
Arbitrum Nitro: A Second-Generation Optimistic Rollup

Lee Bousfield, Rachel Bousfield, Chris Buckland, Ben Burgess, Joshua Colvin, Edward W. Felten,
Steven Goldfeder, Daniel Goldman, Braden Huddleston, Harry Kalodner, Frederico Arnaud Lacs,

Harry Ng, Aman Sanghi, Tristan Wilson, Valeria Yermakova, and Tsahi Zidenberg

Offchain Labs, Inc.

Abstract
We present Arbitrum Nitro, a second-generation Layer 2
blockchain protocol. Nitro provides higher throughput,
faster finality, and more efficient dispute resolution than
previous rollups. Nitro achieves these properties through
several design principles: separating sequencing of trans-
actions from deterministic execution; combining existing
Ethereum emulation software with extensions to enable
cross-chain functionalities; compiling separately for exe-
cution versus proving, so that execution is fast and prov-
ing is structured and machine-independent; and settling
transaction results to the underlying Layer 1 chain using
an optimistic rollup protocol based on interactive fraud
proofs.

1 Introduction

In previous work, we described Arbitrum [9], a system
and protocol for improving the performance and scala-
bility of smart contracts. This paper describes Arbitrum
Nitro, a significantly improved design that offers advan-
tages over the original, including greater efficiency, re-
duced latency, stronger liveness guarantees, and better
incentive compatibility.

1.1 Properties of Arbitrum Nitro
Nitro supports execution of smart contracts. The system
is implemented as a “Layer 2” on top of Ethereum [14],
although in principle it could be implemented on any
blockchain system that supports at least basic smart
contract functionality. Nitro provides an Ethereum-
compatible chain: Nitro runs smart contract applications
deployed in Ethereum Virtual Machine (EVM) code, and
Nitro nodes support the same API as common Ethereum
nodes.

The Nitro protocol guarantees both safety and
progress for the Layer 2 chain, assuming that (1) the un-
derlying Ethereum chain is safe and live, and (2) at least

one participant in the Nitro protocol is behaving honestly.
The protocol is termed ”optimistic” because execution is
more efficient when parties behave according to their in-
centives.

A variant of Nitro, called AnyTrust, provides lower
cost in exchange for an additional trust assumption. The
main body of this paper describes regular Nitro, and the
differences in AnyTrust are described in Section 7.

Nitro has been deployed on the Arbitrum One chain,
with Ethereum as the underlying Layer 1, since August
31, 2022. Nitro’s source code is available at https://
github.com/offchainlabs/nitro and its submod-
ules.

1.2 Design Approach
Nitro’s design has four distinctive features, which we
will use to organize the presentation.

• Sequencing followed by deterministic execution:
Nitro handles submitted transactions in two stages.
First, it puts transactions into the sequence in which
they will be processed, and commits to that se-
quence. Second, it applies a deterministic state tran-
sition function to each transaction, in sequence.

• Geth at the core: The core execution and state
maintenance functions in Nitro are handled by code
from the open source go-ethereum (”geth”) pack-
age, which is the most popular Ethereum execution
layer node software. By compiling in that geth code
as a library, Nitro ensures that its execution and state
are highly compatible with Ethereum’s.

• Separate execution from proving: Nitro compiles
the code of its state transition function for two tar-
gets. The code is compiled for native execution
when used in ordinary operation in a Nitro node.
The same code is compiled to portable web assem-
bly (”wasm”)[13] code for use in the fraud proof

1

https://github.com/offchainlabs/nitro
https://github.com/offchainlabs/nitro

protocol if needed. This dual-target approach as-
sures that execution is fast, while proving is based
on structured, machine-independent code.

• Optimistic rollup with interactive fraud proofs:
Building on the original Arbitrum [9] design, Nitro
uses an improved optimistic rollup protocol based
on an optimized dissection-based interactive fraud
proof protocol.

1.3 Structure of the paper
The remainder of the paper is structured as follows. Sec-
tion 2 introduces the sequencer and the deterministic
state transition function. Section 3 describes the struc-
ture of the Nitro software, and the affordances it provides
to support a Layer 2 chain. Section 4 describes the struc-
ture and derivation of the code used for proving execu-
tion results. Section 5 presents the protocol used to assert
execution results, and Section 6 describes the challenge
sub-protocol, which resolves any disputes about those
results. AnyTrust, an extension of Nitro using an exter-
nal data availability committee, is described in Section 7.
Section 8 concludes and suggests future directions.

2 Sequencing Followed by Deterministic
Execution

Processing of submitted transactions in Nitro occurs in
two phases. First, a component called the Sequencer puts
the transactions into an ordering and commits to the or-
dering. Second, the transactions are consumed, in se-
quence, by the deterministic State Transition Function.
The process is illustrated in Figure 1.

Submitted transactions may or may not be valid. For
example, they may lack a valid signature, or they may be
garbage data. An honest Sequencer will make its best ef-
fort to discard submitted transactions that are invalid, but
the protocol makes no assumptions about whether trans-
actions in the Sequencer’s output are valid. Executing
the State Transition Function on an invalid transaction
will simply discard that transaction.

2.1 The Sequencer
The Sequencer is trusted only to order incoming trans-
actions honestly, according to a first-come, first-served
policy.1 At present the Sequencer is a centralized com-
ponent operated by Offchain Labs, but in the future we
intend to transition to a committee-based sequencer us-
ing a fair distributed sequencing protocol [11, 10].

1In principle the Sequencer could implement any transaction order-
ing policy. The first-come, first-served policy is easy to implement and
minimizes latency.

The Sequencer does not have the power to prevent the
chain from making progress, nor to prevent the inclusion
of any particular transaction.

The Sequencer publishes its transaction ordering in
two ways. First, it publishes a real-time feed of the se-
quenced transactions, which any party can subscribe to.
The feed represents the Sequencer’s promise to record
transactions finally in a particular order. The Sequencer
has the power to keep its promises, so any deviation from
the promised sequence would be due to malfunction or
malice by the Sequencer, or to a deep reorganization of
the Layer 1 chain.

Second, the Sequencer posts its transaction sequence
as Ethereum calldata. The Sequencer collects a batch of
consecutive transactions, compresses it using a general-
purpose compression algorithm (currently brotli [1]), and
passes the result to the Nitro chain’s Inbox contract,
which runs on L1 Ethereum. These batches represent
the final and authoritative transaction ordering, so that
once the Sequencer’s transaction to the Inbox has final-
ity on Ethereum, the Nitro chain’s transaction sequence
is final.

The Delayed Inbox Although most user transactions
will be submitted directly to the Sequencer and included
in one of the Sequencer’s batches, there is another way
to submit transactions, through the Delayed Inbox. This
has two purposes. First, it allows transactions to be sub-
mitted by L1 Ethereum contracts, which cannot gener-
ate the digital signatures needed to submit a transaction
through the Sequencer. Second, it provides a backup
method for anyone to submit a transaction in case the
Sequencer starts censoring valid transactions.

A transaction is added to the Delayed Inbox by call-
ing a method on the Nitro chain’s inbox contracts. The
contracts keep a queue of timestamped transactions. The
Sequencer can include in its sequence the first message in
the delayed inbox queue. An honest Sequencer will do
this after a brief delay, which is long enough to ensure
that the arrival of that message in the delayed inbox will
not be wiped out by a reorganization of the L1 chain–
typically a 10-minute delay.

However, if a message has been in the delayed inbox
for at least a threshold time period (currently 24 hours),
anyone can force that message to be included next in
the chain’s inbox, thereby guaranteeing its execution.
This forced inclusion step prevents censorship by the Se-
quencer, but would only be needed due to the Sequencer
being malicious or having a long downtime.

