
	 1	

Byteball:	A	Decentralized	System	for	Storage	and	
Transfer	of	Value	

	
	

Anton	Churyumov	
tonych@byteball.org	

	
	

Abstract	
Byteball	is	a	decentralized	system	that	allows	tamper	proof	storage	of	arbitrary	data,	
including	data	that	represents	transferrable	value	such	as	currencies,	property	titles,	debt,	
shares,	etc.		Storage	units	are	linked	to	each	other	such	that	each	storage	unit	includes	one	
or	more	hashes	of	earlier	storage	units,	which	serves	both	to	confirm	earlier	units	and	
establish	their	partial	order.		The	set	of	links	among	units	forms	a	DAG	(directed	acyclic	
graph).		There	is	no	single	central	entity	that	manages	or	coordinates	admission	of	new	
units	into	the	database,	everyone	is	allowed	to	add	a	new	unit	provided	that	he	signs	it	and	
pays	a	fee	equal	to	the	size	of	added	data	in	bytes.		The	fee	is	collected	by	other	users	who	
later	confirm	the	newly	added	unit	by	including	its	hash	within	their	own	units.		As	new	
units	are	added,	each	earlier	unit	receives	more	and	more	confirmations	by	later	units	that	
include	its	hash,	directly	or	indirectly.	

There	is	an	internal	currency	called	‘bytes’	that	is	used	to	pay	for	adding	data	into	
the	decentralized	database.		Other	currencies	(assets)	can	also	be	freely	issued	by	anyone	
to	represent	property	rights,	debt,	shares,	etc.		Users	can	send	both	bytes	and	other	
currencies	to	each	other	to	pay	for	goods/services	or	to	exchange	one	currency	for	
another;	the	transactions	that	move	the	value	are	added	to	the	database	as	storage	units.		
If	two	transactions	try	to	spend	the	same	output	(double-spend)	and	there	is	no	partial	
order	between	them,	both	are	allowed	into	the	database	but	only	the	one	that	comes	
earlier	in	the	total	order	is	deemed	valid.		Total	order	is	established	by	selecting	a	single	
chain	on	the	DAG	(the	main	chain)	that	is	attracted	to	units	signed	by	known	users	called	
witnesses.		A	unit	whose	hash	is	included	earlier	on	the	main	chain	is	deemed	earlier	on	
the	total	order.		Users	choose	the	witnesses	by	naming	the	user-trusted	witnesses	in	every	
storage	unit.		Witnesses	are	reputable	users	with	real-world	identities,	and	users	who	
name	them	expect	them	to	never	try	to	double-spend.		As	long	as	the	majority	of	witnesses	
behave	as	expected,	all	double-spend	attempts	are	detected	in	time	and	marked	as	such.		
As	witnesses-authored	units	accumulate	after	a	user’s	unit,	there	are	deterministic	(not	
probabilistic)	criteria	when	the	total	order	of	the	user’s	unit	is	considered	final.	

Users	store	their	funds	on	addresses	that	may	require	more	than	one	signature	to	
spend	(multisig).		Spending	may	also	require	other	conditions	to	be	met,	including	
conditions	that	are	evaluated	by	looking	for	specific	data	posted	to	the	database	by	other	
users	(oracles).		

Users	can	issue	new	assets	and	define	rules	that	govern	their	transferability.		The	
rules	can	include	spending	restrictions	such	as	a	requirement	for	each	transfer	to	be	
cosigned	by	the	issuer	of	the	asset,	which	is	one	way	for	financial	institutions	to	comply	
with	existing	regulations.		Users	can	also	issue	assets	whose	transfers	are	not	published	to	
the	database,	and	therefore	not	visible	to	third	parties.		Instead,	the	information	about	the	
transfer	is	exchanged	privately	between	users,	and	only	a	hash	of	the	transaction	and	a	
spend	proof	(to	prevent	double-spends)	are	published	to	the	database.	

	 2	

1. Introduction	
In	Orwell’s	1984,	the	protagonist	Winston	Smith	works	in	the	Records	Department	
of	the	Ministry	of	Truth	as	an	editor,	revising	historical	records,	to	make	the	past	
conform	to	the	ever-changing	party	line	and	deleting	references	to	unpersons	–	
people	who	have	been	"vaporised,"	i.e.	not	only	killed	by	the	state	but	denied	
existence	even	in	history	or	memory	[1].		What	we	present	here	is	data	storage	
that	is	not	rewritable.		It	is	a	distributed	decentralized	database	where	records	can	
neither	be	revised	nor	deleted	entirely.	

Bitcoin	[2]	was	the	first	system	to	introduce	tamper	proof	records	designed	
for	the	specific	purpose	of	tracking	the	ownership	of	electronic	currency	units	
known	as	bitcoins.			In	Bitcoin,	all	transfers	of	the	currency	are	represented	as	
transactions	that	are	digitally	signed	by	the	current	owner	of	the	coin,	transactions	
are	bundled	into	blocks,	and	blocks	are	linked	into	a	chain	(blockchain)	secured	by	
proof	of	work	(PoW)	that	assures	that	large	computing	resources	have	been	
invested	into	building	the	chain.		Any	attempt	to	rewrite	anything	contained	in	the	
chain	would	therefore	require	even	larger	computing	resources	than	those	that	
have	already	been	expended.	

Soon	after	Bitcoin	appeared,	it	became	clear	that	this	was	more	than	just	a	
trust-free	P2P	electronic	currency.		Its	technology	became	a	source	of	new	ideas	
for	solving	other	problems.		At	the	same	time,	Bitcoin’s	deficiencies	and	limitations	
equally	became	clear.		Byteball	is	designed	to	generalize	Bitcoin	to	become	a	
tamper	proof	storage	of	any	data,	not	solely	transfers	of	a	single	electronic	
currency,	and	remove	some	of	the	most	pressing	deficiencies	that	impede	a	wider	
adoption	and	growth	of	Bitcoin.	

Blocks.		In	Bitcoin,	transactions	are	bundled	into	blocks,	and	blocks	are	
linked	into	a	single	chain.		Since	the	blocks	are	linked	linearly,	their	spacing	in	time	
and	their	size	are	optimized	for	near-synchrony	among	nodes,	so	that	the	nodes	
can	share	a	new	block	with	each	other	much	faster	than	it	typically	takes	to	
generate	a	new	block.		This	ensures	that	nodes	most	likely	see	the	same	block	as	
the	last	block,	and	orphaning	is	minimized.		As	Bitcoin	grows,	blocks	become	
increasingly	unwieldy.		They	are	either	capped	in	size,	in	which	case	the	growth	is	
also	capped,	or	they	take	too	long	to	propagate	to	all	nodes	of	the	network,	in	
which	case	there	is	greater	uncertainty	about	which	block	is	last,	and	more	
resources	are	wasted	on	extending	chains	that	would	later	be	orphaned.		In	
Byteball,	there	are	no	blocks,	transactions	are	their	own	blocks,	and	they	need	not	
connect	into	a	single	chain.		Instead	a	transaction	may	be	linked	to	multiple	
previous	transactions,	and	the	whole	set	of	transactions	is	not	a	chain	but	a	DAG	
(directed	acyclic	graph).		DAG-based	designs	have	received	much	attention	
recently	[3-5].	

Cost.		Bitcoin	transactions	are	secure	because	it	is	prohibitively	expensive	to	
redo	all	the	PoW	included	in	the	blocks	created	after	the	transaction.		But	that	also	
means	that	it	is	necessary	to	pay	to	build	the	legitimate	PoW	that	is	strong	enough	
to	ward	off	any	attackers.		This	payment	is	spent	for	the	electricity	required	to	
build	the	PoW.		What	is	important	to	note	here,	is	that	this	money	goes	outside	the	
Bitcoin	ecosystem	–	to	energy	companies	–	meaning	that	the	community	of	Bitcoin	
holders	as	a	whole	is	bleeding	capital.		In	Byteball,	there	is	no	PoW,	instead	we	use	

	 3	

another	consensus	algorithm	based	on	an	old	idea	that	was	known	long	before	
Bitcoin.	

Finality.		Transaction	finality	in	Bitcoin	is	probabilistic.		There	are	no	strict	
and	simple	criteria	for	when	you	can	say	that	a	transaction	will	never	be	reversed.		
Rather,	you	can	only	argue	that	the	probability	of	a	transaction	being	reversed	
exponentially	decays	as	more	blocks	are	added.		While	this	concept	is	perfectly	
clear	to	those	versed	in	math,	it	might	be	a	difficult	sell	to	an	average	Joe	who	is	
used	to	expecting	a	black-or-white	picture	in	matters	of	money	ownership.		To	
complicate	things	even	further,	transaction	finality	also	depends	on	its	amount.		If	
the	amount	is	small,	you	can	be	reasonably	sure	nobody	will	try	to	double-spend	
against	you.		However,	if	the	amount	at	stake	is	greater	than	the	block	reward	
(12.5	BTC	at	the	time	of	writing),	you	might	speculate	that	the	payer	could	
temporarily	rent	hashpower	to	mine	another	chain	of	blocks	that	doesn’t	contain	
the	transaction	that	pays	to	you.		Therefore,	you	have	to	wait	for	more	
confirmations	before	being	sure	enough	that	a	high-value	transaction	is	final.		In	
Byteball,	there	are	deterministic	criteria	for	when	a	transaction	is	deemed	final,	no	
matter	how	large	it	was.	

Exchange	rate.		The	Bitcoin	price	is	known	to	be	quite	volatile.		The	bigger	
problem	is	that	this	price	is	not	only	volatile,	it	is	not	bound	to	anything.		Share	and	
commodity	prices	are	also	very	volatile	but	there	are	fundamentals	behind	them.		
Share	price	is	largely	a	function	of	company	earnings,	revenue,	debt-to-capital	
ratio,	etc.		Commodity	prices	depend,	among	other	factors,	on	costs	of	production	
with	various	suppliers.		For	example,	if	the	oil	price	falls	below	the	production	
costs	of	some	suppliers	for	a	long	time,	these	suppliers	will	eventually	shut	down,	
decreasing	production	and	causing	the	price	to	go	up.		There	is	a	negative	feedback	
loop.		In	Bitcoin,	there	are	no	fundamentals,	and	no	negative	feedback.		A	Bitcoin	
price	of	$500	is	no	more	justified	than	a	price	of	$50,000	or	$5.		If	the	Bitcoin	price	
moves	from	where	it	is	now,	this	movement	alone	will	not	create	any	economic	
forces	that	would	push	the	price	back.		It’s	just	wild.		In	Byteball,	the	base	currency,	
bytes,	is	used	to	pay	for	adding	data	into	the	Byteball	database.		You	pay	1,000	
bytes	to	add	1Kb	of	data.		It	is	a	measure	of	the	utility	of	the	storage	in	this	
database,	and	actual	users	will	have	their	opinion	on	what	is	a	reasonable	price	for	
this.		If	the	price	of	byte	rises	above	what	you	think	is	reasonable	for	your	needs,	
you	will	find	ways	to	store	less	bytes,	therefore	you	need	to	buy	less	bytes,	demand	
decreases,	and	the	price	falls.		This	is	negative	feedback,	common	for	all	
goods/services	whose	demand	is	driven	by	need,	not	speculation.		Besides	paying	
in	bytes,	one	can	issue	other	assets	and	use	them	as	means	of	payment.		These	
assets	might	represent,	for	example,	debt	expressed	in	fiat	currencies	or	in	natural	
units	(such	as	kWh	or	barrels	of	oil).		The	price	of	such	assets	is	naturally	bound	to	
the	underlying	currencies	or	commodities.	

Privacy.		All	Bitcoin	transactions	and	balances	of	all	addresses	are	visible	on	
the	blockchain.		Although	there	are	ways	to	obfuscate	one’s	transactions	and	
balances,	it	is	not	what	people	have	come	to	expect	from	a	currency.		Transactions	
in	bytes	(the	base	currency)	in	Byteball	are	equally	visible,	but	there	is	a	second	
currency	(blackbytes),	which	is	significantly	less	traceable.	

Compliance.		Bitcoin	was	designed	as	an	anonymous	currency	where	people	
have	absolute	control	over	their	money.		That	goal	was	achieved;	however,	it	made	

	 4	

Bitcoin	incompatible	with	existing	regulations,	and	hence	inappropriate	for	use	in	
the	financial	industry.		In	Byteball,	one	can	issue	assets	with	any	rules	that	govern	
their	transferability,	from	no	restrictions	at	all,	like	Bitcoin,	to	anything	like	
requiring	every	transfer	to	be	cosigned	by	the	issuer	(e.g.	the	bank)	or	restricted	to	
a	limited	set	of	whitelisted	users.	

2. Database	structure	
When	a	user	wants	to	add	data	to	the	database,	he	creates	a	new	storage	unit	and	
broadcasts	it	to	his	peers.		The	storage	unit	includes	(among	other	things):	

• The	data	to	be	stored.		A	unit	may	include	more	than	one	data	package	
called	a	message.		There	are	many	different	types	of	messages,	each	with	its	
own	structure.		One	of	the	message	types	is	payment,	which	is	used	to	send	
bytes	or	other	assets	to	peers.	

• Signature(s)	of	one	or	more	users	who	created	the	unit.		Users	are	identified	
by	their	addresses.		Individual	users	may	(and	are	encouraged	to)	have	
multiple	addresses,	like	in	Bitcoin.		In	the	simplest	case,	the	address	is	
derived	from	a	public	key,	again	similar	to	Bitcoin.	

• References	to	one	or	more	previous	units	(parents)	identified	by	their	
hashes.	
References	to	parents	is	what	establishes	the	order	(only	partial	order	so	far)	

of	units	and	generalizes	the	blockchain	structure.		Since	we	are	not	confined	to	
one-parent–one-child	relationships	between	consecutive	blocks,	we	do	not	have	to	
strive	for	near-synchrony	and	can	safely	tolerate	large	latencies	and	high	
throughputs:	we’ll	just	have	more	parents	per	unit	and	more	children	per	unit.		If	
we	go	forward	in	history	along	parent-child	links,	we’ll	observe	many	forks	when	
the	same	unit	is	referenced	by	multiple	later	units,	and	many	merges	when	the	
same	unit	references	multiple	earlier	units	(developers	are	already	used	to	seeing	
this	in	git).		This	structure	is	known	in	graph	theory	as	directed	acyclic	graph	
(DAG).		Units	are	vertices,	and	parent-child	links	are	the	edges	of	the	graph.			

In	the	special	case	when	new	units	arrive	rarely,	the	DAG	will	look	almost	like	
a	chain,	with	only	occasional	forks	and	quick	merges.	

Figure	1.	Storage	units	connected	into	a	DAG.		Arrows	are	from	child	to	parent,	
G	is	the	genesis	unit.	

G	

	 5	

Like	in	blockchains	where	each	new	block	confirms	all	previous	blocks	(and	
transactions	therein),	every	new	child	unit	in	the	DAG	confirms	its	parents,	all	
parents	of	parents,	parents	of	parents	of	parents,	etc.		If	one	tries	to	edit	a	unit,	he	
will	also	have	to	change	its	hash.		Inevitably,	this	would	break	all	child	units	who	
reference	this	unit	by	its	hash	as	both	signatures	and	hashes	of	children	depend	on	
parent	hashes.		Therefore,	it	is	impossible	to	revise	a	unit	without	cooperating	with	
all	its	children	or	stealing	their	private	keys.		The	children,	in	turn,	cannot	revise	
their	units	without	cooperating	with	their	children	(grandchildren	of	the	original	
unit),	and	so	on.		Once	a	unit	is	broadcast	into	the	network,	and	other	users	start	
building	their	units	on	top	of	it	(referencing	it	as	parent),	the	number	of	secondary	
revisions	required	to	edit	this	unit	hence	grows	like	a	snowball.		That’s	why	we	call	
this	design	Byteball	(our	snowflakes	are	bytes	of	data).	

Unlike	blockchains	where	issuing	a	block	is	a	rare	event	and	only	a	privileged	
caste	of	users	is	in	practice	engaged	in	this	activity,	in	a	new	Byteball	unit	starts	
accumulating	confirmations	immediately	after	it	is	released	and	confirmations	can	
come	from	anyone,	every	time	another	new	unit	is	issued.		There	is	no	two-tier	
system	of	ordinary	users	and	miners.		Instead,	users	help	each	other:	by	adding	a	
new	unit	its	author	also	confirms	all	previous	units.	

Unlike	Bitcoin,	where	an	attempt	to	revise	a	past	transaction	requires	a	large	
computational	effort,	an	attempt	to	revise	a	past	record	in	Byteball	requires	
coordination	with	a	large	and	growing	number	of	other	users,	most	of	whom	are	
anonymous	strangers.		The	immutability	of	past	records	is	therefore	based	on	the	
sheer	complexity	of	coordinating	with	such	a	large	number	of	strangers,	who	are	
difficult	to	reach,	have	no	interest	in	cooperation,	and	where	every	single	one	of	
them	can	veto	the	revision.	

By	referencing	its	parents,	a	unit	includes	the	parent.		It	doesn’t	include	the	
full	content	of	the	parent;	rather,	it	depends	on	its	information	through	the	
parent’s	hash.		In	the	same	way,	the	unit	indirectly	depends	on	and	therefore	
includes	the	parents	of	the	parent,	their	parents,	and	so	on,	and	every	unit	
ultimately	includes	the	genesis	unit.	

There	is	a	protocol	rule	that	a	unit	cannot	reference	redundant	parents	–	that	
is	such	parents	that	one	parent	includes	another.		For	example,	if	unit	B	references	
unit	A,	then	unit	C	cannot	reference	both	units	A	and	B	at	the	same	time.		A	is	
already,	in	a	way,	contained	within	B.		This	rule	removes	unnecessary	links	that	
don’t	add	any	new	useful	connectivity	to	the	graph.	

3. Native	currency:	bytes	
Next,	we	need	to	introduce	some	friction	to	protect	against	spamming	the	database	
with	useless	messages.		The	barrier	to	entry	should	roughly	reflect	the	utility	of	
storage	for	the	user	and	the	cost	of	storage	for	the	network.		The	simplest	measure	
for	both	of	these	is	the	size	of	the	storage	unit.		Thus,	to	store	your	data	in	the	
global	decentralized	database	you	have	to	pay	a	fee	in	internal	currency	called	
bytes,	and	the	amount	you	pay	is	equal	to	the	size	of	data	you	are	going	to	store	
(including	all	headers,	signatures,	etc).		Similar	to	pound	sterling,	which	was	equal	
to	one	pound	of	silver	when	it	was	first	introduced,	the	name	of	the	currency	
reflects	its	value.	

