
Welcome to REI Network

REI Network is not a new project, but an upgraded version of GXChain. REI was developed to 
better adapt to the development trend of the blockchain, and to achieve a lightweight, Ethereum 
compatible, higher performance, and no fee blockchain framework

New Features

Compatible with EVM

Compatible with Ethereum's RPC and Websocket interfaces, and can support GRPC in the 
future

Rewrite the network module and use Libp2p instead of Devp2p (current Ethereum client 
solution), because we believe that Libp2p has better standards and can achieve better 
versatility and scalability

Realize lower resource consumption through the design of tokenomics ( )Gas Free

Realize  that can be soft-forked and upgraded. These contracts include: 
Staking/Slashing, ResourceManager and IBC contracts, etc.

Systems contracts

Achieve a more efficient and more random consensus: DPoS+BFT, to ensure decentralization 
and be more green power

Realize the abstract consensus module, so that the code of REI Network can be easily 
combined and become a chain-making tool

Entry Points

REI Mainnet Settings:

Network Name: REI Network

RPC URL: ​https://rpc.rei.network

ChainID: 47805

Symbol: REI

Decimals: 18

Explorer:  https://scan.rei.network

REI Testnet Settings:

Network Name: REI Testnet

RPC URL: ​https://rpc-testnet.rei.network

ChainID: 12357

Symbol: REI

Decimals: 18

Explorer:  https://scan-test.rei.network

Quick Start

A guide to start REI Network Node

Quick Start

API Reference

Introduction to REI Network JSON-RPC specifications

API Reference

System Contracts

Introduction to REI Network System contracts

System Contracts

Good to know:  The document is constantly being updated and improved, and you are 
welcome to ask us questions and suggestions 

Guides

Exchange Integration

Using The Graph

Using Gnosis Safe

Token Addresses

Why We build REI Network
Next - REI Network

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/rei-dao/guides/stake-for-free-gas
https://docs.rei.network/developer/system-contracts
https://rpc.rei.network/
https://scan.rei.network/
https://rpc-testnet.rei.network/
https://scan-test.rei.network/
https://docs.rei.network/developer/quick-start
https://docs.rei.network/developer/api-reference
https://docs.rei.network/developer/system-contracts
https://docs.rei.network/developer/guides/exchange-integration
https://docs.rei.network/developer/guides/using-the-graph
https://docs.rei.network/developer/guides/using-gnosis-safe
https://docs.rei.network/developer/token-addresses
https://docs.rei.network/rei-network/why-we-build-rei-network
https://docs.rei.network/


Why We build REI Network

When we had the first idea about blockchain in the year 2016, we wanted to develop a high-
performance blockchain that could adapt to the growing business demands, so we adopted the 
Graphene framework to build the initial version of GXChain 1.0. With the continuous iterative 
update of the technology, we have introduced the WASM virtual machine on Graphene, which 
supports mainstream programming languages ​​to write smart contracts, and implements one token 
- one voting power, and an innovative staking&voting mechanism on the DPoS election mechanism. 
GXChain 1.0 has completed its historical mission within a period of time and has won support from 
numerous community users. At the end of 2019, when we witnessed DeFi booming, we considered 
whether GXChain could provide a more friendly experience for these DeFi projects. When we tried 
to implement these basic ideas of DeFi on GXChain 1.0, we found some problems:

A lot of DeFi projects are built on Ethereum/EVM, and most of them adopt Solidity programming 
language

Although Ethereum is not very user-friendly (low efficiency and high cost), it seems developers 
and users care little about it.

So we consider that what really attracts these developers. After a period of research, we found:

EVM has a more mature and historically tested instruction set, as well as a friendly compiler & 
editor, and other infrastructure, and has accumulated a large number of developers on these 
foundations

The ecology of EVM has better standards, such as ERC20, ERC721, etc., and the combination 
of these standards is very strong

The Ethereum community has accumulated a large number of high-quality projects and loyal 
users in the early days. Although Ethereum is not very user-friendly, it is still the first choice for 
DeFi projects.

Therefore, we decided to make GXChain 2.0 compatible with EVM and its ecological infrastructure, 
so that DeFi developers and their applications can seamlessly migrate to GXChain 2.0, maintaining 
the same experience as the Ethereum blockchain, and improving consensus efficiency (the 
performance of GXChain2.0), to reduce the cost of use. After having such preliminary ideas, we 
quickly refined some specific technical solutions, that is, the technical characteristics of GXChain 
2.0:

Compatible with EVM

Compatible with Ethereum's RPC and Websocket interfaces, and can support GRPC in the 
future

Rewrite the network module and use Libp2p instead of Devp2p (current Ethereum client 
solution), because we believe that Libp2p has better standards and can achieve better 
versatility and scalability

Realize lower resource consumption through the design of tokenomics ( )Gas Free

Realize  that can be soft-forked and upgraded. These contracts include: 
Staking/Slashing, ResourceManager and IBC contracts, etc.

Systems contracts

Achieve a more efficient and more random consensus: DPoS+BFT, to ensure decentralization 
and be more green power

Realize the abstract consensus module, so that the code of REI Network can be easily 
combined and become a chain-making tool

In the face of the above-mentioned technical ideals, we hope that the code of GXChain 2.0 will no 
longer be a simple Fork or depending on an open-sourced chain-making framework, but on the 
basis of EVM, reconstruct the network, consensus, node election, and RPC modules. We hope 
these codes are more concise and modular so that they have better composability.

Welcome to REI Network
REI Network - Previous

Introduction to $REI
Next - REI Network

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/rei-dao/guides/stake-for-free-gas
https://docs.rei.network/developer/system-contracts
https://docs.rei.network/rei-network/welcome-to-rei-network
https://docs.rei.network/rei-network/introduction-to-usdrei
https://docs.rei.network/


Introduction to $REI

What is $REI?
$REI  is the native token of REI Network which secures the running of REI Network. $REI  has the 
following usages:

Gas Fee: When you send transaction on the REI Network , you can pay a small gas fee using 
$REI , This fee is a reward to the node for processing and verifying the transaction. 

Governance Token: $REI  can be used for REI DAO management, $REI  holders can commit 
proposals and vote for system level proposals on  https://dao.rei.network

:  $REI  can be used as a pledge token for node who want's to become 
a validator of REI Network
Validator Pledge Token

:  $REI  is the only voting token for node electionVoting token

:  $REI  holders are able to stake $REI  to own $Crude , which can be used 
instead of gas
Stake for Free Gas

What is the responsibility of the $REI holder?

The responsibility of REI holders is primarily to ensure the stable and secure operation and 
ecological growth of the REI Network public chain by building governance processes and 
infrastructure that work, and to defend against proposals that do not support the core 
objectives of governance, which is in the core interest of REI holders.

REI holders need to openly communicate and express their views on the various issues being 
addressed by REI governance at any given time and seriously participate in the forum 
discussions; the content of the proposal and the logic behind it is one of the main criteria for 
measuring the quality of the proposal.

Why We build REI Network
REI Network - Previous

Quick Start
Next - Developer

Last modified 1yr ago

REI Network Documents Search ⌘K

https://dao.rei.network/
https://docs.rei.network/rei-dao/guides/become-a-validator
https://docs.rei.network/rei-dao/guides/voting-for-a-validator
https://docs.rei.network/rei-dao/guides/stake-for-free-gas
https://docs.rei.network/rei-network/why-we-build-rei-network
https://docs.rei.network/developer/quick-start
https://docs.rei.network/


Quick Start
A guide to start REI Network Node

Install
Install from npm:

npm install @rei-network/cli --global

Install from source code:

git clone https://github.com/rei-network/rei.git
cd rei
npm install
npm link -w @rei-network/cli

Usage

Usage: rei [options] [command]

