consensus on a block, but other users timed out in that step.

It is crucial that BinaryBA⋆() chooses the votes for the next
step in a way that will match the block already returned by

A. Algorithm 8 follows this rule: every return statement
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procedure BinaryBA⋆(ctx, round,block_hash):

step← 1

r ← block_hash

empty_hash← H (Empty(round,H (ctx.last_block)))
while step < MaxSteps do

CommitteeVote(ctx, round, step, τstep, r)
r ← CountVotes(ctx, round, step,Tstep,τstep,λstep)
if r = timeout then

r ← block_hash

else if r , empty_hash then

for step < s ′ ≤ step+3 do
CommitteeVote(ctx, round, s ′, τstep, r )

if step = 1 then

CommitteeVote(ctx, round, final, τfinal, r )
return r

step++

CommitteeVote(ctx, round, step, τstep, r)
r ← CountVotes(ctx, round, step,Tstep,τstep,λstep)
if r = timeout then

r ← empty_hash

else if r = empty_hash then

for step < s ′ ≤ step+3 do
CommitteeVote(ctx, round, s ′, τstep, r )

return r

step++

CommitteeVote(ctx, round, step, τstep, r)
r ← CountVotes(ctx, round, step,Tstep,τstep,λstep)
if r = timeout then

if CommonCoin(ctx, round, step,τstep) = 0 then
r ← block_hash

else

r ← empty_hash

step++

// No consensus after MaxSteps; assume network

// problem, and rely on §8.2 to recover liveness.

HangForever()

Algorithm 8: BinaryBA⋆ executes until consensus is

reached on either block_hash or empty_hash.

is coupled with a check for timeout that sets the next-step

vote to the same value that could have been returned.

It is also crucial that BinaryBA⋆() is able to collect enough
votes in the next step to carry forward the value that A
already reached consensus on. If there are many users like

A that have already returned consensus, BinaryBA⋆() may

not have enough users to push CountVotes() in the next step

past the threshold. To avoid this problem, whenever a user

returns consensus, that user votes in the next three steps

with the value they reached consensus on.

In the common case, when the network is strongly syn-

chronous and the block proposer was honest, BinaryBA⋆()
will start with the same block_hash for most users, and will

reach consensus in the first step, since most committee mem-

bers vote for the same block_hash value.

Safety with weak synchrony. If the network is not

strongly synchronous (e.g., there is a partition), BinaryBA⋆()
may return consensus on two different blocks. For example,

suppose that, in the first step of BinaryBA⋆(), all users vote
for block_hash, but only one honest user, A, receives those
votes. In this case, A will return consensus on block_hash,

but all other users will move on to the next step. Now, the

other users vote for block_hash again, because CountVotes()

returned timeout. However, let’s assume the network drops

all of these votes. Finally, the users vote for empty_hash

in the third step, the network becomes well behaved, and

all votes are delivered. As a result, the users will keep vot-

ing for empty_hash until the next iteration of the loop, at

which point they reach consensus on empty_hash. This is

undesirable because BinaryBA⋆() returned consensus on two
different hashes to different honest users.

BA⋆() addresses this problem by introducing the notion

of final and tentative consensus. Final consensus means that

BA⋆() will not reach consensus on any other block for that

round. Tentative consensus means that BA⋆() was unable to
guarantee safety, either because of network asynchrony or

due to a malicious block proposer.

BA⋆() designates consensus on value V as “final” if

BinaryBA⋆() reached consensus on V in the very first step,

and if enough users observed this consensus being reached.

Specifically, BinaryBA⋆() sends out a vote for the special

final step to indicate that a user reached consensus on some

value in the very first step, and BA⋆() collects these votes
to determine whether final consensus was achieved. In a

strongly synchronous network with an honest block pro-

poser, BinaryBA⋆() will reach consensus in the first step,

most committee members will vote for the consensus block

in the special final step in BinaryBA⋆(), and will receive

more than a threshold of such votes in BA⋆(), thus declaring
the block as final. The final step is analogous to the final

confirmation step implemented in many Byzantine-resilient

protocols [15, 35].

Intuitively, this guarantees safety because a large thresh-

old of users have already declared consensus for V , and will

not vote for any other value in the same round. In our ex-

ample above, where user A reached consensus on a different

block than all other users, neither block would be designated

as final, because only one user (namely, A) observed consen-

sus at the first step, and there would never be enough votes

to mark that block as final. Appendix C.1 of the technical

report [27] formalizes and proves this safety property.

One subtle issue arises due to the fact that BA⋆ relies on

a committee to declare final consensus, instead of relying on

all participants. As a result, even if one user observes final

consensus, an adversary that controls the network may be

able to prevent a small fraction of other users from reaching

any kind of consensus (final or tentative) for an arbitrary

number of steps. Each of these steps give the adversary

an additional small probability of reaching consensus on a

different value (e.g., the empty block). To bound the total
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procedure CommonCoin(ctx, round, step, τ ):
minhash← 2

hashlen

form ∈ incomingMsgs[round, step] do
⟨votes,value, sorthash⟩ ← ProcessMsg(ctx,τ ,m)
for 1 ≤ j < votes do

h← H (sorthash| |j)
if h < minhash then minhash← h;

return minhash mod 2

Algorithm 9: Computing a coin common to all users.

probability of an adversary doing so, BA⋆ limits the total

number of allowed steps; Appendix C.1 of the technical

report [27] relies on this. If the protocol runs for more than

MaxSteps steps, BA⋆ halts without consensus and relies on

the recovery protocol described in §8.2 to recover liveness.

Getting unstuck. One remaining issue is that consensus

could get stuck if the honest users are split into two groups,

A and B, and the users in the two groups vote for different

values (say, we are in step 1, A votes for empty_hash, and

B votes for block_hash). Neither group is large enough to

gather enough votes on their own, but together with the

adversary’s votes, group A is large enough. In this situation,

the adversary can determine what every user will vote for in

the next step. To make some user vote for empty_hash in the

next step, the adversary sends that user the adversary’s own

votes for empty_hash just before the timeout expires, which,

together with A’s votes, crosses the threshold. To make the

user vote for block_hash, the adversary does not send any

votes to that user; as a result, that user’s CountVotes() will

return timeout, and the user will choose block_hash for the

next step’s vote, according to the BinaryBA⋆() algorithm.

This way, the adversary can split the users into two groups

in the next step as well, and continue this attack indefinitely.

The attack described above requires the adversary to

know how a user will vote after receiving timeout from

CountVotes(). The third step of BinaryBA⋆() is designed
to avoid this attack by pushing towards accepting either

block_hash or empty_hash based on a random “common coin,”

meaning a binary value that is predominantly the same for

all users. Although this may sound circular, the users need

not reach formal consensus on this common coin. As long as

enough users observe the same coin bit, and the bit was not

known to the attacker in advance of the step, BinaryBA⋆()
will reach consensus in the next iteration of the loop with

probability 1/2 (i.e., the probability that the attacker guessed
wrong). By repeating these steps, the probability of consen-

sus quickly approaches 1.

To implement this coin we take advantage of the VRF-

based committee member hashes attached to all of the mes-

sages. Every user sets the common coin to be the least-

significant bit of the lowest hash it observed in this step,

as shown in Algorithm 9. If a user gets multiple votes (i.e.,

several of their sub-users were selected), then Common-

Coin() considers multiple hashes from that user, by hashing

that user’s sortition hash with the sub-user index. Notice

that hashes are random (since they are produced by hashing

the pseudo-random VRF output), so their least-significant

bits are also random. The common coin is used only when

CountVotes() times out, giving sufficient time for all votes to

propagate through the network. If the committee member

with the lowest hash is honest, then all users that received

his message observe the same coin.

If a malicious committee-member happens to hold the

lowest hash, then he might send it to only some users. This

may result in users observing different coin values, and thus

will not help in reaching consensus. However, since sortition

hashes are pseudo-random, the probability that an honest

user has the lowest hash is h (the fraction of money held by

honest users), and thus there is at least an h > 2

3
probability

that the lowest sortition hash holder will be honest, which

leads to consensus with probability
1

2
·h > 1

3
at each loop iter-

ation. This allows Appendix C.3 of the technical report [27]

to show that, with strong synchrony, BA⋆ does not exceed
MaxSteps with overwhelming probability.

7.5 Committee size

The fraction h > 2

3
of weighted honest users in Algorand

must translate into a “sufficiently honest” committee for

BA⋆. BA⋆ has two parameters at its disposal: τ , which con-

trols the expected committee size, and T , which controls the

number of votes needed to reach consensus (T ·τ ). We would

like T to be as small as possible for liveness, but the smaller

T is, the larger τ needs to be, to ensure that an adversary

does not obtain enough votes by chance. Since a larger com-

mittee translates into a higher bandwidth cost, we choose

two different parameter sets: Tfinal and τfinal for the final
step, which ensures an overwhelming probability of safety

regardless of strong synchrony, and Tstep and τstep for all
other steps, which achieve a reasonable trade-off between

liveness, safety, and performance.

To make the constraints on τstep and Tstep precise, let us
denote the number of honest committee members by д and

the malicious ones by b; in expectation, b+д = τstep, but b+д
can vary since it is chosen by sortition. To ensure liveness,

as we prove in Appendix C.2 of the technical report [27],

BA⋆ requires
1

2
д+b ≤ Tstep ·τstep and д > Tstep ·τstep.

Due to the probabilistic nature of how committeemembers

are chosen, there is always some small chance that theb andд
for some step fail to satisfy the above constraints, and BA⋆’s
goal is to make this probability negligible. Figure 3 plots the

expected committee size τstep that is needed to satisfy both

constraints, as a function of h, for a probability of violation

of 5×10−9; Appendix B of the technical report [27] describes

this computation in more detail. The figure shows a trade-off:

the weaker the assumption on the fraction of money held by

honest users (h), the larger the committee size needs to be.

The results show that, as h approaches
2

3
, the committee size

grows quickly. However, at h = 80%, τstep = 2,000 can ensure

that these constraints holdwith probability 1−5×10−9 (using
Tstep = 0.685).
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Figure 3: The committee size, τ , sufficient to limit the proba-

bility of violating safety to 5×10−9. The x-axis specifiesh, the
weighted fraction of honest users. ⋆marks the parameters

selected in our implementation.

The constraints on τfinal and Tfinal are dictated by the

proof of safety under weak synchrony; Appendix C.1 of the

technical report [27] shows that τfinal = 10,000 suffices with

Tfinal = 0.74.
With these parameters, BA⋆ ensures safety even if the

lowest-priority block proposer is malicious (proposes differ-

ent blocks). Appendix C of the technical report [27] provides

proofs of BA⋆’s safety under weak synchrony (§C.1), liveness
under strong synchrony (§C.2), and efficiency (§C.3).

8 ALGORAND

Building Algorand on top of the primitives we have described

so far requires Algorand to address a number of higher-level

issues, which this section discusses.

8.1 Block format

Algorand’s blocks consist of a list of transactions, along

with metadata needed by BA⋆. Specifically, the metadata

consists of the round number, the proposer’s VRF-based

seed (§6), a hash of the previous block in the ledger, and a

timestamp indicating when the block was proposed. The

list of transactions in a block logically translates to a set

of weights for each user’s public key (based on the balance

of currency for that key), along with the total weight of all

outstanding currency.

Once a user receives a block from the highest-priority pro-

poser, the user validates the block contents before passing it

on to BA⋆. In particular, the user checks that all transactions

are valid; that the seed is valid; that the previous block hash

is correct; that the block round number is correct; and that

the timestamp is greater than that of the previous block and

also approximately current (say, within an hour). If any of

them are incorrect, the user passes an empty block to BA⋆.

8.2 Safety and liveness

To a large extent, Algorand relies on BA⋆ to reach consensus

on blocks in the ledger. Algorand confirms transactions only

when they appear in a final block, or in the predecessor of a

final block. Final blocks guarantee that no other block could

have reached consensus in the same round. This means

that all final blocks are totally ordered with respect to one

another, since (1) blocks form a linear chain, and (2) there can

be exactly one final block at any given position in the chain.

In other words, given two final blocks, one of them (the one

with the smaller round number r1) must be a predecessor of

the other (the one with the higher round number r2), since
there must be some predecessor of the r2 block in round r1,
and the safety condition guarantees that the r1 block is the

only possible such block.

The remaining issue is that, if the network is not strongly

synchronous, BA⋆may create forks (i.e., different users reach

consensus on different blocks). This does not violate safety,

because BA⋆will return tentative consensus in this situation.

However, forks do impact liveness: users on different forks

will have different ctx.last_block values, which means they

will not count each others’ votes. As a result, at least one of

the forks (and possibly all of the forks) will not have enough

participants to cross the vote threshold, and BA⋆will not be

able to reach consensus on any more blocks on that fork.

To resolve these forks, Algorand periodically proposes a

fork that all users should agree on, and uses BA⋆ to reach

consensus on whether all users should, indeed, switch to

this fork. To determine the set of possible forks, Algorand

users passively monitor all BA⋆ votes (i.e., even votes whose

prev_hash value does not match the current user’s chain),

and keep track of all forks. Users then use loosely synchro-

nized clocks to stop regular block processing and kick off the

recovery protocol at every time interval (e.g., every hour),

which will propose one of these forks as the fork that every-

one should agree on.

The recovery protocol starts by having users propose a

fork using the block proposal mechanism (§6). Specifically,

if a user is chosen to be a “fork proposer,” that user proposes

an empty block whose predecessor hash is the longest fork

(by the number of blocks) observed by the user so far. Each

user waits for the highest-priority fork proposal, much as

in the block proposal mechanism. Each user validates the

proposed block, by ensuring that the block’s parent pointer

is a chain that is as long as the longest chain seen by that

user. Choosing the longest fork ensures that this fork will

include all final blocks. Finally, the user invokes BA⋆ to

reach consensus on this block, passing the round number

found in the proposed block.

In order for BA⋆ to reach consensus on one of the forks,

all Algorand users must use the same seed and user weights.

This means that Algorand must use user weights and seeds

from before any possible forks occurred. To do this, Algorand

relies on the weak synchrony assumption—namely, that in

every period of length b (think of b as 1 day), there must

be a strongly synchronous period of length s < b (think of

s as a few hours). Under this assumption, using the block

timestamps, Algorand quantizes time into b-long periods

(think days), and finds the most recent block from the next-

to-last complete b-long period. Algorand then uses the seed
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from this block, and uses user weights from the last block

that was agreed upon at least b-long time before it (§5.3).

Algorand takes the seed from the block from the next-

to-last b-long period because the most recent b-long period

may still have an unresolved fork. Such a fork would prevent

users from agreeing on the seed and weights used in the

recovery. However, as long as Algorand can recover within

the s-long strongly synchronous period in the most recent

b-long period, all users will agree on the same block from

the next-to-last period (as long as their clocks are roughly

synchronized).

To ensure that Algorand recovers from a fork (i.e., most

honest users switch to the same fork) within the s-long syn-

chronous period, Algorand users repeatedly attempt to reach

consensus on a fork (applying a hash function to the seed

each time to produce a different set of proposers and com-

mittee members), until they achieve consensus. Since, by

assumption, Algorand is operating in a strongly synchronous

period, it is not important whether BA⋆ returns “final” or

“tentative” consensus in this case. When Algorand is recov-

ering outside of a strongly synchronous period, we cannot

ensure recovery within s time.

8.3 Bootstrapping

Bootstrapping the system. To deploy Algorand, a com-

mon genesis block must be provided to all users, along with

the initial cryptographic sortition seed. The value of seed0

specified in the genesis block is decided using distributed

random number generation [14], after the public keys and

weights for the initial set of participants are publicly known.

Bootstrapping newusers. Users that join the system need

to learn the current state of the system, which is defined to

be the result of a chain of BA⋆ consensus outcomes. To

help users catch up, Algorand generates a certificate for ev-

ery block that was agreed upon by BA⋆ (including empty

blocks). The certificate is an aggregate of the votes from the

last step of BinaryBA⋆() (not including the final step) that
would be sufficient to allow any user to reach the same con-

clusion by processing these votes (i.e., there must be at least

⌊Tstep ·τstep⌋ + 1 votes). Importantly, the users must check

the sortition hashes and proofs just like in Algorithm 6, and

that all messages in the certificate are for the same Algorand

round and BA⋆ step.

Certificates allow new users to validate prior blocks. Users

validate blocks in order, starting from the genesis block. This

ensures that the user knows the correct weights for verifying

sortition proofs in any given round. Users can also request

a certificate proving the safety of a block; this is simply the

collection of votes for the final step. Since final blocks are

totally ordered, users need to check the safety of only the

most recent block.

One potential risk created by the use of certificates is that

an adversary can provide a certificate that appears to show

that BA⋆ completed after some large number of steps. This

gives the adversary a chance to find a BA⋆ step number

(up to MaxSteps) in which the adversary controls more

than a threshold of the selected committee members (and

to then create a signed certificate using their private keys).

We set the committee size to be sufficiently large to ensure

the attacker has negligible probability of finding such a step

number. For τstep > 1,000, the probability of this attack is

less than 2
−166

at every step, making this attack infeasible.

Storage. The block history and matching certificates allow

new users to catch-up, and are not required for users who

are already up-to-date with the current ledger. Therefore Al-

gorand distributes certificate and block storage across users.

For N shards, users store blocks/certificates whose round

number equals their public key modulo N.

8.4 Communication

Gossiping blocks and relaying messages. Algorand’s

block proposal protocol (§6) assumed that chosen users can

gossip new blocks before an adversary can learn the user’s

identity and mount a targeted DoS attack against them. In

practice, Algorand’s blocks are larger than the maximum

packet size, so it is inevitable that some packets from a cho-

sen block proposer will be sent before others. A particularly

fast adversary could take advantage of this to immediately

DoS any user that starts sending multiple packets, on the

presumption that the user is a block proposer.

Formally, this means that Algorand’s liveness guarantees

are slightly different in practice: instead of providing liveness

in the face of immediate targeted DoS attacks, Algorand

ensures liveness as long as an adversary cannot mount a

targeted DoS attack within the time it takes for the victim

to send a block over a TCP connection (a few seconds). We

believe this does not matter significantly; an adversary with

such a quick reaction time likely also has broad control over

the network, and thus can prevent Algorand nodes from

communicating at all. Another approach may be to rely

on Tor [19] to make it difficult for an adversary to quickly

disconnect a user.

To avoid an adversary from sending garbage messages and

overwhelming Algorand’s gossip network, Algorand nodes

must validate messages before relaying them. Specifically,

Algorand nodes should validate each message using Algo-

rithm 6, and avoid relaying more than one message signed

by a given public key per ⟨round, step⟩.

Scalability. The communication costs for each user depend

on the expected size of the committee and the number of

block proposers, which Algorand sets through τproposer, τstep,
and τfinal (independent of the number of users). As more

users join, it takes a message longer to disseminate in the

gossip network. Algorand’s gossip network forms a random

network graph (each user connects to random peers). Our

theoretical analysis suggests that almost all users will be

part of one connected component in the graph, and that dis-

semination time grows with the diameter of that component,

which is logarithmic in the number of users [45]. Experi-
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ments confirm that Algorand’s performance is only slightly

affected by more users (§10).

Since our random graph uses a fixed number of peers,

one potential concern is that it may contain disconnected

components [22]. However, only a small fraction of users

might end up in a disconnected component, which does

not pose a problem for BA⋆. Moreover, Algorand replaces

gossip peers each round, which helps users recover from

being possibly disconnected in a previous round.

9 IMPLEMENTATION

We implemented a prototype of Algorand in C++, consist-

ing of approximately 5,000 lines of code. We use the Boost

ASIO library for networking. Signatures and VRFs are im-

plemented over Curve 25519 [6], and we use SHA-256 for

a hash function. We use the VRF outlined in Goldberg et

al [28: §4].

In our implementation each user connects to 4 random

peers, accepts incoming connections from other peers, and

gossips messages to all of them. This gives us 8 peers on

average. We currently provide each user with an “address

book” file listing the IP address and port number for every

user’s public key. In a real-world deployment we imagine

users could gossip this information, signed by their keys, or

distribute it via a public bulletin board. This naïve design of

the gossip protocol in our prototype implementation is po-

tentially susceptible to Sybil attacks, since it does not prevent

an adversary from joining the gossip network with a large

number of identities. We leave the problem of implementing

a Sybil-resistant gossip network to future work.

One difference between our implementation and the pseu-

docode shown in §7 lies in the BinaryBA⋆() function. The
pseudocode in Algorithm 8 votes in the next 3 steps after

reaching consensus. For efficiency, our implementation in-

stead looks back to the previous 3 steps before possibly re-

turning consensus in a future step. This logic produces equiv-

alent results but is more difficult to express in pseudocode.

Figure 4 shows the parameters in our prototype of Algo-

rand; we experimentally validate the timeout parameters in

§10. h = 80% means that an adversary would need to control

20% of Algorand’s currency in order to create a fork. By

analogy, in the US, the top 0.1% of people own about 20% of

the wealth [41], so the richest 300,000 people would have to

collude to create a fork.

λpriority should be large enough to allow block proposers

to gossip their priorities and proofs. Measurements of mes-

sage propagation in Bitcoin’s network [18] suggest that gos-

siping 1 KB to 90% of the Bitcoin peer-to-peer network takes

about 1 second. We conservatively set λpriority to 5 seconds.

λblock ensures that Algorand can make progress even if

the block proposer does not send the block. Our experiments

(§10) show that about 10 seconds suffices to gossip a 1 MB

block. We conservatively set λblock to be a minute.

λstep should be high enough to allow users to receive

messages from committee members, but low enough to allow

Parameter Meaning Value

h assumed fraction of honest weighted users 80%

R seed refresh interval (# of rounds) 1,000 (§5.2)

τproposer expected # of block proposers 26 (§B.1)

τstep expected # of committee members 2,000 (§B.2)

Tstep threshold of τstep for BA⋆ 68.5% (§B.2)

τfinal expected # of final committee members 10,000 (§C.1)

Tfinal threshold of τfinal for BA⋆ 74% (§C.1)

MaxSteps maximum number of steps in BinaryBA⋆ 150 (§C.1)

λpriority time to gossip sortition proofs 5 seconds

λblock timeout for receiving a block 1 minute

λstep timeout for BA⋆ step 20 seconds

λstepvar estimate of BA⋆ completion time variance 5 seconds

Figure 4: Implementation parameters.

Algorand to make progress (move to the next step) if it does

not hear from sufficiently many committee members. We

conservatively set λstep to 20 seconds. We set λstepvar, the
estimated variance in BA⋆ completion times, to 10 seconds.

10 EVALUATION

Our evaluation quantitatively answers the following:

• What is the latency that Algorand can achieve for con-

firming transactions, and how does it scale as the number

of users grows? (§10.1)

• What throughput can Algorand achieve in terms of trans-

actions per second? (§10.2)

• What are Algorand’s CPU, bandwidth, and storage costs?

(§10.3)

• How does Algorand perform when users misbehave?

(§10.4)

• Does Algorand choose reasonable timeout parameters?

(§10.5)

To answer these questions, we deploy our prototype of

Algorand on Amazon’s EC2 using 1,000 m4.2xlarge virtual

machines (VMs), each of which has 8 cores and up to 1 Gbps

network throughput. To measure the performance of Algo-

rand with a large number of users, we run multiple Algorand

users (each user is a process) on the same VM. By default, we

run 50 users per VM, and users propose a 1 MByte block. To

simulate commodity network links, we cap the bandwidth

for each Algorand process to 20 Mbps. To model network la-

tency we use inter-city latency and jitter measurements [53]

and assign each machine to one of 20 major cities around the

world; latency within the same city is modeled as negligible.

We assign an equal share of money to each user; the equal

distribution of money maximizes the number of messages

that users need to process. Graphs in the rest of this section

plot the time it takes for Algorand to complete an entire

round, and include the minimum, median, maximum, 25th,

and 75th percentile times across all users.