Section 3.2.3 presents more details about the role of
the Delayed Inbox.

2

Figure 1: Processing of transactions in Nitro. The sequencer establishes an ordering on transactions, and publishes
the order as a real-time feed and as compressed data batches on the L1 chain. Sequenced transactions are processed
one at a time by a deterministic state transition function, which updates the chain state and produces L2 blocks. These
blocks are later settled to the L1 chain.

2.2 Deterministic execution

After incoming transactions have been sequenced, they
are processed by the execution phase of Nitro, by us-
ing the chain’s State Transition Function (STF). The
STF takes as input a state (which is the root hash of
an Ethereum state tree [14]), and an incoming message,
which is usually a single transaction. The STF’s output is
an updated state and a new Ethereum-compatible block
header to be appended to the Nitro chain.

The STF is fully deterministic, so that the outcome
of executing the STF on a transaction depends only on
the transaction’s data and the state before the transaction.
Because of this, the outcome of a transaction T depends
only on the genesis state of the Nitro chain, the sequence
of transactions preceding T, and T itself.

Because of this determinism, an honest party can de-
termine the full state and history of the chain, given only
the transaction sequence, or given a confirmed state of
the chain at some point in the past and the transaction se-
quence since then. Nodes need not communicate, and no
consensus is necessary among them, in order to agree on
the correct state and history, because this depends only
on the transaction sequence which is visible to all.

Nitro does have a rollup sub-protocol (discussed in
Section 5) to confirm the transaction results to the L1
Ethereum chain. That sub-protocol does not decide the
result of transactions but only confirms and records the
result that was already known to honest protocol partici-

pants.

3 Software Architecture: Geth at the Core

The second key design idea in Nitro is ”geth at the core.”
Here ”geth” refers to go-ethereum, the most common
execution layer node software for Ethereum. As its name
would suggest, go-ethereum is written in Go [7], as is
almost all of Nitro.

The software that makes up a Nitro node can be
thought of as built in three main layers, which are shown
in Figure 2.

• The base layer is the core of geth–the parts of
geth that emulate the execution of EVM contracts
and maintain the data structures that make up the
Ethereum state. Nitro compiles in this code as a
library, with a few minor modifications to add nec-
essary hooks.

• The middle layer, which we call ArbOS, is cus-
tom software that provides additional functions as-
sociated with Layer 2 functionality, such as decom-
pressing and parsing the Sequencer’s data batches,
accounting for Layer 1 gas costs and collecting fees
to reimburse for them, and supporting cross-chain
bridge functionalities such as deposits of Ether and
tokens from L1 and withdrawals of the same back
to L1.

3

Figure 2: High-level structure of the Nitro code, showing major components. The boundary of the State Transition
Function is shown in orange.

• The top layer consists of node software, mostly
drawn from geth. This handles connections and in-
coming RPC requests from clients and provides the
other top-level functionality required to operate an
Ethereum-compatible blockchain node.

Because the top and bottom layers rely heavily on code
from geth, this structure has been dubbed a ”geth sand-
wich.”2

The State Transition Function consists of the bottom
geth layer, and a portion of the middle ArbOS layer. In
particular, the STF is a designated function in the source
code, and implicitly includes all of the code called by that
function. The STF takes as input the bytes of a transac-
tion received in the inbox, and has access to a modifiable
copy of the Ethereum state tree. Executing the STF may
modify the state, and at the end will emit the header of
a new block (in Ethereum’s block header format) which
will be appended to the Nitro chain.

3.1 ArbOS

ArbOS is a software layer that implements functionality
that is necessary and convenient for managing a Layer 2
chain. This includes bookkeeping functions, cross-chain
communication, and L2-specific fee tracking and collec-

2Strictly speaking, geth plays the role of the bread in the sandwich,
and ArbOS is the filling, but this sandwich is named for the bread.

tion. Portions of ArbOS are included in the State Transi-
tion Function.

3.1.1 State Representation

All state of a Layer 2 Nitro chain is stored in Ethereum’s
Merkle Patricia state trie data structure. This includes
the state of ArbOS, which is modified as part of the State
Transition Function.

ArbOS encodes its state in the storage slots of a spe-
cial Ethereum account whose private key is unknown.
The specific slots used are chosen to satisfy the following
goals

• keep all ArbOS state in the storage of a single
Ethereum account,

• allow sub-components of ArbOS to manage their
state separately, without collisions,

• maintain reasonable locality within the same sub-
component, and

• avoid constraining future additions to the state.

The state is organized as a hierarchy of nested
”spaces” where each space is a mapping from 256-bit
index to 256-bit value, with all values implicitly initial-
ized to zero. This structure is mapped onto a single flat
256-bit to 256-bit key-value store, which is the storage
of the special Ethereum contract.

4

Each space is associated with a key. The key of the
root space is zero, and the key of a subspace named
n within a space with key k is H(k||n) where H is
Ethereum’s standard Keccak256 hashfunction. This
scheme ensures that spaces’ keys do not collide.

Within the space with key k, the item with index i
is stored at location H ′(k||i) in the underlying flat stor-
age, where H ′ is a locality-preserving hashfunction. The
function H ′(x) hashes all but the last 8 bits of x, trun-
cates the result to 248 bits, then appends the last 8 bits
of x. This ensures that contiguous groups of 256 indices
are kept contiguous by the hashfunction, while ensuring
that the function is collision-resistant.3 The use of this
locality-preserving hashfunction will reduce the cost of
state accesses when Ethereum switches to a state repre-
sentation that rewards contiguity.

3.2 Cross-chain Interaction

One of the roles of ArbOS is to support secure cross-
chain calls in both directions between Nitro and Layer 1
Ethereum. An account on one layer can send a trans-
action to the other chain, and that transaction will be
executed asynchronously. In this section we describe
the Outbox, which supports calls from a Nitro chain to
Ethereum, and two mechanisms, the Inbox and Retryable
Tickets, which support calls from Ethereum to a Nitro
chain.

3.2.1 Address Aliasing

When a Layer 1 Ethereum contract submits a transaction
to a Nitro chain, the question arises of what sender ad-
dress should be attached to the transaction when it runs
on Nitro. It is tempting to simply use the L1 address of
the sending contract, but there could be a contract at the
same address on the Nitro chain, and if so the two con-
tracts would be indistinguishable to a call recipient on
Nitro, which would allow either one to impersonate the
other on the Nitro chain. This is potentially dangerous.

To avoid this, the address of an L1 sender at ad-
dress A on Layer 1 is presented on the Nitro chain as
f (A) = (A+C) mod 2160, where C is a specified odd
constant. Because all Ethereum addresses, and all other
Nitro addresses, are generated by hashing some data (the
exact data depending on how the address originated), it
is infeasible to generate a collision between an aliased
address and another Nitro address. Nitro software trans-
lates addresses in either direction as needed, when inter-
acting with Ethereum.

3H ′ loses a few bits of collision resistance compared to H, requiring
a factor of 24 less effort to find a collision by brute force search, but this
reduction is acceptable.

3.2.2 The Outbox

Nitro’s Outbox system allows for arbitrary L2 to L1 con-
tract calls; i.e., messages initiated on L2 which are even-
tually executed on L1. Given the security properties in-
herent to optimistic rollups, an outgoing message’s L1
execution can only take place after its message’s dispute
period passes and its Rollup Block is confirmed (as de-
scribed in Section 5).