Options:
  -V, --version                              output the version number
  --rpc                                      open rpc server
  --rpc-port <port>                          rpc server port
  --rpc-host <port>                          rpc server host
  --rpc-api <apis>                           rpc server apis: debug, eth, net, txpool, w
  --disable-p2p                              disable p2p server
  --p2p-tcp-port <port>                      p2p server tcp port
  --p2p-udp-port <port>                      p2p server udp port
  --p2p-nat <ip>                             p2p server nat ip
  --max-peers <peers>                        max p2p peers count
  --max-dials <dials>                        max p2p dials count
  --bootnodes <bootnodes...>                 comma separated list of bootnodes
  --datadir <path>                           chain data dir path (default: "~/.rei")
  --keystore <keystore>                      the datadir for keystore (default: "keystor
  --unlock <unlock>                          comma separated list of accounts to unlock
  --password <password>                      password file to use for non-interactive pa
  --chain <chain>                            chain name: rei-mainnet, rei-testnet, rei-d
  --mine                                     mine block
  --coinbase <address>                       miner address
  --verbosity <verbosity>                    logging verbosity: silent, error, warn, inf
  --receipts-cache-size <receiptsCacheSize>  receipts cache size
  -h, --help                                 display help for command

Commands:
  account                                    Manage accounts

Default settings:

Params Default Value Description

P2P TCP Port 4191 P2P Network TCP Port

P2P UDP Port 9810 P2P Network UDP Port

P2P NAT 127.0.0.1
The public IP of this node, 
used for node discovery

RPC Port 11451 ​

RPC host 127.0.0.1 ​

RPC API eth,net,web3 ​

Example
Proposer node startup

rei --mine --coinbase 0x...abc --unlock 0x...abc --password ./password

RPC node startup

rei --rpc --rpc-host 0.0.0.0

Bootnode startup

rei --p2p-nat 1.2.3.4

Testnet or devnet node startup

rei --chain rei-testnet
rei --chain rei-devnet

Introduction to $REI
REI Network - Previous

API Reference
Next - Developer

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/rei-network/introduction-to-usdrei
https://docs.rei.network/developer/api-reference
https://docs.rei.network/


API Reference
Introduction to REI Network JSON-RPC specifications

REI Network's RPC interfaces are fully compatible with Ethereum (except EIP1559), so you can 
refer to ETH's JSON-RPC specifications

OPEN-RPC Playground

Ethereum JSON-RPC Specification

Good to know:  REI Network's RPC module currently implements all APIs of 
eth_namespace , debug_namespace  and txpool_namespace ; if you have other 
namespace API requirements, please feel free to give feedback to the team or submit a 
Pull Request

Quick Start
Developer - Previous

Token Addresses
Next - Developer

Last modified 1yr ago

REI Network Documents Search ⌘K

https://playground.open-rpc.org/?schemaUrl=https%3A%2F%2Fraw.githubusercontent.com%2Fethereum%2Feth1.0-apis%2Fassembled-spec%2Fopenrpc.json&uiSchema%5BappBar%5D%5Bui%3AexamplesDropdown%5D=false&uiSchema%5BappBar%5D%5Bui%3Ainput%5D=false&uiSchema%5BappBar%5D%5Bui%3AsplitView%5D=true
https://docs.rei.network/developer/quick-start
https://docs.rei.network/developer/token-addresses
https://docs.rei.network/


Token Addresses

Name Symbol Decimals Testnet Mainnet

Wrapped REI WREI 18

​

0x2545AF3D8b11e29
5bB7aEdD5826021AB
54F71630 ​

0x2545AF3
5bB7aEdD5
54F71630

Wrapped BTC WBTC 8
0xa701aFffa73F6Dda
c3b30a12dae9Ff30Ef
692f58 ​

0x8059E67
db5155bF4
fDc5561

Tether USD USDT 6

​

0xfAA4C7dB13c28B6
93DBbC874bd0CD97
E27737CFE ​

0x988a631
Bb77EE0f5
5dcfceC7

USD Coin USDC 6

​

0x7eDe327Df76BF39
b40FD1FD73C294B8
8568db221

0x8d5E122
2E09A3AB8
486f53314

Wrapped Ether WETH 18

​

0x2EBA157cBF9CbC4
AD2631AA0c4F682C
2fC6e0dC1 ​

0x7a53134
Afb2Cf5ec4
0fc2884A

Dai Stablecoin DAI 18

​

0xE585f7FD1339781
A196194185160A2DF
5716A741 ​

0x0ba8598
D77fBb494
6E4FB1f6

API Reference
Developer - Previous

System Contracts
Next - Developer

Last modified 1yr ago

REI Network Documents Search ⌘K

https://scan-test.rei.network/address/0x2545AF3D8b11e295bB7aEdD5826021AB54F71630/transactions
https://scan.rei.network/address/0x2545AF3D8b11e295bB7aEdD5826021AB54F71630/transactions
https://scan-test.rei.network/address/0xa701aFffa73F6Ddac3b30a12dae9Ff30Ef692f58/transactions
https://scan.rei.network/address/0x8059E671Be1e76f8db5155bF4520f86ACfDc5561/transactions
https://scan-test.rei.network/address/0xfAA4C7dB13c28B693DBbC874bd0CD97E27737CFE/transactions
https://scan.rei.network/address/0x988a631Caf24E14Bb77EE0f5cA881e8B5dcfceC7/transactions
https://scan-test.rei.network/address/0x7eDe327Df76BF39b40FD1FD73C294B88568db221/transactions
https://scan.rei.network/address/0x8d5E1225981359E2E09A3AB8F599A51486f53314/transactions
https://scan-test.rei.network/address/0x2EBA157cBF9CbC4AD2631AA0c4F682C2fC6e0dC1/transactions
https://scan.rei.network/address/0x7a5313468c1C1a3Afb2Cf5ec46558A7D0fc2884A/transactions
https://scan-test.rei.network/address/0xE585f7FD1339781A196194185160A2DF5716A741/transactions
https://scan.rei.network/address/0x0ba85980B122353D77fBb494222a10a46E4FB1f6/transactions
https://docs.rei.network/developer/api-reference
https://docs.rei.network/developer/system-contracts
https://docs.rei.network/


System Contracts
Introduction to REI Network System Contracts

Public Modules

Contract Name Description Address

​StakeManager
A smart contract used for 
node election

0x00000000000000000000
00000000000000001001

​Fee

A smart contract that 
accepts native token(REI) 
deposit and calculates user 
fees

0x00000000000000000000
00000000000000001005

​ContractFee
A smart contract for 
registering contract creators 
and setting contract fee

0x00000000000000000000
0000000000000000100b

Private Modules

Contract Name Description Address

​Config Global config contract
0x00000000000000000000
00000000000000001000

​UnstakePool Un-stake asset pool
0x00000000000000000000
00000000000000001001

​ValidatorRewardPool
A smart contract that keeps 
validator reward for 
validator

0x00000000000000000000
00000000000000001004

​CommmissionShare

A smart contract that keeps 
commission reward for all 
staking user, dynamically 
deployed for each validator

-

FreeFee
A smart contract that 
calculates user daily free 
fees

0x00000000000000000000
00000000000000001006

​FeePool

A smart contract that 
assigns REI rewards to 
miners according to miner 
shares every 24 hours

0x00000000000000000000
00000000000000001007

​Router
A router smart contract, the 
blockchain system will only 
interact with router contract

0x00000000000000000000
00000000000000001008

​FeeToken

An ERC20 smart contract, 
only provides balanceOf  
method for users to query 
the fee(Stake to own) 
balance

0x00000000000000000000
00000000000000001009

​FreeFeeToken

An ERC20 smart contract, 
only provides balanceOf  
method for users to query 
the free fee(Free to own) 
balance

0x00000000000000000000
0000000000000000100a

The blockchain system will only send transaction to Router contract

Token Addresses
Developer - Previous

StakeManager
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/system-contracts/stakemanager
https://docs.rei.network/developer/system-contracts/fee
https://docs.rei.network/developer/system-contracts/contractfee
https://docs.rei.network/developer/system-contracts/config
https://docs.rei.network/developer/system-contracts/unstakepool
https://docs.rei.network/developer/system-contracts/validatorrewardpool
https://docs.rei.network/developer/system-contracts/commissionshare
https://docs.rei.network/developer/system-contracts/freefee
https://docs.rei.network/developer/system-contracts/feepool
https://docs.rei.network/developer/system-contracts/router
https://docs.rei.network/developer/system-contracts/feetoken
https://docs.rei.network/developer/system-contracts/freefeetoken
https://docs.rei.network/developer/token-addresses
https://docs.rei.network/developer/system-contracts/stakemanager
https://docs.rei.network/


StakeManager

Contents

Globals

Var Type

validatorId uint256

validators mapping(address => struct Validator)

unstakeId uint256

unstakeQueue mapping(uint256 => struct Unstake)

totalLockedAmount uint256

activeValidators struct ActiveValidator[]

proposer address

Modifiers

onlyRouterOrFeePool

No description

Declaration:

  modifier onlyRouterOrFeePool

Functions

constructor

No description

Declaration:

  function constructor(
  ) public Only

Modifiers:

Modifier

Only

indexedValidatorsLength

Get the indexed validators length.