10.1 Latency

Figure 5 shows results with the number of users varying from

5,000 to 50,000 (by varying the number of active VMs from

100 to 1,000). The results show that Algorand can confirm
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Figure 5: Latency for one round of Algorand, with 5,000 to

50,000 users.
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Figure 6: Latency for one round of Algorand in a configura-

tion with 500 users per VM, using 100 to 1,000 VMs.

transactions in well under a minute, and the latency is near-

constant as the number of users grows. (Since τfinal = 10,000,
the time it takes to complete the final step increases until

there are 10,000 users in the system; before this point, users

are selectedmore than once and send fewer votes with higher

weights.)

To determine if Algorand continues to scale to even more

users, we run an experiment with 500 Algorand user pro-

cesses per VM. This configuration runs into two bottlenecks:

CPU time and bandwidth. Most of the CPU time is spent

verifying signatures and VRFs. To alleviate this bottleneck

in our experimental setup, for this experiment we replace

verifications with sleeps of the same duration. We are un-

able to alleviate the bandwidth bottleneck, since each VM’s

network interface is maxed out; instead, we increase λstep
to 1 minute.

Figure 6 shows the results of this experiment, scaling the

number of users from 50,000 to 500,000 (by varying the num-

ber of VMs from 100 to 1,000). The latency in this experiment

is about 4× higher than in Figure 5, even for the same num-

ber of users, owing to the bandwidth bottleneck. However,

the scaling performance remains roughly flat all the way to

500,000 users, suggesting that Algorand scales well.
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Figure 7: Latency for one round of Algorand as a function

of the block size.

10.2 Throughput

In the following set of experiments we deploy 50,000 users

on our 1,000 VMs (50 users per machine). Figure 7 shows

the results with a varying block size. The figure breaks the

Algorand round into three parts. Block proposal (§6), at the

bottom of the graph, is the time it takes a user to obtain the

proposed block. The block proposal time for small block

sizes is dominated by the λpriority +λstepvar wait time. For

large block sizes, the time to gossip the large block contents

dominates. BA⋆ except for the final step, in the middle of

the graph, is the time it takes for BA⋆ to reach the final step.
Finally, BA⋆’s final step, at the top of the graph, is the time

it takes BA⋆ to complete the final step. We break out the

final step separately because, for the purposes of through-

put, it could be pipelined with the next round (although our

prototype does not do so).

The results show that Algorand’s agreement time (i.e.,

BA⋆) is independent of the block size, and stays about the

same (12 seconds) even for large blocks. The throughput

can be further increased by pipelining the final step, which

takes about 6 seconds, with the next round of Algorand. The

fixed time for running BA⋆ and the linear growth in block

propagation time (with the size of the block) suggest that

increasing the block size allows one to amortize the time it

takes to run BA⋆ to commit more data, and therefore reach

a throughput that maximizes the network capability.

At its lowest latency, Algorand commits a 2 MByte block

in about 22 seconds, which means it can commit 327 MBytes

of transactions per hour. For comparison, Bitcoin commits a

1 MByte block every 10 minutes, which means it can com-

mit 6 MBytes of transactions per hour [9]. As Algorand’s

block size grows, Algorand achieves higher throughput at

the cost of some increase to latency. For example, with a

10 MByte block size, Algorand commits about 750 MBytes of

transactions per hour, which is 125× Bitcoin’s throughput.

10.3 Costs of running Algorand

Users running Algorand incur CPU, network, and storage

costs. The CPU cost of running Algorand is modest; when

running 50 users per VM, CPU usage on the 8-core VM was

about 40% (most of it for verifying signatures and VRFs),
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Figure 8: Latency for one round of Algorand with a varying

fraction of malicious users, out of a total of 50,000 users.

meaning each Algorand process uses about 6.5% of a core.

In terms of bandwidth, each user in our experiment with

1 MByte blocks and 50,000 users uses about 10 Mbit/sec (em-

pirically computed as the total amount of data sent, divided

by the duration of the experiment). We note that the com-

munication cost per user is independent of the number of

users running Algorand, since users have an expected fixed

number of neighbors they gossip messages to, and the num-

ber of messages in the consensus protocol depends on the

committee size (rather than the total number of users).

In terms of storage cost, Algorand stores block certificates

in order to prove to new users that a block was committed.

This storage cost is in addition to the blocks themselves. Each

block certificate is 300 KBytes, independent of the block size;

for 1 MByte blocks, this would be a ∼30% storage overhead.

Sharding block storage across users (§8.3) reduces storage

costs proportionally. For example, shardingmodulo 10would

require each user to store, on average, 130 KB for every 1MB

block that is appended to the ledger.

10.4 Misbehaving users

Algorand’s safety is guaranteed by BA⋆ (§7), but proving this
experimentally would require testing all possible attacker

strategies, which is infeasible. However, to experimentally

show that our Algorand prototype handles malicious users,

we choose one particular attack strategy. We force the block

proposer with the highest priority to equivocate about the

proposed block: namely, the proposer sends one version of

the block to half of its peers, and another version to others

(note that as an optimization, if a user receives to conflicting

versions of a block from the highest priority block proposer

before the block proposal step is complete, he discards both

proposals and starts BA⋆with the empty block). Malicious

users that are chosen to be part of the BA⋆ committee vote

for both blocks. Figure 8 shows howAlgorand’s performance

is affected by the weighted fraction of malicious users. The

results show that, at least empirically for this particular at-

tack, Algorand is not significantly affected.

10.5 Timeout parameters

The above results confirm that BA⋆ steps finish in well un-

der λstep (20 seconds), that the difference between 25th and

75th percentiles of BA⋆ completion times is under λstepvar
(5 seconds), and that blocks are gossiped within λblock (1

minute). We separately measure the time taken to propa-

gate a block proposer’s priority and proof; it is consistently

around 1 second, well under λpriority (5 seconds), confirming

the measurements by Decker and Wattenhofer [18].

11 FUTUREWORK

This paper focused on the consensus mechanism for commit-

ting transactions, and addressing the associated scalability

and security challenges. There remain a number of open

problems in designing permissionless cryptocurrencies:

Incentives. In order to encourage Algorand users to par-

ticipate, i.e., be online when selected and pay the network

cost of operating Algorand, the system may need to include

incentives, possibly in form of a reward mechanism. Design-

ing and analyzing an incentive mechanism includes many

challenges, such as ensuring that users do not have perverse

incentives (e.g., to withhold votes), and that malicious users

cannot “game the system” to obtain more rewards than users

who follow the protocol (e.g., by influencing seed selection).

Cost of joining. To join Algorand, new users fetch all ex-

isting blocks with their accompanying certificates, which

can comprise a large amount of data. Other cryptocurrencies

face a similar problem, but since the throughput of Algorand

is relatively high, this may create a scalability challenge.

Forward security. Attackers may attempt to corrupt users

over time, since identities of committee members are re-

vealed after they send a message. If an attacker manages to

obtain enough user keys, he could construct a fake certificate

to create a fork. One solution would be for users to forget

the signing key before sending out a signed message (and

commit to a series of signing keys ahead of time, perhaps

using identity-based encryption [11, 20]).

12 CONCLUSION

Algorand is a new cryptocurrency that confirms transactions

on the order of a minute with a negligible probability of fork-

ing. Algorand’s design is based on a cryptographic sortition

mechanism combined with the BA⋆ Byzantine agreement

protocol. Algorand avoids targeted attacks at chosen partic-

ipants using participant replacement at every step. Exper-

imental results with a prototype of Algorand demonstrate

that it achieves sub-minute latency and 125× the throughput
of Bitcoin, and scales well to 500,000 users.
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Abstract

We present a simple Byzantine agreement protocol with leader election, that works under > 2/3
honest majority and does not rely on the participants having synchronized clocks. When honest
messages are delivered within a bounded worst-case delay, agreement is reached in expected constant
number of steps when the elected leader is malicious, and is reached after two steps when the elected
leader is honest. Our protocol is resilient to arbitrary network partitions with unknown length, and
recovers fast after the partition is resolved and bounded message delay is restored.

We will briefly discuss how the protocol applies to blockchains in a permissionless system. In
particular, when an honest leader proposes a block of transactions, the first voting step happens in
parallel with the block propagation. Effectively, after the block propagates, a certificate is generated
in just one step of voting.

1 Introduction

In this short manuscript, we describe a fast Byzantine agreement protocol with leader election,
which is safe even in asynchronous networks. Algorand ledger will be based on the permissionless
version of this protocol.1 In traditional Byzantine agreements, users try to agree on one of their
starting values. In a Byzantine agreement with leader election, users try to agree on a value
proposed by a leader.

Our protocol is simple and reaches agreement quickly when the network is not partitioned. In
particular, it achieves the following desirable properties under > 2

3 honest majority:

• Fast Agreement. When the network has bounded delay —that is, all honest messages
propagate in the network within a given time bound—, an agreement is reached in a constant
expected time. In particular, when the leader is honest, his proposed value is agreed upon after
two steps of communication.

• Arbitrary Partition Resilience (i.e., Asynchronous Safety). When the network is
partitioned (especially, the Adversary has complete control on message delivery and messages
may be delayed arbitrarily long), our protocol ensures safety of the system so that no two honest
users will finish the protocol with different outputs.

1For historical references, extensions, and evaluation of Algorand ledger we refer the interested readers to [1, 2, 3, 4].



• Fast Recovery from Network Partition. After the network recovers from a partition and
restores bounded delay, an agreement is reached in constant expected time.

2 Preliminaries

Cryptographic Primitives. We shall rely on two well known cryptographic tools: a hash
function H modeled as a random oracle, and digital signatures. More precisely, each player i
has a public/secret key pair from a digital signature scheme. Each player holds her secret key
privately. Public keys are known to every player in the system. We denote i’s signature of a string
x by sigi(x). To ensure signer identities and messages are retrievable from signatures, we define

SIGi(x) , (i, x, sigi(x)).

The signature scheme is secure under adaptive chosen message attacks and enjoy the following
uniqueness property: for each public/secret key pair —even the maliciously generated ones— and
each message m, there is only one string that is accepted as the signature of m relative to that
public key.2

Temporary Simplifying Assumptions. In this manuscript, we simplify the protocol descrip-
tion by making the following assumptions, that will soon be relaxed.

1. The setting is permissioned, with a fixed set of users. The set of all players is N , the cardinality
of N is n = 3t+ 1, and the number of malicious players is t.

2. Each user i has a private input vi at the beginning of the protocol. The set of possible inputs
is denoted by V , and there is a special symbol ⊥ /∈ V . The users try to agree on a value in V .

3. All players have access to a public random string R, which has been selected randomly and
independently of the players’ public keys.

The Adversary. The Adversary perfectly coordinates all malicious players. He learns the
messages sent by honest players and then chooses the messages sent by the malicious players.
However, the Adversary cannot forge honest players’ signatures or break the hash function.

From permissioned to permissionless. The protocol described in this manuscript can be
generalized to the permissionless setting as in the original Algorand protocol, where the Adversary
can corrupt users adaptively and instantaneously, but cannot control more than 1/3 of the total
stake in the system. An execution of the permissionless protocol corresponds to one round in the
Algorand blockchain, where users agree on a block of transactions. Similarly, the original Algorand
paper also describes how the random string R can be generated and updated as the blockchain
grows.

2Our protocol also works using verifiable random functions (VRFs) [5], which can be constructed under concrete
complexity assumptions.
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3 The Agreement Protocol

For simplicity, we first describe the protocol in an idealized network setting, Communication
Setting 1. Next, we describe the changes that lead to a protocol that achieves the three desirable
properties highlighted in our introduction in a concrete network setting, Communication Setting 2.
Communication Setting 1. The players communicate, in steps, over a synchronous propagation
network. Honest users send messages at the start of a step and such messages are received by all
honest users by the end of the step. Moreover, all messages seen by an honest user i before the
start of step s will be seen by all honest users by the end of step s, as user i helps propagate those
messages.

Communication Setting 2. The players communicate over a propagation network. Users do not
have synchronized clocks, but their individual timers have the same speed. The network may be
arbitrarily partitioned for an unknown amount of time, during which the Adversary has full control
on the delivery of messages. When the network is not partitioned, a message propagated by an
honest user is received by all honest users within time λ. However, the Adversary fully controls
the delivery orders of different messages. All messages sent by honest users during a partition are
delivered to honest users after the partition is resolved, within time cλ for some constant c.

3.1 Notions and Notations

The protocol is a 5-step loop. For conceptual clarity we describe the loop as 5-step periods. Each
period has a leader, defined as follows.

Definition 3.1. Credential: User i’s credential σpi for a period p is SIGi(R, p).

Definition 3.2. Leader: The leader `p for period p is the user arg minj∈N H(SIGj(R, p)).
When a user i identifies his own leader for period p, `i,p, i sets `i,p to be the user

arg minj∈Si
H(SIGj(R, p)), where Si is the set of all users from which i has received valid period-p

credentials.

Our protocol will refer to three types of messages, defined below.

Definition 3.3. Cert-vote: User i’s cert-vote for a value v for period p is the signature
SIGi(v, “cert”, p).

We say a user i cert-votes a value v for period p when he propagates SIGi(v, “cert”, p). We
say a user i has certified for period p if he has cert-voted a value v for period p.

Definition 3.4. Soft-vote: User i’s soft-vote for a value v for period p is the signature
SIGi(v, “soft”, p).

We say a user i soft-votes a value v for period p when he propagates SIGi(v, “soft”, p).

Definition 3.5. Next-vote: User i’s next-vote for a value v for period p is the signature
SIGi(v, “next”, p).

We say a user i next-votes a value v when he propagates SIGi(v, “next”, p).

3



3.2 The Protocol in Communication Setting 1

Users start in period 1, and after step 5 of period p moves to step 1 of period p+ 1. User i starts
with a private value vi, and there is a special symbol ⊥ different from the users’ private values.

Period p

Step 1: [Value Proposal]

– If
(
p = 1

)
OR

(
(p ≥ 2) AND (i has received 2t+ 1 next-votes for ⊥ for period p− 1)

)
,

then i proposes vi, which he propagates together with his period p credential;

– Else if
(
p ≥ 2

)
AND

(
i has received 2t + 1 next-votes for some value v 6= ⊥ for period

p− 1
)

, then i proposes v, which he propagates together with his period p credential.

Step 2: [The Filtering Step]

– If
(
p = 1

)
OR

(
(p ≥ 2) AND (i has received 2t+ 1 next-votes for ⊥ for period p− 1)

)
,

then i identifies his leader `i,p for period p and soft-votes the value v proposed by `i,p;

– Else if
(
p ≥ 2

)
AND

(
i has received 2t + 1 next-votes for some value v 6= ⊥ for period

p− 1
)

, then i soft-votes v.

Step 3: [The Certifying Step]

– If i sees 2t+ 1 soft-votes for some value v 6= ⊥, then i cert-votes v.

Step 4: [The Period’s First Finishing Step]

– If i has certified some value v for period p, he next-votes v;

– Else he next-votes ⊥.

Step 5: [The Period’s Second Finishing Step]

– If i sees 2t + 1 soft-votes for some value v 6= ⊥ for period p and has not next-voted v in
Step 4, then i next-votes v.a

aBy the end of Step 5, an honest user i is guaranteed to see 2t + 1 next-votes for some value v, which may or
may not be ⊥. Thus Steps 1 and 2 of the next period is well defined.

In Communication Setting 1, Steps 4 and 5 can be combined into one step. We keep them separate to better
align with Communication Setting 2.

The Halting Condition

User i HALTS the moment he sees 2t+ 1 cert-votes for some value v for the same period p, and
sets v to be his output. Those cert-votes form a certificate for v.

4



3.3 The Protocol in Communication Setting 2

In this setting, each user i keeps a timer clocki which he resets to 0 every time he starts a new
period. As long as i remains in the same period, clocki keeps counting. The users’ individual timers
do not need to be synchronized or almost synchronized. We only require they have the same speed.

The halting condition is the same as in Communication Setting 1 and is omitted from the
description below.

5



Period p

All honest users start period 1 at the same time.a User i starts period p ≥ 2 the first moment he
receives 2t+ 1 next-votes for some value v for period p− 1, and only if he has not yet started a
period p′ > p.b User i sets his starting value for period p ≥ 2, stpi , to v. For p = 1, st1i , ⊥.
The moment user i starts period p, he finishes all previous periods and resets clocki to 0.

Step 1: [Value Proposal] User i does the following when clocki = 0.

– If
(
p = 1

)
OR

(
(p ≥ 2) AND (i has received 2t+ 1 next-votes for ⊥ for period p− 1)

)
,

then i proposes vi, which he propagates together with his period p credential;

– Else if
(
p ≥ 2

)
AND

(
i has received 2t + 1 next-votes for some value v 6= ⊥ for period

p− 1
)

, then i proposes v, which he propagates together with his period p credential.

Step 2: [The Filtering Step] User i does the following when clocki = 2λ.

– If
(
p = 1

)
OR

(
(p ≥ 2) AND (i has received 2t+ 1 next-votes for ⊥ for period p− 1)

)
,

then i identifies his leader `i,p for period p and soft-votes the value v proposed by `i,p;

– Else if
(
p ≥ 2

)
AND

(
i has received 2t + 1 next-votes for some value v 6= ⊥ for period

p− 1
)

, then i soft-votes v.

Step 3: [The Certifying Step] User i does the following when clocki ∈ (2λ, 4λ).

– If i sees 2t+ 1 soft-votes for some value v 6= ⊥, then i cert-votes v.

Step 4: [The Period’s First Finishing Step] User i does the following when clocki = 4λ.

– If i has certified some value v for period p, he next-votes v;

– Else if
(
p ≥ 2

)
AND

(
i has seen 2t+1 next-votes for ⊥ for period p−1

)
, he next-votes ⊥.

– Else he next-votes his starting value stpi .

Step 5: [The Period’s Second Finishing Step] User i does the following when clocki ∈ (4λ,+∞),
until he is able to finish period p.

– If i sees 2t+ 1 soft-votes for some value v 6= ⊥ for period p, then i next-votes v.

– If
(
p ≥ 2

)
AND

(
i sees 2t+1 next-votes for ⊥ for period p−1

)
AND

(
i has not certified

in period p
)

, then i next-votes ⊥.

aEven if different users start period 1 hours apart in time, it is as if the network has been partitioned and, once
all honest users have started, the protocol guarantees the three desirable properties described in the introduction.

bWhen the network is not partitioned, an honest user always goes through periods in order. During a partition
and shortly after a partition is resolved, however, an honest user may see enough next-votes for a value v′ for a
period p′ − 1 with p′ > p and start period p′, before he sees enough next-votes for v for period p− 1. In this case,
he will skip period p.
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4 Analysis Sketch

Below we sketch the key points for the three desired properties of our protocol in Communication
Setting 2, and we will use the following definitions.

Definition 4.1. Potential starting value for period p: A value v that has been next-voted by
t+ 1 honest users for period p− 1.

Definition 4.2. Certified value for period p: A value v that has been cert-voted by 2t+1 users
for period p.

Definition 4.3. Potentially certified value for period p: A value v that has been cert-voted
by t+ 1 honest users for period p.

Note that the Adversary can turn a potentially certified value into a certified value, by adding
cert-votes of the t malicious users.

Fast Agreement without Partition.

• If the period-1 leader `1 is honest, then every honest user i identifies `1 as his leader in Step 2,
thus soft-votes the leader’s proposed value v. As there are 2t + 1 honest users and they only
soft-vote for v, in Step 3 every honest user sees 2t+ 1 soft-votes for v by time 3λ, and no other
value v′ has these many soft-votes. Thus honest users all cert-vote v by time 3λ. Accordingly,
all honest users see 2t+ 1 cert-votes for v for period 1 and output v by time 4λ.

Moreover, from the moment the first honest user i finishes the protocol, all honest users finish
within time λ, as i has helped propagating the cert-votes he sees.

• If there is no certified value for period 1 (which only happens if the leader `1 is malicious), all
honest users move to period 2 by time 6λ, and they move within time λ apart.

Indeed, if no honest user has cert-voted in Step 3, then all honest users next-vote ⊥ (which is
their starting values for period 1) in Step 4. Thus they all see these votes and move to period
2 by time 5λ. (They may or may not have finished Step 5.)

If some honest users have cert-voted in Step 3, then there exists a value v which has 2t + 1
soft-votes and no other value can have these many soft-votes. Thus those honest users have all
cert-voted for v, and there are at most t + 1 of them (otherwise v is potentially certified and
the Adversary can make it certified by adding t cert-votes from malicious users). Since those
honest users have helped propagating the soft-votes for v by time 4λ, all honest users see 2t+ 1
soft-votes for v by time 5λ. Thus they all next-vote v (in Step 4 or 5) by time 5λ, and all
see 2t + 1 next-votes for the same value by time 6λ. Note that some honest users may have
next-voted for ⊥ in Step 4 as well, thus there may also exist 2t+ 1 next-votes for ⊥.

• More generally, if there is no certified value for period p ≥ 2, all honest users move to period
p+ 1 by their own time 8λ, and they move within time λ apart.

The extra 2λ time compared with period 1 is because the honest users start period p not at the
same time but within time λ apart. The invariant remains that all honest users finish a step
within time λ apart.

More over, there exist at most two values each of which has 2t+ 1 next-votes for period p, and
one of them is necessarily ⊥.
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• In each period p, the leader is honest with probability > 2/3. If a period p ≥ 2 is reached and
`p is honest, then all honest users finish the protocol in period p by their own time 6λ, with the
same output v 6= ⊥.

Indeed, in period p− 1, if there exists a certified value v, then v 6= ⊥, at least t+ 1 honest users
have cert-voted for v and helped propagating the 2t + 1 soft-votes for v by the end of their
Step 3. Thus at least t+ 1 honest users next-voted v in Step 4 and did not next-vote anything
else in period p − 1. The other honest users next-voted v in Step 5 in period p − 1. So there
do not exist 2t + 1 next-votes for ⊥ and all honest users move to period p with starting value
v. In period p, the leader `p proposes v in Step 1 and all honest users soft-vote v in Step 2. In
Step 3, by their own time 4λ, all honest users have cert-voted v. Thus all of them finish the
protocol by their own time 6λ, with output v.

If there is no certified value in period p − 1, then the leader `p may propose his private input
v`p or a value v 6= ⊥ for which she has seen 2t + 1 next-votes from period p − 1. In the first
case, all honest users will follow the leader and soft-vote v`p ; in the second case, all honest users
have seen enough next-votes for v and will soft-vote v in Step 2. In both cases, all honest users
will cert-vote the same value in Step 3 and finish the protocol with that value.

• Combining the above facts together, if the period-1 leader `1 is malicious, then the protocol
takes in expectation at most 2.5 periods and at most 16λ time. Moreover, all honest users finish
within time λ apart.

Arbitrary Partition Resilience. The following properties hold even during a network partition.

• For each period p, at most one value is certified or potentially certified.

• If a value v is potentially certified for period p, then only v can receive 2t + 1 next-votes for
period p. Thus, the unique potential starting value for period p+ 1 is v.

• If a period p has a unique potential starting value v 6= ⊥, then only v can be certified for period
p. Moreover, honest users will only next-vote v for period p, so the unique potential starting
value for period p+ 1 is v. Inductively, any future periods p′ > p can only have v as a potential
starting value. Thus, once a value is potentially certified, it becomes the unique value that
can be certified or potentially certified for any period, and no two honest users will finish the
protocol with different outputs.

Fast Recovery from Network Partition. The following properties hold after a network
partition is resolved.

• If some honest user has seen a certificate during the partition, then all honest users will receive
the certificate within time λ after the partition is resolved and they will all HALT.

• Else, let p be the highest period that some honest user is working on when the partition is
resolved. After time λ, all honest users will also start period p as they receive 2t+ 1 next-votes
for period p− 1. Soon after, all honest users will next-vote the same value v (which may be ⊥)
for period p, and they will all start period p+ 1 within time λ apart.

• Once all honest users start the same period p within time λ apart, we are back in the no-partition
case.
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5 Extensions

Producing a certificate in one voting step. When our protocol is used to implement the
Algorand blockchain, the proposed values are hashes of blocks and are propagated in parallel with
the actual blocks. Our protocol allows the users to soft-vote for the hashes in Step 2 without seeing
the blocks. As hashes and soft-votes are short messages and propagate much faster than blocks,
by the time most honest users receive the actual block B, they should have already received 2t+ 1
soft-votes for H(B) when the leader is honest. Thus most honest users cert-vote H(B) the moment
they receive B, and a certificate is produced in only one voting step after the block is propagated.