	 6	

To	keep	the	incentives	aligned	with	the	interests	of	the	network,	there	is	one	
exception	in	size	calculation	rules.		For	the	purposes	of	calculating	unit	size,	it	is	
assumed	that	the	unit	has	exactly	two	parents,	no	matter	the	real	number.		
Therefore,	the	size	of	two	hashes	of	parent	units	is	always	included	in	the	unit	size.		
This	exception	ensures	that	users	will	not	try	to	include	just	one	parent	in	an	effort	
to	minimize	cost.		The	cost	is	the	same	no	matter	how	many	parents	are	included.	

To	keep	the	DAG	as	narrow	as	possible,	we	incentivize	users	to	include	as	
many	parents	as	possible	(as	mentioned	before,	this	does	not	negatively	affect	
payable	size),	and	as	recent	parents	as	possible,	by	paying	part	of	the	unit’s	fees	to	
those	who	are	first	to	include	it	as	a	parent.		We’ll	define	later	what	exactly	is	‘first’.	

Bytes	can	be	used	not	only	for	payment	of	storage	fees	(also	called	
commissions),	but	also	can	be	sent	to	other	users	to	pay	for	goods	or	services	or	in	
exchange	for	other	assets.		To	send	a	payment,	the	user	creates	a	new	unit	that	
includes	a	payment	message	such	as	the	following	(from	now	on,	we	use	JSON	to	
describe	data	structures):	
{

inputs: [
{

unit: "hash of input unit",
message_index: 2, // index of message where this utxo
was created
output_index: 0 // index of output where this utxo
was created

},
…

],
outputs: [

{
address: "RECEIVER ADDRESS",
amount: 15000 // in bytes

},
…

]
}

The	message	contains:	
• An	array	of	outputs:	one	or	more	addresses	that	receive	the	bytes	and	the	

amounts	they	receive.	
• An	array	of	inputs:	one	or	more	references	to	previous	outputs	that	are	

used	to	fund	the	transfer.		These	are	outputs	that	were	sent	to	the	author	
address(es)	in	the	past	and	are	not	yet	spent.	

The	sum	of	inputs	should	be	equal	to	the	sum	of	outputs	plus	commissions	(input	
amounts	are	read	from	previous	outputs	and	are	not	explicitly	indicated	when	
spending).		The	unit	is	signed	with	the	author’s	private	keys.	

The	total	number	of	bytes	in	circulation	is	1015,	and	this	number	is	constant.		
All	bytes	are	issued	in	the	genesis	unit,	then	transferred	from	user	to	user.		Fees	
are	collected	by	other	users	who	help	to	keep	the	network	healthy	(more	details	
about	that	later),	so	they	stay	in	circulation.		The	number	1015	was	selected	as	the	
largest	round	integer	that	can	be	represented	in	JavaScript.		Amounts	can	only	be	
only	integers.		Larger	units	of	the	currency	are	derived	by	applying	standard	
prefixes:	1	kilobyte	(Kb)	is	1,000	bytes,	1	megabyte	(Mb)	is	1	million	bytes,	etc.	

	 7	

4. Double-spends	
If	a	user	tries	to	spend	the	same	output	twice,	there	are	two	possible	situations:	

1. There	is	partial	order	between	the	two	units	that	try	to	spend	the	same	
output,	i.e.	one	of	the	units	(directly	or	indirectly)	includes	the	other	unit,	
and	therefore	comes	after	it.		In	this	case,	it	is	obvious	that	we	can	safely	
reject	the	later	unit.	

2. There	is	no	partial	order	between	them.		In	this	case,	we	accept	both.		We	
establish	a	total	order	between	the	units	later	on,	when	they	are	buried	
deep	enough	under	newer	units	(see	below	how	we	do	it).		The	one	that	
appears	earlier	on	the	total	order	is	deemed	valid,	while	the	other	is	
deemed	invalid.	

There	is	one	more	protocol	rule	that	simplifies	the	definition	of	total	order.		
We	require,	that	if	the	same	address	posts	more	than	one	unit,	it	should	include	
(directly	or	indirectly)	all	its	previous	units	in	every	subsequent	unit,	i.e.	there	
should	be	partial	order	between	consecutive	units	from	the	same	address.		In	other	
words,	all	units	from	the	same	author	should	be	serial.			

If	someone	breaks	this	rule	and	posts	two	units	such	that	there	is	no	partial	
order	between	them	(nonserial	units),	the	two	units	are	treated	like	double-spends	
even	if	they	don’t	try	to	spend	the	same	output.		Such	nonserials	are	handled	as	
described	in	situation	2	above.		

If	a	user	follows	this	rule	but	still	tries	to	spend	the	same	output	twice,	the	
double-spends	become	unambiguously	ordered	and	we	can	safely	reject	the	later	
one	as	in	situation	1	above.		The	double-spends	that	are	not	nonserials	at	the	same	
time	are	hence	easily	filtered	out.	

This	rule	is	in	fact	quite	natural.		When	a	user	composes	a	new	unit,	he	selects	
the	most	recent	other	units	as	parents	of	his	unit.		By	putting	them	on	his	parents	
list,	he	declares	his	picture	of	the	world,	which	implies	that	he	has	seen	these	units.		
He	has	therefore	seen	all	parents	of	parents,	parents	of	parents	of	parents,	etc	up	
until	the	genesis	unit.		This	huge	set	should	obviously	include	everything	that	he	
himself	has	produced,	and	therefore	has	seen.	

By	not	including	a	unit	(even	indirectly,	through	parents)	the	user	denies	that	
he	has	seen	it.		If	we	see	that	by	not	including	his	own	previous	unit	a	user	denies	

Figure	2.	Double-spends.		There	is	no	partial	order	between	them.	

G	

	 8	

having	seen	it,	we’d	say	it’s	odd,	something	fishy	is	going	on.		We	discourage	such	
behavior.	

5. The	main	chain	
Our	DAG	is	a	special	DAG.		In	normal	use,	people	mostly	link	their	new	units	to	
slightly	less	recent	units,	meaning	that	the	DAG	grows	only	in	one	direction.		One	
can	picture	it	as	a	thick	cord	with	many	interlaced	wires	inside.		This	property	
suggests	that	we	could	choose	a	single	chain	along	child-parent	links	within	the	
DAG,	and	then	relate	all	units	to	this	chain.		All	the	units	will	either	lie	directly	on	
this	chain,	which	we’ll	call	the	main	chain,	or	be	reachable	from	it	by	a	relatively	
small	number	of	hops	along	the	edges	of	the	graph.		It’s	like	a	highway	with	
connecting	side	roads.	

One	way	to	build	a	main	chain	is	to	develop	an	algorithm	that,	given	all	
parents	of	a	unit,	selects	one	of	them	as	the	“best	parent”.		The	selection	algorithm	
should	be	based	only	on	knowledge	available	to	the	unit	in	question,	i.e.	on	data	
contained	in	the	unit	itself	and	all	its	ancestors.		Starting	from	any	tip	(a	childless	
unit)	of	the	DAG,	we	then	travel	backwards	in	history	along	the	best	parent	links.		
Traveling	this	way,	we	build	a	main	chain	and	eventually	arrive	at	the	genesis	unit.		
Note	that	the	main	chain	built	starting	from	a	specific	unit	will	never	change	as	
new	units	are	added.		This	is	because	on	each	step	we	are	traveling	from	child	to	
parent,	and	an	existing	unit	can	never	acquire	new	parents.	

If	we	start	from	another	tip,	we’ll	build	another	main	chain.		Of	note	here	is	
that	if	those	two	main	chains	ever	intersect	while	they	go	back	in	history,	they	will	
both	go	along	the	same	path	after	the	intersection	point.		In	the	worst	case,	the	
main	chains	will	intersect	only	in	genesis.		Given	that	the	process	of	unit	
production	is	not	coordinated	among	users,	however,	one	might	expect	to	find	a	
class	of	main	chains	that	do	converge	not	too	far	from	the	tips.	

Once	we	have	a	main	chain	(MC),	we	can	establish	a	total	order	between	two	
conflicting	nonserial	units.		Let’s	first	index	the	units	that	lie	directly	on	the	main	
chain.		The	genesis	unit	has	index	0,	the	next	MC	unit	that	is	a	child	of	genesis	has	

Figure	3.	Main	chains	built	from	different	childless	units	intersect	and	then	go	
along	the	same	path.		Of	the	two	double-spends,	the	one	with	the	lower	main	
chain	index	(5)	wins,	while	the	other	(with	MCI=6)	is	deemed	invalid.	

G	 1	

4	2	

2	

2	

3	
3	

4	

4	

5	

6	

5	
7	

6	
7	

8	

	 9	

index	1,	and	so	on	traveling	forward	along	the	MC	we	assign	indexes	to	units	that	
lie	on	the	MC.		For	units	that	do	not	lie	on	the	MC,	we	can	find	an	MC	index	where	
this	unit	is	first	included	(directly	or	indirectly).		In	such	a	way,	we	can	assign	an	
MC	index	(MCI)	to	every	unit.			

Then,	of	the	two	nonserials,	the	one	that	has	a	lower	MCI	is	considered	to	
come	earlier	and	deemed	valid,	while	the	other	is	invalid.		If	both	nonserials	
happen	to	have	the	same	MCI,	there	is	tiebreaker	rule	that	the	unit	with	the	lower	
hash	value	(as	represented	in	base64	encoding)	is	valid.		Note	that	we	keep	all	
versions	of	the	double-spend,	including	those	that	eventually	lose.		DagCoin	[3]	
was	the	first	published	work	that	suggested	storing	all	conflicting	transactions	and	
deciding	which	one	to	treat	as	valid.	

The	MC	built	from	a	specific	unit	tells	us	what	this	unit’s	author	thinks	about	
the	order	of	past	events,	i.e.	his	point	of	view	about	the	history.		The	order	then	
implies	which	nonserial	unit	to	consider	valid,	as	described	above.		Note	that	by	
choosing	the	best	parent	among	all	parents	of	a	given	unit,	we	are	simultaneously	
making	a	choice	among	their	MCs:	the	MC	of	the	unit	in	question	will	be	the	MC	of	
its	best	parent	extended	forward	by	one	link.	

Recognizing	that	many	(or	even	all)	parent	units	might	be	created	by	an	
attacker,	and	remembering	that	the	choice	of	best	parent	is	essentially	the	choice	
among	versions	of	history,	we	should	require	from	our	best	parent	selection	
algorithm	that	it	favors	histories	that	are	“real”	from	the	point	of	view	of	the	child	
unit.		We	hence	need	to	devise	a	“reality	test”	that	our	algorithm	would	run	against	
all	candidate	MCs	to	select	the	one	that	scores	best.	

6. Witnesses	
Looking	for	a	“reality	test”,	observe	that	some	of	the	participants	of	our	network	
are	non-anonymous	reputable	people	or	companies	who	might	have	a	long	
established	reputation,	or	they	are	businesses	interested	in	keeping	the	network	
healthy.		We’ll	call	them	witnesses.		While	it	is	reasonable	to	expect	them	to	behave	
honestly,	it	is	also	unreasonable	to	totally	trust	any	single	witness.		If	we	know	the	
Byteball	addresses	of	several	witnesses,	and	also	expect	them	to	post	frequently	
enough,	then	to	measure	the	reality	of	a	candidate	MC	one	might	travel	along	the	
MC	back	in	time	and	count	the	witness-authored	units	(if	the	same	witness	is	
encountered	more	than	once,	he	is	not	counted	again).		We	would	stop	traveling	as	
soon	as	we	had	encountered	the	majority	of	witnesses.		We	would	then	measure	
the	length	of	the	longest	path	on	the	graph	from	the	point	at	which	we	stopped	to	
the	genesis.		We’ll	call	this	length	the	level	of	the	unit	where	we	stopped,	and	the	
witnessed	level	of	the	parent	whose	MC	we	are	testing.		The	candidate	MC	that	
yields	the	greater	witnessed	level	is	considered	more	“real”,	and	the	parent	
bearing	this	MC	is	selected	as	best	parent.		In	case	there	are	several	contenders	
with	a	maximum	witnessed	level,	we	would	select	the	parent	whose	own	level	is	
the	lowest.		If	the	tie	persists,	we	would	select	the	parent	with	the	smallest	unit	
hash	(in	base64	encoding).	

This	algorithm	allows	the	selection	of	the	MC	that	gravitates	to	units	
authored	by	witnesses,	and	the	witnesses	are	considered	to	be	representative	of	
reality.		If,	for	example,	an	attacker	forks	from	the	honest	part	of	the	network	and	

	 10	

secretly	builds	a	long	chain	of	his	own	units	(shadow	chain),	one	of	them	
containing	a	double-spend,	and	later	merges	his	fork	back	into	the	honest	DAG,	the	
best	parent	selection	algorithm	at	the	merger	point	will	choose	the	parent	that	
drives	the	MC	into	the	honest	DAG,	as	this	is	where	the	witnesses	were	active.		The	
witnesses	were	not	able	to	post	into	the	shadow	chain	simply	because	they	didn’t	
see	it	before	the	merger.		This	selection	of	MC	reflects	the	order	of	events	as	seen	
by	the	witnesses	and	the	user	who	appointed	them.		After	the	attack	is	over,	the	
entire	shadow	chain	will	land	on	the	MC	at	one	point,	and	the	double-spend	

contained	in	the	shadow	chain	will	be	deemed	invalid	because	its	valid	counterpart	
comes	earlier,	before	the	merger	point.	

This	example	shows	why	the	majority	of	witnesses	has	to	be	trusted	to	post	
only	serially.		The	majority	should	not	collude	with	the	attacker	and	post	on	his	
shadow	chain.		Note	that	we	trust	the	witnesses	only	to	be	signs	of	reality	and	to	
not	post	nonserial	units	on	any	shadow	chains.		We	are	not	giving	any	of	them	
control	over	the	network	or	any	part	thereof.		Even	for	this	small	duty,	it	is	users	
who	appoint	the	witnesses	and	they	can	change	their	decisions	at	any	time.	

The	idea	of	looking	at	some	known	entity	as	a	sign	of	reality	is	not	new.		It	
has	long	been	known,	and	some	companies	have	engaged	in	such	activity,	that	to	
prove	that	some	data	existed	before	a	specific	date,	one	can	hash	the	data	and	
publish	the	hash	in	some	hard-to-modify	and	widely	witnessed	media,	like	printed	
newspaper	[6].		Witnesses	in	Byteball	serve	the	same	function	as	the	newspaper.		
Like	newspapers,	they	are	well	known	and	trusted.		As	for	newspapers	where	trust	
is	limited	to	trusting	them	to	publish	the	data	they	are	given,	witnesses	in	Byteball	
are	only	trusted	to	post	serially,	and	not	much	more.		Like	newspapers,	witnesses	
don’t	know	what’s	behind	the	hashes	they	are	witnessing	and	have	few	reasons	to	

Figure	4.	When	an	attacker	rejoins	his	shadow	DAG	into	the	lit	DAG,	his	units	
lose	competition	to	become	best	parent	as	the	choice	favors	those	paths	that	
have	more	witnesses	(marked	with	w).	

G	 w	

4	2	

2	

2	

3	
3	

w	

4	

5	

6	

5	
7	

w	
7	

8	
9	

9	

9	9	9	
9	

9	
9	9	9	

9	
9	

9	
9	

best	parent	

	 11	

care.		Newspapers	are	hard	to	modify	(but	possible,	and	in	1984	they	do	it),	while	
everything	produced	by	witnesses	is	protected	by	digital	signatures,	which	makes	
any	modifications	impossible.		For	reliability,	we	have	several	witnesses,	not	just	
one,	and	for	speed	and	convenience,	these	are	online.	

Having	decided	on	a	list	of	witnesses,	we	can	then	select	best	the	parent	and	
the	corresponding	history	that	best	fits	the	definition	of	reality	as	“somewhere	
where	these	witnesses	live”.		At	the	same	time,	the	parents	themselves	might	have	
different	witness	lists	and	consequently	different	definitions	of	reality.		We	want	
the	definitions	of	reality,	and	histories	that	follow	from	them,	to	converge	around	
something	common.		To	achieve	this,	we	introduce	the	following	additional	
protocol	rule.			

The	“near-conformity	rule”:	best	parents	must	be	selected	only	among	those	
parents	whose	witness	list	differs	from	the	child’s	witness	list	by	no	more	than	one	
mutation.		This	rule	ensures	that	witness	lists	of	neighboring	units	on	the	MC	are	
similar	enough,	therefore	their	histories	mostly	agree	with	one	another.		The	
parents	whose	witness	list	differs	by	0	or	1	mutation	will	be	called	compatible	
(with	the	unit	that	includes	them	directly),	while	the	others	are	incompatible.		
Incompatible	parents	are	still	permitted,	but	they	have	no	chance	of	becoming	best	
parent.		If	there	are	no	compatible	potential	parents	among	childless	units	(an	
attacker	could	flood	the	network	with	his	units	that	carry	a	radically	different	
witness	list),	one	should	select	parents	from	older	units.	

The	above	means	that	each	unit	must	list	its	witnesses	so	that	they	can	be	
compared.		We	require	that	the	number	of	witnesses	is	exactly	12.		This	number	12	
was	selected	because:	

• it	is	sufficiently	large	to	protect	against	the	occasional	failures	of	a	few	
witnesses	(they	might	prove	dishonest,	or	be	hacked,	or	go	offline	for	a	long	
time,	or	lose	their	private	keys	and	go	offline	forever);	

• it	is	sufficiently	small	that	humans	can	keep	track	of	all	the	witnesses	to	
know	who	is	who	and	change	the	list	when	necessary;	

• the	one	allowed	mutation	is	sufficiently	small	compared	with	the	11	
unchanged	witnesses.	
In	case	a	user	thinks	that	any	of	the	witnesses	has	lost	his	credibility,	or	there	

are	just	better	candidates,	the	user	can	replace	the	witness	with	a	new	witness	in	
his	list,	bearing	in	mind	that	his	witness	list	may	not	differ	from	that	of	other	units	
by	more	than	one	position.		This	means	that	any	changes	can	happen	only	
gradually,	and	a	general	consensus	is	required	for	a	change	bigger	than	one	
position.	