Declaration:

  function indexedValidatorsLength(
  ) external returns (uint256)

Modifiers: No modifiers

indexedValidatorsExists

Determine whether the index validator exists by id.

Declaration:

  function indexedValidatorsExists(
    uint256 id
  ) external returns (bool)

Modifiers: No modifiers

Args:

Arg Type Description

id uint256 The validator id

indexedValidatorsByIndex

Get indexed validator address by index.

Declaration:

  function indexedValidatorsByIndex(
    uint256 index
  ) external returns (address validator)

Modifiers: No modifiers

Args:

Arg Type Description

index uint256 The validator index

indexedValidatorsById

Get indexed validator address by id.

Declaration:

  function indexedValidatorsById(
    uint256 id
  ) external returns (address)

Modifiers: No modifiers

Args:

Arg Type Description

id uint256 The validator id

getVotingPowerByIndex

Get the voting power by validator index, if index is out of range or validator doesn't exist, return 0.

Declaration:

  function getVotingPowerByIndex(
    uint256 index
  ) external returns (uint256)

Modifiers: No modifiers

Args:

Arg Type Description

index uint256 The validator index

getVotingPowerById

Get the voting power by validator id, if doesn't exist, return 0.

Declaration:

  function getVotingPowerById(
    uint256 id
  ) external returns (uint256)

Modifiers: No modifiers

Args:

Arg Type Description

id uint256 The validator id

getVotingPowerByAddress

Get the voting power by validator address, if the validator doesn't exist, return 0.

Declaration:

  function getVotingPowerByAddress(
    address validator
  ) public returns (uint256)

Modifiers: No modifiers

Args:

Arg Type Description

validator address Validator address

getTotalLockedAmountAndValidatorCount

Get the total locked amount and the validator count, but no including the excludes .

Declaration:

  function getTotalLockedAmountAndValidatorCount(
    address[] excludes
  ) external returns (uint256 _totalLockedAmount, uint256 validatorCount)

Modifiers: No modifiers

Args:

Arg Type Description

excludes address[] Excluded addresses

activeValidatorsLength

Get the active validators list length.

Declaration:

  function activeValidatorsLength(
  ) external returns (uint256)

Modifiers: No modifiers

estimateSharesToAmount

Estimate how much GXC should be stake, if user wants to get the number of shares, Or estimate 
how much GXC can be obtained, if user unstake the amount of GXC.

Declaration:

  function estimateSharesToAmount(
    address validator,
    uint256 shares
  ) public returns (uint256 amount)

Modifiers: No modifiers

Args:

Arg Type Description

validator address Validator address

shares uint256 Number of shares

estimateAmountToShares

Estimate how much shares should be unstake, if user wants to get the amount of GXC. Or estimate 
how much shares can be obtained, if user stake the amount of GXC. If the validator doesn't exist, 
return 0.

Declaration:

  function estimateAmountToShares(
    address validator,
    uint256 amount
  ) public returns (uint256 shares)

Modifiers: No modifiers

Args:

Arg Type Description

validator address Validator address

amount uint256 Number of GXC

estimateUnstakeAmount

Estimate how much GXC can be claim, if unstake the number of shares(when unstake timeout). If 
the validator doesn't exist, return 0.

Declaration:

  function estimateUnstakeAmount(
    address validator,
    uint256 shares
  ) external returns (uint256 amount)

Modifiers: No modifiers

Args:

Arg Type Description

validator address Validator address

shares uint256 Number of shares

receive

No description

Declaration:

  function receive(
  ) external

Modifiers: No modifiers

stake

Stake for validator and mint share token to to  address. It will emit Stake  event.

Declaration:

  function stake(
    address validator,
    address to
  ) external nonReentrant returns (uint256 shares)

Modifiers:

Modifier

nonReentrant

Args:

Arg Type Description

validator address Validator address

to address Receiver address

startUnstake

Start unstake shares for validator. Stake manager will burn the shares immediately, but return GXC 
to to  address after config.unstakeDelay . It will emit StartUnstake  event.

Declaration:

  function startUnstake(
    address validator,
    address payable to,
    uint256 shares
  ) external nonReentrant returns (uint256)

Modifiers:

Modifier

nonReentrant

Args:

Arg Type Description

validator address Validator address

to address payable Receiver address

shares uint256
Number of shares to be 
burned

Returns:

Type Description

Unstake id(if amount is zero, return MAX_UINT256)

### startClaim

Start claim validator reward.

Stake manager will claim GXC from validator 
reward manager immediately, but return GXC 
to to  address after 
config.unstakeDelay .

It will emit StartUnstake  event.

Declaration:

  function startClaim(
    address payable to,
    uint256 amount
  ) external nonReentrant returns (uint256)

Modifiers:

Modifier

nonReentrant

Args:

Arg Type Description

to address payable Receiver address

amount uint256 Number of GXC

Returns:

Type Description

Unstake id

### setCommissionRate

Set validator commission rate.

Declaration:

  function setCommissionRate(
    uint256 rate
  ) external nonReentrant

Modifiers:

Modifier

nonReentrant

Args:

Arg Type Description

rate uint256 New commission rate

unstake

Unstake by id, return unstake amount.

Declaration:

  function unstake(
    uint256 id
  ) external nonReentrant returns (uint256 amount)

Modifiers:

Modifier

nonReentrant

Args:

Arg Type Description

id uint256 Unstake id

removeIndexedValidator

Remove the validator from indexedValidators  if the voting power is less than 
minIndexVotingPower  This can be called by anyone.

Declaration:

  function removeIndexedValidator(
    address validator
  ) external nonReentrant

Modifiers:

Modifier

nonReentrant

Args:

Arg Type Description

validator address Validator address

addIndexedValidator

Add the validator to indexedValidators  if the voting power is greater than 
minIndexVotingPower  This can be called by anyone.

Declaration:

  function addIndexedValidator(
    address validator
  ) external nonReentrant

Modifiers:

Modifier

nonReentrant

Args:

Arg Type Description

validator address Validator address

reward

Reward validator, only can be called by system caller

Declaration:

  function reward(
    address validator
  ) external nonReentrant onlyRouterOrFeePool

Modifiers:

Modifier

nonReentrant

onlyRouterOrFeePool

Args:

Arg Type Description

validator address Validator address

slash

Slash validator, only can be called by system caller

Declaration:

  function slash(
    address validator,
    uint8 reason
  ) external nonReentrant onlyRouter returns (uint256 amount)

Modifiers:

Modifier

nonReentrant

onlyRouter

Args:

Arg Type Description

validator address Validator address

reason uint8 Slash reason

onAfterBlock

After block callback, it will be called by system caller after each block is processed

Declaration:

  function onAfterBlock(
    address _proposer,
    address[] acValidators,
    int256[] priorities
  ) external nonReentrant onlyRouter

Modifiers:

Modifier

nonReentrant

onlyRouter

Args:

Arg Type Description

_proposer address Proposer address

acValidators address[] Active validators list

priorities int256[]
Priority list of active 
validators

Events

Reward

Emitted when a validator gets a reward NOTE: this event is never shown in the block, because the 
reward  function is only called by the system caller

Params:

Param Type Indexed Description

validator address ​ ​ Validator address

value uint256 ​ ​ Reward amount

### Slash ​

Emitted when a 
validator is slashed

​

NOTE: this event is 
never shown in the 
block,

​

  because the `slash` function is only called by the system caller

Params:

Param Type Indexed Description

validator address ​ ​ Validator address

value uint256 ​ ​ Slashed amount

### Stake ​

Emitted when the 
user stakes

​

Params:

