
Protocol Whitepaper

V1.0

wow@aave.com

January 2020

Abstract

This document describes the definitions and theory behind the Aave Protocol explaining the different aspects
of the implementation.

Contents

1 Introduction 1
1.1 Basic Concepts . 1
1.2 Formal Definitions . 3

2 Protocol Architecture 5
2.1 Lending Pool Core . 5
2.2 Lending Pool Data Provider . 5
2.3 Lending Pool . 6
2.4 Lending Pool Configurator . 6
2.5 Interest Rate Strategy . 6
2.6 Governance . 7

3 The LendingPool Contract 8
3.1 Deposit . 9
3.2 Redeem . 10
3.3 Borrow . 11
3.4 Repay . 12
3.5 Swap Rate . 13
3.6 Liquidation Call . 14
3.7 Flash Loans . 15
3.8 Tokenization . 16

3.8.1 Limitations of the tokenization model . 16

4 Stable Rate Theory 17
4.1 Lending Rate Oracle . 17
4.2 Current Stable Borrow Rate Rs . 18
4.3 Limitations on Stable Rate Positions . 18
4.4 Stable Rate Rebalancing . 18
4.5 The Rebalancing Process . 19

5 Conclusion 21

1 Introduction

The birth of the Aave Protocol marks Aave’s shift from a decentralized P2P lending strategy (direct loan relationship
between lenders and borrowers, like in ETHLend) to a pool-based strategy. Lenders provide liquidity by depositing
cryptocurrencies in a pool contract. Simultaneously, in the same contract, the pooled funds can be borrowed by
placing a collateral. Loans do not need to be individually matched, instead they rely on the pooled funds, as well as
the amounts borrowed and their collateral. This enables instant loans with characteristics based on the state of the
pool. A simplified scheme of the protocol is presented in figure 1 below.

Figure 1: The Aave Protocol

The interest rate for both borrowers and lenders is decided algorithmically:

• For borrowers, it depends on the cost of money - the amount of funds available in the pool at a specific time.
As funds are borrowed from the pool, the amount of funds available decreases which raises the interest rate.

• For lenders, this interest rate corresponds to the earn rate, with the algorithm safeguarding a liquidity reserve
to guarantee withdrawals at any time.

1.1 Basic Concepts

Figure 2: Lending Pool Basics

At the heart of a lending pool is the concept of reserve: every pool holds reserves in multiple currencies, with
the total amount in Ethereum defined as total liquidity. A reserve accepts deposits from lenders. Users can

1

borrow these funds, granted that they lock a greater value as collateral, which backs the borrow position.
Specific currencies in the pooled reserves can be configured as collateral or not for borrow positions, only low risk
tokens should be considered. The amount one can borrow depends on the currencies deposited still available in the
reserves. Every reserve has a specific Loan-To-Value (LTV), calculated as the weighted average of the different
LTVs of the currencies composing the collateral, where the weight for each LTV is the equivalent amount of the
collateral in ETH; figure 3 shows an example of parameters.

Every borrow position can be opened with a stable or variable rate. Borrows have infinite duration, and there is
no repayment schedule: partial or full repayments can be made anytime.

Figure 3: Lending Pool Parameters

In case of price fluctuations, a borrow position might be liquidated. A liquidation event happens when the price of
the collateral drops below the threshold, LQ, called liquidation threshold. Reaching this ratio channels a liquida-
tion bonus, which incentivizes liquidators to buy the collateral at a discounted price. Every reserve has a specific
liquidation threshold, following the same approach as for the LTV. Calculation of the average liquidation threshold La

Q

is performed dynamically, using the weighted average of the liquidation thresholds of the collateral’s underlying assets.

At any point in time, a borrow position is characterized by its health factor Hf , a function for the total col-
lateral and the total borrows which determines if a loan is undercollateralized:

Hf =
TotalCollateralETH∗La

Q

TotalBorrowsETH+TotalFeesETH when Hf < 1, a loan is considered undercollateralized and can be liquidated

Further details on liquidation can be found in section 3.6.

2

1.2 Formal Definitions

Variable Description

T , current times-
tamp

Current number of seconds defined by block.timestamp.

Tl, last updated
timestamp

Timestamp of the last update of the reserve data. Tl is updated every time a
borrow, deposit, redeem, repay, swap or liquidation event occurs.