7. Finality	
As	new	units	arrive,	each	user	keeps	track	of	his	current	MC	which	is	built	as	if	he	
were	going	to	issue	a	new	unit	based	on	all	current	childless	units.		The	current	MC	
may	be	different	at	different	nodes	because	they	may	see	different	sets	of	childless	
units.		We	require	that	the	current	MC	be	built	without	regard	of	witness	lists,	i.e.	
the	user’s	own	witness	list	doesn’t	matter	and	even	incompatible	parents	can	be	
selected	as	best	parents.		That	means	that	if	two	users	have	the	same	set	of	
childless	units,	but	have	different	witness	lists,	their	current	MCs	will	still	be	

	 12	

identical.		The	current	MC	will	constantly	change	as	new	units	arrive.		However,	as	
we	are	about	to	show,	a	part	of	the	current	MC	that	is	old	enough	will	stay	
invariant.	

We	expect	witnesses	(or	rather	the	majority	thereof)	to	behave	honestly,	
therefore	necessarily	include	their	previous	unit	in	the	next	unit	authored	by	the	
same	witness.		This	means	that	when	a	witness	composes	a	new	unit,	only	recent	
units	are	candidates	to	be	chosen	as	parents.		We	might	expect,	therefore,	that	all	
future	current	MCs	will	converge	no	farther	(when	traveling	back	in	time)	than	a	
particular	stability	point.		Indeed,	the	genesis	unit	is	a	natural	initial	stability	point.		
Assume	we	have	built	a	current	MC	based	on	the	current	set	of	childless	units,	and	
there	was	some	point	on	this	MC	that	was	previously	believed	to	be	stable,	i.e.	all	
future	current	MCs	are	believed	to	converge	on	or	before	this	point	(again,	when	
traveling	back	in	time),	and	then	travel	along	the	same	route.		If	we	can	find	a	way	
of	advancing	this	point	forward	(away	from	the	genesis),	we	can	prove	by	
induction	that	a	stability	point	exists.	

Note	that	if	we	forget	about	all	parents	except	the	best	parent,	our	DAG	will	
be	reduced	to	a	tree	that	consists	only	of	best	parent	links.		Obviously,	all	MCs	will	
go	along	the	branches	of	this	tree.		We	then	need	to	consider	two	cases	–	when	the	
tree	does	branch	in	the	current	stability	point	and	when	it	does	not	–	and	decide	if	
we	can	advance	the	stability	point	to	the	next	MCI.	

	
First,	assume	the	tree	does	not	branch.		We	then	need	to	consider	the	

possibility	that	a	new	branch	will	still	be	added	and	somehow	supported	by	the	
witnesses	so	that	it	outgrows	the	existing	branch.		The	other	possibility	is	that	the	
witnesses	put	so	much	weight	in	support	of	the	existing	branch,	that	the	
requirement	of	including	one’s	previous	unit	leaves	them	no	options	but	continue	
supporting	the	existing	branch.		Let’s	quantify	the	latter	possibility.		Remember	
that	best	parent	is	selected	as	the	parent	with	the	greatest	witnessed	level.		Let’s	
travel	back	in	time	along	the	current	MC	from	the	tip	until	we	meet	the	majority	of	
witnesses	(we	are	referring	to	witnesses	as	defined	by	the	unit	lying	on	the	current	
stability	point).		If	at	least	one	of	them	lies	earlier	than	the	current	stability	point,	

Figure	5.		A	tree	composed	of	best-parent	links.		All	but	one	branches	stop	
growing	after	some	point.	

G	

	 13	

we	do	not	try	to	advance	the	stability	point,	otherwise	we	proceed.		In	this	case,	all	
these	witnesses	are	already	“invested”	into	the	current	MC.		Among	these	
witnesses,	we	find	the	minimum	witnessed	level	min_wl.		When	any	of	these	
witnesses	posts	a	new	unit,	this	unit	might	have	parents	whose	MC	leads	to	the	
current	MC	and	parents	whose	MC	leads	to	a	competing	branch,	and	the	parent	
with	the	highest	witnessed	level	will	be	selected	as	best	parent	and	will	define	the	
direction	of	the	next	current	MC.		Since	the	witness	has	to	include	its	previous	unit,	
the	witnessed	level	of	the	parent	leading	to	the	current	MC	will	be	at	least	min_wl.		
The	witnessed	level	of	any	parent	leading	to	the	alternative	branch	will	never	
exceed	the	level	of	the	current	stability	point,	even	if	all	remaining	(minority)	
witnesses	flock	to	the	alternative	branch.		Therefore,	if	the	current	MC	grows	far	
enough	so	that	min_wl	is	greater	than	the	level	of	the	current	stability	point,	the	
majority	of	witnesses	will	have	to	increase	support	for	the	existing	current	MC,	the	
alternative	branch	has	then	lost	all	chances	to	win,	and	we	can	move	the	stability	
point	forward	to	the	next	MCI.	

Next,	assume	the	tree	does	branch.		We	need	to	find	a	condition	where	the	
alternative	branches	will	lose	any	chance	to	outgrow	the	current	MC.		Let’s	start	by	
defining	min_wl	as	in	the	previous	case.		Among	all	units	on	the	alternative	
branches,	we	then	select	those	that	increase	the	witness	level,	i.e.	their	own	
witnessed	level	is	greater	than	that	of	every	parent.		Among	these,	we	find	the	
maximum	level.		Then,	even	if	all	the	remaining	(minority)	witnesses	gather	on	the	
alternative	branches,	the	witnessed	level	on	the	alternative	branches	will	never	
exceed	this	maximum	level.		Therefore,	if	this	maximum	level	is	less	than	min_wl,	
game	is	over	for	the	alternative	branches,	and	we	can	advance	the	stability	point	
along	the	current	MC.	

Thus,	there	is	a	point	on	the	current	MC	before	which	the	MC	will	never	
change	(assuming	the	majority	of	witnesses	don’t	post	nonserial	units).		The	total	
order	defined	relative	to	this	MC	is	therefore	also	final.		If	we	had	nonserials,	our	
decision	about	which	one	of	them	is	valid,	is	final	as	well.		If	a	new	nonserial	ever	
appears	that	conflicts	with	anything	already	on	the	stable	MC,	the	new	nonserial	
unit	will	definitely	be	ordered	after	the	old	counterpart,	and	the	new	one	will	be	
deemed	invalid.		Therefore,	any	payment	made	in	the	unit	included	on	the	stable	
MC	is	already	irreversible.		Unlike	Bitcoin	where	transaction	finality	is	only	
probabilistic,	this	is	deterministic	transaction	finality.	

Every	user	builds	his	own	(subjective)	current	MC	based	on	the	units	that	he	
sees.		Since	the	propagation	of	new	units	is	not	instant,	and	they	may	arrive	in	
different	order	to	different	users,	the	users	will	have	different	current	MCs	and	
different	opinions	about	the	last	stable	point	of	the	MC	at	any	given	time.		
However,	since	the	current	MC	is	defined	solely	by	the	set	of	units	known	to	the	
user,	in	case	user	B	hasn’t	yet	advanced	his	stability	point	to	the	same	MCI	as	user	
A,	he	will	inevitably	do	that	later	–	i.e.	as	soon	as	he	receives	the	same	units	as	user	
A,	or	more.		Thus	the	opinions	of	different	users	about	the	state	of	any	given	unit	
are	eventually	consistent.	

	 14	

8. Storage	of	nonserial	units	
When	we	decide	that	a	unit	is	a	nonserial,	we	still	have	to	store	it.		However,	part	of	
its	data	is	replaced	with	a	hash	of	the	data.		This	rule	serves	two	purposes.		First,	to	
reduce	storage	consumed	by	a	unit	that	nobody	paid	for	(the	entire	content	of	the	
nonserial	unit	is	deemed	invalid,	including	its	payment	of	commissions).		Second,	
to	reduce	the	utility	of	the	nonserial	to	the	user	who	sent	it,	because	the	hash	
replaces	all	useful	data	that	the	author	wanted	to	store	(for	free).		This	prevents	
attackers	from	abusing	nonserials	as	a	way	to	store	large	amounts	of	data	for	free.	

The	hash	that	is	stored	instead	of	the	full	content	still	has	some	utility	to	the	
attacker,	as	he	can	store	the	original	data	himself	and	use	the	hash	to	prove	that	
the	data	existed.		But	remember	that:	

1. He	still	has	to	pay	for	one	unit	that	is	deemed	valid	
2. If	the	attacker	is	already	internally	storing	metadata	that	is	necessary	to	

interpret	Byteball	data,	he	could	do	equally	well	by	just	combining	all	his	
data	into	a	Merkle	tree	and	using	Byteball	to	store	only	its	Merkle	root	for	
the	cost	of	one	small	unit.	

Under	this	design,	there	is	therefore	no	self-interest	in	trying	to	send	nonserials.	
It	ought	to	be	mentioned	that	we	cannot	just	reject	nonserials	the	first	time	

we	see	them.		If	we	did,	an	attacker	could	send	his	nonserials	to	different	users	in	
different	order.		Different	users	would	then	stick	to	the	versions	they	first	received	
and	reject	everything	based	on	the	other	version,	so	the	attacker	would	succeed	in	
partitioning	the	network.		That’s	why	we	have	to	store	both	versions	and	then	
decide	on	their	order.		Even	more,	users	should	forward	nonserials	to	peers	just	
like	any	other	units,	as	the	sooner	peers	learn	about	the	nonserials	the	better.	

We	still	try	to	avoid	including	nonserials	if	possible:	the	parent	selection	
algorithm	excludes	nonserials	as	long	as	they	are	childless.		For	this	reason,	it’s	
desirable	to	help	peers	learn	about	nonserials	as	soon	as	possible.	

9. Balls	
After	a	unit	becomes	stable	(i.e.	it	is	included	on	the	stable	part	of	the	MC)	we	
create	a	new	structure	based	on	this	unit,	we	call	it	a	ball:	
ball: {

unit: "hash of unit",
parent_balls: [array of hashes of balls based on parent units],
is_nonserial: true, // this field included only if the unit is
nonserial
skiplist_balls: [array of earlier balls used to build skiplist]

}

Every	ball	includes	information	about	all	its	ancestor	balls	(via	parents),	hence	the	
amount	of	information	it	depends	on	grows	like	snowball.		We	also	have	a	flag	in	
the	ball	that	tells	us	if	it	ended	up	being	invalid	(nonserial),	and	we	have	references	
to	older	balls	that	we’ll	use	later	to	build	proofs	for	light	clients.	

We	can	only	build	a	ball	when	the	corresponding	unit	becomes	stable	and	we	
know	for	certain	whether	it	is	serial.		Since	the	current	MCs	as	viewed	by	different	
users	are	eventually	consistent,	they	will	all	build	exactly	the	same	ball	based	on	
the	same	unit.	

	 15	

10. Last	ball	
To	protect	the	balls	(most	importantly,	the	is_nonserial	flag)	from	modification,	we	
require	each	new	unit	to	include	a	hash	of	the	last	ball	that	the	author	knows	about	
(which	is	the	ball	built	from	the	last	stable	unit,	and	it	lies	on	the	MC).		This	way,	
the	last	ball	will	be	protected	by	the	author’s	signature.		Later	on,	the	new	unit	
itself	will	be	(directly	or	indirectly)	included	by	witnesses.			

If	someone	who	doesn’t	have	the	entire	Byteball	database	wants	to	know	if	a	
particular	unit	is	serial,	he	would	give	us	a	list	of	witnesses	he	trusts	to	behave	
honestly,	and	we	would	build	a	chain	of	recent	units	that	includes	the	majority	of	
the	said	witnesses,	then	read	last	ball	from	the	oldest	unit	of	the	chain,	and	use	
balls	to	build	a	hash	tree	that	has	the	last	ball	at	the	top	and	includes	the	requested	
unit	somewhere	below.		This	hash	tree	is	similar	to	a	very	tall	Merkle	tree,	with	
additional	data	fed	in	at	each	node.		The	tree	can	be	optimized	using	the	skiplist.	

The	reference	to	the	last	ball	also	lets	users	see	what	their	peers	think	about	
the	stability	point	of	the	MC	and	compare	it	with	their	own	vision.	

We	also	require	that	the	last	ball	lies	no	sooner	than	last	ball	of	every	parent.		
This	ensures	that	the	last	ball	either	advances	forward	along	the	MC	or	stays	in	the	
same	position,	but	never	retreats.	

To	further	reduce	the	degrees	of	freedom	of	adversaries,	we	add	one	more	
requirement:	a	unit’s	witness	list	must	be	compatible	with	that	of	each	unit	that	
lies	on	the	trailing	part	of	the	unit’s	MC	between	this	unit	and	the	last	ball’s	unit.		
This	requirement	ensures	that	all	changes	to	the	witness	list	first	reach	stability	
point	before	trying	another	change.		Otherwise,	an	attacker	might	inject	a	
significantly	modified	witness	list	onto	the	MC	and	stop	posting	from	the	addresses	
of	the	new	witnesses.		In	such	instances,	the	stability	point	would	not	be	able	to	
advance	past	the	stretch	occupied	by	the	attacker’s	witnesses.	

The	requirement	that	witness	lists	of	all	contemporary	units	are	mostly	
similar	means	that	all	users	have	mostly	similar	views	about	who	can	be	trusted	to	
serve	as	lighthouses	for	the	community	at	the	current	time.		This	is	similar	to	
biology,	where	organisms	of	the	same	species	have	to	have	mostly	the	same	genes.		
Small	variance	of	the	witness	list	allows	for	evolutionary	change	that	still	
preserves	the	integrity	of	the	system.	

11. Witness	list	unit	
It	is	expected	that	many	users	will	want	to	use	exactly	the	same	witness	list.		In	this	
case,	to	save	space,	they	don’t	list	the	addresses	of	all	12	witnesses.		Rather,	they	
give	a	reference	to	another	earlier	unit,	which	listed	these	witnesses	explicitly.		
The	witness	list	unit	must	be	stable	from	the	point	of	view	of	the	referencing	unit,	
i.e.	it	must	be	included	into	the	last	ball	unit.	

12. Unit	structure	
This	is	an	example	of	a	unit:	
{

version: '1.0',
alt: '1',

	 16	

messages: [{
app: 'payment',
payload_location: 'inline',
payload_hash:
'AegecfpDzh8xvdyIABdynrcP6CTd4Pt42gvRiv0Ftjg=',
payload: {

inputs: [{
unit:
'7yctnKyuAk5P+mFgFQDdDLza88nkceXYjsTs4e3doQA=',
message_index: 0,
output_index: 1

}],
outputs: [

{ address: 'DJ6LV5GPCLMGRW7ZB55IVGJRPDJPOQU6',
amount: 208 },
{ address: 'Z36JFFX2AH7X5JQ2V2C6AQUUOWFESKZ2',
amount: 3505 }

]
}

}],
authors: [{

address: 'DJ6LV5GPCLMGRW7ZB55IVGJRPDJPOQU6',
authentifiers: {

r:
'3eQPIFiPVLRwBwEzxUR5thqn+zlFfLXUrzAmgemAqOk35UvDpa4h
79Fd6TbPbGfb8VMiJzqdNGHCKyAjl786mw=='

}
}],
parent_units: [

'B63mnJ4yNNAE+6J+L6AhQ3EY7EO1Lj7QmAM9PS8X0pg=',
'D6O1/D9L8vCMhv+8f70JecF93UoLKDp3e2+b92Yh2mI=',
'ZxqzWP6q6hDNF50Wax8HUK212lH/KSIRdW5a6T9h3DM='

],
last_ball: '8S2ya9lULt5abF1Z4lIJ4x5zYY9MtEALCl+jPDLsnsw=',
last_ball_unit: 'bhdxFqVUut6V3N2D6Tyt+/YD6X0W+QnC95dMcJJWdtw=',
witness_list_unit:
'f252ZI2MN3xu8wFJ+LktVDGsay2Udzi/AUauE9ZaifY='

}

Here:		
• version	is	the	protocol	version	number.	The	unit	will	be	interpreted	

according	to	this	version	of	the	protocol;	
• alt	is	an	identifier	of	alternative	currency,	we’ll	discuss	this	later;	
• messages	is	an	array	of	one	or	more	messages	that	contain	actual	data;	

o app	is	the	type	of	message,	e.g.	‘payment’	for	payments,	‘text’	for	
arbitrary	text	messages,	etc;	

o payload_location	says	where	to	find	the	message	payload.		It	can	be	
‘inline’	if	the	payload	is	included	in	the	message,	‘uri’	if	the	payload	is	
available	at	an	internet	address,	‘none’	if	the	payload	is	not	
published	at	all,	is	stored	and/or	shared	privately,	and	payload_hash	
serves	to	prove	it	existed	at	a	specific	time;	

o payload_hash	is	a	hash	of	the	payload	in	base64	encoding;	
o payload	is	the	actual	payload	(since	it	is	‘inline’	in	this	example).		The	

payload	structure	is	app-specific.		Payments	are	described	as	
follows:	

	 17	

§ inputs	is	an	array	of	input	coins	consumed	by	the	payment.		
All	owners	of	the	input	coins	must	be	among	the	signers	
(authors)	of	the	unit;	

• unit	is	hash	of	the	unit	where	the	coin	was	produced.		
To	be	spendable,	the	unit	must	be	included	in	
last_ball_unit;	

• message_index	is	an	index	into	the	messages	array	of	
the	input	unit.		It	indicates	the	message	where	the	coin	
was	produced;	

• output_index	is	an	index	into	the	outputs	array	of	the	
message_index’th	message	of	the	input	unit.		It	
indicates	the	output	where	the	coin	was	produced;	

§ outputs	is	an	array	of	outputs	that	say	who	receives	the	
money;	

• address	is	the	Byteball	address	of	the	recipient;	
• amount	is	the	amount	he	receives;	

• authors	is	an	array	of	the	authors	who	created	and	signed	this	unit.		All	
input	coins	must	belong	to	the	authors;	

o address	is	the	author’s	Byteball	address;	
o authentifiers	is	a	data	structure	that	proves	the	author’s	

authenticity.		Most	commonly	these	are	ECDSA	signatures;	
• parent_units	is	an	array	of	hashes	of	parent	units.		It	must	be	sorted	

alphabetically;	
• last_ball	and	last_ball_unit	are	hashes	of	last	ball	and	its	unit,	respectively;	
• witness_list_unit	is	hash	of	the	unit	where	one	can	find	the	witness	list.	