Param Type Indexed Description

validator address ​ ​ Validator address

value uint256 ​ ​ Stake value

to address ​ Receiver address

shares uint256 ​
Number of shares
minted

### StartUnstake ​

Emitted when the 
user starts unstake

​

Params:

Param Type Indexed Description

id uint256 ​ ​ Unique unstake id

validator address ​ ​ Validator address

value uint256 ​ ​ Stake value

to address ​ Receiver address

unstakeShares uint256 ​
Number of unstak
shares to be burn

timestamp uint256 ​ Release timestam

### DoUnstake ​

Emitted when stake 
manager unstake

​

Params:

Param Type Indexed Description

id uint256 ​ ​ Unique unstake id

validator address ​ ​ Validator address

to address ​ Receiver address

amount uint256 ​ GXC Released

### 
SetCommissionRate

​

Emitted when 
validator set 
commission rate

​

Params:

Param Type Indexed Description

validator address ​ ​ Validator address

rate uint256 ​ ​ New commission 

timestamp uint256 ​ ​ Update timestamp

### IndexedValidator ​

Emitted when a new 
validator is indexed

​

Params:

Param Type Indexed Description

validator address ​ ​ Validator address

votingPower uint256 ​ ​
Validator voting 
power

### 
UnindexedValidator

​

Emitted when a new 
validator is unindexed

​

Params:

Param Type Indexed Description

validator address ​ ​ Validator address

System Contracts
Developer - Previous

Fee
Next

Last modified 1yr ago

ON THIS PAGE

Contents

Globals

Modifiers

onlyRouterOrFeePool

Functions

constructor

indexedValidatorsLength

indexedValidatorsExists

indexedValidatorsByIndex

indexedValidatorsById

getVotingPowerByIndex

getVotingPowerById

getVotingPowerByAddress

getTotalLockedAmountAndValidat…

activeValidatorsLength

estimateSharesToAmount

estimateAmountToShares

estimateUnstakeAmount

receive

stake

startUnstake

unstake

removeIndexedValidator

addIndexedValidator

reward

slash

onAfterBlock

Events

Reward

REI Network Documents Search ⌘K

https://docs.rei.network/developer/system-contracts
https://docs.rei.network/developer/system-contracts/fee
https://docs.rei.network/


Fee

Contents

Globals

Var Type

userTotalAmount mapping(address => uint256)

userUsage mapping(address => struct IFee.UsageInfo)

userDeposit
mapping(address => mapping(address => 
struct IFee.DepositInfo))

totalAmount uint256

Functions

constructor

No description

Declaration:

  function constructor(
  ) public Only

Modifiers:

Modifier

Only

deposit

Deposit amount to target user.

Declaration:

  function deposit(
    address user
  ) external nonReentrant

Modifiers:

Modifier

nonReentrant

Args:

Arg Type Description

user address Target user address

withdraw

Withdraw amount from target user.

Declaration:

  function withdraw(
    address user,
    uint256 desiredAmount,
    uint256 minAmount
  ) external nonReentrant

Modifiers:

Modifier

nonReentrant

Args:

Arg Type Description

user address Target user address

desiredAmount uint256 Desired withdraw amount

minAmount uint256 Min withdraw amount

estimateWithdrawableTimestamp

Estimate wtihdrawable timestamp, if the estimation fails, return 0.

Declaration:

  function estimateWithdrawableTimestamp(
    address user,
    address from
  ) external returns (uint256 timestamp)

Modifiers: No modifiers

Args:

Arg Type Description

user address Target user address

from address From user address

estimateWithdrawableAmount

Estimate wtihdrawable amount.

Declaration:

  function estimateWithdrawableAmount(
    address user,
    uint256 timestamp
  ) public returns (uint256)

Modifiers: No modifiers

Args:

Arg Type Description

user address Target user address

timestamp uint256 Current timestamp

estimateFee

Estimate user fee.

 userFee = userTotalAmount * dailyFee / totalAmount - userUsage

Declaration:

  function estimateFee(
    address user,
    uint256 timestamp
  ) public returns (uint256 fee)

Modifiers: No modifiers

Args:

Arg Type Description

user address User address

timestamp uint256 Current timestamp

estimateUsage

Estimate user usage

 T: current timestamp
 T': last timestamp
 userUsage': last fee usage

 if T - T' < feeRecoverInterval
     userUsage = (1 - (T - T') / feeRecoverInterval) * userUsage'
 else
     userUsage = 0

Declaration:

  function estimateUsage(
    struct IFee.UsageInfo ui,
    uint256 timestamp
  ) public returns (uint256 usage)

Modifiers: No modifiers

Args:

Arg Type Description

ui struct IFee.UsageInfo Usage information

timestamp uint256 Current timestamp

consume

Consume user fee, can only be called by the system caller.

Declaration:

  function consume(
    address user,
    uint256 usage
  ) external nonReentrant onlyRouter

Modifiers:

Modifier

nonReentrant

onlyRouter

Args:

Arg Type Description

user address User address

usage uint256 Number of usage fee

Events

Deposit

Emit when user deposits.

Params:

Param Type Indexed Description

by address ​ ​ Deposit user

to address ​ ​ Receiver user

amount uint256 ​ ​ Deposit amount

### Withdraw ​

Emit when user 
withdraws.

​

Params:

Param Type Indexed Description

by address ​ ​ Withdraw user

from address ​ ​ From user

amount uint256 ​ ​ Withdraw amount

StakeManager
Previous

ContractFee
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/system-contracts/stakemanager
https://docs.rei.network/developer/system-contracts/contractfee
https://docs.rei.network/


ContractFee

Contents

Globals

Var Type

feeOf mapping(address => uint256)

creatorOf mapping(address => address)

Functions

generateAddress

Generate contract address.

Declaration:

  function generateAddress(
    address from,
    uint256 nonce
  ) public returns (address)

Modifiers: No modifiers

Args:

Arg Type Description

from address Creator address

nonce uint256 Creator nonce

generateAddress2

Generate contract address(create2).

Declaration:

  function generateAddress2(
    address from,
    bytes32 salt,
    bytes32 codeHash
  ) public returns (address)

Modifiers: No modifiers

Args:

Arg Type Description

from address Creator address

salt bytes32 Salt

codeHash bytes32
Deploy code hash, notice: 
this is not the same as the 
account code hash

register

Register the contract creator.

Declaration:

  function register(
    address parent,
    bool[] flags,
    uint256[] nonces,
    struct Create2Info[] infos
  ) external

Modifiers: No modifiers

Args:

Arg Type Description

parent address Root creator address

flags bool[]

A list of flags, if the flag is 
true, it means create  and 
load a nonce from nonces, 
otherwise it means 
create2  and load a 
Create2Info  from infos

nonces uint256[] A list of nonces

infos struct Create2Info[] A list of Create2Info

setFee

Set contract fee. The contract fee can be set only when the sender is the creator of the contract.

Declaration:

  function setFee(
    address contractAddress,
    uint256 fee
  ) external

Modifiers: No modifiers

Args:

Arg Type Description

contractAddress address Target contract address

fee uint256 Contract fee

Events

Register

Registration event, emit when someone registers their contract.

Params:

Param Type Indexed Description

parent address ​ Creator

child address ​ Contract address

Fee
Previous

Router
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/system-contracts/fee
https://docs.rei.network/developer/system-contracts/router
https://docs.rei.network/


Router

Contents

Modifiers

onlySystemCaller

No description

Declaration:

  modifier onlySystemCaller

Functions

constructor

No description

Declaration:

  function constructor(
  ) public Only

Modifiers:

Modifier

Only

estimateTotalFee

Estimate daily fee and free fee left.

Declaration:

  function estimateTotalFee(
    address from,
    address to,
    uint256 timestamp
  ) external returns (uint256 fee, uint256 freeFee, uint256 contractFee)

Modifiers: No modifiers

Args:

Arg Type Description

from address Transaction sender

to address
Transaction receiver(if 
contract creation, 
address(0))

timestamp uint256 Timestamp

assignTransactionReward

Assign transaction reward to miner, and emit the UsageInfo  event, if the consumed fee is 
dailyFee  or dailyFreeFee , it will only increase miner's share of the fee pool, otherwise, if the 
consumed fee is user's balance, it will add the fee to the fee pool and increase miner's share of the 
fee pool.