Logically, an L2 to L1 message is like a ”ticket” that is
created on L2 and can later be ”redeemed” at L1 to cause
a specified transaction call to occur at L1. The recipient
of that transaction call can verify that it is an authorized
L2 to L1 message call, and can confirm the L2 sender and
data of the call. This functionality is sufficient to support
secure transfers of ETH, tokens, or other forms of value
from L2 to L1. The asynchronous ticket model is needed
for safety. Messages must be asynchronous because they
cannot be redeemed until an RBlock that includes them
has been confirmed; and redemption is done per-ticket
and not in strict order because redemption of a particular
ticket could require executing arbitrary code which may
be very expensive in L1 gas or not even possible.

L2 to L1 messages are initiated via an L2 transaction
that calls a special ArbSys precompile that is part of Ar-
bOS. ArbOS serializes the L2 sender’s address, amount
of ETH provided with the call, L1 destination address,
and calldata, and the result becomes an L2 to L1 mes-
sage.

Part of the state asserted by an RBlock is the root hash
of a Merkle tree of all L2 to L1 messages in the chain’s
history. When an RBlock is confirmed, this root hash
is updated in the chain’s Outbox contract on L1; at this
point, a user can call the Outbox contract with a Merkle
proof of inclusion of a message to redeem it. The L1 Out-
box contract tracks which messages have been success-
fully redeemed, so that each message can be redeemed at
most once.

ArbOS uses an efficient representation to support in-
cremental computation of the Merkle tree root while re-
quiring only logarithmic storage. Any Merkle tree can be
decomposed into a minimal set of completely full binary
subtrees, of decreasing size. ArbOS remembers only the
size of the overall Merkle tree, along with the root hashes
of these full subtrees. The addition of a new leaf to the
tree will result in a state with exactly one completely full
subtree that did not previously exist. ArbOS emits an
L2 EVM event containing the hash of the newly created
subtree. Every inclusion proof in a Merkle tree version
consists of a set of these subtree hashes, and a client who
wants to create a proof can use standard event searches
to find the L2 events containing the hashes needed for
their proof. (The Nitro node API includes support for
constructing these proofs automatically.)

5

3.2.3 The Inbox

The Inbox, which is managed by a set of Layer 1
Ethereum contracts, is responsible for recording mes-
sages (typically transactions) sent to a Nitro chain. The
Delayed Inbox receives messages that are submitted on
Layer 1, while the main Inbox receives messages sent by
the Sequencer as well as merging in messages from the
Delayed Inbox.

The Delayed Inbox is a set of Layer 1 Ethereum con-
tracts that accept messages to be delivered to the Nitro
chain. This is an alternative to submitting via the Se-
quencer. The Delayed Inbox is the only way for Layer 1
contracts to submit messages, because Layer 1 contracts
cannot sign messages or submit them to the Sequencer.
It also provides a way for any user to submit a message
without relying on the Sequencer, in case the Sequencer
is unavailable or misbehaving.

The Delayed Inbox is logically a queue. It tracks the
number of messages submitted to it and a hash-chain
commitment to the contents of those messages. These
messages will eventually be copied into the main Inbox
as described below.

The Sequencer submits its data batches directly to the
Inbox contracts. Each batch contains a compressed se-
quence of transactions, along with a directive to include
a specified number of messages from the head of the De-
layed Inbox. The main input loop of the ArbOS will con-
sume these Sequencer batches in order.

A well-behaved Sequencer will include Delayed In-
box messages after a short delay, which is long enough
to minimize the risk that a reorganization of the Layer
1 chain will cause an included message to disappear or
change. The current Sequencer implementation includes
Delayed Inbox messages after ten minutes. If the Se-
quencer fails to include a Delayed Inbox message within
a fixed interval4, any party can call the Inbox to force
inclusion of the message, which occurs by forcing a Se-
quencer batch including the message(s) into the Inbox.
The ability to submit a message to the Delayed Inbox
and force its inclusion without relying on the Sequencer
supports Nitro’s guarantee of liveness.

3.2.4 Retryable Tickets

Layer 1 contracts can submit transactions to a Ni-
tro chain, but those transactions necessarily run asyn-
chronously on the Nitro chain, so the submitting Layer 1
transaction cannot see whether they succeed. This poses
problems for applications such as token bridging which

4Setting this parameter reflects a tradeoff between the desire for
prompt inclusion, and the desire to avoid unexpected behavior if the
Sequencer experiences downtime. Currently it is set to 24 hours, but
we expect the value to be reduced as the perceived risk of Sequencer
downtime diminishes.

require a Layer 1 contract to ensure that a deposit trans-
action runs at Layer 2. If the deposit transaction fails,
for example due to changes in gas prices, the Layer 1
bridge contract cannot know this until much later, and
user funds could be lost or stranded in the meantime.

To support this and other use cases, Nitro includes a
retryable ticket system, which allows a transaction sub-
mitted from Layer 1 to be designated as retryable, mean-
ing that if the transaction fails, ArbOS creates a retryable
ticket for the transaction. If the transaction had ETH call-
value attached, ArbOS escrows that callvalue, associated
with the ticket. A later transaction can redeem the ticket
by providing funds for its gas. The retry will run with the
original sender, callvalue, and data, with the only differ-
ence being the gas parameters and who is paying for the
gas.

If a retry fails, the ticket remains in the retry buffer,
and can be retried again. (If the retry succeeds, the ticket
is removed.) After a fixed interval, currently one week,
an unredeemed ticket expires and will be automatically
deleted by ArbOS. If the deleted ticket had callvalue es-
crowed by ArbOS, that callvalue is refunded.

The submitter of a retryable transaction must pay a
submission fee, which will be refunded to the submit-
ter if the initial execution of the transaction succeeds, or
paid to ArbOS if the initial execution fails and a retryable
ticket is made. The submission fee is meant to cover the
cost of keeping the ticket in ArbOS’s storage until the
ticket’s expiration time. The submission fee depends on
the size of the transaction and is determined, for each
submission, by a Layer 1 contract, to ensure that Layer 1
submitters know exactly what the fee will be.

3.2.5 Token Bridge

Nitro’s cross-chain messaging affordances can be used
to create a Token Bridge, an application that allows for
the effective transfer of assets between the Ethereum and
Nitro chains. The Offchain Labs team has implemented
and released a Token Bridge informally referred to as
“canonical”, though the Nitro core protocol grants it no
special recognition or affordances; it is effectively an ap-
plication like any other. (Note that, similarly, Nitro has
no natively recognized notion of tokens nor of any par-
ticular token standard, much like Ethereum.)

At its core, the Token Bridge offers the ability to de-
posit (transfer from Ethereum to Nitro) and withdraw
(transfer from Nitro to Ethereum) fungible tokens. To
deposit n tokens, a transaction is sent to Ethereum which
carries out two operations: it sends n tokens to an L1
contract (known as a Token Gateway), and creates a
retryable transaction (Section 3.2.4) that mints n tokens
of an L2-counterpart contract. The two token contracts
are counterparts, due to the guarantee that a holder of

6

L2 token can carry out a withdrawal: a withdrawal of
m tokens is initiated via an L2 transaction which burns
m tokens on L2 and creates a L2 to L1 message (Sec-
tion 3.2.2) directing that the L1 Token Gateway release
m tokens on L1. Upon confirmation, the message can
be executed in the Outbox, which releases the m tokens
from escrow.