All	hashes	are	in	base64	encoding.	
Note	that	there	is	no	timestamp	field	in	the	unit	structure.		In	Byteball,	there	

are	no	protocol	rules	that	rely	on	clock	time.		it’s	simply	not	needed,	as	it	is	enough	
to	rely	on	the	order	of	events	alone.	

Timestamp	is	still	added	to	units	when	they	are	forwarded	from	node	to	
node.		However,	this	is	only	advisory	and	used	by	light	clients	to	show	in	wallets	
the	approximate	time	when	a	unit	was	produced,	which	may	significantly	differ	
from	the	time	it	was	received	as	light	clients	may	go	offline	for	extended	periods	of	
time.	

13. Commissions	
As	mentioned	before,	the	cost	to	store	a	unit	is	its	size	in	bytes.		The	commission	is	
split	into	two	parts:	headers	commission	and	payload	commission.		Payload	
commission	is	equal	to	the	size	of	messages;	headers	commission	is	the	size	of	
everything	else.		The	two	types	of	commissions	are	distributed	differently.	

Headers	commission	goes	to	one	of	the	future	units	which	takes	the	payer	
unit	as	parent.		The	receiver	is	selected	only	after	both	the	payer	unit’s	MCI	and	the	
next	MCI	become	stable.		To	determine	the	receiver,	we	take	those	children	whose	
MCI	is	equal	to	or	1	more	than	the	MCI	of	the	payer.		The	hashes	of	each	of	these	
children	are	concatenated	with	the	hash	of	the	unit	lying	on	the	next	MCI	(relative	
to	the	payer),	and	the	child	with	the	smallest	hash	value	(in	hex)	wins	the	headers	

	 18	

commission.		This	hashing	with	the	next	MC	unit	is	designed	to	introduce	
unpredictability	(the	next	MC	unit	is	not	known	beforehand)	and	render	useless	
any	attempts	to	improve	one’s	chances	of	receiving	commission	by	playing	with	
one’s	own	unit	hash.		At	the	same	time,	restricting	candidates	to	those	whose	MCI	
is	no	more	than	1	greater	than	the	MCI	of	the	payer,	incentivizes	the	selection	of	
the	most	recent	units	as	parents.		This	is	useful	to	keep	the	DAG	as	narrow	as	
possible.	

We	pay	only	the	headers	commission	and	not	the	entire	commission	to	those	
who	are	quick	to	pick	our	unit	as	parent,	for	the	following	reason.		If	we	did	pay	the	
entire	commission,	we	would	have	incentivized	abusive	behavior:	split	one’s	data	
into	several	chunks	and	build	a	long	chain	of	one’s	own	units	storing	one	chunk	per	
unit.		All	the	commissions	paid	in	a	previous	unit	would	then	be	immediately	
collected	by	the	same	user	in	the	next	unit.		As	we	pay	only	the	headers	
commission,	such	behavior	is	not	profitable	because	to	produce	each	additional	
element	of	the	chain	one	has	to	spend	additional	headers	commission	–	roughly	
the	same	as	one	earns.		We	use	the	remaining	(payload)	commission	to	incentivize	
others	whose	activity	is	important	for	keeping	the	network	healthy.	

Payload	commission	goes	to	witnesses.		To	incentivize	witnesses	to	post	
frequently	enough,	we	split	payload	commission	equally	among	all	witnesses	who	
are	quick	enough	to	post	within	100	MC	indexes	after	the	paying	unit	(the	faster	
they	post,	the	faster	this	unit	becomes	stable).		If	all	12	witnesses	have	posted	
within	this	interval,	each	receives	1/12	of	the	payload	commission.		If	only	one	
witness	has	posted,	he	receives	the	entire	payload	commission.		In	the	special	case	
that	no	witness	has	posted	within	this	interval,	they	all	receive	1/12	of	payload	
commission.		If	the	division	produces	a	fractional	number,	it	is	rounded	according	
to	mathematical	rules.		Because	of	this	rounding,	the	total	commission	paid	out	to	
witnesses	may	not	be	equal	to	the	total	payload	commission	received	from	the	
unit’s	author(s),	so	the	total	money	supply	will	change	slightly	as	well.		Obviously,	
the	distribution	happens	only	after	MCI+100	becomes	stable,	where	MCI	is	the	MCI	
of	the	paying	unit.	

To	spend	the	earned	headers	commissions	or	witnessing	commissions,	the	
following	input	is	used:	
inputs: [

{
type: "headers_commission",
from_main_chain_index: 123,
to_main_chain_index: 196

},
{

type: "witnessing",
from_main_chain_index: 60,
to_main_chain_index: 142

},
…

]

Such	inputs	sweep	all	headers	or	witnessing	commissions	earned	by	the	author	
from	commission	paying	units	that	were	issued	between	main	chain	indexes	
from_main_chain_index	and	to_main_chain_index.		Naturally,	to_main_chain_index	
must	be	stable.	

	 19	

When	a	unit	signed	by	more	than	one	author	earns	headers	commission,	
there	is	so	far	ambiguity	as	to	how	the	commission	is	split	among	the	authors.		To	
remove	the	ambiguity,	each	unit	that	is	signed	by	more	than	one	author	must	
include	a	data	structure	that	describes	the	proportions	of	revenue	sharing:	
unit: {

…
earned_headers_commission_recipients: [

{address: "ADDRESS1", earned_headers_commission_share: 30},
{address: "ADDRESS2", earned_headers_commission_share: 70}

],
…

}

The	addresses	who	receive	the	commissions	needn’t	be	the	same	as	the	author	
addresses	–	the	commission	can	be	sent	to	any	address.		Even	if	the	unit	is	signed	
by	a	single	author,	it	can	include	this	field	to	redirect	headers	commissions	
elsewhere.	

14. Confirmation	time	
Confirmation	time	is	the	time	from	a	unit	entering	the	database	to	reaching	
stability.		It	depends	on	how	often	the	witnesses	post,	since	to	reach	stability	we	
need	to	accumulate	enough	witness-authored	units	on	the	MC	after	the	newly	
added	unit.		To	minimize	the	confirmation	period,	the	witnesses	should	post	
frequently	enough	(which	they	are	already	incentivized	to	do	via	commission	
distribution	rules)	but	not	too	frequently.		If	two	or	more	witnesses	issue	their	
units	nearly	simultaneously	(faster	than	it	typically	takes	to	propagate	a	new	unit	
to	other	witnesses),	this	may	cause	unnecessary	branching	of	the	tree	composed	of	
best-parent	links,	which	would	delay	stability.		For	this	reason,	the	best	
confirmation	times	are	reached	when	the	witnesses	are	well	connected	and	run	on	
fast	machines	so	that	they	are	able	to	quickly	validate	new	units.		We	estimate	the	
best	confirmation	times	to	be	around	30	seconds;	this	is	only	reachable	if	the	flow	
of	new	units	is	large	enough	so	that	the	witnesses	earn	more	from	witnessing	
commissions	than	they	spend	for	posting	their	own	units.	

Despite	the	period	of	full	confirmation	being	rather	long,	a	node	that	trusts	
its	peers	to	deliver	all	new	units	without	filtering	may	be	reasonably	sure	that	once	
a	unit	was	included	by	at	least	one	witness,	plus	a	typical	latency	has	elapsed	(the	
time	it	takes	a	new	unit	to	travel	from	peer	to	peer),	the	unit	will	most	likely	reach	
finality	and	be	deemed	valid.		Even	if	a	double-spend	appears	later,	it	will	be	likely	
ordered	after	this	unit.	

15. Partitioning	risk	
The	network	of	Byteball	nodes	can	never	be	partitioned	into	two	parts	that	would	
both	continue	operating	without	noticing.		Even	in	the	event	of	a	global	network	
disruption	such	as	a	sub-Atlantic	rat	cutting	the	cable	that	connects	Europe	and	
America,	at	least	one	of	the	sides	of	the	split	will	notice	that	it	has	lost	the	majority	
of	witnesses,	meaning	that	it	can’t	advance	the	stability	point,	and	nobody	can	
spend	outputs	stuck	in	the	unstable	part	of	the	MC.		Even	if	someone	tries	to	send	a	

	 20	

double-spend,	it	will	remain	unstable	(and	therefore	unrecognized)	until	the	
connection	is	restored.		The	other	part	of	the	split	where	the	majority	of	witnesses	
happens	to	be,	will	continue	as	normal.	

16. Censorship	
By	design,	it	is	already	impossible	to	modify	or	erase	any	past	records	in	Byteball.		
It	is	also	quite	hard	to	stop	any	particular	types	of	data	from	entering	the	database.			

First,	the	data	itself	can	be	concealed	and	only	its	hash	be	actually	posted	to	
the	database	to	prove	that	the	data	existed.		The	data	may	only	be	revealed	after	
the	hash	is	stored	and	its	unit	has	been	included	by	other	units	so	that	it	has	
become	unrevisable.			

Second,	even	when	the	data	is	open,	the	decision	to	include	or	not	include	it	
in	the	database	is	delegated	to	numerous	anonymous	users	who	might	(and	in	fact	
are	incentivized	to)	take	the	new	unit	as	a	parent.		Someone	who	tries	to	censor	
undesirable	units	will	have	to	not	only	avoid	including	them	directly	(as	parents)	
but	also	indirectly,	through	other	units.		(This	is	different	from	Bitcoin	where	
miners	or	mining	pools	can,	and	do,	filter	individual	transactions	directly.		Besides,	
Bitcoin	users	have	no	say	in	who	is	to	become	a	miner.)		As	the	number	of	units	
which	include	the	“offending”	unit	snowballs,	any	attempt	to	avoid	it	would	entail	
censoring	oneself.		Only	the	majority	of	witnesses	can	effectively	impose	forbidden	
content	rules	–	if	users	choose	such	witnesses.	

17. Choosing	witnesses	
Reliance	on	witnesses	is	what	makes	Byteball	rooted	in	the	real	world.		At	the	
same	time,	it	makes	it	highly	dependent	on	human	decisions.			The	health	of	the	
system	depends	on	users	responsibly	setting	the	lists	of	witnesses	they	do	trust.		
This	process	cannot	be	safely	automated,	for	example	if	most	users	start	auto-
updating	their	witness	lists	to	match	the	lists	of	most	recently	observed	units,	just	
to	be	compatible,	this	can	be	easily	exploited	by	an	attacker	who	floods	the	
network	with	his	own	units	that	gradually	change	the	predominant	witness	list	to	
something	of	the	attacker’s	choosing.	

While	the	maximalist	recommendation	could	be	“only	edit	witness	lists	
manually”,	which	is	too	burdensome	for	most	users,	a	more	practical	approach	to	
witness	list	management	is	tracking	and	somehow	averaging	the	witness	lists	of	a	
few	“captains	of	industry”	who	either	have	interest	in	caring	for	the	network	
health	or	who	have	earned	a	good	reputation	in	activities	not	necessarily	
connected	with	Byteball.		Some	of	them	may	be	acting	witnesses	themselves.		
Unlike	witness	lists,	the	lists	of	captains	of	industry	don’t	have	to	be	compatible,	
and	failing	to	update	the	list	frequently	enough	doesn’t	have	any	immediate	
negative	implications	such	as	being	unable	to	find	compatible	parents	and	post	a	
new	unit.		We	expect	that	most	users	will	use	one	of	a	relatively	small	number	of	
most	popular	wallets,	and	such	wallets	will	be	set	up	by	default	to	follow	the	
witness	list	of	the	wallet	vendor,	who	in	turn	likely	watches	the	witness	lists	of	
other	prominent	players.	

	 21	

Witnesses	also	have	their	witness	lists,	and	it	is	recommended	that	users	
elect	those	witnesses	who	they	trust	to	keep	their	witness	lists	representative	of	
ordinary	users’	beliefs.		This	is	very	important	because	no	change	to	the	
predominant	witness	list	can	pass	without	approval	of	the	majority	of	the	current	
witnesses.		It	is	recommended	that	witnesses	and	would-be	witnesses	publicly	
declare	their	witness	list	policy	(such	as	following	and	averaging	witness	lists	of	
other	reputable	users),	and	that	users	evaluate	their	fitness	for	the	job	based	on	
this	policy,	among	other	factors.		Any	breach	of	the	declared	policy	will	be	
immediately	visible	and	will	likely	trigger	a	witness	replacement	campaign.		The	
same	is	true	for	an	unjustified	amendment	to	the	policy.		The	policy	binds	the	
witness	and	makes	him	follow	public	opinion,	even	when	it	turns	against	the	
witness	himself	or	his	friends.	

As	mentioned	before,	our	protocol	rules	require	that:	
1. best	parent	is	selected	only	among	parents	whose	witness	list	has	no	more	

than	1	mutation;	
2. there	should	be	no	more	than	1	mutation	relative	to	the	witness	list	of	the	

last	ball	unit;	
3. there	should	be	no	more	than	1	mutation	relative	to	the	witness	lists	of	all	

the	unstable	MC	units	up	to	the	last	ball	unit;	
4. the	stability	point	advances	only	when	the	current	witnesses	(as	defined	in	

the	current	stability	point)	post	enough	units	after	the	current	stability	
point.	

These	rules	are	designed	to	protect	against	malicious	and	accidental	forks.		At	the	
same	time,	they	imply	that	any	changes	of	the	predominant	witness	list	have	to	be	
gradual,	and	each	step	has	to	be	approved	by	the	majority	of	the	current	witnesses.		
A	one-position	change	has	to	first	reach	stability	and	recognition	of	the	majority	of	
old	witnesses	before	another	change	can	be	undertaken.		If	the	community	decides	
abruptly	that	two	witnesses	need	to	be	replaced	immediately,	then	after	one	
change	makes	its	way	onto	the	MC,	the	second	change	will	be	blocked	by	rule	3	
above	until	the	first	change	reaches	stability.	

Despite	all	the	recommendations	above	it	is	still	possible	that	due	to	the	
negligence	of	industry	leaders,	such	witnesses	are	elected	who	later	form	a	cartel	
and	collectively	block	all	attempts	to	replace	any	one	of	them	in	an	attempt	to	keep	
the	profits	they	are	earning	from	witnessing	commissions.		If	they	do	behave	this	
way,	it	will	be	evident	to	everybody	because	their	witness	lists	will	remain	
unchanged,	while	the	witness	lists	of	most	other	industry	leaders	will	differ	by	one	
mutation	(the	maximum	allowed	to	remain	compatible).		If	the	old	witnesses	do	
not	give	in	despite	such	evident	pressure,	the	only	recourse	of	the	pro-change	
users	is	a	“revolution”	–	i.e.	to	start	a	new	coin	that	inherits	all	the	balances,	user	
addresses,	etc	from	the	old	coin	at	some	point	but	starts	with	a	new	witness	list	
and	adds	a	special	protocol	rule	to	handle	this	incompatible	change	at	the	moment	
of	the	schism.		To	distinguish	from	the	old	coin,	they	would	then	assign	a	new	value	
to	the	‘alt’	field	(this	what	‘alt’	is	for)	and	use	it	in	all	units	issued	under	the	new	
coin.		As	a	result,	users	will	hold	two	coins	(the	old	alt=”1”,	and	the	new	e.g.	
alt=”2”)	and	will	be	able	to	spend	both	independently.		If	the	split	was	justified,	the	
old	coin	will	probably	be	abandoned,	but	all	the	data	accumulated	prior	to	the	
schism	will	be	available	as	normal	in	the	new	coin.		Since	the	protocol	is	almost	

	 22	

identical	(except	for	the	rule	that	handles	the	schism	and	the	change	of	alt),	it	will	
be	easy	to	update	software	installed	on	all	user	and	merchant	devices.	

If	someone	just	wants	to	start	a	new	coin	to	experiment	with	another	set	of	
protocol	rules,	he	can	also	use	the	‘alt’	field	to	inherit	everything	from	the	old	coin,	
make	the	switch	comfortable	for	users,	and	have	a	large	set	of	users	with	balances	
from	day	one.	

18. Skiplist	
Some	of	the	balls	contain	a	skiplist	array	which	enables	faster	building	of	proofs	
for	light	clients	(see	below).		Only	those	balls	that	lie	directly	on	the	MC,	and	whose	
MC	index	is	divisible	by	10,	have	a	skiplist.		The	skiplist	lists	the	nearest	previous	
MC	balls	whose	index	has	the	same	or	smaller	number	of	zeros	at	the	end.		For	
example,	the	ball	at	MCI	190	has	a	skiplist	that	references	the	ball	at	MCI	180.		The	
ball	at	MCI	3000	has	a	skiplist	that	references	the	balls	at	MCIs	2990,	2900,	and	
2000.	

19. Light	clients	
Light	clients	do	not	store	the	entire	Byteball	database.		Instead,	they	download	a	
subset	of	data	they	are	interested	in,	such	as	only	transactions	where	any	of	the	
user’s	addresses	are	spending	or	being	funded.	

Light	clients	connect	to	full	nodes	to	download	the	units	they	are	interested	
in.		The	light	client	tells	the	full	node	the	list	of	witnesses	it	trusts	(not	necessarily	
the	same	witnesses	it	uses	to	create	new	units)	and	the	list	of	its	own	addresses.		
The	full	node	searches	for	units	the	light	client	is	interested	in	and	constructs	a	
proof	chain	for	each	unit	in	the	following	way:	

1. Walk	back	in	time	along	the	MC	until	the	majority	of	requested	witnesses	
are	met.		Collect	all	these	MC	units.	

2. From	the	last	unit	in	this	set	(which	is	also	the	earliest	in	time),	read	the	last	
ball.	

3. Starting	from	this	last	ball,	walk	back	in	time	along	the	MC	until	any	ball	
with	a	skiplist	is	met.		Collect	all	these	balls.	

4. Using	the	skiplist,	jump	to	an	earlier	ball	referenced	from	the	skiplist.		This	
ball	also	has	a	skiplist,	jump	again.		Where	there	are	several	balls	in	skiplist	
array,	always	jump	by	the	largest	distance	possible,	so	we	accelerate	
jumping	first	by	10	indexes,	then	by	100,	then	by	1000,	etc.	

5. If	the	next	jump	by	the	skiplist	would	throw	us	behind	the	target	ball,	
decelerate	by	jumping	by	a	smaller	distance.		Ultimately,	leave	the	skiplist	
and	walk	along	the	MC	one	index	at	a	time	using	just	parent	links.	

This	chain	has	witness-authored	units	in	the	beginning,	making	it	trustworthy	
from	the	light	client’s	point	of	view.		All	the	elements	of	the	chain	are	linked	by	
either	parent	unit	links	(while	accumulating	the	witnesses),	or	by	last	ball	
reference,	or	by	parent	ball	links,	or	by	skiplist	links.		At	the	end	of	the	chain,	we	
have	the	unit	whose	existence	was	to	be	proved.	