Declaration:

  function assignTransactionReward(
    address validator,
    address from,
    address to,
    uint256 feeUsage,
    uint256 freeFeeUsage,
    uint256 contractFeeUsage
  ) external nonReentrant onlySystemCaller

Modifiers:

Modifier

nonReentrant

onlySystemCaller

Args:

Arg Type Description

validator address Block miner

from address Transaction sender

to address
Transaction receiver(if 
contract creation, 
address(0))

feeUsage uint256 dailyFee  usage

freeFeeUsage uint256 dailyFreeFee  usage

contractFeeUsage uint256 Contract fee usage

assignBlockReward

Assign block reward, and call onAssignBlockReward  callback, it will split the block reward into 
two parts according to the minerRewardFactor , one part will be directly distributed to miners as 
a reward, and the other part will be added to the transaction fee pool.

Declaration:

  function assignBlockReward(
    address validator
  ) external nonReentrant onlySystemCaller

Modifiers:

Modifier

nonReentrant

onlySystemCaller

Args:

Arg Type Description

validator address Block miner

slash

Slash validator by reason

Declaration:

  function slash(
    address validator,
    uint8 reason
  ) external nonReentrant onlySystemCaller

Modifiers:

Modifier

nonReentrant

onlySystemCaller

Args:

Arg Type Description

validator address Validator address

reason uint8 Slash reason

onAfterBlock

After block callback, it only can be called by system caller

Declaration:

  function onAfterBlock(
    address _proposer,
    address[] acValidators,
    int256[] priorities
  ) external nonReentrant onlySystemCaller

Modifiers:

Modifier

nonReentrant

onlySystemCaller

Args:

Arg Type Description

_proposer address Proposer address

acValidators address[]
Parameter of 
StakeManager.onAfterBlock

priorities int256[]
Parameter of 
StakeManager.onAfterBlock

Events

UsageInfo

UsageInfo  event contains the usage information of tx, it will be automatically appended to the 
end of the transaction log.

Params:

Param Type Indexed Description

feeUsage uint256 ​ dailyFee  usage

freeFeeUsage uint256 ​
dailyFreeFee  
usage

contractFeeUsage uint256 ​ Contract fee usag

balanceUsage uint256 ​
Transaction sende
balance usage

ContractFee
Previous

AbstractToken
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/system-contracts/contractfee
https://docs.rei.network/developer/system-contracts/abstracttoken
https://docs.rei.network/


AbstractToken

Implementation of the {IERC20} interface.

Contents

Globals

Var Type

name string

symbol string

decimals uint8

config contract IConfig

Functions

constructor

No description

Declaration:

  function constructor(
  ) public

Modifiers: No modifiers

totalSupply

No description

Declaration:

  function totalSupply(
  ) public returns (uint256)

Modifiers: No modifiers

balanceOf

No description

Declaration:

  function balanceOf(
  ) public returns (uint256)

Modifiers: No modifiers

transfer

No description

Declaration:

  function transfer(
  ) public returns (bool)

Modifiers: No modifiers

allowance

No description

Declaration:

  function allowance(
  ) public returns (uint256)

Modifiers: No modifiers

approve

No description

Declaration:

  function approve(
  ) public returns (bool)

Modifiers: No modifiers

transferFrom

No description

Declaration:

  function transferFrom(
  ) public returns (bool)

Modifiers: No modifiers

Router
Previous

CommissionShare
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/system-contracts/router
https://docs.rei.network/developer/system-contracts/commissionshare
https://docs.rei.network/


CommissionShare

Contents

Globals

Var Type

validator address

Functions

constructor

No description

Declaration:

  function constructor(
  ) public ERC20 Only

Modifiers:

Modifier

ERC20

Only

estimateSharesToAmount

Estimate how much REI should be stake, if user wants to get the number of shares, or estimate 
how much REI can be obtained, if user unstake the amount of REI.

Declaration:

  function estimateSharesToAmount(
    uint256 shares
  ) external returns (uint256 amount)

Modifiers: No modifiers

Args:

Arg Type Description

shares uint256 Number of shares

estimateAmountToShares

Estimate how much shares should be unstake, if user wants to get the amount of REI, or estimate 
how much shares can be obtained, if user stake the amount of REI.

Declaration:

  function estimateAmountToShares(
    uint256 amount
  ) external returns (uint256 shares)

Modifiers: No modifiers

Args:

Arg Type Description

amount uint256 Number of REI

mint

Mint share token to to  address. Can only be called by stake manager.

Declaration:

  function mint(
    address to
  ) external nonReentrant onlyStakeManager returns (uint256 shares)

Modifiers:

Modifier

nonReentrant

onlyStakeManager

Args:

Arg Type Description

to address Receiver address

burn

Burn shares and return REI to to  address. Can only be called by stake manager.

Declaration:

  function burn(
    uint256 shares
  ) external nonReentrant onlyStakeManager returns (uint256 amount)

Modifiers:

Modifier

nonReentrant

onlyStakeManager

Args:

Arg Type Description

shares uint256
Number of shares to be 
burned

reward

Reward validator.

Declaration:

  function reward(
  ) external nonReentrant onlyStakeManager

Modifiers:

Modifier

nonReentrant

onlyStakeManager

slash

Slash validator and transfer the slashed amount to address(0) .

Declaration:

  function slash(
    uint8 factor
  ) external nonReentrant onlyStakeManager returns (uint256 amount)

Modifiers:

Modifier

nonReentrant

onlyStakeManager

Args:

Arg Type Description

factor uint8 Slash factor.

AbstractToken
Previous

FeeToken
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/system-contracts/abstracttoken
https://docs.rei.network/developer/system-contracts/feetoken
https://docs.rei.network/


FeeToken

Contents

Functions

constructor

No description

Declaration:

  function constructor(
  ) public AbstractToken

Modifiers:

Modifier

AbstractToken

balanceOf

No description

Declaration:

  function balanceOf(
  ) public returns (uint256)

Modifiers: No modifiers

CommissionShare
Previous

FeePool
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/system-contracts/commissionshare
https://docs.rei.network/developer/system-contracts/feepool
https://docs.rei.network/


FeePool

Contents

Globals

Var Type

sharesOf mapping(address => uint256)

totalShares uint256

accTxFee uint256

globalTimestamp uint256

validators address[]

Functions

constructor

No description

Declaration:

  function constructor(
  ) public Only

Modifiers:

Modifier

Only

validatorsLength

Get validators length.

Declaration:

  function validatorsLength(
  ) external returns (uint256)

Modifiers: No modifiers

earn

Increase miner's share.

Declaration:

  function earn(
    address validator,
    uint256 earned
  ) external nonReentrant onlyRouter

Modifiers:

Modifier

nonReentrant

onlyRouter

Args:

Arg Type Description

validator address Miner address

earned uint256 Miner earned share.

accumulate

Add reward to fee pool.

Declaration:

  function accumulate(
    bool isTxFee
  ) external nonReentrant onlyRouter

Modifiers:

Modifier

nonReentrant

onlyRouter

Args:

Arg Type Description

isTxFee bool Is transaction fee

onAssignBlockReward

Assign block reward callback, it only can be called by router.

Declaration:

  function onAssignBlockReward(
  ) external nonReentrant onlyRouter

Modifiers:

Modifier

nonReentrant

onlyRouter

FeeToken
Previous

ValidatorRewardPool
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/system-contracts/feetoken
https://docs.rei.network/developer/system-contracts/validatorrewardpool
https://docs.rei.network/


ValidatorRewardPool

Contents

Globals

Var Type

balanceOf mapping(address => uint256)

Functions

constructor

No description

Declaration:

  function constructor(
  ) public Only

Modifiers:

Modifier

Only

claim

Claim validator reward.

Declaration:

  function claim(
    address validator,
    uint256 amount
  ) external nonReentrant onlyStakeManager

Modifiers:

Modifier

nonReentrant

onlyStakeManager

Args:

Arg Type Description

validator address Validator address.

amount uint256 Claim amount.

reward

Reward validator.