By default, tokens are bridged via the “Standard Gate-
way” contracts. When going through the Standard Gate-
way, a token gets its L2 counterpart deployed on L2
at a deterministically generated address (via the CRE-
ATE2 EVM opcode). The token contract deployed on
L2 is a StandardArbERC20 — an OpenZeppelin [12]
ERC20 contract with additional affordances to mint/burn
from the bridge contracts, along with callback hook af-
fordances. Alternatively, to use a different contract as its
L2 counterpart, an L1 token contract can register itself to
any other “custom” gateway. Gateway Router contracts
are responsible for tracking the mapping of L1 tokens
to their Gateways (which in turn map them to their L2
counterpart tokens).

Many additional token bridge features are theoreti-
cally possible, including non-fungible token bridging,
atomic swaps for fast L2 to L1 withdrawals, and bridging
tokens natively deployed on L2 back to L1. Several inde-
pendent services offer enhanced bridging functionalities,
typically building on the canonical bridge.

3.3 Gas and Fees

Like many blockchains, Arbitrum collects fees from each
transaction, to cover the costs of operating the chain,
align incentives, and ration resources when demand is
high. Fees are charged and collected in chain-specific
gas. For clarity we will use the term NitroGas to de-
note Layer 2 gas on a Nitro chain, and L1Gas to denote
Layer 1 gas on Ethereum. Each EVM instruction costs
the same number of gas units on both chains; for exam-
ple, the MULMOD instruction costs 8 NitroGas on Nitro
and 8 L1Gas on Ethereum.

Each transaction requires some amount of NitroGas,
depending on the resources used by the transaction. The
price of NitroGas is equal to the current basefee which
varies algorithmically as described below. NitroGas
prices and NitroGas payments are denominated in ETH.

A Nitro transaction specifies a gas limit, which is the
maximum amount of NitroGas it will be allowed to con-
sume. If the transaction tries to consume more NitroGas
than its limit, the transaction fails but it must pay for the
NitroGas it used. A transaction also specifies the maxi-
mum basefee it is willing to pay.The transaction will not
run (and therefore will not consume NitroGas) if the cur-
rent basefee is above the transaction’s maximum. To-
gether these rules ensure that a transaction’s NitroGas

spending cannot be more than the product of its gas limit
and maximum basefee. By signing a transaction, the user
is authorizing a deduction from its ETH account for gas
costs of up to this amount, and Nitro respects this limit.

This approach preserves the user experience of
Ethereum, allowing developers and users to use standard
tools and wallets.

3.3.1 L2 Gas Metering and Pricing

Like Ethereum, Nitro tracks the usage of NitroGas and
dynamically adjusts its basefee based on usage, so that
when demand exceeds the sustainable capacity of the
chain, the basefee increases until demand and capacity
come back into balance.

The sustainable capacity of the chain is reflected in a
chain’s speed limit parameter, which reflects the maxi-
mum sustainable throughput of the chain, based on prac-
tical engineering considerations. NitroGas usage is al-
lowed to exceed the speed limit over short periods, but
the pricing algorithm must ensure that average NitroGas
usage does not exceed the speed limit over an extended
period.

Unlike Ethereum, Nitro has variable time between
blocks, so Nitro’s basefee adjustment algorithm oper-
ates at a one-second granularity rather than one-block
as on Ethereum. Additionally, in Nitro the sequencer
attaches timestamps to transactions, so ArbOS must be
prepared to handle a large number of transactions with
the same timestamp, or a large amount of NitroGas re-
quested by transactions with the same timestamp. By
contrast, Ethereum limits the L1Gas usage in a single
block to twice Ethereum’s speed limit.

Nitro’s gas metering algorithm tracks a backlog B,
which is updated as follows.

• If a transaction consumes G NitroGas, B← B+G.

• If T seconds elapse, B← max(B−T S,0), where S
is the speed limit.

Intuitively, B tracks how far behind the sustainable speed
limit the chain has been during the current burst of usage.

Nitro’s basefee is then calculated as

F(B) = F0emax(0,β (B−B0))

where F0 is the minimum basefee, and B0 is a toler-
ance parameter. The scale factor β is chosen so that
a 12-second period with gas usage double the speed
limit would multiply the basefee by a factor of 9

8 , yield-
ing β ≈ 1

102S . This matches the rate of increase that
Ethereum would see if it experienced a 12-second block
at double its speed limit.

The exponential growth of the basefee, as a function of
backlog, guarantees that the backlog is bounded in prac-
tice. If the demand curve is unchanging, and if demand

7

exceeds the speed limit at the minimum basefee, then the
basefee will equilibrate at the level where demand equals
the speed limit, and the backlog will be constant and log-
arithmic in the equilibrium price.

3.3.2 L1 Data Metering and Pricing

In addition to Layer 2 resources, a transaction also uses
some resources on Layer 1 Ethereum. These must be
included in the transaction’s total gas cost, so that costs
can be recovered and incentives aligned. Although these
L1 resources are charged in NitroGas, these L1 charges
are not included when tracking the backlog, because they
do not reflect consumption of the Nitro chain’s own re-
sources.

The relevant costs are incurred by the Sequencer when
it submits Ethereum transactions to post data batches on
Layer 1 and perform associated bookkeeping. In practice
this will typically be the largest component of cost on an
Ethereum-based Nitro chain.

There are two main challenges in pricing these re-
sources. First, it is not obvious how to apportion the costs
of a batch among the transactions that comprise it. The
posted data is compressed using a general-purpose com-
pression algorithm [1] whose effectiveness depends on
patterns shared in common across the transactions in a
batch. Ideally we would charge less for transactions that
contribute more to the compressibility of the batch, but
there is no obvious and efficient way to determine how
much a particular transaction contributed to overall com-
pressibility. Instead, we will approximate, as described
below.5

The second challenge is that the L1 fee assessed to a
transaction must be known to ArbOS when the transac-
tion is sequenced—to use information that is available
only later would violate the determinism property of the
State Transition Function. But at the time a transaction is
sequenced, the cost of the batch eventual batch in which
it will be posted is not known. The eventual cost will de-
pend on the L1 basefee at the future time when the batch
is posted, and on the remaining contents of the batch
(which affect the size and compressibility of the batch),
but neither is known when the transaction is sequenced.
So we cannot hope to charge a transaction for its actual
L1 posting costs, because they are not yet known when
the charge must be assessed.

Nitro addresses these challenges by determining two
things: (1) for each transaction, the estimated relative
footprint of that transaction, measured in data units, and
(2) at each point in time, a fee per data unit.

5AnyTrust chains raise additional issues, which are discussed in
Section 7.

Apportioning Costs Among Transactions To appor-
tion cost among transactions, we approximate the com-
pressibility of each transaction by applying the Brotli
compressor, at its lowest compression / cheapest compu-
tation level, to each transaction, and multiplying the size
of the result by 16.6 We use Brotli on its fastest setting
in order to reduce the computational load, because this
computation is done inside the State Transition Function
and is essentially an overhead cost for the chain. The
size of this compressed data is an approximation to the
size of the same transaction if compressed with the more
aggressive compressor used to build Sequencer batches.
This in turn is a rough approximation to the transaction’s
contribution to the compressibility of the entire batch.
More accurate approximations are possible, but we do
not know of a better approximation that is fast enough.

Determining Cost Per Data Unit One might think,
naively, that the cost per data unit should just be equal
to the L1 basefee, because that is what the Sequencer
pays to post data. But this is not a viable approach, for
at least two reasons. First, ArbOS has no way of directly
measuring the L1 basefee, and we do not trust the Se-
quencer to report the L1 basefee, because the Sequencer
receives more payment if the basefee is higher. Second,
because the number of units charged to a transaction is
only an approximation to its overall data footprint, the
total number of units charged is not directly proportional
to the Sequencer’s costs.