∆T , delta time ∆T = T − Tl

Tyear, seconds Number of seconds in a year. Tyear = 31536000

∆Tyear, yearly pe-
riod

∆Tyear = ∆T
Tyear

Lt, total liquidity Total amount of liquidity available in the reserve. The decimals of this value
depend on the decimals of the currency.

Bs, total stable bor-
rows

Total amount of liquidity borrowed at a stable rate. The decimals of this value
depend on the decimals of the currency.

Bv, total variable
borrows

Total amount of liquidity borrowed at a variable rate. The decimals of this value
depend on the decimals of the currency.

Bt, total borrows Total amount of liquidity borrowed. The deci-
mals of this value depend on the decimals of the
currency.

Bt = Bs + Bv

U , utilization rate Representing the utilization of the deposited
funds.

U =

0, if Lt = 0

Bt

Lt
, if Lt > 0

Uoptimal, target uti-
lization rate

The utilization rate targeted by the model, beyond the variable interest rate rises
sharply.

Rv0 , base variable
borrow rate

Constant for Bt = 0. Expressed in ray.

Rslope1, interest rate
slope below Uoptimal

Constant representing the scaling of the interest rate versus the utilization, when
U < Uoptimal. Expressed in ray.

Rslope2, interest rate
slope above Uoptimal

Constant representing the scaling of the interest rate versus the utilization, when
U ≥ Uoptimal. Expressed in ray.

Rv, variable borrow
rate

Rv =

Rv0 + U

Uoptimal
Rslope1, if U ≤ Uoptimal

Rv0 + Rslope1 +
U−Uoptimal

1−Uoptimal
Rslope2, if U > Uoptimal

Rs, stable rate Implemented in section 4.2. Expressed in ray.

Mr, average market
lending rate

Base stable borrow rate, defined for i platforms
with P r

i the lending rate and P v
i the borrowing

volume. Expressed in ray.

Mr =
∑n

i=1 P i
rP

i
v∑n

i=1 P i
v

3

Variable Description

Rt
sa, average stable

rate borrow rate

When a stable borrow of amount Bnew is issued
at rate Rs:

Rt
sa =

BsR
t−1
sa +BnewRs

Bs+Bnew

When a user repays an amount Bx at stable rate
Rsx:

Rt
sa =

0, if Bs −Bx = 0

BsR
t−1
sa −BxRsx

Bs−Bx
, if Bs −Bx > 0

Check the methods decreaseTotalBorrowsStableAndUpdateAverageRate()

and increaseTotalBorrowsStableAndUpdateAverageRate(). Expressed in ray.

RO, overall borrow
rate

Overall borrow rate of the reserve, calculated as
the weighted average between the total variable
borrows Bv and the total stable borrows Bs.

RO =
0, if Bt = 0

BvRv+BsRsa

Bt
, if Bt > 0

Rl, current liquidity
rate

Function of the overall borrow rate RO and the
utilization rate U .

Rl = ROU

Ct
i , cumulated liq-

uidity index

Interest cumulated by the reserve during the time
interval ∆T , updated whenever a borrow, deposit,
repay, redeem, swap, liquidation event occurs.

Ct
i = (Rl∆Tyear + 1)Ct−1

i

C0
i = 1× 1027 = 1 ray

Itn, reserve normal-
ized income

Ongoing interest cumulated by the reserve. Itn = (Rl∆Tyear + 1)Ct−1
i

Bt
vc, cumulated vari-

able borrow index

Interest cumulated by the variable borrows Bv, at
rate Rv, updated whenever a borrow, deposit, repay,
redeem, swap, liquidation event occurs.

Bt
vc = (1 + Rv

Tyear
)∆TxBt−1

vc

B0
vc = 1× 1027 = 1 ray

Bt
vcx, user cumu-

lated variable bor-
row index

Variable borrow index of the specific user, stored
when a user opens a variable borrow position.

Bt
vcx = Bt

vc

Bx, user principal
borrow balance

Balance stored when a user opens a borrow position. In case of multiple borrows,
the compounded interest is cumulated each time and it becomes the new principal
borrow balance.

Bxc, user com-
pounded borrow
balance

Principal Bx plus the cumulated interests.