Declaration:

  function reward(
    address validator
  ) external nonReentrant onlyStakeManager

Modifiers:

Modifier

nonReentrant

onlyStakeManager

Args:

Arg Type Description

validator address Validator address.

slash

Slash validator and transfer the slashed amount to address(0) .

Declaration:

  function slash(
    address validator,
    uint8 factor
  ) external nonReentrant onlyStakeManager returns (uint256 amount)

Modifiers:

Modifier

nonReentrant

onlyStakeManager

Args:

Arg Type Description

validator address Validator address.

factor uint8 Slash factor.

FeePool
Previous

FreeFee
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/system-contracts/feepool
https://docs.rei.network/developer/system-contracts/freefee
https://docs.rei.network/


FreeFee

Contents

Globals

Var Type

userUsage
mapping(address => struct 
IFreeFee.UsageInfo)

totalUsage uint256

globalTimestamp uint256

Functions

constructor

No description

Declaration:

  function constructor(
  ) public Only

Modifiers:

Modifier

Only

estimateTotalLeft

Estimate total daily free fee left.

Declaration:

  function estimateTotalLeft(
    uint256 timestamp
  ) public returns (uint256 totalLeft)

Modifiers: No modifiers

Args:

Arg Type Description

timestamp uint256 Current timestamp

estimateUsage

Estimate user daily free fee usage.

Declaration:

  function estimateUsage(
    struct IFreeFee.UsageInfo ui,
    uint256 timestamp
  ) public returns (uint256)

Modifiers: No modifiers

Args:

Arg Type Description

ui struct IFreeFee.UsageInfo User usage information

timestamp uint256 Current timestamp

estimateFreeFee

Estimate user daily free fee left.

Declaration:

  function estimateFreeFee(
    address user,
    uint256 timestamp
  ) external returns (uint256)

Modifiers: No modifiers

Args:

Arg Type Description

user address User address

timestamp uint256 Current timestamp

consume

Consume user usage, it only can be called by router.

Declaration:

  function consume(
    address user,
    uint256 usage
  ) external nonReentrant onlyRouter

Modifiers:

Modifier

nonReentrant

onlyRouter

Args:

Arg Type Description

user address Transaction sender

usage uint256 Usage amount

onAfterBlock

After block callback, it only can be called by router, it will update globalTimestamp  if the time 
interval exceeds freeFeeRecoverInterval .

Declaration:

  function onAfterBlock(
  ) external nonReentrant onlyRouter

Modifiers:

Modifier

nonReentrant

onlyRouter

ValidatorRewardPool
Previous

UnstakePool
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/system-contracts/validatorrewardpool
https://docs.rei.network/developer/system-contracts/unstakepool
https://docs.rei.network/


UnstakePool

Contents

Globals

Var Type

balanceOf mapping(address => uint256)

totalSupplyOf mapping(address => uint256)

Functions

constructor

No description

Declaration:

  function constructor(
  ) public Only

Modifiers:

Modifier

Only

deposit

Deposit REI to UnstakePool , only can be called by stake manager, this will be called when user 
starts unstake.

Declaration:

  function deposit(
    address validator
  ) external nonReentrant onlyStakeManager returns (uint256 shares)

Modifiers:

Modifier

nonReentrant

onlyStakeManager

Args:

Arg Type Description

validator address Validator address.

withdraw

Withdraw REI and burn shares, only can be called by stake manager, this will be called when 
unstake timeout.

Declaration:

  function withdraw(
    address validator,
    uint256 shares,
    address payable to
  ) external nonReentrant onlyStakeManager returns (uint256 amount)

Modifiers:

Modifier

nonReentrant

onlyStakeManager

Args:

Arg Type Description

validator address Validator address.

shares uint256 Number of shares.

to address payable
REI receiver address(this 
value is set when the user 
starts unstake).

slash

Slash validator and transfer the slashed amount to address(0) .

Declaration:

  function slash(
    address validator,
    uint8 factor
  ) external nonReentrant onlyStakeManager returns (uint256 amount)

Modifiers:

Modifier

nonReentrant

onlyStakeManager

Args:

Arg Type Description

validator address Validator address.

factor uint8 Slash factor.

FreeFee
Previous

FreeFeeToken
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/system-contracts/freefee
https://docs.rei.network/developer/system-contracts/freefeetoken
https://docs.rei.network/


FreeFeeToken

Contents

Functions

constructor

No description

Declaration:

  function constructor(
  ) public AbstractToken

Modifiers:

Modifier

AbstractToken

balanceOf

No description

Declaration:

  function balanceOf(
  ) public returns (uint256)

Modifiers: No modifiers

UnstakePool
Previous

Config
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/system-contracts/unstakepool
https://docs.rei.network/developer/system-contracts/config
https://docs.rei.network/


Config

Config contract for mainnet. In REI Network, system contracts can be updated through hard forks, 
and DAO logic will be added in the futhure.

Contents

Functions

stakeManager

No description

Declaration:

  function stakeManager(
  ) external returns (address)

Modifiers: No modifiers

systemCaller

No description

Declaration:

  function systemCaller(
  ) external returns (address)

Modifiers: No modifiers

unstakePool

No description

Declaration:

  function unstakePool(
  ) external returns (address)

Modifiers: No modifiers

validatorRewardPool

No description

Declaration:

  function validatorRewardPool(
  ) external returns (address)

Modifiers: No modifiers

fee

No description

Declaration:

  function fee(
  ) external returns (address)

Modifiers: No modifiers

freeFee

No description

Declaration:

  function freeFee(
  ) external returns (address)

Modifiers: No modifiers

feePool

No description

Declaration:

  function feePool(
  ) external returns (address)

Modifiers: No modifiers

router

No description

Declaration:

  function router(
  ) external returns (address)

Modifiers: No modifiers

contractFee

No description

Declaration:

  function contractFee(
  ) external returns (address)

Modifiers: No modifiers

unstakeDelay

No description

Declaration:

  function unstakeDelay(
  ) external returns (uint256)

Modifiers: No modifiers

withdrawDelay

No description

Declaration:

  function withdrawDelay(
  ) external returns (uint256)

Modifiers: No modifiers

dailyFee

No description

Declaration:

  function dailyFee(
  ) external returns (uint256)

Modifiers: No modifiers

dailyFreeFee

No description

Declaration:

  function dailyFreeFee(
  ) external returns (uint256)

Modifiers: No modifiers

userFreeFeeLimit

No description

Declaration:

  function userFreeFeeLimit(
  ) external returns (uint256)

Modifiers: No modifiers

feeRecoverInterval

No description

Declaration:

  function feeRecoverInterval(
  ) external returns (uint256)

Modifiers: No modifiers

freeFeeRecoverInterval

No description

Declaration:

  function freeFeeRecoverInterval(
  ) external returns (uint256)

Modifiers: No modifiers

feePoolLiquidateInterval

No description

Declaration:

  function feePoolLiquidateInterval(
  ) external returns (uint256)

Modifiers: No modifiers

minIndexVotingPower

No description

Declaration:

  function minIndexVotingPower(
  ) external returns (uint256)

Modifiers: No modifiers

setCommissionRateInterval

No description

Declaration:

  function setCommissionRateInterval(
  ) external returns (uint256)

Modifiers: No modifiers

minerRewardFactor

No description

Declaration:

  function minerRewardFactor(
  ) external returns (uint8)

Modifiers: No modifiers

getFactorByReason

No description

Declaration:

  function getFactorByReason(
  ) external returns (uint8)

Modifiers: No modifiers

FreeFeeToken
Previous

Guides
Next - Developer

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/system-contracts/freefeetoken
https://docs.rei.network/developer/guides
https://docs.rei.network/


Using The Graph

Introduction

Indexing an application provides more efficient access to its organizational information. For 
example, search engines index the entire Internet, and you can search for information more easily 
through it

Indexing blockchain data is really, really hard.Blockchain properties like finality, chain 
reorganizations, or uncled blocks complicate this process further, and make it not just time 
consuming but conceptually hard to retrieve correct query results from blockchain data.

 In addition, developers can build APIs (indexed "subgraphs") can used to query data specific to a 
set of smart contracts. Data is fetched with a standard GraphQL API. You can visit The Graph's 
documentation site to read more .about The Graph protocol

Due to the support of Ethereum tracing modules in REI network, The Graph is capable of indexing 
blockchain data in REI. This guide takes you through the creation of a simple subgraph for a Bank 
contract on testnet. This guide can be adapted for mainnet.