Data is priced using an adaptive algorithm that is de-
signed to serve two main goals: to minimize the long-
run difference between data fees collected and the Se-
quencer’s data costs7, and secondarily to avoid sudden
fluctuations in the data price.

To do this, the pricer tracks:

• an amount owed to the Sequencer,

• a reimbursement fund, which receives all of the
funds charged to transactions for L1 fees,

• a count of recent data units, to which the number of
data units in each transaction is added, and

• the current L1 data unit price, in wei.

The pricer varies the L1 data unit price adaptively, based
on this data.

6We multiply by 16 because Ethereum charges 16 gas per byte for
most data, so the number of data units is measured on a scale similar to
the gas cost of data on Ethereum.

7In practice it is convenient to allow data to be posted by ”batch
posters” other than the Sequencer, and to direct reimbursement for a
batch to the batch poster who posted it. The deployed system supports
this, but in the main text we will assume that the Sequencer is the only
batch poster, to simplify the exposition.

8

When the Sequencer posts a batch to the L1 inbox,
this causes the L1 inbox to insert a ”batch posting re-
port” transaction into the chain’s delayed inbox. After a
delay, this transaction will be processed by the pricer, as
follows.

1. The pricer computes the cost of posting the reported
batch, and adds that amount to the amount owed to
the Sequencer.

2. The pricer computes a number of data units as-
signed to this update, as Uupd = U Tupd−Tprev

T−Tprev
, where

U is the count of recent data units, T is the current
time, Tupd is the time when the update occurred, and
Tprev is the time when the previous update occurred.
Uupd is subtracted from U .

3. The pricer pays the Sequencer, from the reimburse-
ment fund, the minimum of what the Sequencer is
owed and the balance of the reimbursement fund.
The amount paid is deducted from the reimburse-
ment fund and from the amount owed to the Se-
quencer.

4. The pricer computes the current surplus S, which is
the reimbursement fund balance, minus the amount
owed to the Sequencer. (The surplus may be nega-
tive.) It then computes the derivative of the surplus
as D =

S−Sprev
Uupd

.

5. The pricer computes the ”derivative goal” as D′ =
−S
E , where E is an equilibration constant. This is

the derivative that must hold on average in order for
the surplus to reach zero after E more data units are
processed.

6. The pricer computes a change in the price as ∆P =

(D′−D)
Uupd

α+Uupd
where α is a smoothing parameter.

7. The pricer updates the price to P = max(0,Pprev +
∆P).

This algorithm should cause the Sequencer’s long-
term reimbursements to be nearly equal to its long-term
costs. We can also add a small per-unit reward, payable
to an arbitrary address, to cover any other small pay-
ments needed for infrastructure or operations.

4 Compiling for execution versus proving

One of the challenges in designing a practical rollup sys-
tem is the tension between wanting the system to perform
well in ordinary execution, versus being able to reliably
prove the results of execution. Nitro resolves this by us-
ing the same source code for both execution and proving,
but compiling it to different targets for the two cases.

When compiling the Nitro node software for execu-
tion, the ordinary Go compiler is used, producing native
code for the target architecture, which of course will be
different for different node deployments. (The node soft-
ware is distributed in source code form, and as a Docker
image containing a compiled binary.)

Separately, the portion of the code that is the State
Transition Function is compiled by the Go compiler to
WebAssembly (wasm), which is a typed, portable ma-
chine code format. The wasm code then goes through
a simple transformation into a format we call WAVM,
which is detailed below. If there is a dispute about the
correct result of computing the STF, it is resolved by an
interactive fraud proof protocol (described in Section 5)
with reference to the WAVM code.

4.1 WAVM

The wasm format has many features that make it a good
vehicle for fraud proofs — it is portable, structured, well-
specified, designed for controlled execution of untrusted
code, and has reasonably good tools and support — but it
needs a few modifications to do the job completely. We
have defined a slightly modified version of wasm, which
we call WAVM. A simple transformation stage turns the
wasm code from the compiler into WAVM code suitable
for proving.

WAVM differs from wasm in three main ways. First,
WAVM removes some features of wasm that are not gen-
erated by the Go compiler; the transformation phase ver-
ifies that these features are not present.

Second, WAVM restricts a few features of wasm. For
example, WAVM does not contain floating-point instruc-
tions, so the transformer replaces floating-point instruc-
tions with calls to the Berkeley SoftFloat library [8].8

WAVM does not contain nested control flow, so the trans-
former flattens control flow constructs, turning control
flow instructions into jumps. Some wasm instructions
take a variable amount of time to execute, which we
avoid in WAVM by transforming them into constructs
using fixed cost instructions. These transformations sim-
plify proving.

Third, WAVM adds a few opcodes to enable interac-
tion with the blockchain environment. For example, new
instructions allow the WAVM code to read and write the
chain’s global state, to get the next message from the
chain’s inbox, or to signal a successful end to executing
the State Transition Function.

8We use software floating-point to reduce the risk of floating-point
incompatibilities between architectures. No floating-point is used by
the core Nitro functions, but the Go runtime uses some floating-point.

9

4.1.1 The ReadPreImage Instruction

The most interesting new instruction is ReadPreImage
which takes as input a hash H and an offset I, and returns
the word of data at offset I in the preimage of H (and the
number of bytes returned, which is zero if I is at or after
the end of the preimage). Of course, it is not feasible
in general to produce a preimage from an arbitrary hash.
For safety, the ReadPreImage instruction can only be
used in a context where the preimage is publicly known9,
and where the size of the preimage is known to be less
than a fixed upper bound of about 110 kbytes.

As an example, the state of a Nitro chain is maintained
in Ethereum’s state tree format, which is organized as a
Merkle tree. Nodes of the tree are stored in a database,
indexed by the Merkle hash of the node. In Nitro, the
state tree is kept outside of the STF’s storage, with the
STF only knowing the root hash of the tree. Given
the hash of a tree node, the STF can recover the tree
node’s contents by using ReadPreImage, relying on the
fact that the full contents of the tree are publicly known
and that nodes in the Ethereum state tree will always be
smaller than the upper bound on preimage size. In this
manner, the STF is able to arbitrarily read and write to
the state tree, despite only storing its root hash.

The only other use of ReadPreImage is to fetch the
contents of recent L2 block headers, given the header
hash. This is safe because the block headers are publicly
known and have bounded size.

This ”hash oracle trick” of storing the Merkle hash of
a data structure, and relying on protocol participants to
store the full structure and thereby support fetch-by-hash
of the contents, originated in the original Arbitrum de-
sign [9].

4.2 WAVM Modules
WAVM also allows the virtual machine to compose mul-
tiple wasm binaries, called modules. Each module main-
tains its own code, globals, and memory. Modules can
call other modules via the CrossModuleCall WAVM
instruction, and the callee can read and write to the
caller’s memory in order to pass data between them. This
allows the bootloader written in Rust, the State Transi-
tion Function written in Go, and various libraries written
in C to all run in the same WAVM machine. Without
the module system, Go’s memory management would
interfere with C’s, but the module system allows them
to maintain their own separate memories.

9In this context, ”publicly known” information is information that
can be derived or recovered efficiently by any honest party, assuming
that the full history of the L1 Ethereum chain is available. For con-
venience, a hash preimage can also be supplied by a third party such
as a public server, and the correctness of the supplied value is easily
verified.

4.3 One-Step Proofs
The WAVM instruction set is designed so that it is pos-
sible to verify a ”one-step proof” covering execution of
a single WAVM instruction. Given the hash of a before
state, the hash of an after state, and a bounded-size wit-
ness, an Ethereum contract can verify that executing a
single instruction from a state with the before hash will
yield a state with the after hash.