Dynamic adversary in permissionless settings. In a permissionless system where the
Adversary can corrupt users dynamically, the (small) committees of Steps 4 and 5 may all be
corrupted during a partition after sending out their next-votes, and all their messages may be
pocketed by the Adversary, in which case their votes may not be propagated to all honest users
after the partition is resolved. Since the next-votes are the means of moving to the next period,
we introduce new steps and committees in order to make progress after a partition. In particular,
in the permissionless protocol, for each period p we add steps 6, 7, 8, . . . , where even-numbered
steps are essentially copies of Step 4 and odd-numbered steps are essentially copies of Step 5. The
corresponding rule for moving to period p + 1 would be seeing 2t + 1 next-votes for some value v
from the same step of period p.

6 Discussions

The Optimality of 2/3 Honest Majority. Following the classic literature on Byzantine
agreements, no agreement protocol that works under ≤ 2/3 honest majority can be partition
resilient. Thus our protocol has the optimal dependence on the honesty ratio among all partition-
resilient agreement protocols.

Short timers. It is not necessary for a user i’s timer to be able to keep track of time forever.
Indeed, we only need that users’ individual timers can count up to a short fixed interval —the
amount of time it takes a user to reach Step 5 after starting a period, when there is no partition. In
practice this interval is no more than a few minutes, depending on how fast a block propagates. If
a long network partition happens, the timers will all be reset shortly after the partition is resolved
and the protocol still achieves the three desired properties given in the Introduction.

Player replaceability. Our protocol is player-replaceable as in the original Algorand protocol,
which allows us to change the set of users that vote in each step, tolerating an Adversary who
is able to corrupt users instantaneously. Indeed, in a permissionless system, we use Algorand’s
cryptographic self-selection to select small voting committees, and the committee members use
ephemeral keys to sign their votes. We will describe the permissionless protocol and the
corresponding conditions for committee selection in another manuscript.
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Abstract—Decentralized cryptocurrencies rely on participants
to keep track of the state of the system in order to verify new
transactions. As the number of users and transactions grows,
this requirement becomes a significant burden, requiring users to
download, verify, and store a large amount of data to participate.

Vault is a new cryptocurrency design based on Algorand that
minimizes these storage and bootstrapping costs for participants.
Vault’s design is based on Algorand’s proof-of-stake consensus
protocol and uses several techniques to achieve its goals. First,
Vault decouples the storage of recent transactions from the
storage of account balances, which enables Vault to delete
old account state. Second, Vault allows sharding state across
participants in a way that preserves strong security guarantees.
Finally, Vault introduces the notion of stamping certificates, which
allow a new client to catch up securely and efficiently in a proof-
of-stake system without having to verify every single block.

Experiments with a prototype implementation of Vault’s data
structures show that Vault’s design reduces the bandwidth cost
of joining the network as a full client by 99.7% compared to
Bitcoin and 90.5% compared to Ethereum when downloading a
ledger containing 500 million transactions.

I. INTRODUCTION

Cryptocurrencies enable decentralized electronic payments,
smart contracts, and other applications. However, supporting
a large number of users and transactions will require cryp-
tocurrencies to address two crucial and related bottlenecks:
storage (how much data every participant needs to store)
and bootstrapping (how much data every participant has to
download to join the system). For example, in Bitcoin [21],
a new client that wishes to join the network and verify that
it received the correct state must download about 150 GB of
data, as of January 2018 [3]. Storage and bootstrapping costs
are related because, in a decentralized design, existing nodes
must store enough state to help new nodes join the system.

Designing a cryptocurrency whose storage and bootstrap-
ping costs scale well with the number of users and transactions
is difficult due to several challenges. First, a cryptocurrency
must prevent double-spending—that is, prevent a user from
spending the same money twice or issuing the same transaction
multiple times. This is typically done by keeping track of
past transactions, but doing so is incompatible with good
scalability. For instance, Bitcoin stores all past transactions,
which does not scale well (costs grow linearly with the number
of transactions). As another example, Ethereum [9] does not
store all transactions but instead keeps track of the sequence

number (“nonce”) of the last transaction issued from a given
account [28]. This nonce must be stored even if the account
has no remaining balance. As a result, this does not scale well
either (costs grow linearly with the number of old accounts)
and has caused problems for Ethereum when a smart contract
inadvertently created many zero-balance accounts [6], [29].
We measure the Ethereum ledger (§VII) and find that 38%
of Ethereum accounts have a balance of zero.

Second, a cryptocurrency relies on all participants to check
the validity of transactions. This requires the participants to
have enough state to validate those transactions. Storing all
account balances allows a participant to validate any transac-
tion but requires storage space that grows with the number of
accounts. On the other hand, not storing all account balances
could imply that fewer participants can vet transactions.

Third, proof-of-stake systems, such as Algorand [14], can
provide high transaction throughput. However, such proof-of-
stake systems are particularly challenging in terms of boot-
strapping cost. Convincing a new participant of the validity of
a block in the blockchain requires first convincing them of the
balances (stakes) of all users in an earlier block. Convincing
a new user of the validity of the latest block thus requires
convincing them of the balances of all users at all points in
time, starting with the initial genesis block.

Finally, an appealing way to reduce storage and boot-
strapping costs is to delegate the job of storing state and
certifying future states to a committee whose participants are
trusted in aggregate. However, existing systems that take this
approach [17], [18], [22] rely on long-standing committees
known to an adversary. As a result, this adversary may be
able to target the committee members, leading to security or
availability attacks.

This paper presents Vault, a new cryptocurrency design
based on Algorand that addresses the storage and bootstrapping
bottlenecks described above. In particular, Vault reduces the
bandwidth cost of joining the network as a full client by
99.7% compared to Bitcoin and 90.5% compared to Ethereum
when downloading a ledger containing 500 million transac-
tions. Vault builds on Algorand’s proof-of-stake consensus
protocol and addresses the above challenges of storage and
bootstrapping costs using several techniques:

First, Vault decouples the tracking of account balances
from the tracking of double-spent transactions. Each Vault
transaction is valid for a bounded window of time, expressed
in terms of the position in the blockchain where the transaction
can appear. This allows Vault nodes to keep track of just the
transactions that appeared in recent blocks and to forget about
all older transactions. The account balance state, on the other
hand, is not directly tied to past transactions, and zero-balance
accounts can be safely evicted.
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Second, Vault uses an adaptive sharding scheme that com-
bines three properties: (1) it allows sharding the account state
across nodes so that each node does not need to store the state
of all accounts; (2) it allows all transactions to be validated by
all nodes, using a Merkle tree to store the balance information;
and (3) it adaptively caches upper layers of the Merkle tree so
that the bandwidth cost of transferring Merkle proofs grows
logarithmically with the number of accounts.

Finally, Vault introduces stamping certificates to reduce the
cost of convincing new users of a block’s validity. The insight
lies in trading off the liveness parameter used in selecting a
committee to construct the certificate of a new block [14],
[22].1 The stamping certificates are built on top of existing
Algorand certificates and have a much lower probability of
selecting an online quorum (so in many cases Vault fails
to find enough participants to construct a valid certificate)
but require fewer participants to form the certificate (thus
significantly reducing their size) while still preserving the
same safety guarantees (i.e., an adversary still has a negligible
probability of corrupting the system). Building an extra layer
of stamping certificates allows us to relax liveness for stamping
without affecting the liveness of transaction confirmation.
Vault’s stamping certificates are generated in a way that allows
new clients to skip over many blocks in one verification step.

We prototype and benchmark the core of Vault’s design,
focusing on bootstrapping and storage. Our evaluation shows
that Vault’s storage and bootstrapping cost is 477 MB for
500 million transactions when account creation and churn rates
match those observed in Ethereum in practice. This is a sig-
nificant reduction compared to existing systems like Ethereum
and Bitcoin; with the same 500 million transactions, Ethereum
and Bitcoin would require 5 GB and 143 GB respectively.
Individual microbenchmarks demonstrate that each of Vault’s
techniques are important in achieving its performance goals.

The contributions of this paper are:

• The design of Vault, a cryptocurrency that reduces storage
and bootstrapping costs by 10.5–301× compared to Bitcoin
and Ethereum and that allows sharding without weakening
security guarantees.

• Techniques for reducing storage costs in a cryptocurrency,
including the decoupling of account balances from double-
spending detection and the adaptive sharding scheme.

• The stamping certificate technique for reducing bootstrap-
ping costs in a proof-of-stake cryptocurrency.

• An evaluation of Vault’s design that demonstrates its low
storage and bootstrapping costs, as well as the importance
of individual techniques.

II. MOTIVATION

Vault’s goal is to reduce the cost of storage and bootstrap-
ping in a cryptocurrency. There are two significant aspects to
this goal, corresponding to two broad classes of prior work.

The first is what we call the “width” of the ledger: how
much data does each participant need to store in order to
validate transactions (including detecting double-spending)? In

1Vault avoids the use of long-standing committees by using Algorand’s
cryptographic sortition and player-replaceable consensus.

Bitcoin, for example, the “width” is the set of all past unspent
transactions [21]. Techniques that address the width of a ledger
focus on managing the substantial storage costs of keeping
the history of all transactions on each client. Vault reduces
its “width” by decoupling account state from transaction state
(§IV) and by adaptively sharding its state (§V).

The second is what we call the “length” of the ledger:
how much data must be transmitted to a new participant as
proof of the current state of the ledger? In Bitcoin’s case, the
proof consists of all block headers starting from the genesis
block, chained together by hashes in the block headers, as well
as all of the corresponding block contents (to prove which
transactions have or have not been spent yet). Techniques
addressing the length of the ledger typically allow clients
to skip entries when verifying block headers, which reduces
the total download cost. Vault reduces its “length” by using
stamping certificates to omit intermediate state (§VI).

Table I summarizes Vault’s characteristics and compares
them with other cryptocurrencies. Bitcoin and Ethereum [9]
provide no formal guarantees on the correctness of the latest
state. Permissioned cryptocurrencies have low bootstrapping
cost but are vulnerable to an adversary which compromises
a quorum of permissioned nodes at any point. A system
combining OmniLedger [17] and Chainiac [22] lacks single
points of failure, but even then an adversary may adaptively
compromise a selected committee. Algorand [14] provides
strong security guarantees, but its bootstrapping costs grow
prohibitively quickly. Vault alone achieves cryptographic se-
curity against an adversary that can adaptively compromise
users while scaling in both storage and bootstrapping costs.
We explore related work in more detail in §VIII.

III. OVERVIEW

Vault is a permissionless, proof-of-stake cryptocurrency
that significantly reduces new client bootstrapping costs rela-
tive to the state of the art by reducing both steady-state storage
costs and the sizes of proofs needed to verify the latest state.

A. Objectives

Suppose Alice is a new participant in Vault who holds the
correct genesis block. She wishes to catch up to the latest state
and contacts Bob, an existing participant (or perhaps a set of
participants). Vault should achieve the following main goals:

• Efficient Bootstrapping: If Bob is honest, he should be able
to convince Alice that his state is correct and deliver this
state using a minimal amount of bandwidth.

• Complete Bootstrapping: If Bob is honest, then upon syn-
chronization, Alice has sufficient state to execute the entire
protocol correctly. Moreover, Alice should now be able to
help other new clients catch up.

• Safe Bootstrapping: If Bob is malicious, he should not be
able to convince Alice that any forged state is correct.

• Efficient Storage: Bob must store a small amount of data
to help Alice join the network.

Vault’s design also confers additional benefits:
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System Execution State Proof Size Bootstrap Security

Bitcoin [21] UTXOs Headers + TXs Probabilistic (heaviest chain wins)

Ethereum [9] All accounts Headers + All accounts Probabilistic (heaviest chain wins)

Permissioned Live accounts
Shards Majority of trust set’s signatures Cryptographic if majority never compromised; none otherwise

OmniLedger [17] + Chainiac [22] UTXOs
Shards

Headers+Certificates
Sparseness + UTXOs

Shards Cryptographic with static attacker; none with adaptive attacker

Algorand [14] UTXOs Headers + Certificates + TXs Cryptographic

Vault Live accounts
Shards

Headers+Certificates
Sparseness + Live accounts

Shards Cryptographic

TABLE I. VAULT COMPARED TO OTHER CRYPTOCURRENCIES. UTXO REFERS TO UNSPENT TRANSACTION OUTPUTS; TX REFERS TO TRANSACTIONS.

• Charging for Storage: Adversaries must acquire significant
stake to inflate the size of the protocol state.

• Liveness and Availability: Despite sharding state across
clients, Vault continues to operate even when some users
disconnect from the network. Additionally, Vault maintains
bootstrap efficiency even when some users lose connectivity
after a block is confirmed.

B. Threat Model

Vault should achieve its goals even in the face of adversarial
conditions. However, many properties are unachievable given
an arbitrarily strong attacker, which can indefinitely drop,
delay, and reorder messages on a network [13]. We therefore
limit the attacker’s power with the following assumptions,
inherited from Algorand [14]:

• Bounded Malicious Stake: At least some proportion h of all
money (the “stake”) in Vault is controlled by honest users,
where h > 2

3 . Stake sold by a user counts towards h for
some duration d (e.g., 48 hours) following the sale.

• Cryptographic Security: The adversary has high but
bounded computation power. In particular, the adversary
cannot break standard cryptographic assumptions.

• Adaptive Corruptions: The adversary may corrupt a partic-
ular user at any time (given that at no point it controls more
than 1− h of the stake in Vault).

• Weak Synchrony: The adversary may introduce network
partitions lasting for a duration of at most b (e.g., 24 hours).
During a network partition, the adversary may arbitrarily
reschedule or drop any message. The minimum time be-
tween network partitions is nontrivial (e.g., 4 hours).

C. Algorand Background

Vault’s consensus protocol is based on Algorand, which
we briefly review here. All users’ clients in Vault agree on
an ordered sequence of signed transactions, and this sequence
constitutes the cryptocurrency ledger. Vault is a permissionless
proof-of-stake system, meaning that any user’s client, identified
by a cryptographic public key, may join the system, and
the client of any user who holds money may eventually be
selected to append to the ledger. Honest clients listen for new
transactions and append recent valid transactions to the ledger.

The frequency at which a user’s client is selected is propor-
tional to the user’s stake. Sets of transactions are batched into
blocks. Each block contains a block header, which contains
a cryptographic commitment to the transaction set. Block
headers also contain the cryptographic hash of the previous

block in the ledger. Block headers are small, so these hashes
allow clients to quickly verify historical transaction data.

Additionally, block headers contain a special pseudoran-
dom selection seed Q. Before a client proposes a block, it
computes Q in secret, so Q is unpredictable by the rest of
the network and partially resistant to adversarial manipulation.
As in Algorand, Vault uses Q to seed Verifiable Random
Functions (VRFs) [20] to implement cryptographic sortition.
Cryptographic sortition produces a sample of the users in
the system, weighted by the stake of their accounts. Each
client’s membership in the sample remains unknown to an
adversary until the client emits a message because a VRF
allows the client to compute this membership privately; since
VRFs produce a proof of their correctness, any other client
can verify this membership. To protect the system against
adversaries which corrupt a user after that user is selected,
clients sign their messages with ephemeral keys, which they
delete before transmission.

Vault uses a Byzantine agreement scheme which operates
in rounds. Each round, the protocol selects some block pro-
poser which assembles the transaction set and header form-
ing the block, which is broadcast via a peer-to-peer gossip
network [12]. Subsequently, the protocol selects a committee
which verifies the correctness of the block. To sample users
in a manner resistant to adversarial manipulation, committees
from round r are seeded with the value of Q from round r−1
and weighted by proofs of stake from round r − b.

Once clients become confident of a block’s confirmation,
Vault uses sortition to select a subset of clients to certify the
block by signing its receipt (i.e., Algorand’s “final” step). The
aggregation of these signatures past some secure threshold,
along with proofs of stake for each signature, forms a final
certificate which proves to any client that a block is valid: the
Byzantine agreement protocol guarantees that for each round,
at most one valid block (or an empty block if the proposer
misbehaves) reliably receives this certificate. Given knowledge
of only the genesis (i.e., the first) block, a new client is
convinced that the block from round r is correct if a peer
can produce r− 1 block headers and the r− 1 corresponding
certificates of validity.

D. System Design

Figure 1 gives an overview of Vault’s data structures, which
are the key to Vault’s lower storage and bootstrapping costs.
The data structures are based around a chain of block headers,
shown in the middle of the figure. Each block header consists
of four elements: PREVBLOCK (the hash of the previous
block), Q (the seed for cryptographic sortition), TXROOT (a
Merkle tree commitment [19] to the list of transactions in the
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Fig. 1. An overview of the authenticated data structures used in Vault. In this figure, the objects each client stores locally on disk are outlined in solid black,
while the objects it may discard are outlined with faint dots. The triangles annotated with “$$” represent the sparse Merkle trees containing account balances,
while the bottom row of rectangles annotated with “H(tx)” represents the set of transaction hashes in each block. Both the transaction hash set and the balance
set are committed to in block headers (the row of rectangles in the middle of the figure); the commitments are represented as solid black dots. In addition, each
block header contains Q (i.e., the selection seed), which is computed pseudorandomly and seeded with the previous header’s Q-value. The top row of rectangles
and seals represent Vault’s small stamping certificates and large final certificates; we draw arrows to illustrate how a particular certificate is verified by two block
headers. Not shown is Vault’s adaptive sharding (§V).

block), and BALROOT (a sparse Merkle tree commitment [8]
to the balances of every user after applying transactions).

Every block must follow four rules to be considered valid:

1) Transactions in the block are not expired. Each trans-
action includes the first and last block number (in the
blockchain) where it can appear.

2) After all transactions in the block are executed, no
account ends up with a negative balance.

3) Transactions in the block have not been executed
before (i.e., have not appeared previously on the
ledger).

4) BALROOT correctly reflects all users’ balances after
applying the block’s transactions to the previous
block’s balances.

In order to check that a new block follows these rules,
clients maintain two pieces of state, shown in solid black (as
opposed to grayed out) in the bottom half of Figure 1:

• The tree of account balances from the most recent block.
This allows a client to ensure that new transactions have
sufficient funds (rule 2) and to verify the correctness of the
new balance tree (rule 4).

• The lists of transactions from the last few blocks. This
allows a client to ensure that a transaction has not appeared
previously (rule 3) by checking that a new transaction
does not appear in any of the previous transaction lists.
To minimize the storage required by these lists, TXROOT
commits to a list of transaction hashes, rather than the
transactions themselves.
Clients can discard transaction lists older than a certain
threshold, corresponding to the maximum validity interval
of a transaction, which we denote Tmax. Transactions that
appeared more than Tmax blocks ago will be rejected by
rule 1 and need not be tracked explicitly.

§IV describes in more detail how clients check these rules
while using a minimal amount of storage. §V further describes
Vault’s adaptive sharding, which allows clients to store only a
subset of the balance tree. These techniques combine to reduce
the “width” of Vault’s ledger.

Vault uses Algorand’s consensus protocol to decide which
valid block will be next in Vault’s blockchain. The consensus
protocol produces a final certificate confirming agreement on
that block, shown in the top half of Figure 1. These certificates
allow a new client to securely join the system and determine
which chain of blocks is authentic.

Each certificate consists of a set of signatures (of the block
header) by a committee of clients chosen pseudorandomly
using cryptographic sortition. In order to verify a certificate,
a new client must check that all of the signatures are valid
(which is straightforward) and check that the clients whose
signatures appear in the certificate were indeed members of the
committee chosen by cryptographic sortition (which requires
state). Verifying committee membership requires two pieces
of state: the sortition seed Q, used to randomize the selection,
and the balance tree at BALROOT, used to weigh clients by
how much money their users have.

In Algorand’s certificate for block r, BALROOT comes
from block r − b, while Q comes from block r − 1. This
means that, in order to verify block r, the client must first
verify block r − 1 so that the client knows the correct Q for
verifying block r’s certificate. Furthermore, the committees
used for Algorand’s certificates are relatively large, so that
with high probability there are enough committee members to
form a certificate for each block. These certificates are shown
with a tall rectangle at the top of Figure 1.

Vault introduces a second kind of certificate, called a
stamping certificate, which speeds up bootstrapping. The
stamping certificate differs from the final certificate in two
important ways. First, instead of using Q from the immediately
previous block, it uses Q from b blocks ago. (For security,
BALROOT must be chosen from b blocks before Q, so this
means BALROOT now comes from 2b blocks ago.) This allows
clients to “vault” forward by b blocks at a time. Second,
the stamping certificates use a smaller committee size, which
makes the certificate smaller since it contains fewer signatures.
The shorter rectangles at the top of Figure 1 represent stamp-
ing certificates, with arrows indicating the Q and BALROOT
needed to verify them.
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Vault sets parameters so that the stamping certificate is
just as hard for an adversary to forge as Algorand’s original
certificates. The trade-off, however, is that in some blocks,
there may not be enough committee members to form a valid
stamping certificate. To help new clients join the system, every
Vault client keeps the stamping certificates for approximately
every bth block since the start of the blockchain, along with
full Algorand-style certificates for the blocks since the last
stamping certificate. Other certificates are discarded (shown
as grayed out in Figure 1). §VI-B describes Vault’s stamping
certificates in more detail, which help Vault shrink the “length”
of its ledger.

IV. EFFICIENT DOUBLE-SPENDING DETECTION

This section describes Vault’s design for minimizing the
amount of storage required by a client to verify new trans-
actions. To understand the challenges in doing so, consider
the key problem faced by a cryptocurrency: double-spending.
Suppose Alice possesses a single coin which she gives to both
Bob and Charlie. A cryptocurrency must reject one of these
transactions; if both are accepted, Alice double-spent her coin.

In Bitcoin, each transaction has a set of inputs and outputs.
The inputs collect money from previous transactions’ outputs,
which can then be used by this transaction. The outputs define
where the money goes (e.g., some may now be spendable by
another user, and the rest remains with the same user). To
detect double-spending in this scheme, Bitcoin must determine
whether some output has been previously spent or not. Thus,
clients must store the set of all unspent transaction outputs.

A more space-efficient approach is to store the balance
associated with each user, rather than the set of unspent trans-
actions. For example, Ethereum follows this approach. The
cost savings from storing just the balances may be significant:
for instance, there are ten times as many transactions in Bitcoin
as there are addresses [2], [4].

Switching to a balance-based scheme introduces a subtle
problem with transaction replay. If Alice sends money to Bob,
Bob may attempt to re-execute the same transaction twice. In
Bitcoin’s design, this would be rejected because the transaction
already spent its inputs. However, in a naı̈ve design that tracked
only account balances, this transaction still appears to be valid
(as long as Alice still has money in her account), and Bob may
be able to re-execute it many times to drain Alice’s account.

To distinguish between otherwise identical transactions,
Ethereum tags each account with a nonce, which acts as a
sequence number. When an account issues a transaction, it
tags the transaction with its current nonce, and when this
transaction is processed, the account increments its nonce. The
transactions issued by an account must have sequential nonces.
Because of this design, Ethereum cannot delete accounts with
zero balance; all clients must track the nonces of old accounts
to prevent replay attacks, on the off chance that the account
will receive money in the future.

Empty accounts significantly increase the storage cost of
Ethereum. Our analysis of its ledger shows that approximately
one-third of all Ethereum addresses have zero balance (§VII).
Worse, the inability to garbage-collect old accounts constitutes
a serious denial-of-service vulnerability: an adversary with a

Alice→Bob:       $30
Issuance:       550
Expiry:       574
Nonce:           8

Alice

Fig. 2. The format of a Vault transaction from Alice to Bob. In addition to
the sender, receiver, and amount, the transaction contains tissuance, texpiry,
and a nonce. A valid transaction contains the sender’s digital signature.

small amount of money may excessively increase the cryp-
tocurrency’s storage footprint by creating many accounts. In
fact, in 2016 an Ethereum user inadvertently created many
empty accounts (due to a bug in Ethereum’s smart contract
processing) [6], requiring the Ethereum developers to issue a
hard fork to clean up the ledger [29].2

At a high level, Vault avoids the problem of storing empty
accounts by forcing transactions to expire. The rest of this
section describes Vault’s solution in more detail.