Guides
Developer - Previous

Using The Graph on REI Network
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://thegraph.com/docs/about/introduction#what-the-graph-is
https://docs.rei.network/developer/guides
https://docs.rei.network/developer/guides/using-the-graph/using-the-graph-on-rei-network
https://docs.rei.network/


Using The Graph on REI Network

Checking Prerequisites

To use Graph on REI, you should run a local Graph Node against REI testnet and point your 
Subgraph to it. From the link below you can get information on how to run a nodeThe Bank 
Contract

Running a Graph Node on REI Network

For this example, a simple Bank contract will be used. You can find the Solidity file  in the 

 repositoryREIBank-subgraph

The contract contains a bank where users can deposit rei for themselves, or transfer their rei in 
bank to others. They can also withdraw their rei from bank.

The main functions of the contract are the following:

deposit() — function to send rei to the contract, then you can get your own proof of deposit in 
the bank

transfer(address to, uint256 amount) — transfer your rei in bank to others 

whithdraw(unit256 amount) — redeem your money based on certificates of deposit 

Events of the Bank Contract

The Graph uses the events emitted by the contract to index data. The bank contract emits three 
events:

Deposit(address indexed from, uint256 indexed amount) — in the deposit function. It provides 
information related to deposit entry, including account address and deposit rei amount

Transfer(address indexed from, address indexed to, uint256 indexed amount) — in the 
transfer function. It provides information on transaction between accounts in the bank, 
including accounts address and rei amount

Withdraw(address indexed from, uint256 indexed amount) — in the withdraw function. It 
provides information related to withdraw entry, including account address and withdraw rei 
amount 

Creating a Subgraph

This section goes through the process of creating a Subgraph. For the Bank Subgraph, a 
 was prepared with everything you need to help you get started. The repository also 

includes the Bank contract, as well as a Hardhat configuration file and deployment script. If you are 
not familiar with it, you can check our  to learn about the configuration 
file and how to deploy a contract using Hardhat.

GitHub 
repository

Hardhat integration guide

To get started, first clone the repository and install the dependencies

git clone https://github.com/bijianing97/REIBank-subgraph && cd REIBank-subgraph
npm i

Now, you can create the TypeScript types for the Graph by running

npm run codegen

The types will in the src/types/

Creating the types requires you to have the ABI files specified in the subgraph.yaml  
file. This sample repository has the file already, but this is usually obtained after 
compiling the contract.

You also can use following command to specify the generated directory

npx graph codegen --output-dir xxxx

For this example, the contract was deployed to 
0x1Ec9238A1c0adca222251e1f607a77237E8686a3 . The README.md  file in the project has the 
steps necessary to compile and deploy the contract if required.

Subgraphs Core Structure

In general terms, Subgraphs define the data that The Graph will index from the blockchain and the 
way it is stored. The subgraph definition consists of a few files:

subgraph.yaml — is a YAML file that contains the ​Subgraph's manifest

schema.graphql — a GraphQL schema that defines what data is stored for your subgraph, and 
how to query it via GraphQL

AssemblyScript mappings —  code that translates from the event data to the 
entities defined in your schema (e.g. bank.ts  in this tutorial)

AssemblyScript

Schema.graphql

The schema for your subgraph is in the file schema.graphql . GraphQL schemas are defined 
using the GraphQL interface definition language. If you've never written a GraphQL schema, it is 
recommended that you check out this primer on the GraphQL type system. Reference 
documentation for GraphQL schemas can be found in the  section.For this example, 
here one entry is defined for bank:

GraphQL API

Account — Record the users in bank, about their account address and balance

So the schema.graphql  should look like the following snippet:

type Account @entity {
  id: ID!
  balance: BigInt!
  operateTime: BigInt!
}

Subgraph Manifest

The subgraph manifest subgraph.yaml  defines the smart contracts your subgraph indexes, 
which events from these contracts to pay attention to, and how to map event data to entities that 
Graph Node stores and allows to query. The full specification for subgraph manifests can be found 

.here

For the example subgraph, subgraph.yaml  is:

Some of the most important parameters in the subgraph.yaml  file are:

repository — Github repository of the subgraph

schema/file — location of the schema.graphql  file

dataSources/name — the name of the Subgraph

network — refers to the network name. This value must be set to the local graph node name 
which you setted

dataSources/source/address — the address of the contract

dataSources/source/abi — refers to where the interface of the contract is stored inside the 
types  folder created with the codegen  command

dataSources/source/startBlock — refers to the start block from which the indexing will start

dataSources/mapping/file — refers to the location of the mapping file, eg bank.ts

dataSources/mapping/entities — definitions of the entities in the schema.graphql  file

dataSources/abis/name — where the interface of the contract is stored inside the 
types/dataSources/name

dataSources/abis/file — refers to the location where the .json  file with the contract's ABI is 
stored

dataSources/eventHandlers — no value needs to be defined here, but this section refers to all 
the events that The Graph will index

dataSources/eventHandlers/event — refers to the structure of an event to be tracked inside 
the contract. You need to provide the event name and its type of variables

dataSources/eventHandlers/handler — refers to the name of the function inside the 
mapping.ts  file which handles the event data

In short, the subgraph.yaml  should look like the following snippet:

specVersion: 0.0.2
schema:
  file: ./schema.graphql
dataSources:
  - kind: ethereum
    name: Bank
    network: reidev
    source:
      address: "0x1Ec9238A1c0adca222251e1f607a77237E8686a3"
      abi: Bank
    mapping:
      kind: ethereum/events
      apiVersion: 0.0.6
      language: wasm/assemblyscript
      entities:
        - Account
      abis:
        - name: Bank
          file: ./abis/Bank.json
      eventHandlers:
        - event: Deposit(indexed address,indexed uint256)
          handler: handleDeposit
        - event: Transfer(indexed address,indexed address,indexed uint256)
          handler: handleTransfer
        - event: Withdraw(indexed address,indexed uint256)
          handler: handleWithdraw
      file: ./src/Bank.ts

Mappings

The mappings transform the Ethereum data your mappings are sourcing into entities defined in 
your schema. Mappings are written in a subset of  called  which can be 
compiled to WASM ( ). AssemblyScript is stricter than normal TypeScript, yet provides 
a familiar syntax.

TypeScript AssemblyScript
WebAssembly

The mapping file used for the Bank example can be found in the project:

export function handleDeposit(event: Deposit): void {
    const address = event.params.from
    const amount = event.params.amount
    const id = `${address.toHex()}`
    let instance = Account.load(id)
    if (!instance) {
        instance = new Account(id)
        instance.balance = amount
        instance.operateTime = BigInt.fromU32(1)
    } else {
        instance.balance = instance.balance.plus(amount)
        instance.operateTime = instance.operateTime.plus(BigInt.fromU32(1))
    }
    instance.save()
}

Deploying a Subgraph

With your local Graph Node, you can create your Subgraph executing the following code:

npx graph create <username>/<subgraph-name> --node <graph-node>

Where:

username — refers to the username related to the Subgraph being created

subgraph-name — the Subgraph name

graph-node — refers to the URL of the hosted service to use. Typically, for a local Graph Node 
is http://127.0.0.1:8020

Once created, you can deploy your Subgraph by running the following command with the same 
parameters as before:

npx graph deploy <username>/<subgraph-name> \
--ipfs <ipfs-url> \
--node <graph-node> \

Where:

username — refers to the username used when creating the Subgraph

subraph-name — refers to the Subgraph name defined when creating the Subgraph

ipfs-url — refers to the URL for IPFS. For your local Graph Node, the default value is 
http://localhost:5001

graph-node — refers to the URL of the hosted service to use. For your local Graph Node, the 
default value is http://localhost:8020

The logs for the sucessful deployed should look like:

DApps can now use the Subgraph endpoints to fetch the data indexed by The Graph protocol.