For proving purposes, the hash of a WAVM state is
computed as a certain Merkle hash over the state of the
WAVM/wasm virtual machine, as described in more de-
tail in Section 6.1.3.

5 Optimistic Rollup Protocol

The rollup protocol is Nitro’s method for confirming L2
chain states and associated data on the L1 Ethereum
chain. This is useful for contracts on the L1 chain, and
for parties who don’t want to bother interacting with
the L2 chain. But L2 users typically won’t wait for L1
confirmation–instead they will rely on the determinis-
tic State Transition Function which allows transaction
results to be derived from the recorded transaction se-
quence.

The rollup protocol produces a chain of Rollup Blocks
(”RBlocks”), which are not the same as L2 blocks. In
brief, an RBlock typically encapsulates a sequence of L2
blocks, so that RBlocks are much less numerous than L2
blocks. RBlock boundaries need not be, and usually are
not, aligned with the boundaries of Sequencer batches.

An RBlock includes:

• an L2 block number,

• a header hash for the L2 block with that number,

• the number of incoming messages10 consumed by
the chain as of that L2 block,

• a digest of the outbox messages output by the chain
in that L2 block and earlier,

• a pointer to a predecessor RBlock, and

• additional bookkeeping information as needed to
track the RBlock’s state in the protocol described
below.

Initially an RBlock just represents a claim by some party
that the RBlock’s data is correct. Eventually every such
claim will either be confirmed by the protocol, or re-
jected and then pruned off of the RBlock chain. The set
of confirmed RBlocks will form a single chain starting

10Here ”messages” refers to individual transactions, or similar com-
munications to the L2 chain, not to Sequencer batches.

10

with the genesis RBlock, and growing over time. In gen-
eral, the RBlock chain will consist of a single chain of
confirmed blocks, possibly followed by a tree of uncon-
firmed RBlocks.

Each RBlock is said to be valid if either (a) the RBlock
has been confirmed, or (b) all of the following are true:

• the RBlock’s L2 block number, header hash, num-
ber of incoming messages, and digest of message
output all represent correct execution of the chain,
and

• any siblings of the RBlock that are older (i.e., were
created earlier) are invalid, and

• the predecessor RBlock is valid.

By definition, the set of valid RBlocks will form a sin-
gle chain, which has the set of confirmed RBlocks as a
prefix.

A party can stake on a particular RBlock, representing
the party’s assertion that that RBlock is valid. Because
validity implies the validity of the predecessor, the party
is also asserting that the predecessor of that RBlock, and
the chain of predecessors back to the genesis RBlock, are
all valid.

5.1 The Common Case
Parties will be aware that for reasons described below,
staking on an invalid RBlock will likely lead to loss of
the stake, so if all parties follow their incentives, only
valid RBlocks will be created. Those valid RBlocks will
form a single chain that extends the chain of confirmed
RBlocks.

If an RBlock B is confirmed, and B has a single child,
and that child is valid, and the time since the child was
posted is greater than a defined ”challenge period” C,
then the child can be confirmed. It follows that in the
common case where parties follow their incentives as de-
scribed above, if an RBlock is posted at time T , it will be
confirmed at T +C.

5.2 Challenges
If two parties do stake on separate successors of the same
RBlock, those parties can be put into a challenge. The
party staked on the older successor will be defending the
feasibility of the L2 block number in the older successor,
and the correctness of the header hash, incoming mes-
sage count, and output digest associated with that block
number in the older successor. The other party will be
trying to establish that one of those items is incorrect.

The challenge sub-protocol is described in detail be-
low. Within the overall rollup protocol, its job is to iden-
tify one of the two contending parties as having made

a false claim (either in its staking on one of the two
RBlocks, or at some point in the challenge sub-protocol).
The losing party has its stake removed from all RBlocks.
Half of the loser’s stake is given to the winner, and the
other half is added to a public goods fund.11

The challenge sub-protocol guarantees that a party
whose initial claim is valid can always win the chal-
lenge by making a valid claim at every stage of the chal-
lenge.12 It follows that an honest party (i.e., one who
always makes valid claims) will win every challenge.
Because the honest party will eventually engage in chal-
lenges against every party who disagrees with it, the hon-
est party will eventually eliminate all disagreeing parties,
and the overall protocol can then make progress.

6 The Challenge Sub-Protocol

We describe the challenge protocol in two stages. First,
we will describe a simplified version of the protocol that
is correct but less efficient. Then, we will describe en-
hancements to improve efficiency. To simplify the expo-
sition, we will ignore some corner cases that are handled
by the real protocol.

The challenge protocol can be viewed as a game be-
tween two parties, Alice and Bob, with an Ethereum con-
tract acting as a ”referee” who checks the players’ moves
for validity and keeps track of the game state.

The game includes a ”chess clock” timer for each
player. Each player’s timer is initially set equal to the
challenge period. When it is a player’s turn to move, that
player’s clock is ticking down. When a player makes a
valid move, its timer is paused and its opponent’s timer
is resumed. If a player’s timer reaches zero, that player
forfeits the challenge.

6.1 Basic Challenge Protocol
The basic challenge protocol operates in three phases.
First, a dispute over block results is repeatedly bisected,
reducing it to a dispute over the creation of a single block.
Second, the single-block dispute is converted into a dis-
pute over some number of steps of wavm computation
to generate that block, and that dispute is repeatedly bi-
sected, reducing it to a dispute over execution of a single

11The public goods fund is used to benefit the entire user community,
independent of the interests of the challenge participants, so we can
assume that if the stake amount is S, then the challenge has a negative-
sum outcome for the participants of − S

2 .
12If both parties in a challenge make false claims, the protocol

”doesn’t care” who wins the challenge. One party will be identified
as a liar, and the other party will survive the challenge despite its lies.
However, a party staked on an invalid RBlock will eventually get into
a challenge against an honest party, which it will lose. The correctness
argument for the overall protocol does not assume that the winner of a
challenge is honest, it only assumes that there exists an honest party.

11

wavm instruction. Third, Alice must produce a one-step
proof to prove her claim about execution of that single
wavm instruction. If Alice can produce a valid one-step
proof at the end of this process, Alice wins the challenge;
otherwise Bob wins.

6.1.1 Phase 1: Bisecting Over Blocks

This phase happens in a sequence of rounds. At the be-
ginning of each round, Alice and Bob agree on a start
state SB at some block number B, and they disagree on
the end state SN+B at block number B + N, for some
N > 1. Alice is now required to claim what the state
SM is at the midpoint block M = B+ ⌊N

2 ⌋.
Next, Bob must say whether he agrees or disagrees

with Alice’s claimed midpoint state SM . Now there are
two cases:

1. If Bob agrees with Alice’s midpoint state, the pro-
tocol has identified a smaller dispute: Alice and
Bob agree on SM but disagree about SB+N = SM+N′ ,
where N′ = N−⌊N

2 ⌋.

2. If Bob disagrees with Alice’s midpoint state, the
protocol has identified a smaller dispute: Alice and
Bob agree on SB but disagree about SB+N′ , where
N′ = ⌊N

2 ⌋.

In both cases the size of the dispute has been cut roughly
in half. The same procedure is repeated, cutting repeat-
edly in half, until N = 1. This requires at most ⌈log2 N⌉
rounds.

6.1.2 Phase 2: Bisecting Over Instructions

At the beginning of this phase, Alice and Bob disagree
about a single Nitro block–they agree about the blocks
and state before that block, but disagree about the con-
tents of the block or the state after the block or both.
This means they are disagreeing about the result of a sin-
gle invocation of the State Transition Function.