	 23	

20. Multilateral	signing	
A	unit	can	be	signed	by	multiple	parties.		In	such	instances,	the	authors	array	in	the	
unit	has	two	or	more	elements.			

This	can	be	useful,	for	example.	if	two	or	more	parties	want	to	sign	a	contract	
(a	plain	old	dumb	contract,	not	a	smart	one).		They	would	both	sign	the	same	unit	
that	contains	a	text	message	(app=’text’).		They	don’t	have	to	store	the	full	text	of	
the	contract	in	the	public	database,	and	pay	for	it	–	a	hash	would	suffice	
(payload_location=’none’),	and	the	parties	themselves	can	store	the	text	privately.	

Another	application	of	multilateral	signing	is	an	exchange	of	assets.		Assume	
user	A	wants	to	send	asset	X	to	user	B	in	exchange	for	asset	Y	(the	native	currency	
‘bytes’	is	also	an	asset	–	the	base	asset).		Then	they	would	compose	a	unit	that	
contains	two	payment	messages:	one	payment	sends	asset	X	from	A	to	B,	the	other	
payment	sends	asset	Y	from	B	to	A.		They	both	sign	the	dual-authored	unit	and	
publish	it.		The	exchange	is	atomic	–	that	is,	either	both	payments	execute	at	the	
same	time	or	both	fail.		If	one	of	the	payments	appears	to	be	a	double-spend,	the	
entire	unit	is	rendered	invalid	and	the	other	payment	is	also	deemed	void.	

This	simple	construction	allows	users	to	exchange	assets	directly,	without	
trusting	their	money	to	any	centralized	exchanges.	

21. Addresses	
Users	are	identified	by	their	addresses,	transaction	outputs	are	sent	to	addresses,	
and,	like	in	Bitcoin,	it	is	recommended	that	users	have	multiple	addresses	and	
avoid	reusing	them.		In	some	circumstances,	however,	reuse	is	normal.		For	
example,	witnesses	are	expected	to	repeatedly	post	from	the	same	address.	

An	address	represents	a	definition,	which	is	a	Boolean	expression	(remotely	
similar	to	Bitcoin	script).		When	a	user	signs	a	unit,	he	also	provides	a	set	of	
authentifiers	(usually	ECDSA	signatures)	which,	when	applied	to	the	definition,	
must	evaluate	it	to	true	in	order	to	prove	that	this	user	had	the	right	to	sign	this	
unit.		We	write	definitions	in	JSON.		For	example,	this	is	the	definition	for	an	
address	that	requires	one	ECDSA	signature	to	sign:	
["sig",{"pubkey":"Ald9tkgiUZQQ1djpZgv2ez7xf1ZvYAsTLhudhvn0931w"}]

The	definition	indicates	that	the	owner	of	the	address	has	a	private	key	whose	
public	counterpart	is	given	in	the	definition	(in	base64	encoding),	and	he	will	sign	
all	units	with	this	private	key.		The	above	definition	evaluates	to	true	if	the	
signature	given	in	the	corresponding	authentifier	is	valid,	or	otherwise	false.		The	
signature	is	calculated	over	all	data	of	the	unit	except	the	authentifiers.	

Given	a	definition	object,	the	corresponding	address	is	just	a	hash	of	the	
initial	definition	object	plus	a	checksum.		The	checksum	is	added	to	avoid	typing	
errors.		Unlike	usual	checksum	designs,	however,	the	checksum	bits	are	not	just	
appended	to	the	end	of	the	unchecksummed	data.		Rather,	they	are	inserted	into	
multiple	locations	inside	the	data.		This	design	makes	it	hard	to	insert	long	strings	
of	illegal	data	in	fields	where	an	address	is	expected.		The	address	is	written	in	
base32	encoding.		The	above	definition	corresponds	to	address	
A2WWHN7755YZVMXCBLMFWRSLKSZJN3FU.	

	 24	

When	an	address	is	funded,	the	sender	of	the	payment	knows	and	specifies	
only	the	address	(the	checksummed	hash	of	the	definition)	in	the	payment	output.		
The	definition	is	not	revealed	and	it	remains	unknown	to	anyone	but	the	owner	
until	the	output	is	spent.			

When	a	user	sends	his	first	unit	from	an	address,	he	must	reveal	its	definition	
(so	as	to	make	signature	verification	possible)	in	the	authors	array:	
unit: {

…
authors: [{

address: 'DJ6LV5GPCLMGRW7ZB55IVGJRPDJPOQU6',
definition: [

"sig",
{"pubkey":"AsnvZ3w7N1lZGJ+P+bDZU0DgOwJcGJ51bjsWpEqfqB
g6"}

],
authentifiers: {

r:
'3eQPIFiPVLRwBwEzxUR5thqn+zlFfLXUrzAmgemAqOk35UvDpa4h
79Fd6TbPbGfb8VMiJzqdNGHCKyAjl786mw=='

}
}],
…

}

If	the	user	sends	a	second	unit	from	the	same	address,	he	must	omit	the	
definition	(it	is	already	known	on	Byteball).		He	can	send	the	second	unit	only	after	
the	definition	becomes	stable,	i.e.	the	unit	where	the	definition	was	revealed	must	
be	included	in	the	last	ball	unit	of	the	second	unit.	

Users	can	update	definitions	of	their	addresses	while	keeping	the	old	
address.		For	example,	to	rotate	the	private	key	linked	to	an	address,	the	user	
needs	to	post	a	unit	that	contains	a	message	such	as:	
unit: {

…
messages: [

…
{

app: "address_definition_change",
definition_chash: "I4Z7KFNIYTPHPJ5CA5OFC273JQFSZPOX"

},
…

],
…

}

Here,	definition_chash	indicates	the	checksummed	hash	of	the	new	address	
definition	(which	is	not	revealed	until	later),	and	the	unit	itself	must	be	signed	by	
the	old	private	keys.		The	next	unit	from	this	address	must:	

• include	this	address_definition_change	unit	in	its	last	ball	unit,	i.e.	it	must	be	
already	stable;	

• reveal	the	new	definition	in	the	authors	array	in	the	same	way	as	for	the	
first	message	from	an	address.	

	 25	

After	the	change,	the	address	is	no	longer	equal	to	the	checksummed	hash	of	
its	current	definition.		Rather,	it	remains	equal	to	the	checksummed	hash	of	its	
initial	definition.	

The	definition	change	is	useful	if	the	user	wants	to	change	the	key(s)	(e.g.	
when	migrating	to	a	new	device)	while	keeping	the	old	address,	e.g.	if	this	address	
already	participates	in	other	long-lived	definitions	(see	below).	

21.1. Definition	syntax	

21.1.1. Logical	operators	
A	definition	can	include	“and”	conditions,	for	example:	
["and", [

["sig", {pubkey: "one pubkey in base64"}],
["sig", {pubkey: "another pubkey in base64"}]

]]

which	is	useful	when,	in	order	to	sign	transactions,	signatures	from	two	
independent	devices	are	required,	for	example,	from	a	laptop	and	from	a	
smartphone.	

“Or”	conditions,	such	as	this:	
["or", [

["sig", {pubkey: "laptop pubkey"}],
["sig", {pubkey: "smartphone pubkey"}],
["sig", {pubkey: "tablet pubkey"}]

]]

are	useful	when	a	user	wants	to	use	the	same	address	from	any	of	his	devices.	
The	conditions	can	be	nested:	

["and", [
["or", [

["sig", {pubkey: "laptop pubkey"}],
["sig", {pubkey: "tablet pubkey"}]

]],
["sig", {pubkey: "smartphone pubkey"}]

]]

A	definition	can	require	a	minimum	number	of	conditions	to	be	true	out	of	a	
larger	set,	for	example,	a	2-of-3	signature:	
["r of set", {

required: 2,
set: [

["sig", {pubkey: "laptop pubkey"}],
["sig", {pubkey: "smartphone pubkey"}],
["sig", {pubkey: "tablet pubkey"}]

]
}]

(“r”	stands	for	“required”)	which	features	both	the	security	of	two	mandatory	
signatures	and	the	reliability,	so	that	in	case	one	of	the	keys	is	lost,	the	address	is	
still	usable	and	can	be	used	to	change	its	definition	and	replace	the	lost	3rd	key	
with	a	new	one.	

Also,	different	conditions	can	be	given	different	weight,	of	which	a	minimum	
is	required:	

	 26	

["weighted and", {
required: 50,
set: [

{weight: 40, value: ["sig", {pubkey: "CEO pubkey"}] },
{weight: 20, value: ["sig", {pubkey: "COO pubkey"}] },
{weight: 20, value: ["sig", {pubkey: "CFO pubkey"}] },
{weight: 20, value: ["sig", {pubkey: "CTO pubkey"}] }

]
}]

21.1.2. Delegation	to	other	addresses	
An	address	can	contain	reference	to	another	address:	
["and", [

["address", "ADDRESS 1 IN BASE32"],
["address", "ADDRESS 2 IN BASE32"]

]]

which	delegates	signing	to	another	address	and	is	useful	for	building	shared	
control	addresses	(addresses	controlled	by	several	users).		This	syntax	gives	the	
users	the	flexibility	to	change	definitions	of	their	own	component	addresses	
whenever	they	like,	without	bothering	the	other	user.	

21.1.3. Signatures	and	authentifiers	
In	most	cases,	a	definition	will	include	at	least	one	signature	(directly	or	
indirectly):	
["sig", {pubkey: "pubkey in base64"}]

Instead	of	a	signature,	a	definition	may	require	a	preimage	for	a	hash	to	be	
provided:	
["hash",{"hash":"value of sha256 hash in base64"}]

which	can	be	useful	for	cross-chain	exchange	algorithms	[7].		In	this	case,	the	hash	
preimage	is	entered	as	one	of	the	authentifiers.	

The	default	signature	algorithm	is	ECDSA	on	curve	secp256k1	(same	as	
Bitcoin).		Initially,	it	is	the	only	algorithm	supported.		If	other	algorithms	are	added	
in	the	future,	algorithm	identifier	will	be	used	in	the	corresponding	part	of	the	
definition,	such	as	for	the	quantum	secure	NTRU	algorithm:	
["sig", {algo: "ntru", pubkey: "NTRU public key in base64"}]

Multisignature	definitions	allow	one	to	safely	experiment	with	unproven	signature	
schemes	when	they	are	combined	with	more	conventional	signatures.	

The	authentifiers	object	in	unit	headers	contains	signatures	or	other	data	
(such	as	hash	preimage)	keyed	by	the	path	of	the	authentifier-requiring	
subdefinition	within	the	address	definition.		For	a	single-sig	address	such	as				
["sig", {pubkey: "pubkey in base64"}]

the	path	is	simply	“r”	(r	stands	for	root).		If	the	authentifier-requiring	subdefinition	
is	included	within	another	definition	(such	as	and/or),	the	path	is	extended	by	an	
index	into	the	array	where	this	subdefinition	is	included,	and	path	components	are	
delimited	by	a	dot.		For	example,	for	address	definition:	
["and", [

["sig", {pubkey: "one pubkey in base64"}],

	 27	

["sig", {pubkey: "another pubkey in base64"}]
]]

the	paths	are	“r.0”	and	“r.1”.		For	a	deeper	nested	definition:	
["and", [

["or", [
["sig", {pubkey: "laptop pubkey"}],
["sig", {pubkey: "tablet pubkey"}]

]],
["sig", {pubkey: "smartphone pubkey"}]

]]

the	paths	are	“r.0.0”,	“r.0.1”,	and	“r.1”.		When	there	are	optional	signatures,	such	as	
2-of-3,	the	paths	tell	us	which	keys	were	actually	used.	

21.1.4. Definition	templates	
A	definition	can	also	reference	a	definition	template:	
["definition template", [

"hash of unit where the template was defined",
{param1: "value1", param2: "value2"}

]]

The	parameters	specify	values	of	variables	to	be	replaced	in	the	template.		The	
template	needs	to	be	saved	before	(and	as	usual,	be	stable	before	use)	with	a	
special	message	type	app=’definition_template’,	the	template	itself	is	in	message	
payload,	and	the	template	looks	like	normal	definition	but	may	include	references	
to	variables	in	the	syntax	@param1,	@param2.		Definition	templates	enable	code	
reuse.		They	may	in	turn	reference	other	templates.	

21.1.5. Cosigning	
A	subdefinition	may	require	that	the	unit	be	cosigned	by	another	address:	
["cosigned by", "ANOTHER ADDRESS IN BASE32"]

21.1.6. Querying	whether	an	address	was	used	
Another	possible	requirement	for	a	subdefinition:	that	an	address	was	seen	as	
author	in	at	least	one	unit	included	into	the	last	ball	unit:	
["seen address", "ANOTHER ADDRESS IN BASE32"]

21.1.7. Data	feeds	
One	very	useful	condition	can	be	used	to	make	queries	about	data	previously	
stored	in	Byteball:	
["in data feed", [

["ADDRESS1", "ADDRESS2", …],
"data feed name",
"=",
"expected value"

]]

This	condition	evaluates	to	true	if	there	is	at	least	one	message	that	has	"data	feed	
name"	equal	to	"expected	value"	among	the	data	feed	messages	authored	by	the	
listed	addresses	"ADDRESS1",	"ADDRESS2",	..	(oracles).		Data	feed	is	a	message	
type	that	looks	like	this:	
unit: {

	 28	

…
messages: [

…
{

app: "data_feed",
payload_location: "inline",
payload_hash: "hash of payload",
payload: {

"data feed name": "value",
"another data feed name": "value2",
…

}
},
…

],
…

}

Data	fields	can	be	used	to	design	definitions	that	involve	oracles.		If	two	or	
more	parties	trust	a	particular	entity	(the	oracle)	to	provide	true	data,	they	can	set	
up	a	shared	control	address	that	gives	the	parties	different	rights	depending	on	
data	posted	by	the	oracle(s).		For	example,	this	address	definition	represents	a	
binary	option:	
["or", [

["and", [
["address", "ADDRESS 1"],
["in data feed", [["EXCHANGE ADDRESS"], "EURUSD", ">",
"1.1500"]]

]],
["and", [

["address", "ADDRESS 2"],
["in data feed", [["TIMESTAMPER ADDRESS"], "datetime", ">",
"2016-10-01 00:00:00"]]

]]
]]

Initially,	the	two	parties	fund	the	address	defined	by	this	definition	(to	remove	any	
trust	requirements,	they	use	multilateral	signing	and	send	their	stakes	in	a	single	
unit	signed	by	both	parties).		Then	if	the	EUR/USD	exchange	rate	published	by	the	
exchange	address	ever	exceeds	1.1500,	the	first	party	can	sweep	the	funds.		If	this	
doesn’t	happen	before	Oct	1,	2016	and	the	timestamping	oracle	posts	any	later	
date,	the	second	party	can	sweep	all	funds	stored	on	this	address.		If	both	
conditions	are	true	and	the	address	balance	is	still	non-empty,	both	parties	can	try	
to	take	the	money	from	it	at	the	same	time,	and	the	double-spend	will	be	resolved	
as	usual.	

The	comparison	operators	can	be	"=",	"!=",	">",	">=",	"<",	and	"<=".		The	data	
feed	message	must	come	before	the	last	ball	unit	as	usual.		To	reduce	the	risks	that	
arise	in	case	any	single	oracle	suddenly	goes	offline,	several	feed	provider	
addresses	can	be	listed.	

Another	example	would	be	a	customer	who	buys	goods	from	a	merchant	but	
he	doesn’t	quite	trust	that	merchant	and	wants	his	money	back	in	case	the	goods	
are	not	delivered.		The	customer	pays	to	a	shared	address	defined	by:	
["or", [

["and", [

	 29	

["address", "MERCHANT ADDRESS"],
["in data feed", [["FEDEX ADDRESS"], "tracking", "=",
"123456"]]

]],
["and", [

["address", "BUYER ADDRESS"],
["in data feed", [["TIMESTAMPER ADDRESS"], "datetime", ">",
"2016-10-01 00:00:00"]]

]]
]]

The	definition	depends	on	the	FedEx	oracle	that	posts	tracking	numbers	of	all	
successfully	delivered	shipments.		If	the	shipment	is	delivered,	the	merchant	will	
be	able	to	unlock	the	money	using	the	first	condition.		If	it	is	not	delivered	before	
the	specified	date,	the	customer	can	take	his	money	back.	

This	example	is	somewhat	crazy	because	it	requires	FedEx	to	post	each	and	
every	shipment.	

21.1.8. Merkle	data	feeds	
For	a	more	realistic	way	to	achieve	the	same	goal,	there	is	another	syntax:	
["in merkle", [

["ADDRESS1", "ADDRESS2", …],
"data feed name",
"hash of expected value"

]]

which	evaluates	to	true	if	the	specified	hash	of	expected	value	is	included	in	any	of	
the	merkle	roots	posted	in	the	data	feed	from	addresses	"ADDRESS1",	
"ADDRESS2",…		Using	this	syntax,	FedEx	would	only	periodically	post	merkle	roots	
of	all	shipments	completed	since	the	previous	posting.		To	spend	from	this	address,	
the	merchant	would	have	to	provide	the	merkle	path	that	proves	that	the	specified	
value	is	indeed	included	in	the	corresponding	merkle	tree.		The	merkle	path	is	
supplied	as	one	of	the	authentifiers.	

21.1.9. Self-inspection	
A	definition	can	also	include	queries	about	the	unit	itself.		This	subdefinition	
['has', {

what: 'input'|'output',
asset: 'assetID in base64 or "base" for bytes',
type: 'transfer'|'issue',
own_funds: true,
amount_at_least: 123,
amount_at_most: 123,
amount: 123,
address: 'INPUT OR OUTPUT ADDRESS IN BASE32'

}]

evaluates	to	true	if	the	unit	has	at	least	one	input	or	output	(depending	on	the	
‘what’	field)	that	passes	all	the	specified	filters,	with	all	filters	being	optional.	

A	similar	condition	‘has	one’	requires	that	there	is	exactly	one	input	or	output	
that	passes	the	filters.	

The	‘has’	condition	can	be	used	to	organize	a	decentralized	exchange.		
Previously,	we	discussed	the	use	of	multilateral	signing	to	exchange	assets.		