For a variable position: Bxc = Bvc

Bvcx
(1 + Rv

Tyear
)∆TxBx

For a stable position: Bxc = (1 + Rs

Tyear
)∆TxBx

Hf , health factor when Hf < 1, a loan is considered undercollater-
alized and can be liquidated

Hf =
TotalCollateralETH∗La

Q

Bt+TotalFeesETH

4

2 Protocol Architecture

The current implementation of the protocol is as follows:

Figure 4: Protocol Architecture

2.1 Lending Pool Core

The LendingPoolCore contract is the center of the protocol, it:

• holds the state of every reserve and all the assets deposited,

• handles the basic logic (cumulation of the indexes, calculation of the interest rates...).

2.2 Lending Pool Data Provider

The LendingPoolDataProvider contract performs calculations on a higher layer of abstraction than the LendingPoolCore
and provides data for the LendingPool; specifically:

• Calculates the ETH equivalent a user’s balances (Borrow Balance, Collateral Balance, Liquidity Balance) to
assess how much a user is allowed to borrow and the health factor.

• Aggregates data from the LendingPoolCore to provide high level information to the LendingPool.

• Calculate of the Average Loan to Value and Average Liquidation Ratio.

5

2.3 Lending Pool

The LendingPool contract uses the LendingPoolCore and LendingPoolDataProvider to interact with the reserves
through the actions:

• Deposit

• Redeem

• Borrow

• Repay

• Rate swap

• Liquidation

• Flash loan

One of the advanced features implemented in the LendingPool contract is the tokenization of the lending position.
When a user deposits in a specific reserve, he receives a corresponding amount of aTokens, tokens that map the
liquidity deposited and accrue the interests of the deposited underlying assets. Atokens are minted upon deposit,
their value increases until they are burned on redeem or liquidated. Whenever a user opens a borrow position, the
tokens used as collateral are locked and cannot be transferred. Further details on the tokenization are in section 3.8.

2.4 Lending Pool Configurator

The LendingPoolConfigurator provides main configuration functions for LendingPool and LendingPoolCore:

• Reserve initialization

• Reserve configuration

• Enable/disable borrowing on a reserve

• Enable/disable the usage of a specific reserve as collateral.

The LendingPoolConfigurator contract will be integrated in Aave Protocol governance.

2.5 Interest Rate Strategy

The InterestRateStrategy contract holds the information needed to update the interest rates of a specific reserve
and implements the update of the interest rates. Every reserve has a specific InterestRateStrategy contract.
Specifically, within the base strategy contract DefaultReserveInterestRateStrategy the following are defined:

• Base variable borrow rate Rv0

• Interest rate slope below optimal utilisation Rslope1

• Interest rate slope beyond optimal utilisation Rslope2

The current variable borrow rate is:

Rv =

{
Rv0 + U

Uoptimal
Rslope1, if U ≤ Uoptimal

Rv0 + Rslope1 +
U−Uoptimal

1−Uoptimal
Rslope2, if U > Uoptimal

This interest rate model allows for calibration of key interest rates:

• At U = 0, Rv = Rv0

• At U = Uoptimal, Rv = Rv0 + Rslope1

• Above Uoptimal, the interest rate rises sharply to take into account the cost of capital.

The stable borrow rate follows the same model described in section 4.2.

6

2.6 Governance

The rights of the protocol are controlled by the LEND token. Initially, the Aave Protocol will be launched with
a decentralized on-chain governance based on the DAOStack framework which will evolve to a fully autonomous
protocol. On-chain implies all votes are binding: actions that follow a vote are hard-coded and must be executed.

To understand the scope of the governance it’s important to make the distinction:

• The Aave Protocol is bound to evolve and will allow the creation of multiple lending pools with segregated
liquidity, parameters, permissions, and type of assets.

• The Aave Lending Pool is the first pool of the Aave protocol until the Pool Factory Update is released and
anyone can create their own pool.

Within the Aave Protocol, the governance will take place at two level :

1. The Protocol’s Governance voting is weighted by LEND for decisions related to protocol parameters and
upgrades of the smart contract. It can be compared to MakerDAO’s governance where stakeholders vote on
current and future parameters of the protocol.

2. The Pool’s Governance where your vote is weighted based on your share of pool liquidity expressed in
aTokens. The votes cover pool specific parameters such as assets used as collateral or to be borrowed.