A. Transaction Expiration

All transactions in Vault contain the fields tissuance and
texpiry, which are round numbers delineating the validity of
a transaction: blocks older than tissuance or newer than texpiry
may not contain the transaction. Moreover, we require that 0 ≤
texpiry − tissuance ≤ Tmax for some constant Tmax. This way,
a verifying client may detect the replaying of a transaction by
checking for its presence in the last Tmax blocks. (Transactions
still contain a nonce to distinguish between otherwise identical
transactions; however, this nonce is ephemeral and not stored.)
As a result, clients do not need to track account nonces and can
delete empty accounts from the balance tree. Figure 2 shows
the format of one transaction.

Requiring transaction lifetimes to be finite means that, if a
transaction fails to enter a block before it expires (e.g., because
its transaction fee was lower than the current clearing rate), the
issuer must reissue the transaction in order for the transaction
to be executed. On the other hand, the expiration time ensures
that old transactions that failed to enter a block when they
were originally issued cannot be re-entered into a block at a
much later time by an adversary; i.e., expiration bounds the
outstanding liabilities of an account.

Transactions are valid for a window of rounds and not just
a single round because clients must account for uncertainty in
transaction propagation latencies, transaction fees, and round
durations. For example, by the time a transaction propagates
through the network, some number of rounds will have passed
since the issuer signed it. If the transaction were valid for just
one round, the issuer must precisely estimate its propagation
latency. Similarly, a temporary spike in the transaction fees
could occur due to a burst of high demand. A window of
transaction validity amortizes over these uncertainties.

The choice of Tmax affects two considerations. The first
is that clients must store the last Tmax blocks’ worth of

2Currently, Ethereum transaction fees are high enough to make such attacks
unlikely. However, proposed cryptocurrency designs like Algorand [14] aim
to support orders of magnitude more throughput, which would lead to lower
transaction fees, and which would in turn make such attacks worth considering.
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transactions to detect duplicates; a larger Tmax increases client
storage. (Clients can store transaction hashes instead of the
transactions themselves to reduce this cost.) The second is
that clients must reissue any transaction that fails to enter a
block within Tmax (if they still want to issue that transaction).
In our experiments, we set Tmax to the expected number of
blocks in 4 hours (which, based on Algorand’s throughput
of ∼750 MB/hour [14], suggests at most a few hundred
megabytes of recent transaction hashes); we believe this strikes
a balance between the two constraints.

Although Vault’s design requires that transactions be valid
for a short window of time (e.g., 4 hours), Vault is nonetheless
compatible with applications that require transactions to be
settled far in the future. For instance, payment channels are
used to collapse multiple off-chain transactions into a single
on-chain settlement transaction. By aggregating many off-chain
transactions over a long period of time, payment channels can
reduce on-chain transaction load. In Vault, a settlement trans-
action can be postdated into future rounds—e.g., a window
of rounds that will appear in a week. Thus, even though the
transaction itself is valid for a relatively short window of Tmax,
the payment channel can still aggregate off-chain transactions
for an arbitrary time period (e.g., an entire week).

B. Efficient Balance Commitments

To efficiently commit to the large set of balances in
BALROOT, Vault clients build Merkle trees [19] over this set.
Each leaf in the Merkle tree stores a single account—that is,
the public key of the account and the balance for that account.
The leaves are sorted by public key. With a Merkle tree, clients
may prove that some object exists in a given set using a witness
of size O(log n), where n is the total number of objects in the
set. This allows them to efficiently construct proofs of stake.
For example, for a balance set containing 100 million accounts
(4 GB of on-disk storage), it suffices for a client to send 1 KB
of data to prove its stake against a 32-byte BALROOT in a
block header. It is important for the proofs of stake in Vault
to be small since a certificate may contain thousands of these
proofs (see §VI).

For clients to verify the validity of BALROOT for a new
block, BALROOT must be deterministically constructed given
a set of balances. As a result, the Merkle leaves are sorted
before they are hashed together to create the root. Since a
leaf may be deleted when an account balance reaches 0, Vault
uses sparse Merkle trees [8] to perform balance commitments.
A sparse Merkle tree possesses the structure of a prefix trie,
which allows us to perform tree insertions and deletions with a
Merkle path witness of size O(log n). In fact, a witness of size
O(log n) is sufficient for a client to securely update BALROOT
without storing the corresponding Merkle tree. We exploit this
self-verifying property of Merkle witnesses in §V.

C. Safe and Complete Bootstrapping

With these two mechanisms, it suffices to bootstrap a new
verifier by transmitting a commitment to the latest state and
the last Tmax rounds of transactions.

This scheme is complete because it allows a new verifier
to detect double-spending. Suppose the current round is r, and
a transaction was confirmed in round r0. Reading the set of

transactions in the last Tmax rounds is sufficient to detect that
this transaction is a duplicate. Either r − Tmax ≤ r ≤ r0, so
it is in this set and therefore invalid, or r0 < r− Tmax, which
means the transaction must have expired at r0 + Tmax < r.

Moreover, this scheme is safe due to the cryptographic
integrity property of Merkle trees. For an attacker to forge
a cryptocurrency state, it must tamper with the preimage to a
Merkle tree, which is computationally reducible to the security
of a cryptographic hash function.

V. SHARDING BALANCE STORAGE

As the number of accounts in Vault grows, the cost of
storing balances becomes the primary bottleneck. Concretely,
each account requires about 40 bytes (32 bytes for a public
key and 8 bytes for the balance). This means that if there
were 100 million accounts, every Vault client would need to
store about 4 GB of data, which may be acceptable (e.g., it is
less than Bitcoin’s current storage cost). On the other hand, if
Vault grew to 10× or 100× more accounts, the storage cost
would likely be too high for many clients.

To address this problem, Vault shards the tree of balances
across clients, pseudorandomly distributed by the client user’s
key. Sharding allows clients to deal with large ledger sizes.
As an extreme example, consider a system with 100 billion
accounts and 1 million online clients. Setting the number of
shards to 1,000 would require each client to store approxi-
mately 4 GB of data (i.e., 1/1000th of the balances), rather
than the full 4 TB balance tree. Even with a large number of
shards in this example, every shard’s data is held by about
1000 clients, ensuring a high degree of availability.

One challenge in sharding is that fewer clients now have
the necessary data to verify any given new transaction. Existing
proposals (like OmniLedger [17]) implement sharding by re-
stricting verifiers’ responsibility of preventing double-spending
attacks to their own shards. These proposals seem attractive
because they reduce not just storage costs but also bandwidth
and latency costs, allowing the system to scale throughput
arbitrarily. Unfortunately, such schemes are vulnerable to ad-
versaries which control a fraction of the currency. As shard
size decreases, so do shards’ replication factors, and as a result,
transactions in a given shard are verified by a small number of
clients. An adversary may own a critical fraction of the stake
in a shard by chance, giving it control of the entire shard. Thus,
these systems require an undesirable trade-off between scaling
and security, which in practice limits the degree of sharding.

Vault’s design allows sharding without any reduction in
security because all clients retain the ability to verify all trans-
actions. The trade-off comes in terms of increased bandwidth
costs during normal operation (which may reduce the system’s
maximum throughput): as we describe in the rest of this
section, with Vault’s adaptive sharding, each transaction must
include a partial Merkle proof, which grows proportionally to
the height of the balance tree.

A. Shard Witnesses

Vault shards the tree of account balances into 2N pieces
by assigning an account to a shard according to the top N bits
of the account’s public key. A client stores a shard by storing
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the balances for the accounts in that shard. Clients store the
shard(s) corresponding to their user’s public key(s). Clients
that join the network, or create a new account, download the
corresponding shards from existing peers.

The first challenge is to support sharding without a loss in
security by ensuring that all clients can verify all transactions.
Recall that the balance set is stored in a sparse Merkle tree
(§IV-B) whose root is committed to in the block header.
These trees support insertions, updates, and deletions with
witnesses of size O(log n). To allow a client to check the
validity of any transaction in a proposed block (even if that
transaction operates on accounts outside of this client’s shard),
Vault transactions include Merkle witnesses for the source and
destination accounts in the previous block’s BALROOT. Any
client that possesses the previous block’s BALROOT can use
the Merkle witnesses to confirm the source and destination
account balances and thus to verify the transaction.

B. Updating Witnesses

The second challenge is that the structure of the Merkle
tree storing account balances might change from the time the
transaction is issued to the time the transaction is committed
to the ledger, invalidating the transaction’s witnesses. Vault
clients maintain a pool (“mempool” in Bitcoin terminology)
of pending transactions that have not yet been committed.
Suppose a client has transaction T0 in its pool, and in the
meantime, a new block is committed to the ledger, containing
transaction T1 but not T0. Applying T1 to the Merkle tree
causes the tree’s internal nodes to be updated (since each node
is a hash of its children), and as a result, the witnesses for
transaction T0 are no longer valid. A naı̈ve implementation of
Vault would thus be vulnerable to denial-of-service attacks:
an adversary can send a tiny amount of money to a victim’s
account, which invalidates pending transactions issued by the
victim, and prevents the victim from spending money.

To address this challenge, Vault leverages the fact that
witnesses for a transaction need not be signed along with the
rest of the transaction. Since the witnesses are self-certifying,
the witnesses can be updated without requiring the issuer to
re-sign the entire transaction. Building on this insight, Vault
clients update the witnesses of pending transactions when any
concurrent transactions are applied to the ledger.

Specifically, suppose that a client has an existing witness
for account A (which might be the source or destination
account associated with T0), and makes a concurrent change to
account B (which might be associated with T1). Each witness
is a path from a leaf node in the Merkle tree (e.g., accounts A
or B) to the root of the Merkle tree. For any two witnesses,
there must be an intersection point (the lowest node in the
tree where the two witnesses overlap). To update the existing
witness for account A after a change to account B, Vault re-
computes B’s witness with the new leaf value for B, then finds
the intersection between A’s and B’s witnesses, and finally
splices the top part of B’s new witness into A’s witness. This
produces a fresh witness for A that is valid after B is modified.

The witness update algorithm described above can be
executed by any client, even if the client does not store the
shards associated with any of the transactions. It relies only
on the fact that the newly committed transactions have fresh

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
Fig. 3. An illustration of a single Vault shard and the balance Merkle tree.
Dots here represent Merkle nodes, and the “$” symbols represent account
balances. The solid black dots and dark “$” symbols represent the balances
which are part of the shard (the shaded gray triangle), while those in gray
represent the parts of the tree which are not. The row of black dots in the
middle represent the frontier of Merkle nodes stored by all clients regardless
of shard assignment. The jagged line connecting one of these nodes to an
unstored leaf represents the Merkle witness necessary for updating a balance.

witnesses, which is ensured by the client that proposed this
block of transactions in the first place.

C. Adaptive Sharding: Truncating Witnesses

The third challenge is that witnesses increase transaction
size. For example, if the transaction size is 250 bytes (on par
with Bitcoin), and there are 100 billion accounts in the system,
a single Merkle witness will hold 37 sibling nodes in expecta-
tion, which is 1.2 KB. Two witnesses would introduce 2.4 KB
of overhead per transaction—almost an 11× increase. Note
that the inclusion of Merkle witnesses increases bandwidth but
not storage costs: since all blocks are certified by an honest
committee, verifiers discard the witnesses after they recompute
BALROOT. Thus, the trade-off applies only to the bandwidth
costs of broadcasting transactions during rounds.

To manage the overhead of larger witnesses, clients store
(in addition to their shards) an intermediate frontier that cuts
across the Merkle tree—roughly speaking, the subset of tree
nodes at some depth. Storing this frontier allows clients to
verify partial witnesses, which prove the path from a leaf node
to the frontier, rather than all the way to BALROOT. Figure 3
illustrates one such partial witness.

We can quantify the trade-off between transaction size and
the cost of storing the frontier. Moving the frontier up in the
tree by one level (i.e., going from the nodes in the frontier to
their parents) increases the length of a partial Merkle witness
by a single sibling. Moving the frontier up in the tree by one
level also halves its size. Vault can thus tune the trade-off
between the size of partial Merkle witnesses in each transaction
and the amount of storage required for the frontier.

If the frontier lies in the dense region of the Merkle prefix
tree (towards the top of the tree), the shape of the frontier
is simple: it involves all the Merkle nodes at a given level.
However, if the frontier lies near the leaves of the Merkle
prefix tree (near the bottom), a client cannot simply store all the
nodes at a given level, as the layers are larger than the balance
set (owing to the sparseness of the Merkle tree). Instead, these
frontiers assume a “jagged” shape; they are defined as the
nodes which sit at a fixed height from the bottom of the tree.
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To update a node in the frontier, it suffices for a client to
observe a witness and follow these two rules: (1) if the witness
increases the height of a frontier node, the client replaces
that frontier node with its children (which were present in
the witness); and (2) if the witness decreases the height of
a frontier node, the client replaces that frontier node with its
parent (if it did not previously store the parent). Note that
the length of the witness alone is sufficient for determining
whether an insertion, an update, or a deletion occurred.

By application of the coupon collector’s problem3, we see
that if there are approximately n log n account balances, then
in expectation the last dense layer is of depth n [5]. For
example, if there are 100 billion ≈ 237 accounts, then layer
n = 32 is the last dense one.

D. Safe and Complete Bootstrapping

Vault’s adaptive sharding construction maintains the cryp-
tographic integrity of Merkle trees, as any verifier can con-
struct the Merkle proof of any account’s stake on demand
by concatenating the prefix of the proof, which the verifier
stores, with the suffix of the proof, which is provided by the
spender and dynamically updated by the verifier. Therefore,
this construction is safe and complete.

VI. SUCCINCT LEDGER CERTIFICATES

Bootstrapping a new client in a proof-of-stake system like
Algorand requires transferring a significant amount of data to
the new client, due to two factors. First, the confirmation of
each block depends on the state of the system at the time the
block was proposed. For instance, as mentioned in §III-C, the
Algorand committee that forms the final certificate of a block
is selected based on the random seed Q from the previous
block. Thus, to verify the correctness of block r, a new client
must first verify the correctness of block r − 1 in order to
obtain the correct Q value for verifying block r. Second, in
Algorand’s design, the certificate confirming a block consists
of a large number of signatures, reflecting the large committee
size. This arrangement is shown at the top of Figure 4.

Vault addresses this problem using two techniques. First,
Vault introduces a stamping certificate that can be verified
using state from b and 2b blocks ago rather than the state from
1 block ago. This allows clients to “leapfrog” by b blocks
at a time instead of having to verify every single block in
the blockchain. Vault uses Algorand’s cryptographic sortition
to privately select a committee for stamping certificates in
a way that does not reveal committee membership to an
adversary in advance. This ensures that an adversary cannot
selectively corrupt members of this committee to falsify a
certificate. Certificate signatures use the ephemeral keys of
each committee member; a committee member destroys its
keys before it broadcast its signature. This is shown in the
middle of Figure 4 and described in more detail in §VI-A.

Second, Vault uses a smaller committee size to generate the
stamping certificates, which reduces the size of the certificates

3 The coupon collector’s problem can be stated as follows: suppose there
are n distinct types of coupons. A drawn coupon’s type is chosen uniformly
at random. How many draws are required to collect one coupon of each type?

themselves (since they contain fewer signatures).4 To ensure
that a smaller committee does not give the adversary a higher
probability of corrupting the committee, Vault requires a much
larger fraction of expected committee members to vote in
order for the stamping certificate to be valid. This means
that, with significant probability, the committee fails to gather
enough votes to form a stamping certificate. However, this is
acceptable because new clients have two fallback options: they
can either verify Algorand’s full certificate, or they can verify
a stamping certificate for a later block and backtrack using
PREVBLOCK hashes in the block headers. This arrangement
is shown at the bottom of Figure 4 and described in §VI-B.

A. Leapfrog Protocol

To enable leapfrogging, Vault constructs a sortition com-
mittee for the stamping certificate of block r using the seed Q
from block r− c, where c ≥ 1 is some constant. For security,
the proof-of-stake balances must be selected from b blocks
before the seed Q, so they are chosen from block r − c − b.
Members of this committee wait for consensus on block r, and
once consensus is reached, they broadcast signatures for that
block (after deleting the corresponding ephemeral signing key),
along with proofs of their committee selection. The set of these
signatures forms the stamping certificate for BlockHeaderr.

As mentioned above, this committee is, in principle, known
as soon as block r − c has been agreed upon. However, the
committee is selected in private using cryptographic sortition,
and honest clients do not reveal their committee membership
until they vote for block r, which prevents an adversary from
adaptively compromising these committee members.

Now each certificate depends on two previous block head-
ers: Certificater depends on Q from BlockHeaderr−c and
BALROOT from BlockHeaderr−c−b. Moreover, Certificater
validates BlockHeaderr, which itself contains the value of Q
used for Certificater+c and the value of BALROOT used for
Certificater+c+b.

To optimize for a new client catching up on a long sequence
of blocks starting with the genesis block, we set c = b, so
that the client does not need to validate separate blocks for
Qs and BALROOTs. This reduces the bootstrapping bandwidth
by a factor of b, since a new client needs to download and
authenticate every bth block header and certificate.

To ensure that any client can help a new peer bootstrap,
all clients store the block header and certificate for blocks
at positions that are a multiple of b. Additionally, to ensure
that the base case is true, the first 2b blocks in Vault are
predetermined to be empty. Finally, to quickly catch up after
momentarily disconnecting from the network, clients keep the
previous 2b block headers at all times.

Choosing b. Vault’s choice of b trades off the weak synchrony
assumption (i.e., partitions last for periods shorter than b)
against d, the speed at which sold stake becomes malicious.
We briefly justify our choice of b below; we refer the reader
to Algorand’s security analysis [15] for a formal treatment.

4 Note that multi-signatures [1] would not significantly reduce the size of
the certificates since the certificate needs to include a proof of cryptographic
sortition (VRF) and a partial Merkle proof for each committee member whose
signature appears in the certificate, which cannot be aggregated away.
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Fig. 4. Two optimizations used to reduce the bandwidth needed to prove validity of the latest state. In this figure, b = c = 3; as before, objects that clients
can discard are outlined with dots. The top figure depicts the basic ledger data structure without any optimization: a large final certificate authenticates each
block header, and each certificate depends on the Q value immediately before it and the proofs of stake b blocks ago. The next figure shows the additional
stamping certificate chain with the leapfrog optimization: each leapfrogging certificate depends on the value of Q from b blocks ago and the balances from 2b
blocks ago (§VI-A). The bottom figure shows stamping committee optimization used to reduce the size of certificates (§VI-B). It illustrates the candidate, Q-,
and Bal-breadcrumbs which consist of a small stamping certificate and block header along with a tail of block headers. It shows the dense tail formed by the
large final certificates that prove validity of the current block. (The figure omits the frozen breadcrumbs, which are farther back in the chain.)

On the one hand, suppose the adversary partitions the
network for more than b blocks starting at round r′. Then
the adversary may predict the value of Q at round r′ + b and
then manipulate its public keys at round r′ such that it controls
both the proposer and the committee at round r′ + b + 1. In
this way, the adversary confirms two different blocks and thus
creates a fork at round r′ + b+ 1. Therefore, b must be large
enough to resist complete partitions.

On the other hand, suppose a rich, honest user sells off
50% of the stake in Vault at round r′. A few rounds after the
user completes the sale, a poor adversary corrupts this user,
who by chance controls a supermajority of the committee at
round r′+b+1. Then again the adversary gains control of the
ledger. Although this adversary controls little of the system’s
current stake, it controls much of the system’s past stake. As a
result, b must be small enough to allow honest users to finish
participating in Vault after selling off their stake.

Since c introduces an extra delay to certificate creation, for
security we require that not b ≤ d but instead b+ c ≤ d, and
since we set c = b we require that 2b ≤ d. At Vault’s highest
level of throughput, 2b = d = 2880 corresponds to about two
days’ worth of blocks.

B. Stamping Committees

Algorand’s consensus protocol requires thousands or tens
of thousands of signatures to produce a final certificate for a
block. This threshold is very high because Algorand guarantees
a very low rate of failure in terms of liveness and safety.
A failure in liveness prevents a block from being confirmed,
while a failure in safety may produce a ledger fork.

As with final certificates, a stamping committee threshold
should be set sufficiently high such that an adversary cannot
gather the signatures required to trick a new client into
accepting a forged ledger fork with high probability. Since
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adversaries know when they are selected for a leadership in
advance, and a certificate must be secure for all time, we must
keep a strict safety threshold.

Although we cannot relax safety, we can greatly relax
liveness. Suppose a new client has already verified the block
headers for blocks r and r+b, using stamping certificates, but
there was no stamping certificate produced for block r + 2b
due to relaxed liveness requirements. If there was a stamping
certificate produced for block r + 2b − 1, the new client can
efficiently verify that stamping certificate and block instead.

Specifically, the new client can ask an existing peer for the
headers of blocks r − 1 and r + b − 1 and efficiently verify
them by checking PREVBLOCK hashes in blocks r and r + b
respectively. Since headers are relatively small, this costs the
client little bandwidth. We use the term breadcrumb to denote
this chain of PREVBLOCK pointers from a stamping certificate
to an earlier block header. Figure 4’s bottom row shows two
breadcrumbs: one that required backtracking by one block (for
BALROOT), and one that required no backtracking (for Q).

If the stamping certificate at r+ 2b−1 also failed to form,
Vault repeats this process to find the latest block before r+2b
that did have a stamping certificate. If no such block exists in a
b-block interval, Vault falls back to a full Algorand certificate.

Given that stamping certificate creation may occasionally
fail, each breadcrumb must contain a small “tail” of block
headers which are required to certify the two subsequent
breadcrumbs produced at most b and 2b blocks ahead, re-
spectively. Since block headers are relatively small (less than
256 bytes), the cost of storage here is low (less than 1.3 MB for
b = 1440). As clients observe the confirmation of new blocks
and the successful creation of new stamping certificates, they
update their state so as to minimize the sizes of these tails.
Clients must also hold a dense tail of block headers and final
certificates at the end of the ledger for each block after the
last header for which a stamping certificate was produced.
Vault clients discard this dense tail whenever new stamping
certificates are successfully created.

C. Safe and Complete Bootstrapping

Ledger certificates completely commit to the state of the
ledger by signing a Merkle commitment to this state (§IV-B).
Therefore, it suffices to show that this state is the correct one.

While Q is usually unpredictable and random, an adversary
may introduce bias into its value during network partitions.
Given this bias, Vault requires a safety failure rate of 2−100 for
both its final and stamping certificates. However, with a relaxed
liveness assumption, we can decrease stamping certificate size
by at least an order of magnitude.

For example, with an honesty rate of h = 80%, a final
certificate requires a threshold of 7,400 signatures. If we allow
stamping certificates to fail to form 65% of the time, then it
suffices to have a threshold of 100 signatures (out of a suit-
ably smaller committee). Applying the stamping optimizations
allows clients in Vault to verify the latest block header in a 10-
year old ledger by downloading 365 MB or less. Appendix §A
analyzes stamping certificate size given other settings of the
honesty and liveness failure rates.

D. Storage Requirements

We next describe the objects that clients keep to allow
convincing a new client that the ledger state is valid, and we
describe the invariants that apply to each of these components.
An algorithm for keeping these objects up-to-date follows.

Proof-objects stored. The bottom of Figure 4 illustrates the
objects that a Vault client needs to store.

• The dense tail is the set of all headers and full final
certificates since the candidate breadcrumb.

• The candidate breadcrumb is the breadcrumb with the last-
observed stamping certificate. The candidate breadcrumb is
tentative and may be overwritten by a “better” breadcrumb
(i.e., a more recent breadcrumb which makes the candidate
breadcrumb obsolete). This breadcrumb is never more than
b blocks ahead of the Q-breadcrumb.

• The Q-breadcrumb is the breadcrumb with the stamp-
ing certificate immediately preceding the candidate bread-
crumb. This breadcrumb’s certificate has been fixed as no
subsequent certificate may be better than this. However, its
tail of block headers may not yet be trimmed.