Alice must say how many wavm instructions are ex-
ecuted by that invocation. Suppose she says there were
K instructions. Alice and Bob are now in disagreement
about the result of executing K instructions: they agree
about the initial state but disagree about the state after the
execution of K instructions.

The protocol now mimics the phase 1 bisection pro-
tocol, except that now the bisection is over instructions
rather than blocks, and the states are states of the wavm
virtual machine as it is executing the State Transition
Function. After at most ⌈log2 K⌉ rounds of this bisection,
Alice and Bob will have a dispute over the execution of
a single wavm instruction.

6.1.3 Phase 3: One-step Proof

At the beginning of this phase, Alice and Bob agree on a
hash of the wavm VM state, but disagree about the hash
of the wavm VM state after executing one more wavm
instruction.

The state hashes are computed by organizing the VM
state into a tree, and computing the Merkle hash of the
tree.

Alice must call a one-step proof verification contract
on Ethereum, passing it a witness that causes the contract
to accept her claim about the single step of execution.
The verification contract is written so that (assuming that
the preimage of the before hash is known) it is feasible
to find a successful witness if and only if execution of a
single instruction can take the VM from a state with the
before hash to a state with the after hash.

In our implementation, the witness consists of a par-
tial expansion of the Merkle tree representing the before
state, and the verifier uses the partially expanded state
tree to read the next instruction, emulate the instruction’s
execution, compute the Merkle root hash of the resulting
state, and compare this to the after state hash.

The one-step verification contract is written, and the
wavm instruction set is customized, so that it is always
possible to verify a valid witness using a feasible amount
of Ethereum gas.

If Alice produces a valid one-step proof, Alice wins
the challenge. Otherwise, Bob wins the challenge.

6.2 Efficiency Improvements
In the basic protocol, the bisection phase of a dispute
occurs in alternating steps: the asserter bisects their as-
sertion, then the challenger chooses one side of the bi-
section to challenge, then the asserter bisects, then the
challenger asserts, and so on. Each two-step cycle cuts
the number of instructions in the dispute in half. A prac-
tical implementation does d-way dissection rather than
binary bisection, but the principle is the same.

We can cut the number of steps by another factor of
two, by requiring a party who responds to their oppo-
nent’s dissection to not only identify which of the d seg-
ments it is challenging, but to also offer a dissection of
that segment into d subsegments, ending in a different
state than asserted by the other party.

These two steps together reduce the number of steps
from roughly 2log2(NK) to roughly logd(NK), an im-
provement by a factor of 2 log2 d.

6.2.1 Choosing d

An implementation of this protocol must choose the dis-
section degree d. The overall cost of dispute resolution
is the number of rounds logd(NK), multiplied by the cost

12

per round, which is proportional to α+d for some α , be-
cause an on-chain transaction has a cost that is a constant
plus a term proportional to the amount of data posted in
the transaction. In addition, each step of the dispute res-
olution protocol may impose a constant amount of delay
on execution of the contract; we absorb the total cost of
this delay into the constant term α .

The optimal value of d is then the value that minimizes
the total cost (α+d) log(NK)

logd . We find the optimum by dif-
ferentiating the cost with respect to d and setting the re-
sult to zero, with the result that cost is minimized for the
value of d satisfying d(ln(d)−1) = α , independent of N
and K. Given a specific value of α , the optimal d can be
found numerically.

6.3 Correctness

To demonstrate that the protocol is still correct, we must
show that a truthful party can always win the dispute,
whether that party is an asserter or a challenger.

First we show that a truthful asserter can win the dis-
pute. If Alice makes a truthful assertion, and Bob chal-
lenges it, Bob will have to propose an alternative asser-
tion, which will necessarily be false because it must dif-
fer from Alice’s truthful assertion. When Bob d-sects his
false assertion, at least one of the resulting assertions will
be false. Alice can challenge a false assertion, offering as
an alternative a true assertion, and so on. At each stage
Alice can make true assertions, thereby forcing Bob to
make false assertions.

Second we show that a truthful challenger can win the
dispute. If Alice initially makes a false assertion, the
truthful challenger Bob can offer a true assertion as his
alternative, d-secting it into smaller true assertions. Al-
ice will have to challenge one of those true assertions,
offering an alternative that is necessarily false. This al-
lows Bob to respond again with a true assertion, and so
on. At each stage Bob can make true assertions, thereby
forcing Alice to make false assertions.

It follows that a truthful party can always win a dis-
pute, and a lying party can always be forced to lose.

7 AnyTrust: Nitro with External Data
Availability

This section describes AnyTrust, a variant of Nitro
that lowers costs by accepting a mild trust assumption.
AnyTrust support is included in the Nitro code base, with
the AnyTrust feature enabled or disabled by a configura-
tion switch.

Correctness of the Arbitrum protocol requires that all
Arbitrum nodes have access to the data of every L2
transaction in the Arbitrum chain’s inbox. As described

above, standard Nitro provides data access by posting the
data (in batched, compressed form) on L1 Ethereum as
calldata. The Ethereum gas to pay for this is the largest
component of cost in Nitro.

AnyTrust relies instead on an external Data Availabil-
ity Committee (hereafter, ”the Committee”) to store data
and provide the data on demand. The Committee has N
members, of which AnyTrust assumes at least two are
honest. This means that if N − 1 Committee members
promise to provide access to some data, at least one of
the promising parties must be honest, ensuring that the
data will be available so that the overall Arbitrum proto-
col can function correctly.

In AnyTrust, the Sequencer avoids posting the data of
its batches on the L1 chain. Instead, for each batch it
posts a Data Availability Certificate, containing the hash
of the data, which proves that batch data with that hash
is available from the Committee, assuming at least two
Committee members are honest.

7.1 Keysets

A Keyset specifies the public keys of Committee mem-
bers and the number of signatures required for a Data
Availability Certificate to be valid. Keysets make Com-
mittee membership changes possible and provide Com-
mittee members the ability to change their keys.

A Keyset contains

• the number of Committee members, and

• for each Committee member, a BLS public key, and

• the number of Committee signatures required.

Keysets are identified by their hashes.
An L1 KeysetManager contract maintains a list of cur-

rently valid Keysets. The L2 chain’s Owner can add
or remove Keysets from this list. When a Keyset be-
comes valid, the KeysetManager contract emits an L1
Ethereum event containing the Keyset’s hash and full
contents. This allows the contents to be recovered later
by anyone, given only the Keyset hash.

Although the API does not limit the number of Keysets
that can be valid at the same time, normally only one
Keyset will be valid.

7.2 Data Availability Certificates

A central concept in AnyTrust is the Data Availability
Certificate (hereafter, a ”DACert”). A DACert contains:

• the hash of a data block, and

• an expiration time, and

13

Figure 3: Processing of transactions under AnyTrust. Rather than posting data batches to the L1 chain, the sequencer
sends batches to the Data Availability Committee, and posts the resulting Data Availability Certificate to the L1 chain
instead of the full data.

• proof that a sufficient number of Committee mem-
bers have signed the (hash, expiration time) pair,
consisting of

– the hash of the Keyset used in signing, and

– a bitmap saying which Committee members
signed, and

– a BLS aggregated signature [4] (over the
BLS12-381 curve [3]) proving that those par-
ties signed.

Because of the 2-of-N trust assumption, a DACert consti-
tutes proof that the block’s data (i.e., the preimage of the
hash in the DACert) will be available from at least one
honest Committee member, at least until the expiration
time.