Each Pool will have its own governance, under the umbrella of the Protocol’s Governance.

More details on the Governance will be published in a Governance Proposal to the community.

7

3 The LendingPool Contract

The actions implemented within LendingPool allow users to interact with the reserve. All the actions follow this
specific sequence:

Figure 5: The LendingPool Contract

8

3.1 Deposit

The deposit action is the simplest one and does not have any particular state check. The sequence of action is:

Figure 6: Deposit funds

9

3.2 Redeem

The redeem action allows users to exchange an amount of aTokens for the underlying asset. The actual amount
to redeem is calculated using the aToken/underlying exchange rate Ei in section 3.8. The action is defined as follows:

Figure 7: Redeem funds

10

3.3 Borrow

The borrow action transfers to the user a specific amount of underlying asset, in exchange of a collateral that remains
locked. The flow of action can be described as follows:

Figure 8: Borrow funds

11

3.4 Repay

The repay action allows the user to repay completely or partially the borrowed amount plus the origination fee and
the accrued interest.

Figure 9: Repay a loan

12

3.5 Swap Rate

The swap rate action allows a user with a borrow in progress to swap between variable and stable borrow rate.

Figure 10: Swap Rate

13

3.6 Liquidation Call

The liquidationcall contract allows any external actor to purchase part of a collateral at a discounted price. In
case of a liquidation event, a maximum of 50% of the loan can be liquidated, which will bring the health factor back
above 1.

Figure 11: Liquidation

14

3.7 Flash Loans

The flash loan action will allow users to borrow from the reserves within a single transaction, as long as the user
returns more liquidity that has been taken.

Figure 12: Flash Loan

Flash loans temporarily transfer the funds to a smart contract that respects the IFlashLoanEnabledContract.sol

interface. The address of the contract is a parameter of the action. After the funds are transferred, the method
executeOperation() is executed on the external contract. The contract can do whatever action is needed with the
borrowed funds. After the method executeOperation() is completed, a check is performed to verify that the funds
plus fee have been returned to the LendingPool contract. The fee is then accrued to the reserve, and the state of
the reserve is updated. If less funds than what was borrowed have been returned to the reserve, the transaction is
reverted.

15

3.8 Tokenization

The Aave protocol implements a tokenization strategy for liquidity providers. Upon deposit, the depositor receives a
corresponding amount of derivative tokens, called Aave Tokens (aTokens for short) that map 1:1 the underlying
assets. The balance of aTokens of every depositor grows over time, driven by the perpetual accrual of interest of
deposits. aTokens are fully ERC20 compliant.

aTokens also natively implement the concept of interest rate redirection. Indeed, the value accrued over time by
the borrowers’ interest rate payments is distinct from the principal value. Once there is a balance of aTokens, the
accrued value can be redirected to any address, effectively splitting the balance and the generated interest. We call
the continuous flow of accumulated interest over time the interest stream.

To implement this tokenization strategy, Aave introduced the following concepts in the aToken contract:

1. User x balance index Itx: Is the value of the reserve normalized income Itx at the moment of execution of
the last action by the user.

2. Principal balance Bp: Is the balance stored in the balances mapping of the ERC20 aToken contract. The
principal balance gets updated on every action that the user executes on the aToken contract (deposit, redeem,
transfer, liquidation, interest rate redirection)

3. Redirection address Ar: When a user decides to redirect his interest stream to another address, a new
redirection address Ar is provided. If no redirection of the interest stream is performed, Ar is 0

4. Redirected Balance Bx
r : Whenever a user redirects his interest stream, the balance of user redirecting is

added to the redirected balance Br of the address specified by Br. Defined as follows:

Bx
r =

∑
X Bp

Where X is the set of users redirecting the interest stream to the user x

The redirected balance decreases whenever a user x0 ∈ X redeems or transfers his aTokens to another user
that is not redirecting to x.