• The Bal-breadcrumb is the breadcrumb with the stamping
certificate immediately preceding the Q-breadcrumb. Like
the Q-breadcrumb, its certificate is final and unchanging.
Moreover, its tail remains “minimal” as new certificates
are seen. In other words, it maintains the shortest tail such
that the following conditions are true:

1) It contains the block header needed to authenticate
the Q-breadcrumb’s certificate’s Q-value.

2) It contains the block header needed to authenticate
the candidate breadcrumb’s certificate’s proofs of
stake.

• Frozen breadcrumbs are all of the earlier breadcrumbs, from
the start of the blockchain to the Bal-breadcrumb. As the
blockchain grows (adds new blocks with their respective
certificates), breadcrumbs “graduate” from being a candi-
date breadcrumb, to a Q-breadcrumb, to a Bal-breadcrumb,
and eventually to the set of frozen breadcrumbs. It is these
frozen breadcrumbs that allow a new client to quickly catch
up from the initial genesis block to recent blocks.

Keeping proof-objects up-to-date. All clients maintain a
proof of the ledger’s latest block. A client mutates its proof
on observing two events from the cryptocurrency network:

• When a client observes a block and a full final certificate,
it appends them to its dense tail.

• When a client observes a new stamping certificate later
than its candidate breadcrumb, it deletes the final certificate
of the “stamped” round and all older final certificates.
Moreover, it moves ownership of the corresponding block
headers to the new stamping certificate, which becomes the
“new” breadcrumb. Next,

◦ If the new breadcrumb’s round is not more than b blocks
greater than the Q-breadcrumb’s, the client replaces
its candidate breadcrumb with the new breadcrumb,
transferring ownership of the block headers.

◦ Otherwise, the client:
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1) Freezes the Bal-breadcrumb, adding it to the set
of frozen breadcrumbs.

2) Sets the Q-breadcrumb as the new Bal-
breadcrumb. This breadcrumb’s tail becomes
trimmable.

3) Sets the candidate breadcrumb as the new Q-
breadcrumb. This breadcrumb’s position is now
optimal and fixed (assuming that stamping certifi-
cates are received in order).

4) Sets the new breadcrumb as the candidate bread-
crumb.

Finally, it “trims” the tail of the Bal-breadcrumb to keep
its length minimal.

VII. EVALUATION

The primary question that our evaluation answers is, “How
effective is Vault at reducing the bandwidth cost of helping a
new client join the network?” §VII-B presents the results.

To understand why Vault achieves a reduction in band-
width, we further answer three questions targeted at each of
Vault’s techniques, as follows. Recall that two components
contribute to bootstrapping costs: the state needed to execute
the protocol and the bandwidth required to convince a new
client that this state is correct.

• Balance Pruning: How much does transaction expiration
reduce storage cost by? (§VII-C)

• Stamping Certificates: What are the cost savings of using
Vault’s sparse sequence of stamping certificates for boot-
strapping? (§VII-D)

• Balance Sharding: What are the trade-offs involved in
sharding Vault’s balance sets? (§VII-E)

A. Experimental Setup

To answer the questions above, we implemented the data
structures needed to execute the Bitcoin, Ethereum, Algorand,
and Vault protocols. However, we have not integrated these
data structures into their respective systems; in particular, we
have not evaluated real-time characteristics of Vault, such as its
transaction latency or throughput. We vary transaction volumes
between 50 and 500 million transactions, and we fill all blocks
with the maximum number of transactions given a fixed block
size. (As of February 2018, there are around 300 million
transactions in Bitcoin [4] and around 150 million transactions
in Ethereum [10].) We ignore the storage cost of auxiliary data
structures required to efficiently update a protocol’s state; for
example, we do not implement database indexes.

Algorand uses a transaction format similar to Bitcoin’s. We
consider only simple transactions with the form of one input
and two outputs (one to the receiver and the other to self).

The ratio of unique accounts to transactions on Ethereum is
around 15% [11], [10] as of January 1, 2018. Additionally, we
obtained the Ethereum ledger up to this date by synchronizing
a Parity [23], [24] Ethereum client (in fatdb mode). Our
analysis of the Ethereum state indicates that around 38% of
all accounts have no funds and no storage/contract data (i.e.,
only an address and a nonce). For Ethereum and Vault, we fix
the account creation rate at 15% and the churn rate at 38%.
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Fig. 5. An end-to-end comparison of cryptocurrency bootstrapping costs.
Compared to Bitcoin and Algorand, Vault and Ethereum reduce storage costs
by one to two orders of magnitude. Vault outperforms Ethereum at 150 million
transactions because it can delete old accounts. Sharding Vault with a factor
of 1,000 reduces the costs of storing balances to a negligible amount, and
the total storage cost remains low (below 500 MB) even with 500 million
transactions on the ledger. Note that the y-axis is logarithmic.

Other than to count the number of empty accounts, we do not
consider the costs in Ethereum which result from per-account
data storage or from smart contracts.

We instantiate the following parameters both in Algorand
and in Vault:

• 80% of the stake in the system is honest (h = 0.8).
• Stake sold off by a later-corrupted user counts towards h

for d = 48 hours.
• Network partitions last for at most 2 days. (Recall that

during a network partition, an adversary may arbitrarily
reschedule and drop any message.) This implies that the
leapfrogging interval is b = 1440 rounds (§VI-A).
• The maximum transaction lifetime is Tmax = 4 hours. This

keeps the cost of storing the hashes of recent transactions
to the hundreds of megabytes.
• Stamping certificates fail to form at a rate of 65%. This

implies that a certificate contains Tstamping = 100 signa-
tures, and a stamping sortition produces τstamping = 120
committee members in expectation (§A).
• The size of a block is 10 MB. (Lower block sizes are

possible; these reduce both throughput and latency.)

We use S in the rest of this section to denote the number
of shards in Vault.

B. End-to-End Evaluation

Figure 5 presents the results of an end-to-end evaluation of
Bitcoin, Ethereum, Algorand, and Vault (with sharding factors
of S = 1 and S = 1000).

Algorand’s storage cost exceeds that of Bitcoin. Every
transaction that Bitcoin stores must also be stored by Algorand.
In addition, supporting secure bootstrapping in Algorand incurs
an additional cost ranging from 4 to 47 GB, growing linearly
with the number of confirmed transactions in the system.

Figure 5 shows clear gains in storing the set of account bal-
ances rather than the set of transactions. Vault and Ethereum,

11



50 100 150 200 250 300 350 400 450 500

Number of Transactions (Millions)

0

1

2

3

4

5

6
S
ta

te
 S

iz
e
 (

G
B

)
Ethereum
Vault S= 1

Vault S= 1000

Fig. 6. A comparison of steady-state storage costs between Vault and
Ethereum, given an account churn rate of 38%. Pruning empty balances allows
Vault to store less data than Ethereum past around 100 million transactions,
even as Vault must store its recent transaction log. Note that the line associated
with S = 1000 grows linearly but appears flat due to its low slope.

which both store account balances, outperform Algorand and
Bitcoin by 1 to 2 orders of magnitude. This holds both
because the set of balances is much smaller than the set of
all transactions, and also because an individual balance entry
is smaller than a transaction itself. Given that we only consider
simple transactions with one input and two outputs, we expect
more complex transactions to amplify this effect.

Moreover, at 150 million transactions, Vault outperforms
Ethereum even without sharding. This follows from the fact
that Vault may delete accounts with no balance, which re-
duces overall storage cost by about 38%. However, before
150 million transactions, the fixed cost of storing the recent
transactions outweighs these savings. We note that throttling
the throughput of Vault or reducing Tmax decreases this cost.

Finally, sharding Vault reduces storage even more signifi-
cantly. However, sharding is no “free lunch”; it increases the
sizes of transactions and thus the steady-state bandwidth cost
of propagating them to the entire network (§VII-E).

C. Balance Pruning

To evaluate the efficiency of Vault’s balance pruning tech-
nique, we compare the storage footprint of Vault’s balance set
(again sharded at factors of 1 and 1000) against Ethereum’s.
Since Vault also requires a log of the recent transaction history
to detect double-spending, we include these costs as well.

Figure 6 shows that the ability to prune the balance tree sig-
nificantly reduces the ledger’s storage costs at scale. Initially,
Vault clients must hold the past 9.6 million transaction hashes
to enforce transaction expiration, which costs around 307 MB
of overhead (if transaction expiration Tmax is set to correspond
to 4 hours). However, past 150 million transactions, holding the
set of account balances dominates the cost of detecting double-
spending. Since Ethereum clients cannot garbage collect the
38% of empty accounts in their balance trees, they must
store these accounts in perpetuity.5 Maintaining a log of

5 We speculate that the use of Ethereum’s smart contracts to program-
matically create temporary accounts only exacerbates this problem. Efficient
garbage collection implies cheap temporary account creation.
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Fig. 7. A comparison between the certificate chain sizes in both Vault and
Algorand. The proof size is 2—4 orders of magnitude smaller in Vault, and
its size does not exceed 1 GB up to 500 million transactions. Usually, the size
of this proof remains under 100 MB. In the plot, proof sizes cluster around
several bands, which correspond to the number of final certificates present in
the dense tail. The lowest band grows linearly with the number of stamping
certificates that were formed. Note that the y-axis is logarithmic.

recent transactions constitutes a constant storage cost, while
the overhead of storing empty accounts grows linearly as the
system continually processes new transactions.

D. Stamping Certificates

Next, we evaluate how efficiently a client can prove the
validity of its state to a new peer. We measure the amount of
data transferred for the certificate chain in Vault and compare
it against the data transferred for the certificate chain in
Algorand. Since the creation of stamping certificates in Vault is
non-deterministic, we evaluate the amount of data transferred
using fine-grained steps for the independent variable (number
of transactions processed) to capture these effects.

Figure 7 reveals that the overhead of the certificate and
header storage cost becomes significant in Algorand. To catch
up to a ledger with 500 million transactions, a client must
download around 47 GB of data.

In contrast, Vault’s proofs are much smaller even though
the use of a balance-based ledger increases the size of cer-
tificates (by including partial Merkle proofs); these proofs are
almost always less than 100 MB in size. Two factors decrease
the size of these proofs. First, the chain of certificates is much
sparser. On average, downloading an extra stamping certificate
allows a client to validate an additional b = 1440 blocks.
Second, each individual stamping certificate is small. Instead
of 7,400 signatures, each certificate consists of 100 signatures.

This evaluation demonstrates that, without stamping cer-
tificates, certificates would dominate the data required for
bootstrapping. A 3.4 GB state size for balances matters little
if 47 GB is necessary to prove its validity. Reducing the
proof overhead to less than 100 MB allows Vault to securely
bootstrap new clients with modest bandwidth cost.

E. Balance Sharding

Under sharding, we would like to determine how decreas-
ing the overhead of storing the intermediate frontier in the
balance tree (§V-C) increases the size of transactions. We fix
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Fig. 8. Cost of storing sharded account balances and transaction sizes given
some setting of the witness length. The tree stores 10 billion accounts, divided
into S = 1000 shards. Increasing transaction size linearly (i.e. extending the
Merkle witness) decreases storage overhead exponentially.

the number of accounts to be 10 billion and the number of
shards to be S = 1000. Figure 8 illustrates this interaction.

We see that shard size is not the limiting factor. With
S = 1000, each client stores only 10 million accounts per
shard, which costs less than 500 MB each. Instead, sharding
costs are dwarfed by the overhead of keeping the internal
Merkle nodes on the frontier, which allow clients to verify
transactions in other shards without needing to receive the
entire Merkle path as part of the transaction. On the one hand,
all clients may simply store all leaf Merkle nodes, which adds
nothing to transaction overhead but also reduces storage cost
by only a small amount: storing the set of balances along
with the Merkle frontier costs each client almost 1 TB. On
the other hand, the exponential fanout of the sparse Merkle
tree provides diminishing returns on storing each subsequent
layer; extending the Merkle witness by one hash halves the
storage footprint of the Merkle nodes. Eventually, storage costs
converge to the size of a shard.

VIII. RELATED WORK

In this section we contrast Vault with related systems and
discuss their compatibility with Vault’s techniques.

A. Steady-State Savings: The “Width” Approach

Several cryptocurrencies adopt mechanisms which reduce
the amount of bandwidth needed to join the protocol (as a
verifier) and the amount of storage needed to run the protocol.

Ethereum [9] summarizes account balances and other state
into a short digest using Patricia Merkle Trees [16]. Each
block commits to the root of the current tree, which allows
new clients to obtain balance state from any untrusted node
and then verify this state against a known Merkle root. To
prevent an attacker from replaying a transaction issued by
a user, users embed a sequence number (a nonce) in each
transaction. Ethereum clients must track the last nonce issued
by each account in the balance tree, even if the account is
empty; otherwise, an old transaction could be replayed (e.g.,
if an empty account receives a deposit in the future). As we
note in §IV, this means that Ethereum’s storage cost grows with

the number of all accounts that ever existed, leaving Ethereum
vulnerable to denial-of-service attacks that create many tempo-
rary accounts. By decoupling account balances from tracking
double-spent transactions (§IV), Vault prevents storage costs
from growing with the number of old accounts. We believe
that Vault’s decoupling can be adopted by Ethereum to avoid
unbounded storage for old accounts: by mandating expiration
dates in all transactions, Ethereum can allow nodes to delete
old state.

OmniLedger [17] shards its ledger by users’ public keys,
running Byzantine agreement on many ledgers in parallel.
OmniLedger performs load balancing across each shard to
improve throughput and reduce bandwidth and storage costs
proportionally to the number of shards. Sharding allows Om-
niLedger to scale horizontally. However, OmniLedger requires
a long-standing committee to run the PBFT [7] protocol to es-
tablish consensus on the ledger’s state; this leaves it vulnerable
to a strong adversary which may quickly corrupt validators.
Moreover, its shard size and thus scalability is sensitive to
the proportion of malicious users. Unfortunately, adapting
OmniLedger to use Algorand in place of PBFT is non-trivial:
it is unclear how Algorand’s distinctly sampled committees,
which persist not for an epoch but rather change with each
message, can exchange state across shards without excessive
bandwidth cost. Vault’s adaptive sharding (§V) reduces the
storage cost per participant and remains secure against an
adversary that can quickly corrupt users, but its throughput
does not increase with sharding.

An alternative approach to reducing the ledger’s “width”
is to record fewer transactions on the ledger. The Lightning
Network [26] establishes payment channels between pairs of
users. Participants in the channel post collateral on the ledger
and then exchange transactions off the ledger to record their
debts. As a result, by posting only two transactions on the
ledger, a pair of participants may process arbitrarily many off-
ledger transactions in a payment channel as long as it contains
sufficient collateral to absorb them. One advantage of this
scheme is that participants do not need to broadcast trans-
actions that take place within a payment channel. We discuss
how payment channels can be implemented on top of Vault
in §IV-A. However, payment channels come with limitations:
they support only pairwise payment relationships, the collateral
posted by each participant limits channel capacity, and their
incentives assume that participants always act to maximize
their payout. A key benefit of Vault is that its storage costs
scale with the total number of accounts, rather than the number
of transactions, which allows for more transactions to take
place “on chain” without the limitations of payment channels.

MimbleWimble [25] uses an accumulator-like signature
sinking scheme to “compact” blocks together according to the
amount of work proved in the block header. Combined blocks
eliminate transaction outputs which have been spent, reducing
the state a verifier is required to download. Switching to a
balance-based scheme like Vault’s may allow MimbleWimble
to increase its compaction savings by committing not to the set
of unspent transactions but rather the current set of balances.

Observe that Vault can safely prune old balances by forcing
transactions to expire quickly (§IV), and Vault can shard
balances over the nodes in the network for a decrease in storage
cost (§V). These schemes work independently of Algorand’s
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specific characteristics (including proof of stake). Any cryp-
tocurrency which maps cryptographic identifiers to balances
and commits to them in a Merkle tree can transparently
leverage these techniques.

B. Short Proofs of State: The “Length” Approach

Other cryptocurrencies observe that a small block header
is often sufficient evidence of a block’s validity. Therefore,
they reduce the cost of verifying the block header sequence
by shortening it. This allows clients to efficiently prove the
validity of their state at any particular point in time.

Like Vault’s stamping certificates, Chainiac’s [22] Col-
lective Signing (CoSi) [27] scheme allows a committee of
verifiers to jointly produce a proof that a particular block is
correct. As in Vault, verifying committees for some block also
certify the correctness of blocks into the future; upon observing
a block confirmation, committees produce forward links to
the block. Since these links are arranged in a skiplist-like
configuration, they allow verifiers to quickly bootstrap to the
current state. However, Chainiac’s scheme is inherently vulner-
able to an adversary that can adaptively corrupt users because
its committees are not secret. Sometime after the protocol
designates a committee, an adversary which compromises this
committee can forge a proof that a false view of the ledger is
valid and thus deceive new clients into accepting a bogus state.
Since the committees that produce Vault’s certificate signatures
are secretly selected and emit exactly one message, Vault’s
certificates resist attacks from adversaries that can adaptively
corrupt clients. Chainiac may thus replace its committees with
Vault’s committees to improve its bootstrapping security.

MimbleWimble also reduces the length of the ledger.
Blocks with more work supersede prior blocks with less work;
since an adversary must possess significant processing power
to attack these blocks, the proof of work requirements increase
the new verifiers’ confidence in these blocks. As in Bitcoin,
this approach does not produce a proof of blocks’ correctness,
since an adversary that controls the network can prevent a
user from ever observing the block with the largest amount of
work. Vault builds on Algorand for reaching consensus, which
ensures safety (no forks) with cryptographic guarantees even
in the presence of network partitions.

We observe that in a permissioned cryptocurrency, where a
supermajority of ledger writers are trusted, a signed checkpoint
suffices to convince a new verifier that the state is correct [7].
Stellar [18] can be thought of in similar terms, where a
core node will accept a checkpoint from nodes in its quorum
set. Vault targets a permissionless setting where users do not
configure trusted sets of known writers or trusted core nodes.
As a result, Vault authenticates checkpoint signatures using
cryptographic sortition, based on techniques from Algorand.

In general, permissionless cryptocurrencies where ran-
domly sampled committees execute a consensus algorithm
(e.g., Chainiac) can use Vault’s stamping certificates trans-
parently (§VI). Simply embed the stamping certificates’ seed
Q (or an existing randomness source) into blocks, and use a
Sybil-resistant mechanism (e.g., weigh members via proof of
work/stake) to select stamping committees.

IX. CONCLUSION

Vault is a new cryptocurrency design based on Algorand
that reduces storage and bootstrapping costs. Vault achieves its
goals using three techniques: (1) transaction expiration, which
helps Vault decouple storage of account balances from recent
transactions and thus delete old account state; (2) adaptive
sharding, which allows Vault to securely distribute the storage
of account balances across participants; and (3) stamping
certificates, which allow new clients to avoid verifying every
block header, and which reduce the size of the certificate.
Experiments demonstrate that Vault reduces the storage and
bootstrapping cost for 500 million transactions to 477 MB,
compared to 5 GB for Ethereum and 143 GB for Bitcoin.
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APPENDIX

A. Stamping Certificate Security Analysis

Recall that the security of a certificate is equivalent to the
security of the committee that produced it. We first define two
desirable properties of Vault’s stamping certificates:

Definition. A certificate has a safety failure rate of fs if
over all committees produced by cryptographic sortition, the
probability that an adversary can obtain two distinct and
validating certificates for a given block is fs.

Definition. A certificate has a liveness failure rate of fl if
over all committees produced by cryptographic sortition, the
probability that the honest users fail to produce a certificate
for a given block is fl.

In these committees, an honest verifier releases its signature
after it sees a block confirmation. Confirmed blocks are fork-
safe, so if one honest verifier sees a block, all other honest
verifiers will only see that block. Thus, the following holds:

Observation. In Vault, a stamping certificate with one honest
signature is valid.

Now let Tstamping be the threshold of signatures needed
to produce a valid stamping certificate, and let τstamping be
the number of committee members elected in expectation
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Fig. 9. Certificate sizes required to guarantee various liveness failure rates
for a fixed safety failure rate of 2−100, given assumptions on the amount of
honest stake in the system. Honesty assumptions have a significant effect on
certificate size, which in turn influences the liveness failure rate.

to produce this certificate. Moreover, let γ and β be the
actual number of honest and malicious users elected to some
committee. We obtain two desirable properties, as follows:

Corollary. For Vault to produce certificates with a safety
failure rate of fs and liveness failure rate of fl, we must set
τstamping as follows:

Pr[γ < Tstamping] ≤ fl (1)
Pr[β ≥ Tstamping] ≤ fs (2)

For simplicity, suppose that there are an arbitrarily large
number of currency units in the system, and let each user in
the system own one unit of currency. If h is the proportion
of honest users in the system and τ is the expected number
of selected users following a cryptographic sortition, we have
that the chance of sampling exactly k honest users is

Pr[γ = k] =
(hτ)k

k!
ehτ

while the chance of sampling exactly k malicious users is

Pr[β = k] =
((1− h)τ)k

k!
e(1−h)τ .

which follows from the application of the binomial theorem.

From Equation 1 and Equation 2 it follows that the follow-
ing conditions must both hold:

Tstamping−1∑
k=0

(hτstamping)k

k!
ehτstamping ≤ fl (3)

∞∑
k=Tstamping

((1− h)τstamping)k

k!
e(1−h)τstamping ≤ fs (4)

Then it is evident that τstamping = 120, Tstamping = 100
satisfy these conditions with h = 0.8, fs = 2−100, fl = 0.65.

Figure 9 illustrates the effects of changing fl for various
values of h, fixing fs = 2−100.
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Abstract
In Proof-of-Stake (PoS) and permissioned blockchains, a com-
mittee of verifiers agrees and sign every new block of trans-
actions. These blocks are validated, propagated, and stored
by all users in the network. However, posterior corruptions
pose a common threat to these designs, because the adversary
can corrupt committee verifiers after they certified a block
and use their signing keys to certify a different block. De-
signing efficient and secure digital signatures for use in PoS
blockchains can substantially reduce bandwidth, storage and
computing requirements from nodes, thereby enabling more
efficient applications.

We present Pixel, a pairing-based forward-secure multi-
signature scheme optimized for use in blockchains, that
achieves substantial savings in bandwidth, storage require-
ments, and verification effort. Pixel signatures consist of two
group elements, regardless of the number of signers, can be
verified using three pairings and one exponentiation, and sup-
port non-interactive aggregation of individual signatures into
a multi-signature. Pixel signatures are also forward-secure
and let signers evolve their keys over time, such that new keys
cannot be used to sign on old blocks, protecting against pos-
terior corruptions attacks on blockchains. We show how to
integrate Pixel into any PoS blockchain. Next, we evaluate
Pixel in a real-world PoS blockchain implementation, show-
ing that it yields notable savings in storage, bandwidth, and
block verification time. In particular, Pixel signatures reduce
the size of blocks with 1500 transactions by 35% and reduce
block verification time by 38%.

1 Introduction

Blockchain technologies are quickly gaining popularity for
payments, financial applications, and other distributed appli-
cations. A blockchain is an append-only public ledger that is
maintained and verified by distributed nodes. At the core of
the blockchain is a consensus mechanism that allows nodes
∗Authors are listed alphabetically.

to agree on changes to the ledger, while ensuring that changes
once confirmed cannot be altered.

In the first generation of blockchain implementations, such
as Bitcoin, Ethereum, Litecoin, the nodes with the largest
computational resources choose the next block. These im-
plementations suffer from many known inefficiencies, low
throughput, and high transaction latency [18, 28, 52]. To over-
come these problems, the current generation of blockchain im-
plementations such as Algorand, Cardano, Ethereum Casper,
and Dfinity turn to proofs of stake (PoS), where nodes with
larger stakes in the system —as measured, for instance, by the
amount of money in their account— are more likely to partic-
ipate in choosing the next block [22,25,31,34,36,41,50]. Per-
missioned blockchains such as Ripple [57] and Hyperledger
Fabric [4] take yet another approach, sacrificing openness
for efficiency by limiting participation in the network to a
selected set of nodes.