	 30	

However,	multilateral	signing	alone	doesn’t	include	any	mechanism	for	price	
negotiation.		Assume	that	a	user	wants	to	buy	1,200	units	of	another	asset	for	
which	he	is	willing	to	pay	no	more	than	1,000	bytes.		Also,	he	is	not	willing	to	stay	
online	all	the	time	while	he	is	waiting	for	a	seller.		He	would	rather	just	post	an	
order	at	an	exchange	and	let	it	execute	when	a	matching	seller	comes	along.		He	
can	create	a	limit	order	by	sending	1,000	bytes	to	an	address	defined	by	this	
definition:	
["or", [

["address", "USER ADDRESS"],
["and", [

["address", "EXCHANGE ADDRESS"],
["has", {

what: "output",
asset: "ID of alternative asset",
amount_at_least: 1200,
address: "USER ADDRESS"

}]
]]

]]

The	first	or-alternative	lets	the	user	take	back	his	bytes	whenever	he	likes,	thus	
cancelling	the	order.		The	second	alternative	delegates	the	exchange	the	right	to	
spend	the	funds,	provided	that	another	output	on	the	same	unit	pays	at	least	1,200	
units	of	the	other	asset	to	the	user’s	address.		The	exchange	would	publicly	list	the	
order,	a	seller	would	find	it,	compose	a	unit	that	exchanges	assets,	and	
multilaterally	sign	it	with	the	exchange.			

One	can	also	use	the	‘has’	condition	for	collateralized	lending.		Assume	a	
borrower	holds	some	illiquid	asset	and	needs	some	bytes	(or	another	liquid	asset).		
The	borrower	and	a	lender	can	then	multilaterally	sign	a	unit.		One	part	of	the	unit	
sends	the	bytes	he	needs	to	the	borrower,	the	other	part	of	the	unit	locks	the	
illiquid	asset	into	an	address	defined	by:	
["or", [

["and", [
["address", "LENDER ADDRESS"],
["in data feed", [["TIMESTAMPER ADDRESS"], "datetime", ">",
"2017-06-01 00:00:00"]]

]],
["and", [

["address", "BORROWER ADDRESS"],
["has", {

what: "output",
asset: "base",
amount: 10000,
address: "LENDER ADDRESS"

}]
]],
["and", [

["address", "LENDER ADDRESS"],
["address", "BORROWER ADDRESS"]

]]
]]

The	first	or-alternative	allows	the	lender	to	seize	the	collateral	if	the	loan	is	not	
paid	back	in	time.		The	second	alternative	allows	the	borrower	to	take	back	the	

	 31	

collateral	if	he	also	makes	a	payment	of	10,000	bytes	(the	agreed	loan	size	
including	interest)	to	the	lender.		The	third	alternative	allows	the	parties	to	amend	
the	terms	if	they	both	agree.	

The	following	requirement	can	also	be	included	in	a	subdefinition:	
['has equal', {

equal_fields: ['address', 'amount'],
search_criteria: [

{what: 'output', asset: 'asset1', address: 'BASE32'},
{what: 'input', asset: 'asset2', type: 'issue', own_funds:
true, address: 'ANOTHERBASE32'}

]
}]

It	evaluates	to	true	if	there	is	at	least	one	pair	of	inputs	or	outputs	that	satisfy	the	
search	criteria	(the	first	element	of	the	pair	is	searched	by	the	first	set	of	filters;	
the	second	by	the	second)	and	some	of	their	fields	are	equal.	

A	similar	condition	‘has	one	equal’	requires	that	there	is	exactly	one	such	
pair.	

Another	subdefinition	may	compare	the	sum	of	inputs	or	outputs	filtered	
according	to	certain	criteria	to	a	target	value	or	values:	
['sum', {

filter: {
what: 'input'|'output',
asset: 'asset or base',
type: 'transfer'|'issue',
own_funds: true,
address: 'ADDRESS IN BASE32'

},
at_least: 120,
at_most: 130,
equals: 123

}]

21.1.10. Negation	
Any	condition	that	does	not	include	“sig”,	“hash”,	“address”,	“cosigned	by”,	or	“in	
merkle”	can	be	negated:	
["not", ["in data feed", [["NOAA ADDRESS"], "wind_speed", ">",
"200"]]]

Since	it	is	legal	to	select	very	old	parents	(that	didn’t	see	the	newer	data	feed	
posts),	one	usually	combines	negative	conditions	such	as	the	above	with	the	
requirement	that	the	timestamp	is	after	a	certain	date.	

21.2. General	requirements	
Address	definition	must	have	at	least	one	“sig”,	explicitly	or	implicitly	(such	

as	through	an	“address”).	
To	avoid	consuming	too	many	resources	for	validation,	the	total	number	of	

operations	is	limited	to	100	per	definition,	including	operations	in	referenced	
definitions	such	as	“address”	and	“definition	template”.			

This	number	is	one	of	just	9	arbitrary	constants	that	we	have	in	Byteball,	the	
other	8	being:	total	number	of	witnesses:	12;	max	allowed	mutations:	1;	max	
number	of	MC	indexes	for	a	witness	to	get	paid:	100;	number	of	parents	counted	

	 32	

for	header	size:	2;	max	number	of	messages	per	unit:	128;	max	number	of	inputs	
or	outputs	per	message:	128;	max	number	of	authors	per	unit:	16;	and	total	money	
supply:	1015.		For	comparison,	Bitcoin	has	at	least	17	constants	[8],	while	
Ethereum	defines	30	constants	for	fee	schedule	alone	[9].	

	
Note	that	the	definition	language	described	above	is	declarative	and	consists	

entirely	of	Boolean	statements,	which	puts	it	closer	to	the	language	of	conventional	
legal	contracts.		However,	in	terms	of	its	expressive	power,	the	language	does	not	
come	anywhere	close	to	Ethereum	smart	contracts	language.		In	fact,	it	doesn’t	
even	allow	for	a	trivial	‘Hello	world’	program	to	be	written.		This	was	not	our	goal.		
The	Byteball	definition	language	was	not	designed	to	be	comprehensive;	rather,	it	
is	designed	to	be	comprehensible	to	the	greatest	possible	number	of	people,	who	
are	not	necessarily	programmers.		Its	straightforward	syntax	allows	everyone	to	
interpret	and	compose	simple	definitions	without	the	help	of	a	developer	(a	
“lawyer”	for	the	era	of	smart	contracts),	and	chances	of	mistakes	are	minimized.	

22. Profiles	
Users	can	store	their	profiles	on	Byteball	if	they	want.		They	use	a	message	like	
this:	
unit: {

…
messages: [

….
{

app: "profile",
payload_location: "inline",
payload_hash: "hash of payload",
payload: {

name: "Joe Average",
emails: ["joe@example.com", "joe@domain.com"],
twitter: "joe"

}
},
…

],
…

}

The	amount	of	data	they	disclose	about	themselves,	as	well	as	its	veracity,	is	up	to	
the	users	themselves.		To	be	assured	that	any	particular	information	about	a	user	
is	true,	one	has	to	look	for	attestations.	

23. Attestations	
Attestations	confirm	that	the	user	who	issued	the	attestation	(the	attestor)	verified	
some	data	about	the	attested	user	(the	subject).		Attestations	are	stored	in	
messages	like	this:	
unit: {

…
messages: [

	 33	

…
{

app: "attestation",
payload_location: "inline",
payload_hash: "hash of payload",
payload: {

address: "ADDRESS OF THE SUBJECT"
profile: {

name: "Joe Average",
emails: ["joe@example.com"]

}
}

},
…

],
…

}

The	information	included	in	the	attestation	need	not	be	the	same	as	in	user’s	self-
published	profile.		Indeed,	the	self-published	profile	might	not	even	exist	at	all.	

The	job	of	attestors	is	similar	to	that	of	modern	certification	authorities	who	
verify	the	real-world	identities	of	subjects	and	certify	that	a	particular	public	key	
(or	Byteball	address)	does	belong	to	a	person	or	organization.		We	expect	them	to	
continue	the	same	activity	in	Byteball	and	charge	a	fee	from	those	who	want	to	
prove	a	link	between	their	real-world	and	Byteball	identities.		Witnesses	and	
would-be	witnesses	will	likely	want	to	receive	some	attestations	to	increase	their	
trust.		Certain	asset	types	may	require	attestations	to	transact	with	the	asset	(see	
below).	

For	applications	where	an	attestation	is	required	but	the	name	of	the	subject	
is	not	important,	it	is	possible	to	omit	the	name	or	other	personally	identifiable	
information	in	the	attested	profile.		The	attested	profile	may	even	not	include	any	
meaningful	information	about	the	subject	at	all,	thus	leaving	him	anonymous	to	
everybody	but	the	attestor.		The	attestor	will	still	keep	records	about	the	subject	
and	may	disclose	them	under	certain	circumstances,	as	specified	in	the	attestor’s	
terms	or	if	required	by	law.	

24. Assets	
We	have	designed	a	database	that	allows	immutable	storage	of	any	data.		Of	all	
classes	of	data,	the	most	interesting	for	storage	in	a	common	database	are	those	
that	have	social	value,	i.e.	the	data	that	is	valuable	for	more	than	one	or	two	users.		
One	such	class	is	assets.		Assets	can	be	owned	by	anybody	among	a	large	number	
of	people,	and	the	properties	of	immutability	and	total	ordering	of	events	that	we	
have	in	Byteball	are	very	important	for	establishing	the	validity	of	long	chains	of	
ownership	transfers.		Assets	in	Byteball	can	be	issued,	transferred,	and	exchanged,	
and	they	behave	similarly	to	the	native	currency	‘bytes’.		They	can	represent	
anything	that	has	value,	for	example	debt,	shares,	loyalty	points,	airtime	minutes,	
commodities,	other	fiat	or	crypto	currencies.	

To	define	a	new	asset,	the	defining	user	sends	a	message	like	this:	
unit: {

…

	 34	

messages: [
…
{

app: "asset",
payload_location: "inline",
payload_hash: "hash of payload",
payload: {

cap: 1000000,
is_private: false,
is_transferrable: true,
auto_destroy: false,
fixed_denominations: false,
issued_by_definer_only: true,
cosigned_by_definer: false,
spender_name_attested: true,
attestors: [

"2QLYLKHMUG237QG36Z6AWLVH4KQ4MEY6",
"X5ZHWBYBF4TUYS35HU3ROVDQJC772ZMG"

]
}

},
…

],
…

}

Here:	
• cap	is	the	maximum	amount	that	can	be	issued.		For	comparison	with	the	

predefined	native	currency	bytes,	the	bytes	cap	is	1015;	
• is_private	indicates	if	the	asset	is	transferred	privately	or	publicly	(see	

below).		Bytes	are	public;	
• is_transferrable	indicates	if	the	asset	can	be	transferred	between	third	

parties	without	passing	through	the	definer	of	the	asset.		If	not	
transferrable,	the	definer	must	always	be	either	the	only	sender	or	the	only	
receiver	of	every	transfer.		Bytes	are	transferrable;	

• auto_destroy	indicates	if	the	asset	is	destroyed	when	it	is	sent	to	the	
definer.		Bytes	are	not	auto-destroyed;	

• fixed_denominations	indicates	if	the	asset	can	be	sent	in	any	integer	amount	
(arbitrary	amounts)	or	only	in	fixed	denominations	(e.g.	1,	2,	5,	10,	20,	etc),	
which	is	the	case	for	paper	currency	and	coins.		Bytes	are	in	arbitrary	
amounts;	

• issued_by_definer_only	indicates	if	the	asset	can	be	issued	by	definer	only.		
For	bytes,	the	entire	money	supply	is	issued	in	the	genesis	unit;	

• cosigned_by_definer	indicates	if	every	transfer	must	be	cosigned	by	the	
definer	of	the	asset.		This	is	useful	for	regulated	assets.		Transfers	in	bytes	
needn’t	be	cosigned	by	anybody;	

• spender_attested	indicates	if	the	spender	has	to	be	attested	in	order	to	
spend.		If	he	happened	to	receive	the	asset	but	is	not	yet	attested,	he	has	to	
pass	attestation	with	one	of	the	attestors	listed	under	the	definition,	in	
order	to	be	able	to	spend.		This	requirement	is	also	useful	for	regulated	
assets.		Bytes	do	not	require	attestation;	

	 35	

• attestors	is	the	list	of	attestor	addresses	recognized	by	the	asset	definer	
(only	if	spender_attested	is	true).		The	list	can	be	later	amended	by	the	
definer	by	sending	an	‘asset_attestors’	message	that	replaces	the	list	of	
attestors;	

• denominations	(not	shown	in	this	example	and	used	only	for	
fixed_denominations	assets)	lists	all	allowed	denominations	and	total	
number	of	coins	of	each	denomination	that	can	be	issued;	

• transfer_condition	is	a	definition	of	a	condition	when	the	asset	is	allowed	to	
be	transferred.		The	definition	is	in	the	same	language	as	the	address	
definition,	except	that	it	cannot	reference	anything	that	requires	an	
authentifier,	such	as	“sig”.		By	default,	there	are	no	restrictions	apart	from	
those	already	defined	by	other	fields;	

• issue_condition	is	the	same	as	transfer_condition	but	for	issue	transactions.	
There	can	be	no	more	than	1	‘asset’	message	per	unit.		After	the	asset	is	

defined,	it	is	identified	by	the	hash	of	the	unit	where	it	was	defined	(hence	the	1	
asset	per	unit	requirement).	

A	transfer	of	an	asset	looks	like	a	transfer	of	bytes,	the	difference	being	that	
there	is	an	extra	field	for	the	asset	ID:	
unit: {

…
messages: [

…
{

app: "payment",
payload_location: "inline",
payload_hash: "hash of payload",
payload: {

asset: "hash of unit where the asset was
defined",
inputs: [

{
unit: "hash of source unit",
message_index: 0,
output_index: 1

},
…

],
outputs: [

{
address: "BENEFICIARY ADDRESS",
amount: 12345

},
…

]
}

},
…

],
…

}

Before	it	can	be	transferred,	an	asset	is	created	when	a	user	sends	an	issue	
transaction.		Issue	transactions	have	a	slightly	different	format	for	inputs:	

	 36	

unit: {
…
messages: [

…
{

app: "payment",
payload_location: "inline",
payload_hash: "hash of payload",
payload: {

asset: "hash of unit where the asset was
defined",
inputs: [

{
type: "issue",
amount: 1000000,
serial_number: 1,
address: "ISSUER ADDRESS" // only
when multi-authored

},
…

],
outputs: [

{
address: "BENEFICIARY ADDRESS",
amount: 12345

},
…

]
}

},
…

],
…

}

The	entire	supply	of	capped	arbitrary-amounts	assets	must	be	issued	in	a	single	
transaction.		In	particular,	all	bytes	are	issued	in	the	genesis	unit.		If	the	asset	is	
capped,	the	serial	number	of	the	issue	must	be	1.		If	it	is	not	capped,	the	serial	
numbers	of	different	issues	by	the	same	address	must	be	unique.	

An	asset	is	defined	only	once	and	cannot	be	amended	later,	only	the	list	of	
attestors	can	be	amended.	

It’s	up	to	the	definer	of	the	asset	what	this	asset	represents.		If	it	is	issuer’s	
debt,	it	is	reasonable	to	expect	that	the	issuer	is	attested	or	waives	his	anonymity	
to	earn	the	trust	of	the	creditors.	

While	end	users	are	free	to	use	or	not	to	use	an	asset,	asset	definers	can	
impose	any	requirements	on	transactions	involving	the	asset.	

By	combining	various	asset	properties	the	definer	can	devise	assets	that	
satisfy	a	wide	range	of	requirements,	including	those	that	regulated	financial	
institutions	have	to	follow.		For	example,	by	requiring	that	each	transfer	be	
cosigned	by	the	definer,	financial	institutions	can	effectively	veto	all	payments	that	
contradict	any	regulatory	or	contractual	rules.		Before	cosigning	each	payment,	the	
financial	institution	(who	is	also	the	definer	and	the	issuer)	would	check	that	the	
user	is	indeed	its	client,	that	the	recipient	of	the	funds	is	also	a	client,	that	both	
clients	have	passed	all	the	Know	Your	Client	(KYC)	procedures,	that	the	funds	are	

	 37	

not	arrested	by	a	court	order,	as	well	as	carry	out	any	other	checks	required	by	the	
constantly	changing	laws,	regulations,	and	internal	rules,	including	those	that	were	
introduced	after	the	asset	was	defined.	

24.1. Bank	issued	assets	
Having	the	security	of	being	fully	compliant	(and	also	assured	in	the	familiar	
deterministic	finality	of	all	funds	transfers),	banks	can	issue	assets	that	are	pegged	
to	national	currencies	and	backed	by	the	bank’s	assets	(which	are	properly	audited	
and	monitored	by	the	central	banks).		The	legal	nature	of	any	operations	with	such	
assets	is	exactly	the	same	as	with	all	other	bank	money,	and	is	familiar	to	
everybody.		The	only	novelty	is	that	the	balances	and	transfers	are	tracked	in	
Byteball	database	instead	of	the	bank’s	internal	database.		Being	tracked	in	
Byteball	database	has	two	consequences:	

• (a	not	so	welcome	one)	all	operations	are	public,	which	is	familiar	from	
Bitcoin	and	mitigated	by	using	multiple	semi-anonymous	addresses	of	
which	only	the	bank	knows	the	real	persons	behind	the	addresses.		Another	
more	robust	way	to	preserve	privacy	is	private	payments,	which	we’ll	
discuss	later;	

• (a	good	one)	the	bank-issued	asset	can	be	exchanged	for	bytes	or	other	
assets	on-chain,	in	a	peer-to-peer	manner,	without	having	to	trust	any	third	
parties	such	as	exchanges.	

The	banks	here	are	similar	to	Ripple	gateways.	
In	the	exchange	scenario	above,	one	leg	of	the	exchange	is	payment	from	one	

user	to	another	user	in	a	bank-issued	asset.		If	both	users	are	clients	of	the	same	
bank,	this	process	is	straightforward.		When	users	hold	accounts	at	different	banks,	
the	banks	may	facilitate	the	interbank	transfers	by	opening	correspondent	
accounts	at	each	other.		Let’s	assume	user	U1	wants	to	transfer	money	to	user	U2	
in	circumstances	where	user	U1	holds	an	account	at	bank	B1	and	user	U2	holds	an	
account	at	bank	B2.		Bank	B2	also	opens	an	account	at	B1.		U1	then	transfers	the	
money	to	B2’s	account	at	B1	(it	is	an	internal	bank	transfer	within	B1	which	is	
cosigned	by	B1).		At	the	same	time,	B2	(which	has	just	increased	its	assets	at	B1)	
issues	new	money	to	its	user	U2.		All	this	must	be	atomic.		All	three	participants:	
(U1,	B1,	and	B2)	must	therefore	sign	a	single	unit	that	both	transfers	B1’s	money	
from	U1	to	B2	and	issues	B2’s	money	to	U2.	