5. Current balance Bc: Is the balance returned by the balanceOf() function of the aToken contract. Defined
as follows:

Bx
c =

0, if Bx

p = 0 and Bx
r = 0

Bx
p + Bx

r (In
Ix
− 1), if Ar <> 0

Bx
p
In
Ix

+ Bx
r (In

Ix
− 1), if Ar = 0

3.8.1 Limitations of the tokenization model

The described tokenization model has many advantages compared to the widely used, exchange rate based approach,
but also some drawbacks, specifically:

1. It’s impossible to transfer the whole balance at once: Given the perpetual accrual of the interest rate,
there is no way to specify the exact amount to transfer, since the interest will keep accruing even while the
transfer transaction is being confirmed. This means that having exactly 0 balance after a transfer is impossible,
rather, a very small balance (dust balance) will be left to the from account executing the transfer. Note that
this could have been avoided by adding specific logic to handle this particular edge case, but this would have
meant adding a non standard behavior to the ERC20 transfer function, and for this reason we avoided it. Even
though this is not a relevant issue, it’s important to note that is possible to completely clear the remaining
balance by either 1. execute another transfer, which will most likely transfer the remaining dust balance as it
would be too small to accrue interest in a reasonably short amount of time, or 2. redeem the dust balance and
transfer the underlying asset.

2. Interest stream can only be redirected if there is a principal balance: This means that only accounts
that have a principal balance Bp can redirect their interest. If users redeem or transfer everything, their
interest redirection is reset. As a side effect of this, interest generated only by the redirected balance Br cannot
be redirected.

16

4 Stable Rate Theory

The following chapter explains how the stable rates are applied to the system and the limitations.

Implementation of a fixed rate model on top of a pool is complicated. Indeed, fixed rates are hard to handle
algorithmically, as the cost of borrowing money varies with market conditions and the liquidity available. There
might therefore be situations (sudden market changes, bank runs ...) in which handling stable rate borrow positions
would need using specific heuristics based on time or economical constraints. Following this reasoning, we identified
two possible ways of handling fixed rates:

1. Imposing time constraints: fixed rates might work perfectly fine in a time constrained fashion. If a loan
has a stable duration, it should survive extreme market conditions, as the borrower must repay at the end of
the loan period. Unfortunately, time constrained fixed rate loans aren’t suitable for our specific use case of
open ended loan. It would require a certain degree of UX friction where users would need to create and handle
multiple loans with different times constraints.

2. Imposing rates constraints: An interest rate calculated at the beginning of a loan might be impacted by
market conditions, keeping it from staying fixed. If the rate diverges too much from the market, it can be
readjusted. This would not be a pure fixed rate, open term loan - as the rate might vary throughout the loan
duration – yet users will experience actual fixed rates during specific time periods, or when there is enough
liquidity available. This particular implementation has been chosen to be integrated into Aave’s Protocol
under the name stable rate.

4.1 Lending Rate Oracle

Figure 13: Lending Rate Oracle

The first component to be integrated into the Protocol protocol is a Lending Rate Oracle, which will provide
information to the contracts on the actual market rates that other lending platforms, both centralized and
decentralized, are providing. The average market lending rate Mr is defined for i platforms with P i

r the lending rate
and P i

v the borrowing volume:

Mr =
∑n

i=1 P i
rP

i
v∑n

i=1 P i
v

The market rate will be updated daily, initially by Aave.

17

4.2 Current Stable Borrow Rate Rs

The current stable borrow rate is calculated as follows:

Rt
s =

{
Mr + U

Uoptimal
Rslope1, if U ≤ Uoptimal

Mr + Rslope1 +
U−Uoptimal

1−Uoptimal
Rslope2, if U > Uoptimal

With:
- Mr the average market lending rate.
- Rslope1 the interest rate slope below Uoptimal, increases the rate as U increases.
- Rslope2 the interest rate slope beyond Uoptimal, increases as the difference between U and Uoptimal increases.
- U is the utilization rate.

Note: Rs does NOT impact existing stable rates positions – this is applied only to new opened positions.

4.3 Limitations on Stable Rate Positions

To avoid abuses on stable rate loans, the following limitations have been applied to the stable rate borrowing model:

1. Users cannot deposit as collateral more liquidity than what they are trying to borrow. Eg. a user deposits 10
million DAI collateral, tries to borrow 1 million DAI. This is to prevent the following attack vector:

Given: Bs = 18%APR, Mr = 9%APR, Rl = 12%APR

Users might try to artificially lower Bs to the value of Mr by depositing a huge amount of liquidity which
would cause Bs to drop, then borrow from the same liquidity at a lower rate, withdraw the liquidity previously
deposited to cause Bs and the liquidity rate Rl to raise again; then finally deposit the amount borrowed to
earn interest on the previously borrowed funds. Although this attack can still be carried out using multiple
accounts, this particular constraint makes the attack more complicated as it requires more money (and a
different collateral currency). This works well in combination with the interest rate rebalancing in the next
section.