All PoS-based blockchains, as well as permissioned ones,
have a common structure where the nodes run a consensus
sub-protocol to agree on the next block to be added to the
ledger. Such a consensus protocol usually requires nodes
to inspect block proposals and express their agreement by
digitally signing acceptable proposals. When a node sees
sufficiently many signatures from other nodes on a particular
block, it appends the block to its view of the ledger.

Because the consensus protocol often involves thousands
of nodes working together to reach consensus, efficiency of
the signature scheme is of paramount importance. Moreover,
to enable outsiders to efficiently verify the validity of the
chain, signatures should be compact to transmit and fast to
verify. Multi-signatures [37] have been found particularly
useful for this task, as they enable many signers to create
a compact and efficiently verifiable signature on a common
message [16, 42, 61, 62].

The Problem of Posterior Corruptions. Chain integrity
in a PoS blockchain relies on the assumption that the adver-
sary controls less than a certain threshold (e.g., a third) of the
total stake; an adversary controlling more than that fraction



may be able to fork the chain, i.e., present two different but
equally valid versions of the ledger. Because the distribution
of stake changes over time, however, the real assumption be-
hind chain integrity is not just that the adversary currently
controls less than a threshold of the stake, but that he never
did so at any time in the past.

This assumption becomes particularly problematic if stake
control is demonstrated through possession of signature keys,
as is the case in many PoS and permissioned blockchains.
Indeed, one could expect current stakeholders to properly
protect their stake-holding keys, but they may not continue to
do so forever, especially after selling their stake. Nevertheless,
without additional precautions, an adversary who obtains keys
that represent a substantial fraction of stake at some point in
the past can compromise the ledger at any point in the future.
The problem is further aggravated in efficient blockchains that
delegate signing rights to a small committee of stakeholders,
because the adversary can gain control of the chain after
corrupting a majority of the committee members.

Referred to by different authors as long-range attacks [21],
costless simulation [55], and posterior corruptions [12], this
problem is best addressed through the use of forward-secure
signatures [3,9,43,48]. Here, each signature is associated with
the current time period, and a user’s secret key can be updated
in such a way that it can only be used to sign messages for
future time periods, not previous ones. An adversary that cor-
rupts an honest node can therefore not use the compromised
key material to create forks in the past of the chain.

1.1 Our Results

We present the Pixel signature scheme, which is a pairing-
based forward-secure multi-signature scheme for use in PoS-
based blockchains that achieves substantial savings in band-
width and storage requirements. To support a total of T
time periods and a committee of size N, the multi-signature
comprises just two group elements and verification requires
only three pairings, one exponentiation, and N−1 multipli-
cations. Pixel signatures are almost as efficient as BLS multi-
signatures, as depicted in Figure 1, but also satisfy forward-
security; moreover, like in BLS multi-signatures, anybody
can non-interactively aggregate individual signatures into a
multi-signature.

Our construction builds on prior forward-secure signatures
based on hierarchical identity-based encryption (HIBE) [15,
19,23,27] and adds the ability to securely aggregate signatures
on the same message as well as to generate public parameters
without trusted set-up.

We achieve security in the random oracle model under a
variant of the bilinear Diffie-Hellman inversion assumption
[11, 15]. At a very high level, the use of HIBE techniques
allows us to compress O(logT ) group elements in a tree-
based forward-secure signature into two group elements, and
secure aggregation allows us to compress N signatures under

N public keys into a single multi-signature of the same size
as a single signature.

To validate Pixel’s design, we compared the performance
of a Rust implementation [2] of Pixel with previous forward-
secure tree-based solutions. We show how to integrate Pixel
into any PoS blockchain. Next, we evaluate Pixel on the Al-
gorand blockchain, showing that it yields notable savings in
storage, bandwidth, and block verification time. Our exper-
imental results show that Pixel is efficient as a stand-alone
primitive and in use in blockchains. For instance, compared
to a set of N = 1500 tree-based forward-secure signatures
(for T = 232) at 128-bit security level, a single Pixel signature
that can authenticate the entire set is 2667x smaller and can
be verified 40x faster (c.f. Tables 1 and 3). Pixel signatures
reduce the size of Algorand blocks with 1500 transactions
by ≈ 35% and reduce block verification time by ≈ 38% (c.f.
Figures 4 and 5).

1.2 Related Work

Multi-signatures can be used to generate a single short sig-
nature validates that a message m was signed by N different
parties [6,10,14,33,37,45,46,51,53], Multi-signatures based
on the BLS signature scheme [14, 16, 17, 56] are particularly
well-suited to the distributed setting of PoS blockchains as
no communication is required between the signers; anybody
can aggregate individual signatures into a multi-signature.
However, these signatures are not forward-secure.

Tree-based forward-secure signatures [9, 38, 43, 48] can be
used to meet the security requirements, but they are not very
efficient in an N-signer setting because all existing construc-
tions have signature size at least O(N logT ) group elements,
where T is an upper bound on the number of time periods.
Some schemes derived from hierarchical identity-based en-
cryption (HIBE) [15, 19, 23] can bring that down to O(N)
group elements, which is still linear in the number of signers.

The only forward-secure multi-signature schemes that ap-
peared in the literature so far have public key length linear
in the number of time periods T [47] or require interaction
between the signers to produce a multi-signature [58], neither
of which is desirable in a blockchain scenario. The forward-
secure multi-signature scheme of Yu et al. [64] has signature
length linear in the number of signers, so is not really a multi-
signature scheme.

Combining the generic tree-based forward-secure signature
scheme of Bellare-Miner [9] with BLS multi-signatures [14,
17] gives some savings, but still requires O(T ) “certificates”
to be included in each multi-signature. Batch verification [8]
can be used to speed up verification of the certificates to some
extent, but does not give us any space savings. Compared with
existing tree-based forward-secure signatures in [9,38,43,48],
our savings are two-fold:

• we reduce the size of the signature set for N commit-



scheme key update sign verify |σ| |pk| |sk| forward security
BLS multi-signatures [14, 16, 56] – 1 exp 2 pair 1 1 O(1) no
Pixel multi-signatures (this work) 2 exp 4 exp 3 pair + 1 exp 2 1 O((logT )2) yes

Figure 1: Comparing our scheme with BLS signatures. Here, “exp” and “pair” refer to number of exponentiations and pairings
respectively. T denotes the maximum number of time periods. We omit additive overheads of O(logT ) multiplications. The
column “key update” refers to amortized cost of updating the key for time t to t +1. The columns |σ|, |pk|, and |sk| denote the
sizes of signatures, public keys, and secret keys, respectively, in terms of group elements. Aggregate verification for N signatures
requires an additional N−1 multiplications over basic verification.

tee members from O(N logT ) group elements1 to O(1)
group elements; and

• we reduce the verification time from O(N) exponentia-
tions to O(1) exponentiation and O(N) multiplications.

1.3 Paper Organization

The rest of this paper is organized as follows:

• In Section 2, we give a high level technical description
of our new pairing-based forward-secure multi-signature
scheme.

• In Sections 4 and 5, we describe the scheme in details.
We prove the security of the construction in the random
oracle model under a variant of a bilinear Diffie-Hellman
inversion problem.

• In Section 6, we explain how to apply Pixel to PoS
blockchains to solve posterior corruptions.

• In Section 7, we evaluate the efficiency savings for stor-
age, bandwidth, and block verification time from using
Pixel on the Algorand PoS blockchain.

• In Section 8, we describe various extensions to the
scheme.

• In Appendix C, we perform theoretical efficiency analy-
sis of Pixel.

2 Technical Overview

Our construction builds on prior forward-secure signatures
based on hierarchical identity-based encryption (HIBE) [15,
19,23,27] and adds the ability to securely aggregate signatures
on the same message as well as to generate public parameters
without trusted set-up.

1 Each tree-based signature comprise O(logT ) group elements corre-
sponding to a path in a tree of depth logT (see Section 7 for details), and
there are N such signatures, one for which committee member.

Overview of our scheme. Starting with a bilinear group
(G1,G2,Gt) with e : G1 ×G2 → Gt of prime order q and
generators g1,g2 for G1,G2 respectively, a signature on M ∈
Zq at time t under public key gx

2 is of the form:

σ = (σ′,σ′′) = (hx ·F(t,M)r,gr
2) ∈G1×G2

where the function F(t,M) can be computed with some public
parameters (two group elements in G1 in addition to h ∈G1)
and r is fresh randomness used for signing. Verification relies
on the relation:

e(σ′,g2) = e(h,y) · e(F(t,M),σ′′)

and completeness follows directly:

e(σ′,g2) = e(hx ·F(t,M)r,g2)

= e(hx,g2) · e(F(t,M)r,g2)

= e(h,gx
2) · e(F(t,M),gr

2)

= e(h,y) · e(F(t,M),σ′′) .

Note that e(h,y) can be precomputed to save verification
computation.

Given N signatures σ1, . . . ,σN ∈ G1 ×G2 on the same
message M at time t under N public keys gx1

2 , . . . ,gxN
2 , we

can produce a multi-signature Σ on M by computing the
coordinate-wise product of σ1, . . . ,σN . Concretely, if σi =
(hxi ·F(t,M)ri ,gri

2 ), then

Σ = (hx1+···+xN ·F(t,M)r′ ,gr′
2 )

where r′ = r1+ · · ·+rN . To verify Σ, we first compute a single
aggregate public key that is a compressed version of all N
individual public keys

apk← y1 · . . . · yN ,

and verify Σ against apk using the standard verification equa-
tion.

How to generate and update keys. To complete this
overview, we describe a simplified version of the secret keys
and update mechanism, where the secret keys are of size O(T )



instead of O((logT )2). The construction exploits the fact that
the function F satisfies

F(t,M) = F(t,0) ·F ′M

for some constant F ′. This means that in order to sign mes-
sages at time t, it suffices to know

s̃kt = {hx ·F(t,0)r,F ′r,gr
2}

from which we can compute (hx ·F(t,M)r,gr
2).

The secret key skt for time t is given by:

s̃kt , s̃kt+1, · · · , s̃kT

generated using independent randomness. To update from
the key skt to skt+1, we simply erase s̃kt . Forward security
follows from the fact that an adversary who corrupts a signer
at time t only learns skt and, in particular, does not learn s̃kt ′

for t ′ < t, and is unable to create signatures for past time slots.
To compress the secret keys down to O((logT )2) without

increasing the signature size, we combine the tree-based ap-
proach in [23] with the compact HIBE in [15]. Roughly speak-
ing, each skt now contains logT sub-keys, each of which con-
tains O(logT ) group elements and looks like an “expanded”
version of s̃kt . (In the simplified scheme, each skt contains
T − t +1 sub-keys, each of which contains three group ele-
ments.)

Security against rogue-key attacks. The design of multi-
signature schemes must take into account rogue-key attacks,
where an adversary forges a multi-signature by providing
specially crafted public keys that are correlated with the public
keys of the honest parties. We achieve security against rogue-
key attacks by having users provide a proof of possession
of their secret key [14, 56]; it suffices here for each user to
provide a standard BLS signature y′ on its public key y (cf.
the proof π in the key generation and verification algorithms
in Section 5.2).

Avoiding trusted set-up. Note that the common parame-
ters contain uniformly random group elements h,h0, . . . ,hlogT
in G2 which are used to define the function F . These elements
can be generated using a indifferentiable hash-to-curve algo-
rithm [20,63] evaluated on some fixed sequence of inputs (e.g.
determined by the digits of pi), thereby avoiding any trusted
set-up.

2.1 Discussion
Related works. The use of HIBE schemes for forward se-
crecy originates in the context of encryption [23] and has
been used in signatures [19,27], key exchange [35] and proxy
re-encryption [32]. Our signature scheme is quite similar
to the forward-secure signatures of Boyen et al. [19] and

achieves the same asymptotic complexity; their construction
is more complex in order to achieve security against untrusted
updates. The way we achieve aggregation is similar to the
multi-signatures in [45].

Alternative approaches to posterior security. There are
two variants of the posterior attack: (i) a short-range vari-
ant, where an adversary tries to corrupt a committee mem-
ber prior to completion of the consensus sub-protocol, and
(ii) a long-range variant as explained earlier. Dfinity [36],
Ouroboros [41] and Casper [22] cope with the short-range
attacks by assuming a delay in attacks that is longer than the
running time of the consensus sub-protocol. For long-range
attacks, Casper adopts a fork choice rule to never revert a final-
ized block, and in addition, assumes that clients log on with
sufficient regularity to gain a complete update-to-date view of
the chain. We note that forward-secure signatures provide a
clean solution against both attacks, without the need for fork
choice rules or additional assumptions about the adversary
and the clients.

Application to permissioned blockchains. Consensus
protocols, such as PBFT, are also at the core of many per-
missioned blockchains (e.g. Hyperledger), where only ap-
proved parties may join the network. Our signature scheme
can similarly be applied to this setting to achieve forward
secrecy, reduce communication bandwidth, and produce com-
pact block certificates.

3 Preliminaries

Let G1,G2,Gt be multiplicative groups of prime order q with
a non-degenerate pairing function e : G1×G2→Gt. Let g1
and g2 be generators of G1 and G2, respectively.

In analogy with the weak bilinear Diffie-Hellman inver-
sion problem `-wBDHI∗ [15], which was originally defined
for Type-1 pairings (i.e., symmetric pairings where we have
G1 =G2), we define the following variant for Type-3 pairings
denoted `-wBDHI∗3.

Input: A1 = gα
1 , A2 = g(α

2)
1 , . . . , A` = g(α

`)
1 ,

B1 = gα
2 , B2 = g(α

2)
2 , . . . , B` = g(α

`)
2 ,

C1 = gγ

1 , C2 = gγ

2

for α,γ←$ Zq

Compute: e(g1,g2)
(γ·α`+1)

The advantage Adv`-wBDHI∗3
G1×G2

(A) of an adversary A is defined
as its probability in solving this problem.

As shown in [15], the assumption holds in the generic bi-
linear group model, with a lower bound of Ω(

√
q/`) (with

a matching attack in [26]). Concretely, for the BLS12-381



pairing-friendly curve with `= 32, the best attack has com-
plexity roughly 2125.

Alternatively, our scheme could be proved secure under a
variant of the above assumption where the adversary has to

output g(α
`+1)

1 given as input A1, . . . ,A`,B1, . . . ,B` and given
access to an oracle ψ : gx

2 7→ gx
1. Because of the ψ oracle,

this assumption is incomparable to the `-wBDHI assumption
described above.

4 Forward-Secure Signatures

We begin by describing a forward-secure signature scheme,
and then extend the construction to a multi-signature scheme
in Section 5.

4.1 Definition
We use the Bellare-Miner model [9] to define syntax and
security of a forward-secure signature scheme. A forward-
secure signature scheme FS for a message spaceM consists
of the following algorithms:

Setup: pp←$ Setup(T ). All parties agree on the public pa-
rameters pp. The setup algorithm mainly fixes the distribu-
tion of the parameters given the maximum number of time
periods T . The parameters may be generated by a trusted
third party, through a distributed protocol, or set to “nothing-
up-my-sleeve” numbers. The public parameters are taken to
be an implicit input to all of the following algorithms.

Key generation: (pk,sk1)←$ Kg. The signer runs the key
generation algorithm on input the maximum number of time
periods T to generate a public verification key pk and an
initial secret signing key sk1 for the first time period.

Key update: skt+1←$ Upd(skt). The signer updates its secret
key skt for time period t to skt+1 for the next period using
the key update algorithm. The scheme could also offer a
“fast-forward” update algorithm skt ′ ←$ Upd′(skt , t ′) for any
t ′ > t that is more efficient than repetitively applying Upd.

Signing: σ←$ Sign(skt ,M). On input the current signing key
skt and message M ∈M, the signer uses this algorithm to
compute a signature σ.

Verification. b← Vf(pk, t,M,σ). Anyone can verify a sig-
nature σ for on message M for time period t under public
key pk by running the verification algorithm, which returns 1
to indicate that the signature is valid and 0 otherwise.

Correctness.

Correctness requires that for all messages M ∈M and for all
time periods t ∈ [T ] it holds that

Pr[Vf(pk, t,M,Sign(skt ,M)) = 1] = 1

where the coin tosses are over pp←$ Setup(T ), (pk,sk1)←$

Kg, and ski← Upd(ski−1) for i = 2, . . . , t.
Moreover, if the scheme has a fast-forward update algo-

rithm, then the keys it produces must be distributed identically
to those produced by repetitive application of the regular up-
date algorithm. Meaning, for all t, t ′ ∈ [T ] with t < t ′ ≤ T
and for all skt it holds that sk′t ′ ←$ Upd′(skt , t ′) follows the
same distribution as skt produced as ski ←$ Upd(ski−1) for
i = t +1, . . . , t ′.

Security.

Unforgeability under chosen-message attack for forward-
secure signatures is defined through the following game. The
experiment generates a fresh key pair (pk,sk1) and hands the
public key pk to the adversary A. The adversary is given
access to the following oracles:

Key update. If the current time period t (initially set to t = 1)
is less than T , then this oracle updates the key skt to skt+1
and increases t.

Signing. On input a message M, this oracle runs the signing
oracle with the current secret key skt and message M, and
returns the resulting signature σ.

Break in. The experiment records the break-in time t̄ ← t
and hands the current signing key skt̄ to the adversary. This
oracle can only be queried once, and after it has been queried,
the adversary can make no further queries to the key update
or signing oracles.

At the end of the game, the adversary outputs its forgery
(t∗,M∗,σ∗). It wins the game if σ∗ verifies correctly under
pk for time period t∗ and message M∗, if it never queried the
signing oracle on M∗ during time period t∗, and if it queried
the break-in oracle, then it did so in a time period t̄ > t∗.
We define A’s advantage Advfu-cma

FS (A) as its probability in
winning the above game.

We also define a selective variant of the above notion, re-
ferred to as sfu-cma, where the adversary first has to commit
to t̄, t∗, and M∗. More specifically, A first outputs (t̄, t∗,M∗),
then receives the public key pk, is allowed to make signature
and key update queries until time period t = t̄ is reached, at
which point it is given skt̄ and outputs its forgery σ∗.

4.2 Encoding time periods
Following [23], we associate time periods with all nodes of
the tree according to a pre-order traversal. Prior tree-based
forward-secure signatures [9, 48] associate time periods with
the only leaf nodes; using all nodes allows us to reduce the
amortized complexity of key updates from O(logT ) exponen-
tiations to O(1) exponentiations.

Recall that a tree of depth `− 1 has 2`− 1 nodes, which
then correspond to time periods in [2`−1]. We will identify



t = 1, t = ε

t = 2, t = 1

t = 3, t = 11 t = 4, t = 12

t = 5, t = 2

t = 6, t = 21 t = 7, t = 22

Figure 2: Tree structure illustrating bijection between t ∈
[2`−1] and t ∈ {1,2}≤`−1 for `= 3.

the nodes of the tree of depth `−1 with strings in {1,2}≤`−1

where 1 denotes taking the left branch and 2 denotes taking the
right branch. An example of such a tree is depicted in Figure 2.
We work with {1,2} instead of {0,1} for technical reasons:
roughly speaking, in the scheme, we need to work with strings
of length exactly `−1, which we obtain by padding strings
in {1,2}≤`−1 with zeroes.

We can also describe the association explicitly as a bijec-
tion between t = t1‖t2‖ . . . ∈ {1,2}≤`−1 and t ∈ [2`− 1] for
any integer ` given by

t(t) = 1+
|t|

∑
i=1

(1+2`−i(ti−1)) .

For instance, for ` = 3, this maps ε,1,11,12,2,21,22 to
1,2,3,4,5,6,7. The inverse of the bijection can be described
as

t(1) = ε

t(t) = t(t−1)‖1 if |t(t−1)|< `−1
t(t) = t̄‖2 if |t(t−1)|= `−1

where t̄ is the longest string such that t̄‖1 is a prefix of t(t−1).
The bijection induces a natural precedence relation over

{1,2}≤`−1 where t� t′ iff either t is a prefix of t′ or exists t̄
s.t. t̄‖1 is a prefix of t and t̄‖2 is a prefix of t′. We also write
t, t+1 corresponding to t, t +1.

Next, we associate any t ∈ {1,2}≤`−1 with a set Γt ⊂
{1,2}≤`−1 given by

Γt :=
{

t
}
∪
{

t̄‖2 : t̄‖1 prefix of t
}

that corresponds to the set containing t and all the right-hand
siblings of nodes on the path from t to the root, which also
happens to be the smallest set of nodes that includes a prefix
of all t′ � t. For instance, for `= 3, we have

Γ1 = {1,2},Γ11 = {11,12,2},Γ12 = {12,2} .

The sets Γt satisfy the following properties:

• t′ � t iff there exists u ∈ Γt s.t. u is a prefix of t′;
• For all t, we have Γt+1 = Γt \{t} if |t|= `−1 or Γt+1 =
(Γt \{t})∪{ t‖1, t‖2} otherwise;

• For all t′ � t, we have that for all u′ ∈ Γt′ , there exists
u ∈ Γt such that u is a prefix of u′.

The first property is used for verification and for reasoning
about security; the second and third properties are used for
key updates.

4.3 Construction
We assume the bound T is of the form 2` − 1. We use
the above bijection so that the algorithms take input t ∈
{1,2}≤`−1 instead of t ∈ [T ]. The following scheme is roughly
the result of applying the Canetti-Halevi-Katz technique to
obtain forward security from hierarchical identity-based en-
cryption (HIBE) [24] to the signature scheme determined by
the key structure of the Boneh-Boyen-Goh HIBE scheme [15];
we describe the differences at the end of this subsection.

Setup. LetM be the message space of the scheme and let
Hq :M→ {0,1}κ be a hash function that maps messages
to bit strings of length κ such that 2κ < q. Apart from the
description of the groups, the common system parameters
also contain the maximum number of time slots T = 2`−1
and random group elements h,h0, . . . ,h` ←$ G1. These pa-
rameters could, for example, be generated as the output of a
hash function modeled as a random oracle.

Key generation. Each signer chooses x←$ Zq and computes
y← gx

2. It sets its public to pk = y and computes its initial
secret key sk1←{s̃kε} where s̃kε =

(
gr

2 , hxhr
0 , hr

1, . . . ,h
r
`

)
for r←$ Zq.

Key update. We associate with each w ∈ {1,2}k with k ≤
`−1 a key s̃kw of the form

s̃kw = (c,d,ek+1, . . . ,e`)

=

(
gr

2 , hx(h0

k

∏
j=1

h
w j
j )r , hr

k+1 , . . . , hr
`

)
(1)

for r←$ Zq. Given s̃kw, one can derive a key for any w′ ∈
{1,2}k′ which contains w as a prefix as

(c′,d′,e′k′+1, . . . ,e
′
`) =

(
c ·gr′

2 , d ·
k′

∏
j=k+1

e
w j
j ·(h0

k′

∏
j=1

h
w j
j )r′ ,

ek′+1 ·hr′
k′+1 , . . . , e` ·hr′

`

)
(2)

for r′←$ Zq.

The secret key skt at time period t is given by

skt = {s̃kw : w ∈ Γt} ,

which, by the first property of Γt, contains a key s̃kw for a
prefix w of all nodes t′ � t.



To perform a regular update of skt to skt+1, the signer users
the second property of Γt. Namely, if |t| < `− 1, then the
signer looks up s̃kt = (c,d,e|t|+1, . . . ,e`) ∈ skt, computes

s̃kt‖1← (c,d · e|t|+1,e|t|+2, . . . ,e`) ,

and derives s̃kt‖2 from s̃kt using Equation (2). The signer
then sets skt+1 ← (skt \ s̃kt)∪ {s̃kt‖1, s̃kt‖2} and securely
deletes skt as well as the re-randomization exponent r′ used
in the derivation of s̃kt‖2.

If |t|= `−1, then the signer simply sets skt+1← skt \{s̃kt}
and securely deletes skt.

To perform a fast-forward update of its key to any time t′ � t,
the signer derives keys s̃kw′ for all nodes w′ ∈ Γt′ \Γt by
applying Equation (2) to the key s̃kw ∈ skt such that w is a
prefix of w′, which must exist due to the third property of
Γt. The signer then sets skt′←{s̃kw′ : w′ ∈ Γt′} and securely
deletes skt as well as all re-randomization exponents used in
the key derivations.