The	net	result	is	that	U1	decreased	his	balance	at	B1,	U2	increased	his	
balance	at	B2,	and	B2	increased	his	balance	at	B1.		The	bank	B1	will	also	have	a	
correspondent	account	at	B2,	the	balance	of	which	will	grow	as	reverse	payments	
are	processed	from	users	of	B2	to	users	of	B1.		The	mutual	obligations	(B1	at	B2	
and	B2	at	B1)	can	be	partially	cancelled	by	the	banks	mutually	signing	a	
transaction	that	sends	equal	amounts	to	the	respective	issuer	(it	is	convenient	to	
have	the	money	auto-destroyed	by	sending	it	to	the	issuer).		What	is	not	cancelled	
can	be	periodically	settled	through	traditional	interbank	payments.		To	trigger	the	
settlement,	the	bank	with	a	positive	net	balance	sends	his	balance	to	the	issuer	
bank,	and	since	there	is	no	reverse	transfer	in	the	same	transaction,	this	triggers	a	
traditional	payment	in	fiat	money	from	the	issuer	to	the	holder	bank.	

When	there	are	many	banks,	setting	up	direct	correspondent	relations	with	
each	peer	bank	can	be	cumbersome.		In	such	instances,	the	banks	agree	about	a	

	 38	

central	counterparty	C	(a	large	member	bank	or	a	new	institution)	and	pass	all	
payments	exclusively	through	this	central	counterparty	and	settle	only	with	it.		
The	same	transfer	from	U1	to	U2	will	then	consist	of	3	transactions:	

1. U1	sends	money	to	C’s	account	at	B1;	
2. C	issues	own	money	to	B2	(or	C	destroys	B2’s	money	it	held	by	returning	it	

to	B2);	
3. B2	issues	its	own	money	to	U2.	

All	3	transactions	are	bundled	into	a	single	unit	and	signed	by	U1,	B1	(as	the	
required	cosigner	for	all	U1’s	transactions),	C,	and	B2.	

24.2. Non-financial	assets	
Other	applications	that	are	not	necessarily	financial	can	use	Byteball	assets	
internally.		For	example,	loyalty	programs	may	issue	loyalty	points	as	assets	and	
use	Byteball’s	existing	infrastructure	to	allow	people	to	transact	in	these	points,	
including	peer-to-peer	(if	allowed	by	the	program’s	rules).		The	same	is	true	for	
game	developers,	who	can	track	game	assets	on	Byteball.	

24.3. Bonds	
Businesses	can	issue	bonds	on	Byteball.		The	legal	structure	of	the	issue	is	the	
same	as	for	conventional	bonds,	the	only	difference	being	that	the	depository	will	
now	track	bond	ownership	using	Byteball	rather	than	an	internal	database	(similar	
to	banks	above).		Having	bonds	in	Byteball	enables	their	holders	to	trade	directly,	
without	a	centralized	exchange.		When	bank	money	is	also	on	Byteball,	an	instant	
delivery	versus	payment	(a	fiat	payment	in	this	context)	becomes	possible,	without	
counterparty	risk	and	without	any	central	institution.		The	title	to	the	bond	and	
payment	are	exchanged	simultaneously	as	the	parties	sign	the	same	unit	that	
performs	both	transfers.	

Bonds,	if	liquid	enough,	can	also	be	used	by	third	parties	as	a	means	of	
payment.	

When	a	bond	is	issued,	the	issuer	and	the	investor	would	multilaterally	sign	a	
common	unit	that	sends	the	newly	issued	bonds	to	the	investor	and	at	the	same	
time	sends	bytes	(or	another	asset	used	to	purchase	the	bonds,	such	as	a	bank-
issued	fiat-pegged	asset)	from	the	investor	to	the	borrower.		When	the	bond	is	
redeemed,	they	sign	another	multilateral	unit	that	reverses	the	exchange	(most	
likely,	at	a	different	exchange	rate).		The	price	of	the	bond	paid	during	redemption	
is	its	face	value,	while	the	price	it	is	sold	for	when	issued	must	be	lower	than	the	
face	value	to	reflect	interest	(assuming	zero	coupon	bond	for	simplicity).		During	
its	lifetime,	the	secondary	market	price	of	the	bond	stays	below	face	value	and	
gradually	approaches	it.	

In	a	growing	economy	where	there	are	many	projects	to	finance,	bonds	and	
other	debt	issued	on	Byteball	to	finance	investment	will	be	issued	more	often	than	
they	are	redeemed.		When	the	economy	slows	down,	the	total	supply	of	all	bonds	
shrinks,	as	there	are	fewer	projects	to	finance.		Thus,	the	total	supply	of	bonds	self	
regulates,	which	is	important	if	they	are	actively	used	as	a	means	of	payment.	

If	two	businesses	transact	on	net-30	terms,	both	buyer	and	seller	have	the	
option	to	securitize	the	trade	credit	during	the	30-day	period.		For	example,	the	
buyer	can	issue	30-day	bonds	and	use	them	to	pay	the	seller	immediately.		The	
seller	can	then	either	wait	for	the	30	days	to	pass	and	redeem	the	bonds,	or	use	the	

	 39	

bonds	as	a	means	of	payment	to	its	own	suppliers.		In	this	case,	it	will	be	the	
suppliers	who	redeem	the	bonds	when	they	mature.	

24.4. Commodity	bonds	
Bonds	can	be	issued	in	natural	units,	not	just	in	currencies.		For	example,	a	100-
barrel	bond	entitles	its	holder	to	receive	100	barrels	of	oil	when	the	bond	matures;	
a	1kWh	bond	entitles	the	holder	to	receive	1	kWh	of	electricity.		The	holder	may	
also	choose	to	receive	the	monetary	equivalent	of	the	100	barrels	or	1	kWh	at	the	
price	that	is	current	on	the	maturity	date.	

Such	bonds	(commodity	bonds)	are	in	fact	very	useful	for	hedging	risks.		
Consider	a	new	oil	project	that	takes	many	years	and	large	investment	before	it	
even	starts	commercial	operation.		If	financing	is	sought	only	in	national	
currencies,	the	project	may	never	be	financed	because	of	uncertain	oil	prices	at	the	
time	the	new	facility	starts	selling	oil.		The	creditors	have	to	consider	the	risk	that	
the	price	will	be	too	low,	and	as	a	result	the	borrower	will	have	to	default.		
Creditors	want	the	risk	priced	into	the	interest	rate,	which	means	the	interest	rate	
becomes	too	high,	and	the	project	never	happens.	

However,	if	the	project	operator	could	borrow	in	barrels,	the	risk	of	default	
drastically	decreases.		Now,	the	project	will	likely	start	as	planned	and	will	likely	
produce	the	planned	volume	of	oil.		It	will	hence	be	able	to	produce	and	repay	all	
the	borrowed	barrels	within	the	specified	time.		There	are	still	other	risks,	but	one	
huge	risk	–	the	market	risk	–	is	removed.		It	is	removed	from	the	borrower	but	
shifted	to	the	lenders	who	now	have	to	consider	the	chances	that	oil	prices	go	
down	and	they	receive	less	(in	currency	terms)	than	invested.		On	the	other	hand,	
if	the	prices	go	up,	the	lenders	get	additional	profit	from	the	price	difference	(note	
that	by	borrowing	in	barrels,	the	borrower	waives	this	upside	potential),	and	there	
are	always	investors	willing	to	take	a	position	in	a	commodity.		Since	the	bond	is	
traded	on	Byteball,	the	lenders	can	easily	sell	it	whenever	they	like.		Unlike	oil	
futures,	whose	trading	is	a	zero-sum	game,	the	investment	in	commodity	bonds	
does	finance	the	industry.		Also,	oil	futures	are	a	short-term	instrument,	while	
commodity	bonds	allow	one	to	buy	and	hold,	which	is	more	suitable	to	long	term	
investors.	

There	is	another	category	of	potential	lenders	–	those	who	hedge	against	the	
opposite	risk.		For	example,	airlines	would	like	to	hedge	against	an	increase	of	oil	
prices,	and	one	way	to	do	that	is	by	buying	commodity	bonds	of	oil	producing	
companies,	which	one	expects	to	correlate	with	oil	prices.	

The	above	is	true	for	any	commodity,	e.g.	electricity,	iron	ore,	gold,	other	
metals,	crops,	etc.	

From	the	borrower’s	perspective,	commodity	bonds	can	be	thought	of	as	a	
way	to	sell	future	production	at	today’s	prices.		For	the	lender,	it	is	a	way	to	buy	
future	supplies	at	today’s	prices.	

If	a	substantial	part	of	the	economy	runs	on	commodity	bonds,	the	leverage	
cycle	is	naturally	smoothed	out	even	without	government	intervention	since	
during	recessions	falling	commodity	prices	automatically	reduce	the	amount	of	
debt.	

	 40	

24.5. Funds	
For	individual	users,	it	might	be	difficult	to	track	the	huge	number	of	bonds	that	
are	available	on	the	market.		Instead,	they	would	rather	choose	to	invest	in	funds	
that	are	professionally	managed	and	hold	a	large	diversified	portfolio	of	bonds.		
The	fund	would	issue	its	own	asset	that	tracks	the	aggregate	value	of	the	fund’s	
portfolio.		Every	time	an	investor	buys	a	newly	issued	asset	of	the	fund,	the	fund	
would	use	the	proceeds	to	buy	bonds.		When	a	user	exits,	the	fund	sells	some	of	the	
bonds	it	held	and	destroys	the	fund-issued	assets	returned	by	the	user.		The	fund’s	
asset	is	not	capped;	its	total	supply	varies	as	investors	enter	and	exit.		Its	value	is	
easily	auditable	as	all	the	bonds	held	by	the	fund	are	visible	on	Byteball.		Being	
more	liquid	than	the	underlying	bonds,	the	fund’s	asset	has	higher	chances	of	
becoming	a	means	of	payment.	

24.6. Settlements	
A	group	of	banks	can	use	assets	for	interbank	settlements.		Some	of	the	larger	
banks	issue	fiat-pegged	assets	that	can	only	be	used	by	attested	users,	and	only	
group	members	can	be	attested.		The	asset	is	backed	by	the	issuing	bank’s	
reserves.		When	a	smaller	bank	wants	to	settle	with	another	smaller	bank,	it	just	
sends	the	asset.		The	receiving	bank	can	use	the	asset	in	the	same	way	to	settle	
with	other	banks,	or	redeem	it	for	fiat	currency	with	the	issuing	bank.		The	banks	
can	also	exchange	USD-pegged	assets	for	EUR-pegged	assets	or	similar.		All	such	
transfers	and	trades	are	settled	immediately,	they	are	final	and	irrevocable.		In	
SWIFT,	banks	exchange	only	information	about	payments,	while	the	actual	transfer	
of	money	is	a	separate	step.		In	Byteball,	information	is	money.	

25. Private	payments	
So	far,	we	have	considered	only	payments	that	are	sent	in	the	open,	i.e.	their	
payloads	are	included	inline	and	visible	to	everybody.		Remember	that	Byteball	
allows	the	posting	of	private	payloads:	the	user	keeps	the	payload	private	
(payload_location=’none’)	but	posts	only	its	hash	to	be	able	to	prove	that	the	
payload	existed	at	a	specific	time.		To	apply	that	to	payments,	the	sender	of	the	
funds	also	needs	to	send	the	private	payload	to	the	recipient	via	private	
communication	channels.		The	recipient	would	need	to	look	up	the	payload	hash	in	
Byteball	to	confirm	that	it	existed.		However,	that	is	not	enough	as	having	
concealed	the	payload	content	from	other	Byteball	nodes	we	also	removed	their	
ability	to	verify	that	the	same	output	is	not	spent	twice.		To	restore	this	ability,	we	
add	an	additional	public	field	into	the	unit.		This	field	is	called	spend	proof,	and	it	is	
constructed	in	such	way	that:	

• it	depends	solely	on	the	output	being	consumed,	so	that	an	attempt	to	
spend	the	same	output	again	will	produce	the	same	spend	proof;	

• it	doesn’t	reveal	anything	about	the	output	being	spent.	
It	is	easy	to	see	that	this	construction	satisfies	the	above	requirements:	
spend_proof = hash({

asset: payload.asset,
unit: input.unit,
message_index: input.message_index,
output_index: input.output_index,

	 41	

address: src_output.address,
amount: src_output.amount,
blinding: src_output.blinding

})

Here,	payload.asset	is	the	ID	of	the	asset	being	privately	transferred,	input	refers	to	
the	input	that	consumes	a	previous	output	src_output.		Private	outputs	should	
have	an	extra	field	called	blinding,	which	is	just	a	random	string	designed	to	make	
it	impossible	to	pre-image	the	consumed	output	knowing	its	spend	proof	(all	the	
other	fields	come	from	a	rather	narrow	set	of	possible	values	that	can	be	iterated	
through	within	a	reasonable	timeframe).	

The	above	spend	proof	construction	applies	to	transfers.		For	issues:	
spend_proof = hash({

asset: payload.asset,
address: "ISSUER ADDRESS",
serial_number: input.serial_number, // always 1 for capped
assets
amount: input.amount, // issue amount
denomination: 1 // always 1 for arbitrary-amounts payments

})

Note	that	spend	proof	for	issue	transaction	does	not	include	any	blinding	factor.		
As	such	it	is	possible	to	learn	that	a	coin	was	issued,	but	the	recipient	of	the	coin	is	
still	hidden	from	third	parties.		Also,	for	transfer	transactions,	since	the	payer	
knows	the	blinding	factor,	he	can	calculate	the	spend	proof	that’ll	be	published	
when	the	coin	is	spent.		This	means	that	he	can	know	when	the	payee	spends	the	
coin,	but	he	will	not	see	the	recipient(s)	nor	the	new	blinding	factor(s)	–	and	hence	
will	not	be	able	to	track	the	coin	any	further.	

Spend	proofs	are	added	into	the	unit:	
unit: {

…
spend_proofs: [

{
spend_proof: "the above hash in base64",
address: "SPENDING ADDRESS" // only if multi-authored

},
…

],
…

}

Thus,	to	send	a	private	payment,	the	sending	user	should:	
• add	a	random	blinding	factor	to	each	output;	
• not	publish	the	payload	but	send	it	to	the	payee	privately,	along	with	the	

hash	of	the	unit	where	this	payload	can	be	found;	
• for	each	input,	add	the	corresponding	spend	proof	into	the	unit.	

All	validators	should	reject	a	unit	if	they	see	the	same	spend	proof	posted	from	the	
same	address	again	(provided	that	the	address	posts	serially,	of	course).		The	
payee	should	check	that	(1)	the	payload	he	received	privately	does	hash	to	
payload_hash	posted	to	Byteball	by	the	payer	and	(2)	the	spend	proofs	derived	
from	private	payload	inputs	match	those	included	in	the	unit.	

	 42	

When	a	user	who	received	a	private	payment	wants	to	spend	its	outputs,	he	
has	to	forward	the	private	payloads	he	has	received	to	the	new	payee,	so	that	the	
new	payee	can	verify	the	entire	chain	of	ownership	transfers	(the	history)	back	to	
the	point	where	the	asset	was	issued.		The	length	of	the	history	will	grow	with	each	
transfer.	

Note	that	with	the	format	of	payment	we	have	considered	so	far,	each	unit	
can	merge	outputs	from	several	previous	units	and	produce	several	new	outputs	
(most	often,	two).		Each	previous	unit,	in	turn,	depends	on	several	even	earlier	
units,	and	each	output	will	be	later	split	into	several	new	outputs.		Therefore,	the	
number	of	future	units	that	have	at	least	some	“blood”	of	the	initial	unit	grows	
exponentially	with	time.		Conversely,	the	number	of	ancestors	that	contribute	to	
the	unit’s	inputs	grows	exponentially	with	the	number	of	steps	back	in	history.		To	
avoid	such	rapid	growth	of	histories,	we	need	to	limit	the	divisibility	of	the	coins,	
and	this	is	where	an	asset	type	with	fixed_denominations	property	set	to	true	
proves	useful.	

26. Fixed	denominations	assets	
A	fixed	denominations	asset	exists	as	a	set	of	indivisible	unmergeable	coins,	very	
similar	to	the	minted	coins	and	banknotes	that	everybody	is	familiar	with.			

The	amount	of	every	coin	must	be	one	of	a	small	set	of	allowed	
denominations,	which	should	be	selected	so	that	it	is	convenient	to	represent	any	
practical	amount	with	maximum	accuracy	and	the	smallest	number	of	coins.		Most	
modern	currency	systems	have	denominations	that	follow	a	1-2-5	pattern:	1,	2,	5,	
10,	20,	50,	100,	200,	500,	etc.		This	pattern	is	also	recommended	for	fixed	
denomination	assets	on	Byteball.	

The	coins	are	initially	grouped	into	packs,	similar	to	packs	of	paper	
banknotes.		The	packs	can	be	split	into	smaller	subpacks	or	individual	coins,	but	
not	re-merged.		This	means	that	each	transfer	must	have	exactly	one	input	
(because	merging	is	disallowed),	and	output	amounts	must	be	multiples	of	the	coin	
denomination	(because	the	denomination	is	the	smallest	indivisible	amount).	

Each	transaction,	issue	or	transfer,	deals	with	coins	of	only	one	
denomination.		It	cannot	issue	or	transfer	coins	of	different	denominations	at	the	
same	time	(but	each	storage	unit	can	include	multiple	such	transactions).		A	fixed	
denominations	transaction	has	almost	the	same	format	as	a	transaction	with	
arbitrary-amounts	assets,	the	difference	being	that	only	one	input	is	allowed,	the	
amounts	must	be	multiples	of	one	of	the	denominations,	and	a	denomination	field	
is	added:	
payload: {

asset: "hash of unit where the asset was defined",
denomination: 100,
inputs: [// exactly one input

{
type: "issue",
amount: 1000000,
serial_number: 1, // always 1 for capped assets
address: "ISSUER ADDRESS" // only when multi-authored

}
],

	 43	

outputs: [
{

address: "BENEFICIARY ADDRESS",
amount: 800 // multiple of 100

},
{

address: "CHANGE ADDRESS",
amount: 999200 // multiple of 100

}
]

}

If	the	asset	is	capped,	the	entire	supply	of	each	denomination	must	be	issued	
within	a	single	transaction.		Thus,	if	the	asset	has	e.g.	16	denominations,	it’ll	take	
16	transactions	to	fully	issue	the	asset.		If	the	asset	is	not	capped,	the	serial	
numbers	of	different	issues	of	the	same	denomination	by	the	same	address	must	
be	unique.	