2. Borrowers will only be able to borrow up to Tr of the available liquidity at the current borrow rate. So, for
every specific value of Bs, there is only up to Tr of liquidity available for a single borrower. This is to avoid
that a specific borrower would borrow too much available liquidity at a too competitive rate.

4.4 Stable Rate Rebalancing

The last and perhaps most important constraint of the stable rate model is the rate rebalancing. This is to work
around changes in market conditions or increased cost of money within the pool.
The stable rate rebalancing will happen in two specific situations:

1. Rebalancing up. The stable rate of a user x is rebalanced to the most recent value of Bs when a user could
earn interest by borrowing:

Bx
s < Rl with Bx

s the stable borrow rate of user x

2. Rebalancing down. The stable rate of a user x is rebalanced to the most recent value of Bs, if:

Bx
s > Bs(1 + ∆Bs)

with ∆Bs a rate delta established by governance which defines the window above Bs to rebalance interest
rates. If a user pays too much interest beyond that range, the rate is balanced down.

18

4.5 The Rebalancing Process

The LendingPool contract exposes a function rebalanceStableBorrowRate(address reserve, address user)

which allows to rebalance the stable rate interest of a specific user. Anybody can call this function: however, there
isn’t any direct incentive for the caller to rebalance the rate of a specific user. For this reason, Aave will provide
an agent that will periodically monitor all the stable rates positions and rebalance the ones that will be deemed
necessary. The rebalance strategy will be decided offchain by the agent, this means that users that satisfy the
rebalance conditions may not be rebalanced immediately. Since those conditions depend on the liquidity avail-
able and the state of market, there might be some transitory situations in which an immediate rebalance is not needed.

This does not add any element of centralization to the protocol. Even if the agent stops working, anybody can call
the rebalance function of the LendingPool contract. Although there isn’t any direct incentive in doing it (“why
should I do it?”) there is an indirect incentive for the ecosystem. In fact, even if the agent should cease to exist,
depositors might still want to trigger a rebalance up of the lowest borrow rate positions, to increase the liquidity
rate and/or force borrowers to close up their positions, increasing the available liquidity. In case of a rescale down,
instead, borrowers have a direct incentive in performing a rebalance of their positions to lower the interest rate.

The following flowchart explains the sequence of actions of the function rebalanceStableBorrowRate(). The
compounded balance that is accumulated until the instant at which the rebalance happens, is not affected by the
rebalance.

19

Figure 14: Rebalancing

20

5 Conclusion

The Aave Protocol relies on a lending pool model to offer high liquidity. Loans are backed by collateral and
represented by aTokens, derivative tokens which accrue the interests. The parameters such as interest rate and
Loan-To-Value are token specific.

Aave improves Decentralized Finance’s current offering, bringing two key innovations to the lending ecosystem:

• Stable Rates to help borrowers’ financial planning;

• Flash Loans to borrow without collateral during a single transaction.

Following the launch of the mainnet, Aave will uphold its commitment to decentralization through additional features.
The Pool Factory will allow anyone to launch their own lending pool based on our smart-contracts. Governance will
be on-chain with rights represented by:

• The LEND token at Protocol level for updates of the smart contract;

• aTokens at Pool level for pool specific parameters.

21

	Introduction
	Basic Concepts
	Formal Definitions

	Protocol Architecture
	Lending Pool Core
	Lending Pool Data Provider
	Lending Pool
	Lending Pool Configurator
	Interest Rate Strategy
	Governance

	The LendingPool Contract
	Deposit
	Redeem
	Borrow
	Repay
	Swap Rate
	Liquidation Call
	Flash Loans
	Tokenization
	Limitations of the tokenization model

	Stable Rate Theory
	Lending Rate Oracle
	Current Stable Borrow Rate Rs
	Limitations on Stable Rate Positions
	Stable Rate Rebalancing
	The Rebalancing Process

	Conclusion