Signing. To generate a signature on message M ∈ M
in time period t ∈ {1,2}≤`−1, the signer looks up s̃kt =
(c,d,e|t|+1, . . . ,e`) ∈ skt , chooses r′←$ Zq, and outputs

(σ1,σ2) =

(
d · eHq(M)

` ·
(
h0 ·

|t|

∏
j=1

h
t j
j ·h

Hq(M)
`

)r′
, c ·gr′

2

)
.

Verification. Anyone can verify a signature (σ1,σ2) ∈G1×
G2 on message M under public key pk = y in time period t
by checking whether

e(σ1,g2) = e(h,y) · e
(
h0 ·

|t|

∏
j=1

h
t j
j ·h

Hq(M)
` , σ2

)
.

Note that the pairing e(h,y) can be pre-computed from the
public key ahead of time, so that verification only requires
two pairing computations.

Differences from prior works. We highlight the differ-
ences between our scheme and those in [15,19,23], assuming
some familiarity with these prior constructions.

• We rely on asymmetric bilinear groups for efficiency, and
our signature sits in G2×G1 instead of G2

2. This way, it
is sufficient to give out the public parameters h0, . . . ,h` in
G1 (which we can then instantiate using hash-to-curve
without trusted set-up) instead of having to generate
“consistent” public parameters (hi,h′i)= (gxi

1 ,g
xi
2 )∈G1×

G2.

• Our key-generation algorithm also deviates from that in
the Boneh-Boyen-Goh HIBE, which would set

pk = e(g1,g2)
x,h = g1, s̃kε =

(
gr

2,g
x
1hr

0,h
r
1, . . . ,h

r
`

)
.

In our scheme, pk = gx
2 lies in G2 instead of Gt and is

therefore smaller. Setting h to be random instead of g1
also allows us to achieve security under weaker assump-
tions. In fact, setting h = g1 and pk = gx

2 would yield
an insecure scheme in symmetric pairing groups where
g1 = g2, since hx = gx

1 = gx
2 = pk.

4.4 Correctness

We say that a secret key skt for time period t is well-formed
if skt = {s̃kw : w ∈ Γt}, where each s̃kw is of the form of
Equation (1) for an independent uniformly distributed expo-
nent r←$ Zq. We first show that all honestly generated and
updated secret keys are well-formed, and then proceed to the
verification of signatures.

The key skt is trivially well-formed for t = 1, i.e., t = ε, as
can be seen from the key generation algorithm. We now show
that skt is also well-formed after a regular update from time t
to t+1 and after a fast-forward update from t to t′ � t.

In a regular update, assume that skt is well-formed. If
|t|= `−1, then the update procedure sets skt+1← skt \{s̃kt},
which by the second property of Γt and the induction hy-
pothesis means that skt+1 is also well-formed. If |t|< `−1,
the update procedure adds keys s̃kt‖1 and s̃kt‖2 and re-
moves s̃kt from skt, which by the second property of Γt
indeed corresponds to {w : w ∈ Γt+1}. Moreover, s̃kt‖1 is
derived from s̃kt = s̃kt‖1 ← (c,d,e|t|+1, . . . ,e`) as s̃kt‖1 ←
(c,d · e|t|+1,e|t|+2, . . . ,e`), which satisfies Equation (1) with
randomness r that is independent from all other keys in skt+1
because s̃kt 6∈ skt+1. Similarly, s̃kt‖2 satisfies Equation (1)
because it is generated as

c′ = c ·gr′
2 = gr+r′

2

d′ = d · ek+1 · (h0

k

∏
j=1

h
t j
j ·h

wk+1
k+1 )r′

= hx(h0

k

∏
j=1

h
t j
j ·h

2
k+1)

r+r′

e′k+2 = ek+2 ·hr′
k+2 = hr+r′

k+2

...

e′` = e` ·hr′
` = hr+r′

`

satisfying Equation (1) with randomness r+ r′, which is inde-
pendent of the randomness of other keys in skt+1 due to the
uniform choice of r′.

For the fast-forward update procedure, one can see that if
skt is well-formed, then the updated key skt′ for t′ � t is well-
formed as well. Indeed, by adding the keys for nodes in Γt′ \Γt
and removing those for Γt\Γt′ , we have that skt′ contains keys
s̃kw for all w ∈ Γt′ . The randomness independence is guar-
anteed by the random choice of r′ in Equation (2). In the



optimized variant, all keys still have independent randomness
because one key s̃kw′ ∈ skt′ will have the same randomness
r as some key s̃kw ∈ skt where w is a prefix of w′. That ran-
domness is independent from all other keys in skt′ , however,
because the key s̃kw does not occur in skt′ . Indeed, by the
definition of Γt′ , one can see that Γt′ cannot have elements
w 6= w′ with w a prefix of w′.

To see why signature verification works, observe that a
signature for time period t and message M is computed from
a key s̃kt = (c,d,e|t|+1, . . . ,e`) in a well-formed key skt. The
left-hand side of the verification equation is therefore

e(σ1,g2) = e
(

d · eHq(M)
` ·

(
h0 ·

|t|

∏
j=1

h
t j
j ·h

Hq(M)
`

)r′
, g2

)

= e
(

hx(h0 ·
|t|

∏
j=1

h
t j
j ·h

Hq(M)
`

)r+r′
, g2

)

= e(hx,g2) · e
(

h0 ·
|t|

∏
j=1

h
t j
j ·h

Hq(M)
` , g2

)r+r′

= e(h,y) · e
(

h0 ·
|t|

∏
j=1

h
t j
j ·h

Hq(M)
` , σ2

)
.

4.5 Security
Theorem 1. For any fu-cma adversary A against the above
forward-secure signature scheme in the random-oracle model
for T = 2`−1 time periods, there exists an adversary B with
essentially the same running time and advantage in solving
the `-wBDHI∗3 problem

Adv`-wBDHI∗3
G1×G2

(B) ≥ 1
T ·qH

·Advfu-cma
FS (A)− q2

H
2κ

,

where qH is the number of random-oracle queries made by
A.

We refer the interested reader to Appendix A for the full
proof of security.

5 Forward-Secure Multi-Signatures

To obtain a multi-signature scheme, we observe that the
component-wise product (Σ1,Σ2) = (∏n

i=1 σi,1,∏
n
i=1 σi,2) of

a number of signatures (σ1,1,σ1,2), . . . ,(σn,1,σn,2) satisfies
the verification equation with respect of the product of public
keys Y = y1 · . . . · yn. This method of combining signatures is
vulnerable to a rogue-key attack, however, where a malicious
signer chooses his public key based on that of an honest signer,
so that the malicious signer can compute valid signatures for
their aggregated public key. The scheme below borrows a
technique due to Ristenpart and Yilek [56] using proofs of
possession (denote by π below) to prevent against these types
of attack.

5.1 Definitions

In addition to the algorithms of a forward-secure signa-
ture scheme in Section 4.1, a forward-secure multi-signature
scheme FMS in the key verification model has a key gener-
ation that additionally outputs a proof π for the public key:

Key generation: (pk,π,sk1)←$ Kg. The key generation al-
gorithm generates a public verification key pk, a proof π, and
an initial secret signing key sk1 for the first time period.

and additionally has the following algorithms:

Key verification: b← KVf(pk,π). The key verification al-
gorithm returns 1 if the proof pk is valid for pk and returns 0
otherwise.

Key aggregation: apk ←$ KAgg(pk1, . . . ,pkn). On input a
list of individual public keys (pk1, . . . ,pkn), the key aggre-
gation returns an aggregate public key apk, or ⊥ to indicate
that key aggregation failed.

Signature aggregation. Σ ←$ SAgg((pk1,σ1), . . . ,
(pkn,σn), t,M). Anyone can aggregate a given list of
individual signatures (σ1, . . . ,σn) by different signers with
public keys (pk1, . . . ,pkn) on the same message M and for
the same period t into a single multi-signature Σ.

Aggregate verification. b←AVf(apk, t,M,Σ). Given an ag-
gregate public key apk, a message M, a time period t, and
a multi-signature Σ, the verification algorithm returns 1 to
indicate that all signers in apk signed M in period t, or 0 to
indicate that verification failed.

Correctness. Correctness requires that KVf(pk,π) = 1
with probability one if (pk,π,sk1)←$ Kg and that for all mes-
sages M ∈ M, for all n ∈ Z, and for all time periods t ∈
{0, . . . ,T −1}, it holds that AVf(apk, t,M,Σ) = 1 with proba-
bility one if (pki,πi,ski,1)←$ Kg, apk←$ KAgg(pk1, . . . ,pkn),
ski, j ←$ Upd(ski, j−1) for i = 1, . . . ,n and j = 2, . . . , t, σi ←$

Sign(ski,t ,M) for i = 1, . . . ,n, and Σ←$ SAgg((pk1,σ1), . . . ,
(pkn,σn), t,M).

Security. Unforgeability (fu-cma) is defined through a
game that is similar to that described in Section 4.1. The
adversary is given the public key pk and proof π of an hon-
est signer and access to the same key update, signing, and
break-in oracles. However, at the end of the game, the ad-
versary’s forgery consists of a list of public keys and proofs
(pk∗1,π

∗
1, . . . ,pk∗n,π

∗
n), a message M∗, a time period t∗, and a

multi-signature Σ∗. The forgery is considered valid if

• pk ∈ {pk∗1, . . . ,pk∗n},
• the proofs π∗1, . . . ,π

∗
n are valid for public keys

pk∗1, . . . ,pk∗n according to KVf,



• Σ∗ is valid with respect to the aggregate public key apk∗

of (pk∗1, . . . ,pk∗n), message M∗, and time period t∗,

• t̄ > t∗,

• and A never made a signing query for M∗ during time
period t∗.

Our security model covers rogue-key attacks because the
adversary first receives the target public key pk, and only
then outputs the list of public keys pk∗1, ...,pk∗n involved in its
forgery. The only condition on these public keys is that they
are accompanied by valid proofs π∗1, ...,π

∗
n.

5.2 Construction
Let HG1 : {0,1}∗ → G∗1 be a hash function. The multi-
signature scheme reuses the key update and signature algo-
rithms from the scheme from Section 4.3, but uses different
key generation and verification algorithms, and adds signature
and key aggregation.

Key generation. Each signer chooses x←$ Zq and computes
y← gx

2 and y′ ← HG1(PoP,y), where PoP is a fixed string
used as a prefix for domain separation. It sets its public key
to pk = y, the proof to π = y′, and computes its initial secret
key as sk1← hx.

Key verification. Given a public key pk = y with proof
π = y′, the key verification algorithm validates the proof
of possession by returning 1 if

e(y′,g2) = e(HG1(PoP,y),y)

and returning 0 otherwise.

Key aggregation. Given public keys pk1 = y1, . . . ,
pkn = yn, the key aggregation algorithm computes
Y ←∏

n
i=1 yi and returns the aggregate public key apk = Y .

Signature aggregation. Given signatures σ1 =
(σ1,1,σ1,2), . . . ,σn = (σn,1,σn,2) ∈ G1 × G2 on the
same message M, the signature aggregation algorithm
outputs

Σ = (Σ1,Σ2) =
( n

∏
i=1

σi,1 ,
n

∏
i=1

σi,2
)
.

Aggregate verification. Multi-signatures are verified with
respect to aggregate public keys in exactly the same way
as individual signatures with respect to individual public
keys. Namely, given a multi-signature (Σ1,Σ2) ∈ G1×G2
on message M under aggregate public key apk = Y in time
period t, the verifier accepts if and only if apk 6=⊥ and

e(Σ1,g2) = e(h,Y ) · e
(
h0 ·

|t|

∏
j=1

h
t j
j ·h

Hq(M)
`+1 , Σ2

)
.

5.3 Security
Theorem 2. For any fu-cma adversary A against the above
forward-secure multi-signature scheme for T = 2`−1 time
periods in the random-oracle model, there exists an adver-
sary B with essentially the same running time that solves the
`-wBDHI∗3 problem with advantage

Adv`-wBDHI∗3
G1×G2

(B) ≥ 1
T ·qH

·Advfu-cma
FMS (A)−

q2
H

2κ
,

where qH is the number of random-oracle queries made by
A.

We prove the theorem by showing that a forger A for the
multi-signature scheme yields a forger A′ for the single-
signer scheme of Section 4.3 such that Advfu-cma

FS (A′) ≥
Advfu-cma

FS (A) . The theorem then follows from Theorem 1.
The key idea for the proof of security following [56] is

to program HG1 in such a way that we can “extract” a valid
forgery for the single-signer scheme starting from that for the
multi-signature scheme. In particular,

• given a rogue public key pk∗i = yi with proof π∗i = y′i
where yi = gxi

2 , we can extract the corresponding secret
key hxi from y′i by programming HG1(PoP,yi) = hri .

• given hxi for all yi 6= y along with a valid forgery for the
multi-signature scheme, we can extract a forgery for the
single-signer scheme. Here, we use the proofs π∗i = (hx

i )
r
i

to extract hx
i for all adversarial keys pk∗i = gxi

2 .

We defer the interested reader to Appendix B for proof
details.

6 Pixel in PoS-based Blockchains

In this section, we describe how to integrate Pixel into PoS-
based blockchains that rely on forward-secure signatures to
achieve security against posterior corruptions. We summarize
systems that rely on forward-secure signatures, abstract how
signatures are used in these systems, and explain how to apply
Pixel.

PoS Blockchains Secure under Posterior Corruptions.
Ouroboros Genesis and Praos rely on forward-secure signa-
tures to protect against posterior corruptions [5,31,40]. These
blockchains require users to rotate key and assume secure era-
sures. Thuderella is a blockchain with fast optimistic instant
confirmation [54]. The blockchain is secure against poste-
rior corruptions assuming that a majority of the computing
power is controlled by honest players. Similarly, the protocol
relies on forward-secure signatures. Pixel can be applied in
all these blockchains to protect against posterior attacks and
potentially reduce bandwidth, storage, and computation costs
in instances where many users propagate many signatures on



the same message (e.g., a block of transactions). Ouroboros
Crypsinous uses forward-secure encryption to protect against
the same attack [39]. Snow White shows that under a mild
setup assumption, when nodes join the system they can access
a set of online nodes the majority of whom are honest, the
system can defend against posterior corruption attack [30].
The system does not rely on forward-secure signatures.

Background on PoS Blockchains. A blockchain is an
append-only public ledger to which anyone can write and
read. The fundamental problem in blockchains is to agree on
a block of transactions between users. In Proof-of-Stake pro-
tocols, users map the stake or tokens they own in the system
to “voting power” in the agreement protocol. Various types
of PoS systems exist that use different formulas for determin-
ing the weight of each vote. For instance, in bounded PoS
protocols, users must explicitly lock some amount A of their
tokens to participate in the agreement. The weight of each
vote is A/Q, where Q is the total number of locked tokens
who’s users wish to participate in the agreement. Users that
misbehave are punished by a penalty applied to their locked
tokens.

To tolerate malicious users, all PoS protocols run a Byzan-
tine sub-protocol to agree on a block of transactions. The
system is secure, assuming that that majority (often 2/3) of
the tokens participating in the consensus is honest. Each block
is valid if a majority of committee members, weighted by their
stake, approved it.

Pixel Integration. In order to vote on a block B, each mem-
ber of the sub-protocol signs B using Pixel with the current
block number. The consensus is reached when we see a col-
lection of N committee member signatures σ1, . . . ,σN on the
same block B, where N is some fixed threshold. Finally, we
will aggregate these N signatures into a single multi-signature
Σ, and the pair (B,Σ) constitute a so-called block certificate
and the block B is appended to the blockchain.

Registering public keys. Each user who wishes to partic-
ipate in consensus needs to register a participation signing
key. A user first samples a Pixel key pair and generates a
corresponding PoP. The user then issues a special transaction
(signed under her spending key) registering the new participa-
tion key. The transaction includes PoP. PoS verifiers who are
selected to run an agreement at round r, check (a) validity of
the special transaction, and (b) validity of PoP. If both checks
pass, the user’s account is updated with the new participation
key. From this point, if selected, the user signs on blocks using
Pixel.

Vote generation. To generate a vote on a block number t,
users first update their keys to correspond to the round number.

Subsequently, they sign the block using the correct secret key
and propagate the signature to the network.

Propagating and aggregating signatures. Individual
committee signatures will be propagated through the network
until we see N committee member signatures on the same
block B. Note that Pixel supports non-interactive and incre-
mental aggregation: the former means that signatures can
be aggregated by any party after broadcast without commu-
nicating with the original signers, and the latter means that
we can add a new signature to a multi-signature to obtain a
new multi-signature. In practice, this means that propagating
nodes can perform intermediate aggregation on any number
of committee signatures and propagate the result, until the
block certificate is formed. Alternatively, nodes can aggregate
all signatures just before writing a block to the disk. That is,
upon receiving enough certifying votes for a block, a node
can aggregate N committee members’ signatures into a multi-
signature and then write the block and the certificate to the
disk. To speed up verification of individual committee mem-
ber signatures, a node could pre-compute e(h,y) for the y’s
corresponding to the users with the highest stakes.

Key updates. When using Pixel in block-chains, time cor-
responds to the block number or sub-steps in consensus pro-
tocols. Naively, when associating time with block numbers,
this means that all eligible committee members should update
their Pixel secret keys for each time a new block is formed
and the round number is updated. Assume for simplicity that
each committee member signs at most one block (if not, sim-
ply append a counter to the block number and use that as the
time). If a user is selected to be on the committee at block
number t, it should first update its key to skt (Pixel supports
“fast-forward” key updates from skt to skt ′ for any t ′ > t), and
as soon as it signs a block, updates its key to skt+1 and then
propagates the signature. In particular, there is no need for key
updates when a user is not selected to be on the committee.

Tweaking the scheme. The blockchain stores Pixel public
keys of all eligible committee members, as well as multi-
signatures on each block. It is easy to see that we can tweak
the Pixel scheme so that public keys live in the group G1
(which has a more compact description) instead of G2; this
way, we can minimize the size of the blockchain as well as
the cost of aggregate verification, which is dominated by the
cost of multiplying N public keys for large N. This change
does come at a small cost since signing is performed over the
slower G2 instead of G1. When instantiated with the BLS12-
381 pairing-friendly curve, each public key is 48 bytes, and
each multi-signature is 48+96=144 bytes independent of N.
Moreover, we estimate signing to take less than 3 ms, and
signature verification less than 5 ms for T = 230. More details
are provided in Section C.



7 Evaluation on Algorand Blockchain

In order to measure the concrete efficiency gains of Pixel, we
evaluate it on the Algorand blockchain [59, 60].

Algorand Overview. Algorand is a Pure PoS (PPOS) sys-
tem, where each token is mapped to a single vote in the con-
sensus without any explicit bonding [59,60]. Some users may
opt-out from participation, in which case their tokens are ex-
cluded from the total number of participating tokens (i.e., the
denominator in the weight). Each user maintains an account
state on-chain that specifies her spending key, balance, consen-
sus participation status, participation key, and other auxiliary
information. A user wishing to perform a transaction must
sign it with her corresponding secret key. Users run a Byzan-
tine consensus algorithm to agree on a block of transactions
following the high-level structure we outlined in the previous
section. We call a block certificate to denote a collection of
votes above a certain threshold approving a block. All users
in the network validate and store block certificate (and the
corresponding transactions) on disk. We refer to a node as
a computer system running Algorand client software on the
user’s behalf.

Verifier Vote Structure and Block Certificates. In Algo-
rand, each valid vote for a block proposal includes (a) a proof
that the verifier was indeed selected to participate in the con-
sensus at round r, and (b) a signature on the block proposal.
In more detail, each vote includes the following fields:

• Sender identifier which is represented by a unique public
key registered on-chain (32 bytes).

• Round and sub-step identifiers (8 bytes).

• Block header proposal (32 bytes).

• A seed used as an input to a VRF function for crypto-
graphic sortition (32 bytes).

• VRF credential that proves that the sender was indeed
chosen to sign on the block (96 bytes).

• Forward-secure signature authenticating the vote (256
bytes).

Overall, each vote is about 500 bytes (including some addi-
tional auxiliary information), half of which is for the forward-
secure signature.

Algorand has two voting sub-steps for each round. In the
first sub-step, a supporting set (of expected size 3000) of
verifiers is chosen to vote on a block proposal. In the second
sub-step, a certifying set (of expected size 1500) of verifiers
is chosen to finalize the block proposal. All verifiers’ votes
propagate in the network during the agreement, but only the
certifying votes are stored long-term and sufficient to validate
a block in the future. Larger recovering set (of expected size
10000) is chosen during a network partition for recovery.

Sig. set size BM-Ed25519 BM-BLS Pixel
1 256 B 192 Bytes 144 B
1500 375 KB 141 KB 144 B
3000 750 KB 281 KB 144 B
10000 2.4 MB 938 KB 144 B

Table 1: Total size of signature sets using various forward-
secure signature schemes for 232 time periods. BM-Ed25519
is instantiated using Algorand’s parameters with 10,000-ary
tree of depth 2. BM-BLS is instantiated using the same pa-
rameters with public keys in G1 and signatures in G2.

Algorand’s Existing Solution to Posterior Corruptions.
Algorand solves posterior corruptions using forward-secure
signatures instantiated with a d-ary certificate tree [9], which
we call BM-Ed25519 for convenience. The root public key of
an Ed25519 signature scheme is registered on-chain, and keys
associated with the leaves (and subsequently used to sign at
each round) are stored locally by the potential verifiers. For
each block at round r a verifier must (a) produce a valid certifi-
cate chain from the root public key to the leaf associated with
r, and (b) signature of the vote under the leaf key. Algorand
assumes secure erasures and that users delete old keys from
their nodes. BM-Ed25519 is instantiated with 10000-ary tree
and depth 2 (supporting approximately 226.6 time periods).
Ed25519-based signatures have public keys of 32 bytes and
64 bytes signatures. Hence, since a valid certificate chain
must include the intermediary public keys, the resulting size
of each forward-secure signature is 3× 64+ 2× 32 = 256
bytes.

7.1 Efficiency Evaluation

Pixel signatures can serve as a replacement of BM-Ed25519
in Algorand following the same design as outlined Section 6.

Setup. Our experiments are performed on a MacBook Pro,
3.5 GHz Intel Core i7 with 16 GB DDR3. We use Alogrand’s
open-source implentations of Pixel signatures, VRF functions,
Ed25519 signing, and verification [1, 2]. For blockchain ap-
plications, since the public key must live on-chain, we choose
to place Pixel public keys in G1, obtaining smaller public
keys and faster key aggregation during verification. We set
the maximum time epoch to T = 232−1, which is sufficient
to rotate a key every second for 136 years.

Figure 3 shows the runtime of individual Pixel algorithms,
aggregation, and object sizes for the BLS12-381 curve [7].
Next, we measure quantities that affect all nodes participating
in the system: the size of signature sets, bandwidth, and block
verification time. In Pixel, the signature set corresponds to a
single multi-signature.



keygen key sign aggregate verify agg. aggregate verify agg. |pk| |σ| |skt |
update (N = 1500) (N = 1500) (N = 1500) (N = 3000)

pk ∈G1 1.03 ms 1.8 ms 2.8 ms 7.2 ms 6.7 ms 13.9 ms 8.3 ms 48 B 144 B 43 kB

Figure 3: Performance figures of the Pixel signature scheme algorithms, and the size of public keys, signatures, and secret keys
when using a BLS12-381 curve. N denotes the amount of signatures and keys aggregated, respectively. Maximum number of
time periods is T = 232−1.

Storage Savings. In Table 1, we compare the sizes of sig-
nature sets that are propagated (for supporting and verifying
votes) and stored (for verifying votes) by all participating
nodes. We instantiate BM-Ed25519 with Algorand param-
eters of 10000-ary and depth 2. For BM-BLS we place the
public key in G1 and signatures in G2. Since BLS supports
aggregation of signatures, we can compress all signatures
in a certificate chain and the signature of the block into 96
B (note that the public key in the certificate chain cannot
be compressed and adds an additional 96 B per signature).
Furthermore, we can compress all signatures across votes.
Pixel signatures authenticating a block with 1500 signatures
are 2667x and 1003x times smaller than signature sets using
BM-Ed25519 and BM-BLS, respectively.