In ordinary (non-AnyTrust) Nitro, the Arbitrum se-
quencer posts data blocks on the L1 chain as calldata.
The hashes of the data blocks are committed by the L1
Inbox contract, allowing the data to be reliably read by
L2 code.

AnyTrust gives the sequencer two ways to post a data
block on L1: it can post the full data as above, or it can
post a DACert proving availability of the data. The L1
inbox contract will reject any DACert that uses an invalid
Keyset; the other aspects of DACert validity are checked
by L2 code.

The L2 code that reads data from the inbox reads a
full-data block as in ordinary Nitro. If it sees a DACert

instead, it checks the validity of the DACert, with ref-
erence to the Keyset specified by the DACert (which is
known to have been valid at the time it was posted, be-
cause the L1 Inbox verified that). The L2 code verifies
that:

• the number of signers is at least the number required
by the Keyset, and

• the aggregated signature is valid for the claimed
signers, and

• the expiration time is at least two weeks after the
current L2 timestamp.

If the DACert is invalid, the L2 code discards the
DACert and behaves as if it had received an empty batch.
If the DACert is valid, the L2 code reads the data block,
which is guaranteed to be available because the DACert
is valid.

7.3 Data Availability Servers
Committee members run Data Availability Server (DAS)
software. The DAS exposes two APIs:

• The Sequencer API, which is meant to be called
only by the Arbitrum chain’s Sequencer, is a JSON-
RPC interface allowing the Sequencer to submit
data blocks to the DAS for storage. Deployments
will typically block access to this API from callers
other than the Sequencer.

14

• The REST API, which is meant to be available to
the world, is a RESTful HTTP(S) based protocol
that allows data blocks to be fetched by hash. This
API is fully cacheable, and deployments may use a
caching proxy or CDN to increase scale and protect
against DoS attacks.

Only Committee members have reason to support the Se-
quencer API. We expect others to run the REST API, typ-
ically by mirroring other REST API servers, and that is
helpful.

The DAS software, depending on configuration op-
tions, can store its data in local files, or in a BadgerDB [6]
database, or on Amazon S3, or redundantly across mul-
tiple backing stores. The software also supports optional
caching in memory (using Bigcache [2]) or in a Redis [5]
instance.

7.4 Sequencer-Committee Interaction
When the Nitro sequencer produces a data batch that it
wants to post using the Committee, it sends the batch’s
data, along with an expiration time (normally three
weeks in the future) via RPC to all Committee members
in parallel. Each Committee member stores the data in
its backing store, indexed by the data’s hash. Then the
member signs the (hash, expiration time) pair using its
BLS key, and returns the signature to the sequencer.

Once the Sequencer has collected enough signatures,
it can aggregate the signatures and create a valid DACert
for the (hash, expiration time) pair. The Sequencer then
posts that DACert to the L1 inbox contract, making it
available to the AnyTrust chain software at L2.

If the Sequencer fails to collect enough signatures
within a reasonable time, it can abandon the attempt to
use the Committee, and ”fall back to rollup” by posting
the full data directly to the L1 chain, as it would do in
a non-AnyTrust chain. The L2 software can understand
both data posting formats (via DACert or via full data)
and will handle each one correctly.

7.5 AnyTrust and L1 Pricing
By substantially reducing the amount of L1 data required
for the same number of transactions, AnyTrust leads to
much lower prices for transaction data. The same L1
pricing algorithm (described in Section 3.3.2) is used
as for a normal Nitro chain, however under AnyTrust
the Sequencer’s data spending is much lower (paying
for posting of data availability certificates rather than
full data), so the pricing algorithm will assess a much
lower price per data unit on user transactions. If the Se-
quencer on an AnyTrust chain does fall back to posting
full data on Layer 1, it will then report higher spending
and the data price will rise to compensate. No changes

are needed in the pricing algorithm; only the outcome
will differ.

8 Conclusion

By using the design described above, Arbitrum Nitro
achieves high throughput, with trustless guarantees of
safety and liveness, in a system achievable and deployed
today. The current Nitro code is available at https:
//github.com/offchainlabs/nitro. We will con-
tinue to evolve Nitro to increase performance and reduce
cost.

References

[1] Alakuijala, J., Farruggia, A., Ferragina, P., Kliuch-
nikov, E., Obryk, R., Szabadka, Z., Vandevenne,
L.: Brotli: A general-purpose data compressor.
ACM Transactions on Information Systems (TOIS)
37(1), 1–30 (2018)

[2] Allegro Tech: BigCache https://github.com/

allegro/bigcache

[3] Barreto, P.S., Kim, H.Y., Lynn, B., Scott, M.: Ef-
ficient algorithms for pairing-based cryptosystems.
In: Annual international cryptology conference. pp.
354–369. Springer (2002)

[4] Boneh, D., Lynn, B., Shacham, H.: Short signa-
tures from the weil pairing. In: International con-
ference on the theory and application of cryptology
and information security. pp. 514–532. Springer
(2001)

[5] Carlson, J.: Redis in action. Simon and Schuster
(2013)

[6] Dgraph: BadgerDB https://github.com/

dgraph-io/badger

[7] Donovan, A.A., Kernighan, B.W.: The Go pro-
gramming language. Addison-Wesley Professional
(2015)

[8] Hauser, J.R.: Berkeley softfloat release 3e (2018)

[9] Kalodner, H., Goldfeder, S., Chen, X., Weinberg,
S.M., Felten, E.W.: Arbitrum: Scalable, private
smart contracts. In: 27th USENIX Security Sym-
posium. pp. 1353–1370 (2018)

[10] Kelkar, M., Deb, S., Long, S., Juels, A., Kannan,
S.: Themis: Fast, strong order-fairness in byzantine
consensus. Cryptology ePrint Archive (2021)

15

https://github.com/offchainlabs/nitro
https://github.com/offchainlabs/nitro
https://github.com/allegro/bigcache
https://github.com/allegro/bigcache
https://github.com/dgraph-io/badger
https://github.com/dgraph-io/badger

[11] Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.:
Order-fairness for byzantine consensus. In: Annual
International Cryptology Conference. pp. 451–480.
Springer (2020)

[12] OpenZeppelin project: OpenZeppelin Con-
tracts, https://github.com/OpenZeppelin/

openzeppelin-contracts

[13] WebAssembly Working Group: WebAssembly
https://webassembly.org/

[14] Wood, G.: Ethereum: A secure decentralised gen-
eralised transaction ledger. Ethereum Project Yel-
low Paper 151, 1–32 (2014)

16

https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://webassembly.org/

	Introduction
	Properties of Arbitrum Nitro
	Design Approach
	Structure of the paper

	Sequencing Followed by Deterministic Execution
	The Sequencer
	Deterministic execution

	Software Architecture: Geth at the Core
	ArbOS
	State Representation

	Cross-chain Interaction
	Address Aliasing
	The Outbox
	The Inbox
	Retryable Tickets
	Token Bridge

	Gas and Fees
	L2 Gas Metering and Pricing
	L1 Data Metering and Pricing

	Compiling for execution versus proving
	WAVM
	The ReadPreImage Instruction

	WAVM Modules
	One-Step Proofs

	Optimistic Rollup Protocol
	The Common Case
	Challenges

	The Challenge Sub-Protocol
	Basic Challenge Protocol
	Phase 1: Bisecting Over Blocks
	Phase 2: Bisecting Over Instructions
	Phase 3: One-step Proof

	Efficiency Improvements
	Choosing d

	Correctness

	AnyTrust: Nitro with External Data Availability
	Keysets
	Data Availability Certificates
	Data Availability Servers
	Sequencer-Committee Interaction
	AnyTrust and L1 Pricing

	Conclusion