If	several	coins	need	to	be	issued	or	transferred	(which	is	usually	the	case),	
the	payer	includes	several	such	messages	in	the	same	unit.		For	transfers,	the	coin	
is	identified	by	the	unit,	message	index,	and	output	index	where	it	was	previously	
transferred	to	the	current	owner.			

For	private	payments,	the	payload	goes	separately	and	additionally	hides	the	
recipients	of	all	outputs	except	the	one	that	is	meant	for	the	payee:	
payload: {

asset: "hash of unit where the asset was defined",
denomination: 200,
inputs: [{

unit: "hash of source unit",
message_index: 2,
output_index: 0

}],
outputs: [

{
output_hash: "hash of hidden part of output that
includes address and blinding factor",
amount: 800

},
…

]
}

The	information	that	is	open	in	the	outputs	allows	the	recipient	to	verify	that	the	
sum	of	all	outputs	does	match	the	input.		The	single	output	that	is	meant	for	the	
payee	is	revealed	to	him	as	follows:	
output: {

address: "BENEFICIARY ADDRESS",
blinding: "some random string"

}

This	enables	the	payee	to	verify	the	output_hash	as	well	as	construct	the	future	
spend	proof	when	he	decides	to	spend	the	output.	

In	Byteball,	we	have	a	private	fixed	denominations	asset	blackbytes	that	is	
defined	by	these	properties:	
{

	 44	

cap: 2,111,100,000,000,000,
is_private: true,
is_transferrable: true,
auto_destroy: false,
fixed_denominations: true,
issued_by_definer_only: true,
cosigned_by_definer: false,
spender_name_attested: false,
denominations: [

{denomination: 1, count_coins: 10,000,000,000},
{denomination: 2, count_coins: 20,000,000,000},
{denomination: 5, count_coins: 10,000,000,000},
{denomination: 10, count_coins: 10,000,000,000},
{denomination: 20, count_coins: 20,000,000,000},
{denomination: 50, count_coins: 10,000,000,000},
{denomination: 100, count_coins: 10,000,000,000},
{denomination: 200, count_coins: 20,000,000,000},
{denomination: 500, count_coins: 10,000,000,000},
{denomination: 1000, count_coins: 10,000,000,000},
{denomination: 2000, count_coins: 20,000,000,000},
{denomination: 5000, count_coins: 10,000,000,000},
{denomination: 10000, count_coins: 10,000,000,000},
{denomination: 20000, count_coins: 20,000,000,000},
{denomination: 50000, count_coins: 10,000,000,000},
{denomination: 100000, count_coins: 10,000,000,000}

]
}

Note	that	we	have	double	the	number	of	2-denomination	coins	because	we	need	
them	more	often.		For	example	we	need	two	2s	for	amounts	4	(2+2)	and	9	(5+2+2).		

Spend	proofs	for	transfers	and	issues	of	private	indivisible	(fixed	
denominations)	assets	are	exactly	the	same	as	for	arbitrary-amounts	assets,	except	
that	for	issues	the	denomination	is	not	necessarily	1.		

Unlike	divisible	payments,	each	fixed	denomination	coin	is	never	merged	
with	other	coins.		Therefore	when	the	coin	is	transferred	privately,	its	history	
grows	linearly	with	time	rather	than	exponentially,	and	remains	manageable	
(given	that	computing	resources	such	as	storage,	bandwidth,	and	CPU	power	
continue	growing	exponentially	for	the	foreseeable	future).	

As	the	history	grows,	so	does	the	exposure	of	private	payloads	to	third	
parties	who	are	future	owners	of	the	same	coin.		As	discussed	previously,	the	
growth	is	rather	slow,	and	the	value	of	private	payloads	to	adversaries	arguably	
decreases	with	time.		However,	one	should	remember	that	large	merchants	and	
exchanges	who	send	and	receive	many	payments	every	day	will	probably	
accumulate	very	large	(but	still	fragmented)	histories.		One	should	hence	still	avoid	
address	reuse,	even	for	private	payments.	

Note	that	in	some	cases	third	parties	can	infer	important	information	even	
from	private	payments.		For	example,	after	most	packs	are	already	split	into	
individual	coins,	when	a	user	sends	a	large	number	of	private	payment	messages	
in	the	same	unit,	an	observer	might	argue	that	the	user	is	sending	coins	of	
maximum	denomination	because	to	send	an	amount	that	is	significantly	larger	
than	the	maximum	denomination,	one	would	probably	send	multiple	maximum	
denomination	coins.		From	this,	the	observer	might	infer	the	approximate	amount	
of	the	transfer	(but	nothing	more).		To	avoid	leaking	such	information,	it	is	

	 45	

recommended	to	spread	large	amounts	across	multiple	addresses	and	to	send	
them	in	separate	units.	

The	spend	proof	approach	that	we	have	chosen	is	not	the	only	one	possible.		
To	prove	to	the	recipient	that	the	money	he	receives	has	not	been	spent	before,	the	
payer	could	just	send	him	all	the	private	payloads	ever	sent	from	his	address.		The	
payee	could	then	check	each	one	and	verify	that	there	are	no	double-spends.		We	
chose	not	to	go	this	way	because	it	involves	unnecessary	privacy	leakage	and	adds	
complexity	to	the	light	client	code.		Instead,	we	chose	to	somewhat	increase	space	
usage	but	make	the	verification	simpler.	

27. Texts	
One	can	store	arbitrary	texts	using	‘text’	message	type:	
unit: {

…
messages: [

…
{

app: "text",
payload_location: "inline",
payload_hash: "hash of payload",
payload: "any text"

},
…

],
…

}

The	interpretation	of	the	text	is	up	to	the	author	and	his	intended	audience;	
Byteball	nodes	don’t	validate	it	except	to	check	that	it	is	a	string.		One	could	use	
this	message	type,	for	example,	to	send	inerasable	tweets.		The	payload	may	be	
private,	and	it	can	be	useful,	for	example,	for	storing	hashes	of	users’	intellectual	
property	or	for	storing	hashes	of	contract	texts	that	only	a	few	parties	need	to	
know.	

28. Arbitrary	structured	data	
One	can	store	arbitrary	structured	data	using	‘data’	message	type:	
unit: {

…
messages: [

…
{

app: "data",
payload_location: "inline",
payload_hash: "hash of payload",
payload: {

key: "value",
another_key: {

subkey: "other value",
another_subkey: 232

}

	 46	

}
},
…

],
…

}

The	interpretation	of	this	data	is	up	to	the	author	and	his	partners	that	need	to	see	
the	data,	Byteball	nodes	don’t	validate	it	except	to	check	that	it	is	an	object.		For	
example,	this	message	type	can	be	used	to	post	Ethereum	code	for	the	subset	of	
nodes	who	understand	it,	but	remember	that	they	cannot	reject	the	unit	even	if	the	
code	is	invalid	by	Ethereum	rules.	

Like	‘payment’	and	‘text’,	‘data’	messages	can	be	private,	in	which	case	only	
its	hash	is	stored.		Continuing	our	Ethereum	example,	Ethereum	contracts	can	be	
run	privately	if	the	corresponding	spend	proofs	are	also	devised	where	necessary.	

29. Voting	
Anyone	can	set	up	a	poll	by	sending	a	message	with	app=’poll’:	
unit: {

…
messages: [

…
{

app: "poll",
payload_location: "inline",
payload_hash: "hash of payload",
payload: {

question: "Should the United Kingdom remain a
member of the European Union or leave the
European Union?",
choices: ["Leave", "Remain"]

}
},
…

],
…

}

To	cast	votes,	users	send	‘vote’	messages:	
unit: {

…
messages: [

…
{

app: "vote",
payload_location: "inline",
payload_hash: "hash of payload",
payload: {

unit: "hash of the unit where the poll was
defined",
choice: "Leave"

}
},
…

	 47	

],
…

}

Determining	which	votes	qualify	is	up	to	the	organizer	of	the	poll.		Byteball	
doesn’t	enforce	anything	except	the	stipulation	that	the	choices	are	within	the	
allowed	set.		For	example,	the	organizer	might	accept	only	votes	from	attested	
users	or	votes	from	a	predetermined	whitelist	of	users.		Unqualified	votes	would	
hence	still	be	recorded,	but	should	be	excluded	by	the	organizer	when	he	counts	
the	votes.	

Weighting	the	votes	and	interpreting	results	is	also	up	to	the	organizer	of	the	
poll.		If	users	vote	by	their	balances,	one	should	remember	that	they	can	move	the	
balance	to	another	address	and	vote	again.		Such	votes	should	be	handled	properly.	

30. Private	messaging	
For	private	payments	to	work,	users	need	a	way	to	securely	deliver	private	
payloads	to	each	other.		Users,	or	rather	their	devices,	also	need	to	communicate	to	
assemble	signatures	for	multi-sig	addresses.	

Since	we	cannot	expect	user	devices	to	be	constantly	online	and	easily	
reachable	(most	of	them	will	be	behind	NAT),	we	need	a	store-and-forward	
intermediary	that	is	always	online,	easily	reachable,	and	able	to	temporarily	store	
any	data	addressed	to	a	user	device.	

In	Byteball,	such	an	intermediary	is	called	the	hub,	and	its	operation	is	similar	
to	email.		A	hub	is	a	Byteball	node	that	additionally	offers	a	service	of	storing	and	
forwarding	private	messages	to	connected	devices.		There	can	be	many	hubs.		Each	
device	that	runs	a	wallet	code	subscribes	to	a	hub	of	its	choice,	and	can	be	reached	
via	this	hub	(the	home	hub).		The	choice	of	home	hub	can	be	changed	at	any	time.		
Each	device	has	a	permanent	private	key	that	is	unique	to	the	device.		The	hash	of	
the	corresponding	public	key	(more	precisely,	the	hash	of	the	single-sig	definition	
based	on	this	public	key)	is	called	the	device	address,	and	it	is	written	in	base32	
like	the	payment	addresses.		The	full	device	address,	including	its	current	hub,	can	
be	written	as	DEVICEADDRESSINBASE32@hubdomainname.com.		If	the	device	
moves	to	another	hub,	the	part	of	its	full	address	before	@	stays	the	same.		Unlike	
email,	the	name	cannot	be	already	“taken”.	

Every	device	connects	to	its	home	hub	using	websockets.		The	hub	sends	the	
new	messages	to	the	device	and	the	device	stays	connected	to	the	hub,	so	that	if	a	
new	message	arrives	while	the	device	is	connected	the	new	message	is	delivered	
immediately.		The	hub	doesn’t	keep	copies	of	the	messages	that	were	successfully	
accepted	by	the	device.		The	connection	to	the	hub	is	TLS	encrypted.	

When	a	device	wants	to	send	something	to	another	device,	it	connects	to	the	
recipient’s	hub	and	sends	the	message.			Unlike	email,	there	is	no	relay	–	the	sender	
connects	directly	to	the	recipient’s	hub.		All	communication	between	devices	is	
end-to-end	encrypted	and	digitally	signed	so	that	even	the	hub	(who	is	the	only	
man	in	the	middle)	cannot	see	or	modify	it.		We	use	ECDSA	for	signing	and	
ECDH+AES	for	encryption.	

Before	exchanging	encrypted	messages	the	devices	must	be	paired,	i.e.	learn	
each	other’s	public	key.		This	can	happen	in	various	ways,	e.g.	by	scanning	a	QR	

	 48	

code	that	encodes	the	public	key	and	hub	domain	name	of	one	of	the	devices,	by	
sending	this	information	over	email,	or	by	clicking	a	byteball://	link	on	a	secure	
website.	

For	forward	security,	every	device	generates	a	temporary	private	key	and	
uploads	the	corresponding	public	key	to	its	home	hub.		Afterwards,	the	device	
rotates	the	key	from	time	to	time	but	keeps	a	copy	of	the	previous	key	in	case	
someone	sent	a	message	to	the	previous	key	while	the	hub	was	replacing	it.		The	
hub	keeps	only	one	version	of	the	temporary	public	key	per	subscribed	device.		
The	sending	device	follows	these	steps	to	send	a	message:		

1. connects	to	the	recipient’s	hub;	
2. receives	the	current	temporary	public	key	of	the	recipient	from	the	hub;	
3. generates	its	own	one-time	ephemeral	key	pair;	
4. derives	ECDH	shared	secret	from	the	recipient’s	temporary	public	key	and	

own	ephemeral	private	key;	
5. AES-encrypts	the	message	using	this	shared	secret;	
6. adds	its	own	ephemeral	public	key;	
7. signs	the	package	with	its	own	permanent	key;	and		
8. sends	it	to	the	hub.	
The	recipient	device	verifies	the	signature,	derives	ECDH	secret	using	the	

peer’s	ephemeral	public	key	and	own	temporary	private	key,	and	decrypts	the	
message.	

If	the	sending	device	fails	to	connect	to	the	recipient’s	hub,	it	encrypts	the	
message	to	the	recipient’s	permanent	key	(this	encryption	is	not	forward	secure	
since	it	uses	a	permanent	key)	and	stores	the	encrypted	message	locally	for	future	
retries.		The	purpose	of	this	encryption	is	to	avoid	having	unencrypted	messages	
lying	around.		After	connection	to	the	recipient’s	hub	succeeds,	the	device	sends	
this	encrypted	message,	thus	encrypting	it	again	(this	time,	with	forward	security),	
so	the	message	is	double-encrypted.		Note	that	this	is	not	because	single	
encryption	is	insufficient,	but	because	we	don’t	want	to	store	unencrypted	content	
for	an	indefinite	time	while	the	connections	are	retried.	

Note	that	the	communication	is	among	devices,	not	users.		Users	may	(and	
are	recommended	to)	hold	several	devices,	such	as	a	laptop,	a	smartphone,	and	a	
tablet,	and	set	up	multisig	addresses	with	redundancy	(such	as	2-of-3)	that	depend	
on	keys	stored	on	multiple	devices.		When	a	user	needs	to	sign	a	transaction,	he	
initiates	it	on	one	of	his	devices.		This	device	then	sends	the	partially	signed	
transaction	to	the	other	devices	using	private	messages,	collects	all	the	signatures,	
and	publishes	the	transaction.		The	private	keys	stored	on	each	device	should	
never	leave	that	device.		When	the	user	replaces	one	of	his	devices	in	a	2-of-3	
address,	he	just	uses	the	other	2	devices	to	change	the	address	definition	and	
replace	the	key	of	the	old	device	with	the	key	of	a	new	device.	

The	private	messages	can	also	be	used	for	encrypted	texting	between	
devices.		These	messages	are	strictly	peer-to-peer,	never	go	into	the	Byteball	
database,	and	can	be	safely	discarded	after	they	are	read.		

When	users	pay	in	blackbytes	or	other	private	assets,	they	have	to	send	
private	payloads	and	absolutely	need	devices	that	can	communicate.		They	need	to	
know	each	other’s	device	addresses	before	they	even	learn	each	other’s	payment	
addresses.		Once	their	devices	have	established	communication,	the	payee	can	

	 49	

send	his	payment	address	to	the	payer	via	chat	message.		Such	a	payment	scenario	
also	makes	it	easy	to	generate	a	unique	payment	address	for	every	incoming	
payment.		A	merchant	can	run	a	chat	bot	that	communicates	with	users	via	text	
messages.		When	the	user	is	ready	to	pay	the	bot	generates	a	new	payment	address	
and	sends	it	to	the	user	in	a	chat	message.	

31. Conclusion	
We	have	proposed	a	system	for	decentralized	immutable	storage	of	arbitrary	data,	
including	data	of	social	value	such	as	money.		Every	new	unit	of	data	implicitly	
confirms	the	existence	of	all	previous	units.		Revision	of	past	records	similar	to	that	
in	1984	becomes	impossible,	as	every	new	unit	also	implicitly	protects	all	previous	
units	from	modification	and	removal.		There	is	an	internal	currency	that	is	used	to	
pay	for	inclusion	of	data	in	the	decentralized	database.		The	payment	is	equal	to	
the	size	of	the	data	to	be	stored,	and	other	than	this	payment	there	are	no	
restrictions	on	access	to	the	database.		Other	assets	can	also	be	issued	and	their	
ownership	can	be	tracked	on	the	database.		When	tracking	payments	in	the	
internal	currency	and	other	assets,	double-spends	are	resolved	by	choosing	the	
version	of	history	that	was	witnessed	by	known	reputable	users.		Settlement	
finality	is	deterministic.		Assets	can	be	issued	with	any	rules	that	govern	their	
transferability,	allowing	regulated	institutions	to	issue	assets	that	meet	regulatory	
requirements.		At	the	same	time,	transfers	can	be	hidden	from	third	parties	by	
sending	their	content	privately,	directly	from	payer	to	payee,	and	publishing	spend	
proofs	to	ensure	that	each	coin	is	spent	only	once.	

References	
1. Quoted	from	Wikipedia	https://en.wikipedia.org/wiki/Nineteen_Eighty-

Four.	
2. Satoshi	Nakamoto.		Bitcoin:	A	Peer-to-Peer	Electronic	Cash	System,	

https://bitcoin.org/bitcoin.pdf,	2008.	
3. Sergio	Demian	Lerner.		DagCoin,	

https://bitslog.files.wordpress.com/2015/09/dagcoin-v41.pdf,	2015.	
4. Serguei	Popov.	The	Tangle,	http://iotatoken.com/IOTA_Whitepaper.pdf,	

2016.	
5. TomHolden.		Transaction-Directed	Acyclic	Graphs,	

https://bitcointalk.org/index.php?topic=1504649.0,	2016.	
6. Linked	timestamping,	https://en.wikipedia.org/wiki/Linked_timestamping.	
7. Atomic	cross-chain	trading,	https://en.bitcoin.it/wiki/Atomic_cross-

chain_trading.	
8. https://github.com/bitcoin/bitcoin	
9. Gavin	Wood.		Ethereum:	A	Secure	Decentralised	Generalised	Transaction	

Ledger,	http://gavwood.com/Paper.pdf.		