In Figure 4, we show long-term blockchain storage im-
provements using Pixel signatures. We evaluate storage as-
suming various number of transactions in each block. Each
transaction in Algorand is about 232 bytes. We also assume
that the entire expected number of certifying verifiers (1500)
are selected for each block. Given today’s block confirmation
time of just under 4.3 seconds per block, Algorand blockchain
should produce 106 blocks every ≈ 50 days and 108 blocks
every ≈ 13 years. Pixel signatures improve blockchain size
by about 40% and 20% on blocks packed with 1500 and
5000 transactions, respectively. This improvement translates
to smaller overall storage requirements and faster catch-up
speed for new nodes.

We clarify that the savings we obtain from Pixel are com-
plementary to those of Vault [44], which is another system
built on top of Algorand to improve storage and catch-up
speed. In particular, Vault can be used in conjunction with
Pixel to obtain further storage savings. Vault creates “jumps”
between blocks so that the system can confirm block r know-
ing only block r− k for some parameter k (e.g., k = 100).
Instead of downloading every block, a catch-up node in Vault
only needs to download every kth block. Even using Vault,
users would need to download and store about 106 blocks for
every ≈ 13 years of blockchain operation.

Bandwidth Savings. Algorand uses a relay-based propaga-
tion model where users’ nodes connect to a network of relays
(nodes with more resources). Without aggregation during
propagation, Pixel savings for the bandwidth for both relays
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Figure 4: Size of blockchain measured for different total num-
ber of blocks. The top two plots assume average of 1500
transactions per block and the bottom plots assume 5000
transactions per block. All plots assume average of 1500 cer-
tifying votes per block.

Number of connections BM-Ed25519 Pixel
4 4.4 MB 2.5 MB
10 11 MB 6.2 MB
100 109.9 MB 61.8 MB

Table 2: Total bandwidth to propagate a set of 4500 signatures
during consensus to agree on a block of transactions.



Sig. set size BM-Ed25519 Pixel Improvement
1 0.18 ms 4.9 ms 27x slower
1500 270 ms 6.7 ms 40x faster
3000 540 ms 8.3 ms 65x faster
10000 1.8 sec 15.6 ms 115x faster

Table 3: Total runtime to verify signature sets authenticating a
block. Pixel verification includes the time to aggregate public
keys.

and regular nodes come from smaller signatures sizes. Each
relay can serve dozens or hundreds of nodes, depending on the
resources it makes available. A relay must propagate a block
of transactions and the corresponding certificate (with 1500
votes) to each node that it serves. During consensus, however,
an additional 3000 supporting votes are propagated for every
block. Each node connects to 4 randomly chosen relays. Ev-
ery vote that the node receives from a relay, it propagates to
the remaining 3 relays. Duplicate votes are dropped, so each
vote propagates once on each connection. In Table 2, we sum-
marize savings for 4500 votes propagated during consensus
for each block. From the table, we see that a relay with 10
connections saves about 44% of bandwidth. Bandwidth can
be improved even further if Algorand relays were to aggregate
multiple votes before propagating them to the users.

Block Verification Time Savings. Since verifying a Pixel
multi-signature requires only 3 pairings in addition to multi-
plying all the public keys in the signature set, they are faster
to verify than BM-Ed25519 signatures sets. Table 3 shows
that a set of 3000 signatures can be verified about 65x faster.
In Figure 5, we measure the overall savings on block verifica-
tion time. Block verification time is broken into three main
intervals: (a) time to verify vote signatures, (b) time to verify
vote VRF credentials, and (c) time to verify transactions. In
each interval, signature verification dramatically exceeds the
time of any additional checks (e.g., check that the transaction
amount is higher than the user’s balance). Blocks with 1500
and 5000 transactions can be verified 38% and 29% faster,
respectively.

8 Variants and Extensions

Deterministic signatures. In practice, it is helpful to imple-
ment deterministic signing and key updates in order to protect
against attacks arising from bad randomness. We can achieve
using the standard technique [13] of deriving randomness
from a random oracle.

More precisely, we assume a random oracle H′ that
maps to Zq, and when signing M at time t, we use r ←
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Figure 5: Overall Algorand block verification time using BM-
Ed25519 and Pixel signatures. Each block is assumed to con-
tain 1500 certifying votes. The two plots on the left assume
1500 txs/block; whereas the two plots on the right assume
5000 txs/block.

H′(rand-sign, s̃kt ,M, t). When updating the key from time
t to t + 1, we may need to compute s̃kt‖1 and s̃kt‖2 from
s̃kt. The required randomness r can be computed with
H(rand-update, s̃kt). Alternatively, if we wish to avoid addi-
tional use of a random oracle, we can rely on prior “forward-
secure PRG techniques” [43].

Using internal nodes. For ease of exposition, our scheme
only assigns time periods to leaf nodes in the tree. Alterna-
tively, one could follow the approach of [24] to use all nodes
in the tree, in a pre-order traversal, as time periods, which
will improve the efficiency of the key update algorithm. Time
periods are then identified by bit strings of length at most
`, rather than exactly ` bits, and a signature in time period
t = t1 . . . td is a tuple of the form

(σ1,σ2) =

(
hx ·
(
h0

d

∏
j=1

h
t j
j ·h

Hq(M)
`+1

)r
, gr

2

)
.

Details are left to the reader.

Non-binary trees. One could try to reduce the key size by
using b-ary trees instead of binary trees. A larger value of b
reduces the depth of the tree, but increases the amount of key
material that must be kept at each level of the tree. To support
T time periods, one needs a b-ary tree of depth `= dlogb Te.
A node key at level d, however, can now take up to b−1 keys
of one element in G2 and (`+d−2) elements of G1.



The savings effect is quite limited, however, because the
disadvantage of needing more keys per level quickly starts
dominating the advantage of having less levels. For practical
values of T , the maximum size of the secret key will usually
be minimal for b = 3.

Parallel key timelines. In some applications, a signer may
want to maintain several parallel timelines for different usages
of a signing key. For example, in a sharded blockchain, the
shards may be running in parallel at different speeds, without
strict synchronization between the shards. If a time frame of
the forward-secure signature scheme corresponds to the block
height of a blockchain, for example, then the signer needs to
maintain a different key schedule for the different shards.

A trivial approach is to run a separate instance of Pixel per
timeline, and certify each public key with one root signing
key. A more efficient approach for our particular scheme is
to replace the fixed common parameter h with the output of a
hash function HG1(scope,scope). Meaning, during key gen-
eration, the signer generates skscope,1← HG1(scope,scope)x

for all relevant scopes scope and deletes the master key x.
It can then update, sign, and aggregate signatures for each
scope separately in the same way as before, but substituting
HG1(scope,scope) for h. Verification of individual signatures
and of multi-signatures is also the same as before, substituting
HG1(scope,scope) for h.

Tighter security. The loss in tightness in Equation (3) of
T · qH can be brought down to T · qS using Coron’s tech-
nique [29], where qS is the number of signing queries made
by the adversary A, by hashing the message into G1 in-
stead of into Zq. Namely, a multi-signature would be a tuple
(Σ1,Σ2,Σ3) satisfying

e(Σ1,g2) = e(h,Y ) ·e
(
h0 ·

`

∏
j=1

h
t j
j , Σ2

)
·e
(
HG1(msg,M),Σ3

)
.

This scheme has the additional advantage of saving up to
` elements of G1 in secret key size, but signatures are one
element of G2 longer than the base scheme. We leave details
to the reader.

Avoiding proofs-of-possession. In situations where proofs-
of-possession are not desirable, one could alternatively
reuse techniques from [16, 49] to avoid rogue-key at-
tacks. Signers’ public keys are simply given by pki =
yi = gxi

2 , but the aggregate public key is computed

as apk ← ∏
n
i=1 pkHq({pk1,...,pkn},pki)

i . Individual signatures
(σ1,1,σ1,2), . . . ,(σn,1,σn,2) are aggregated as

(Σ1,Σ2)←
( n

∏
i=1

σ
Hq({pk1,...,pkn},pki)
i,1 ,

n

∏
i=1

σ
Hq({pk1,...,pkn},pki)
i,2

)
,

so that verification can be performed as usual.

9 Conclusion

In this work, we focus on improving the speed and secu-
rity of PoS consensus mechanisms via optimizing its core
building block – digital signature scheme. We design a new
pairing-based forward-secure multi-signature scheme, Pixel.
We prove that Pixel is secure in the random oracle model
under a variant of Diffie-Hellman inversion problem over bi-
linear groups. Pixel is efficient as a stand-alone primitive and
results in significant performance and size reduction com-
pared to the previous forward-secure signatures applied in set-
tings where multiple users sign the same message (block). For
instance, compared to a set of 1500 tree-based forward-secure
signatures, a single Pixel signature that can authenticate the
entire set is 2667x smaller and can be verified 40x faster. We
explained how to integrate Pixel to any PoS blockchains to
solve posterior corruptions problem. We also demonstrate
that Pixel provides significant efficiency gains when applied
to Algorand blockchain. Pixel signatures reduce the size of
Algorand blocks with 1500 transactions by≈ 35% and reduce
block verification time by ≈ 38%.
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A Security Proof of Forward-Secure Signa-
tures

Proof. We prove the theorem in two steps. First, we show
that the scheme is selectively secure when the message space
M= {0,1}κ and Hq is the identity function, meaning, inter-
preting a κ-bit string as an integer in Zq.

Step 1: sfu-cma. We show that the above scheme with mes-
sage space M = {0,1}κ and Hq the identity function is
sfu-cma-secure under the `-wBDHI∗3 assumption by describ-
ing an algorithm B that, given a successful sfu-cma forger
A′, solves the `-wBDHI∗3 problem. On input (A1 = gα

1 ,A2 =

g(α
2)

1 , . . . ,A` = g(α
`)

1 ,B1 = gα
2 , . . . ,B` = g(α

`)
2 ,C), algorithm B

proceeds as follows.
It first runs A to obtain (t̄, t∗,M∗). That is, A receives skt̄

and produces a forgery on t∗,M∗. Let w∗ ∈ {0,1,2}`−1 such
that w∗ = w∗1‖ . . .‖w∗`−1 = t∗‖0`−1−|t∗|. It then sets the public



key and public parameters as

y ← B1

h ← gγ

1 ·A`

h0 ← gγ0
1 ·

`−1

∏
i=1

A−w∗i
`−i+1 ·A

−M∗
1

hi ← gγi
1 ·A`−i+1 for i = 1, . . . , ` ,

where γ,γ0, . . . ,γ`←$ Zq.
By setting the parameters as such, B implicitly sets x = α

and hx = Aγ

1 ·g
(α`+1)
1 . The reduction allows us to achieve two

goals:

• extract the value of hx from a forgery on t∗,M∗ (provided
by A′), allowing B to easily compute its `-wBDHI∗3 so-
lution e(g1,C)(α

`+1);

• simulate s̃kw′ for all w′ ∈ {0,1,2}≤`−1 which are not a
prefix of w∗; this would be useful for simulating both
the signing and the break-in oracle.

Algorithm B responds to A′’s oracle queries as follows.

Key update. There is no need for B to simulate anything
beyond keeping track of the current time period t.

Signing. We first describe how to answer a signing query for
a message M in time period t 6= t∗, and then describe the
case that t = t∗ and M 6= M∗. Let w ∈ {0,1,2}`−1 be such
that w = t‖0`−1−|t|.

Case 1: t 6= t∗. It is easy to see that t 6= t∗ ⇒ w 6= w∗.
(This crucially uses the fact that t, t∗ ∈ {1,2}∗.) Then, let
w′ = w1‖· · ·‖wk denote the shortest prefix of w which
is not a prefix of w∗. Extending the notation of s̃kw′ to
w′ ∈ {0,1,2}≤`−1, we describe how B can derive a valid
key s̃kw′ , from which it is straight-forward to derive both s̃kw
and a signature for t,M. Recall that s̃kw′ has the structure

(c,d,ek+1, . . . ,e`) =(
gr

2 , hx(h0

k

∏
i=1

hwi
i
)r

, hr
k+1 , . . . , hr

`

)
for a uniformly distributed value of r. Focusing on the second
component d first, we have that

d = hx ·

(
h0 ·

k

∏
i=1

hwi
i

)r

=
(
gγ

1A`

)α ·

((
gγ0

1

`−1

∏
i=1

A−w∗i
`−i+1A−M∗

1

)
·

k

∏
i=1

(
gγi

1A`−i+1

)wi
)r

= Aγ

1g(α
`+1)

1 ·

(
g

γ0+∑
k
i=1 γiwi

1 A
wk−w∗k
`−k+1 ·

`−1

∏
i=k+1

A−w∗i
`−i+1A−M∗

1

)r

,

where the third equality holds because wi = w∗i for 1≤ i < k
and wk 6= w∗k . (Note that in the product notation ∏

`−1
i=k+1

above, we let the result of the product simply be the unity
element if k + 1 > `− 1.) Let us denote the four factors
between parentheses in the last equation as F1, F2, F3, and
F4, and denote their product as F . If we let

r← r′+
αk

w∗k−wk
mod q

for a random r′←$ Zq, then we have that

d = Aγ

1 ·g
(α`+1)
1 ·Fr′ ·F

αk
w∗k−wk .

The first and third factors in this product are easy to compute.
The second factor would allow B to compute the solution

its `-wBDHI∗3 problem as e(g(α
`+1)

1 ,C), so B cannot simply

compute it. The last factor F
αk

w∗k−wk can be written as the
product of

F
αk

w∗k−wk
1 = A

γ0+∑
k
i=1 γiwi

w∗k−wk
k

F
αk

w∗k−wk
2 = A−αk

`−k+1 = g−(α
`+1)

1

F
αk

w∗k−wk
3 =

`−1

∏
i=k+1

A

−w∗i
w∗k−wk
`+k−i+1 =

`−k−2

∏
i=0

A

−w∗k+2+i
w∗k−wk

`−i

F
αk

w∗k−wk
4 = A

−M∗
w∗k−wk
k+1 .

Because 1≤ k ≤ `−1, it is clear that all but the second of
these can be computed from B’s inputs, and that the second

cancels out with the factor g(α
`+1)

1 in d, so that it can indeed
compute d this way. The other components of the key are
also efficiently computable as

c = gr′
2 ·Bk

1
w∗k−wk

ei = hr′
i ·A`+k−i+1 for i = k+1, . . . , `

= hr′
k+i ·A`−i for i = 0, . . . , `− k−1 .

From this key (c,d,ek+1, . . . ,e`) for w′, B can derive a key
for w and compute a signature as in the real signing algo-
rithm.

Case 2: t = t∗,M 6= M∗. For a signing query with t = t∗
but M 6= M∗, B proceeds in a similar way, but derives the
signature (σ1,σ2) directly. Algorithm B can generate a
valid signature using a similar approach as above, but us-
ing the fact that M 6= M∗ instead of wk 6= w∗k . Namely, letting



w = t‖0`−1−|t|, B computes a signature

σ1 = hx ·

(
h0 ·

`−1

∏
i=1

hwi
i ·h

M
`

)r

=
(
gγ

1A`

)α ·

((
gγ0

1 ·
`−1

∏
i=1

A−w∗i
`−i+1 ·A

−M∗
1

)
·

`−1

∏
i=1

(
gγi

1 ·A`−i+1

)wi

· (gγ`
1 ·A1)

M

)r

= Aγ

1 ·g
(α`+1)
1 ·

(
g

γ0+∑
`−1
i=1 γiwi+γ`M

1 ·AM−M∗
1

)r

σ2 = gr
2

by setting

r← r′+
α`

M∗−M
mod q

for r′←$ Zq, so that B can compute (σ1,σ2) from its inputs
A1, . . . ,A`,B1, . . . ,B` similarly to the case that t 6= t∗.

Break in. Here, B needs to simulate skt̄ where t∗ ≺ t̄. This
in turn requires simulating s̃kw for all w ∈ Γt̄. By the first
property of Γt̄ (described in Section 4.2), all of these w are
not prefixes of t∗ and also not prefixes of w∗, and we can
therefore simulate s̃kw exactly as before.

Forgery. When A′ outputs a forgery (σ∗1,σ
∗
2) that satisfies

the verification equation

e(σ∗1,g2) = e(h,y) · e
(
h0 ·

|t∗|

∏
j=1

h
t∗j
j ·h

M∗
` , σ

∗
2
)
,

then there exists an r ∈ Zq such that

σ
∗
1 = hα ·

(
h0 ·

|t∗|

∏
i=1

ht∗i
i ·h

M∗
`

)r

σ
∗
2 = gr

2 .

From the way that B chose the parameters h,h0, . . . ,h`, one
can see that

σ
∗
1 = Aγ

1 ·g
(α`+1)
1 · (gr

1)
γ0+∑

|t∗|
i=1 γit∗i +γ`M∗

Note that we do not know gr
1, so we cannot directly extract

g(α
`+1)

1 from σ∗1. Instead, observe that we have

e(σ∗1,C2) = e(Aγ

1,C2) · e(g
(α`+1)
1 ,C2)

· e(C1,σ
∗
2)

γ0+∑
|t∗|
i=1 γit∗i +γ`M∗ ,

from which B can easily compute its output e(g(α
`+1)

1 ,C2) =

e(g1,g2)
(γ·α`+1). It does so wheneverA′ is successful, so that

Adv`-wBDHI∗3
G1×G2

(B) ≥ Advsfu-cma
FS (A′) .

Step 2: fu-cma. Full fu-cma security for M = {0,1}∗ and
with Hq :M→ {0,1}κ modeled as a random oracle then
follows because, given an fu-cma adversary A in the random-
oracle model, one can build a sfu-cma adversary A′ that
guesses the time period t∗ and the index ofA’s random-oracle
query for Hq(M∗), and sets t̄← t∗+1. IfA′ correctly guesses
t∗, then it can use skt̄ to simulate A’s signature, key update,
and break-in queries after time t̄ until A’s choice of break-in
time t̄ ′, at which point it can hand over skt̄ ′ .

If A′ moreover correctly guessed the index of Hq(M∗),
and if A never made colliding queries Hq(M) = Hq(M′) for
M 6= M′, then A’s forgery is also a valid forgery for A′. Note
that forA to be successful, it must hold that t̄ ′ > t∗, so it must
hold that t̄ ′ ≥ t̄. The advantage of A′ is given by

Advsfu-cma
FS (A′) ≥ 1

T ·qH
·Advfu-cma

FS (A)− q2
H

2κ
, (3)

where qH is an upper bound on A’s number of random-oracle
queries. Together with Equation (3), we obtain the inequality
of the theorem statement.

B Security Proof of Forward-Secure Multi-
signatures

Proof. We show how to construct a forger A for the multi-
signature scheme yields a forger A′ for the single-signer
scheme of Section 4.3 such that

Advfu-cma
FS (A′) ≥ Advfu-cma

FS (A) .

The theorem then follows from Theorem 1.
Step 1: simulating A’s view. On input the parameters
(T,h,h0, . . . ,h`) and a public key y for the single-signer
scheme, the single-signer forger A′ chooses r ←$ Z∗q and
stores (y,⊥,gr

1) in a list L. It computes y′← yr and runsA on
the same common parameters and target public key pk = y
and proof π = y′. Observe that π is indeed a valid proof for
pk since e(y′,g2) = e(HG1(PoP,y),y).

Algorithm A′ answers all of A’s key update, signing, and
break-in oracle queries, as well as random-oracle queries for
Hq, by simply relaying queries and responses to and from
A′’s own oracles. Queries to the random oracle for HG1 are
answered as follows.

Random oracle HG1 . On input (PoP,z), A′ checks whether
there already exists a tuple (z, ·,v) ∈ L. If so, it returns v. If
not, it chooses r←$ Z∗q, computes v← hr, adds a tuple (z,r,v)
to L and returns v.y

Step 2: extracting a forgery. When A outputs its forgery

(pk∗1,π
∗
1, . . . ,pk∗n,π

∗
n),M

∗, t∗,Σ∗,

algorithm A′ first verifies the proofs π∗1, . . . ,π
∗
n for public

keys pk∗1, . . . ,pk∗n and computes the aggregate public key apk∗,



creating additional entries in L if necessary. Let pk∗i = yi = gxi
2

and π∗i = y′i. Looking ahead, if pk∗i passes key verification,
then we have y′i = (hxi)ri and since we know ri, we will be
able to “extract” hxi ∈G1.

If all keys are valid, then it holds that y′i = HG1(PoP,yi)
xi

for all i = 1, . . . ,n. Let apk∗ = Y be the aggregate public key.
From the aggregate verification equation

e(Σ∗1,g2) = e(h,Y ) · e
(
h0 ·

|t∗|

∏
j=1

h
t∗j
j ·h

Hq(M∗)
` , Σ

∗
2
)

and the fact that Y = ∏
n
i=1 yi = y ·g

∑
n
i=1,yi 6=y xi

2 , we have that

e(Σ∗1,g2) = e(h,y) · e(h,g2)
∑

n
i=1,yi 6=y xi ·

e
(
h0 ·

`

∏
j=1

h
t∗j
j ·h

Hq(M∗)
`+1 , Σ

∗
2
)

⇔ e(Σ∗1 ·h
−∑

n
i=1,yi 6=y xi ,g2) = e(h,y)·

e
(
h0 ·

|t∗|

∏
j=1

h
t∗j
j ·h

Hq(M∗)
` , Σ

∗
2
)
.

For all yi 6= y, A′ looks up the tuple (yi,ri,vi) in L. We know
that vi = hri , and hence that y′i = hrixi . By comparing the last
equation above to the verification equation of the single-signer
scheme, and by observing that y′i = hrixi , we know that the
pair

σ
∗
1 ← Σ

∗
1 ·

n

∏
i=1,yi 6=y

y′i
−1/ri

σ
∗
2 ← Σ

∗
2

is a valid forgery for the single-signer scheme, so A′ can
output M∗, t∗,(σ∗1,σ

∗
2) as its forgery.

C Efficiency Analysis

We let T = 2`−1 denote the maximum number of time peri-
ods.

Computational Efficiency. The main operations are key
generation, updating the key, signing, aggregating public keys,
and verifying signatures.

• Key generation requires 1 exponentiation in each of G1
and G2.

• Key verification requires 2 pairings.

• Key update for an arbitrary number of time steps requires
`2 exponentiations and 2`2 multiplications in G2 and `

exponentiations in G1; key updates can of course be en-
tirely precomputed, if necessary. Key updates from t to
t+1 require `−|t| exponentiation in G1 and 1 exponen-
tiation in G2 (ignoring multiplications) if |t|< `−1, and
no group operations if |t|= `−1. On average, this only
requires

1/2 ·0+1/4 ·2+1/8 ·3+1/16 ·4+ · · · ≤ 1.5

exponentiations in G1 and

1/2 ·0+1/4 ·1+1/8 ·1+1/16 ·1+ · · · ≤ 0.5

exponentiation in G2. That is, irrespective of the max-
imum number of time periods T , the average work for
updating the key does not exceed 1.5 and 0.5 exponenti-
ations in G1 and G2, respectively.

• Signing requires 3 exponentiations and 4` multiplica-
tions in G1 and 1 exponentiation in G2. By precomput-
ing

σ1,1 ← d ·
(
h0 ·

`−1

∏
j=1

h
t j
j
)r′

σ1,2 ← e` ·hr′
`

σ2 ← c ·gr′
2 ,

the signature can be computed as σ1 ← σ1,1 · σ
Hq(M)
1,2

once the message M is known, bringing the online com-
putation down to a single exponentiation.

• Aggregating N public keys together costs N−1 multi-
plications in G2. Here, we ignore the cost of verifying
proofs of possession, which should only be performed
once per public key.

• Verification of a signature requires 3 pairings (or one 3-
multi-pairing) and ` multiplications and 1 exponentiation
in G1, plus subgroup membership checks for G1 and G2.

Space Efficiency. We are mainly concerned with the size of
the public parameters, public keys, secret keys, and signatures.

• The public parameters consist of `+2 elements of G1.

• Every public key is a single element of G2.

• The size of skt is `(`− 1)/2 elements in G1 and ` ele-
ments in G2.

• A signature consists of one element in G1 and one ele-
ment in G2.
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