If there has existed call record for contract, you can call the Graph node to get the data, just like 
this:

curl -X POST -d '{ "query": "{accounts{id,balance,operateTime}}"}' http://localhost:8000
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   366  100   318  100    48  26500   4000 --:--:-- --:--:-- --:--:-- 33272
{
   "data" : {
      "accounts" : [
         {
            "balance" : "199999999999999922243",
            "id" : "0x809fae291f79c9953577ee9007342cff84014b1c",
            "operateTime" : "3"
         },
         {
            "balance" : "15000000000000000000",
            "id" : "0x898b84b6a6430eed36a6cfc14a1cb7da326c91c4",
            "operateTime" : "1"
         },
         {
            "balance" : "77777",
            "id" : "0x8dd89ed567ac41866babddeb8931af2a695106af",
            "operateTime" : "0"
         }
      ]
   }
}

References

The Graph Docs
The Graph Docs

Using The Graph
Previous

Running a Graph Node on REI Network
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/guides/using-the-graph/running-a-graph-node-on-rei-network
https://github.com/REI-Network/rei-subgraph-example-bank
https://github.com/REI-Network/rei-subgraph-example-bank
https://docs.moonbeam.network/builders/interact/hardhat/
https://thegraph.com/docs/en/developer/create-subgraph-hosted/#the-subgraph-manifest
https://github.com/AssemblyScript/assemblyscript
https://thegraph.com/docs/en/developer/graphql-api/
https://github.com/graphprotocol/graph-node/blob/master/docs/subgraph-manifest.md
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://github.com/AssemblyScript/assemblyscript/wiki
https://webassembly.org/
https://thegraph.com/docs/en/developer/define-subgraph-hosted
https://docs.rei.network/developer/guides/using-the-graph
https://docs.rei.network/developer/guides/using-the-graph/running-a-graph-node-on-rei-network
https://docs.rei.network/


Running a Graph Node on REI
Network
This document describes how set up a local graph node for REI network

Introduction

The Graph is a decentralized protocol for indexing and querying data from blockchains, starting 
with Ethereum. It makes it possible to query data that is difficult to query directly. Graph nodes 
which source events from blockchain to deterministically update a data store that can be queried 
via the GraphQL endpoint

There are two ways to  launch a Graph Node: you can use Docker to run related images, or you can 
compile their . The steps described in this document will only be run through docker, 
because it is more convenient, and you can launch a Graph Node very quickly.

Source code

The steps described in this guide have been tested in both Ubuntu 20.04-based and 
MacOs environments, and they will need to be adapted accordingly for other systems.

Prerequisites

Before you start, you need some pre-environment configuration on your system:

​Docker

​Docker Compose

In this guide, you will learn how to run a Graph node against a node with the REI testnet node.This 
guide can also be adapted for mainnet.

Running a Graph Node

The first step is to clone the :Graph Node repository

git clone https://github.com/graphprotocol/graph-node/
cd graph-node/docker

Then execute the setup.sh  file, this file will pull all the necessary Docker images and write the 
necessary information into the docker-compose.yml  file.

./setup.sh

The log information returned looks like:

When everything is ready, you should to revise the "Ethereum environment" inside the docker-
compose.yml  file, so that it points to the endpoint of the node you are running this Graph Node 
against. Note that the setup.sh  file detects the Host IP  and writes its value, so you'll need to 
modify it accordingly.

The entire docker-compose.yml  file should look something similar to:

version: '3'
services:
  graph-node:
    image: graphprotocol/graph-node
    ports:
      - '8000:8000'
      - '8001:8001'
      - '8020:8020'
      - '8030:8030'
      - '8040:8040'
    depends_on:
      - ipfs
      - postgres
    environment:
      postgres_host: postgres
      postgres_user: graph-node
      postgres_pass: let-me-in
      postgres_db: graph-node
      ipfs: 'ipfs:5001'
      ethereum: 'reitest:http://127.0.0.1:3030'
      RUST_LOG: info
  ipfs:
    image: ipfs/go-ipfs:v0.4.23
    ports:
      - '5001:5001'
    volumes:
      - ./data/ipfs:/data/ipfs
  postgres:
    image: postgres
    ports:
      - '5432:5432'
    command: ["postgres", "-cshared_preload_libraries=pg_stat_statements"]
    environment:
      POSTGRES_USER: graph-node
      POSTGRES_PASSWORD: let-me-in
      POSTGRES_DB: graph-node
    volumes:
      - ./data/postgres:/var/lib/postgresql/data

Finally, you can start with the following command：

docker-compose up

Wait for a while and you will see the log with the latest block synced：

As you can see, you have a Graph Node running against the REI TestNet. This example is also 
suitable for mainnet

References

The Graph Docs
The Graph Docs

Using The Graph on REI Network
Previous

Using Gnosis Safe
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://github.com/graphprotocol/graph-node
https://docs.docker.com/get-docker/
https://docs.docker.com/compose/install/
https://github.com/graphprotocol/graph-node/
https://thegraph.com/docs/en/developer/quick-start
https://docs.rei.network/developer/guides/using-the-graph/using-the-graph-on-rei-network
https://docs.rei.network/developer/guides/using-gnosis-safe
https://docs.rei.network/


Using Gnosis Safe
Gnosis safe wallet is now live: https://gnosis.rei.network

Introduction
Gnosis Safe is the most trusted platform to manage digital assets for Ethereum compatible chains 
providing bellow features.

Multi-signature

Fully customize how you manage your company crypto assets, with the option to require a 
predefined number of signatures to confirm transactions. Require multiple team members to 
confirm every transaction in order to execute it, which helps prevent unauthorized access to 
company crypto.

Assets Management

Gnosis Safe supports Native Token(REI), ERC20 (Tokens) and ERC721 (NFTs). You can also see the 
fiat values of your assets.

Usages
You can setup a Safe at  in . https://gnosis.rei.network 60 seconds

You specify the number of owners and their owner account addresses. Compatible account 
addresses include hardware wallets, Metamask, Authereum, WalletConnect enabled wallets, and 
others. You can see the asset overview and can make transactions such as custom transactions 
for direct smart contract interaction. ENS names are supported.

Running a Graph Node on REI Network
Previous

Exchange Integration
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://gnosis.rei.network/
https://twitter.com/econoar/status/1194731123340763136?s=20
https://docs.rei.network/developer/guides/using-the-graph/running-a-graph-node-on-rei-network
https://docs.rei.network/developer/guides/exchange-integration
https://docs.rei.network/


Exchange Integration

REI Network is compatible with all data structures and RPC interfaces of Ethereum, so 
there is almost no difference between access to REI Network and Ethereum blockchain. 
The only difference is that in the finality of the block, there is no block reorganization in 
REI Network, the block will never revert as it's generated, which can simplify the process 
of dealing with transaction status

API Reference

Using Gnosis Safe
Previous

What is REI DAO?
Next - REI DAO

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/api-reference
https://docs.rei.network/developer/guides/using-gnosis-safe
https://docs.rei.network/rei-dao/what-is-rei-dao
https://docs.rei.network/


What is REI DAO?

REI DAO is a decentralized governance community, a manifestation of the REI Network blockchain 
spirit of being more decentralized, open and transparent in its governance model, and returning  
governance to each $REI holder. 

The organization is composed of all $REI  token holders, community members and ecological 
stakeholders.

Vision
REI Network, as the on-chain infrastructure, will give the community more  management authority. 

REI Network+DAO is not limited to governance, but will also be reflected in the return of the 
Foundation's decision-making authority to the community. For example, the foundation will only 
be responsible for setting the rules for Grants, and it will be up to the $REI  holders to decide 
whether new projects applying for REI Network Grants should be approved and how much to 
award.

REI Network will create a positive interaction with $REI holders. In the traditional Web2 platform, 
the value of network effect growth is captured by the platform. 

As a gateway to team collaboration and productive relationship innovation (Web 3.0), the network 
effect of DAO is stronger than centralized Web2, and its value is distributed by the platform to 
community members based on the level of contribution, thus further enhancing the impact of the 
network ecosystem and the infrastructure needed for ecological building. 

A more robust infrastructure will attract more members and provide stronger value support for 
tokens on the REI network.

What is  Foundation and how does it relate to REI DAO?

The mission of the Foundation is to plan the development direction of the REI network 
accordingly and ensure that REI DAO can survive as a fully decentralized organization. It 
ensures the stable operation of the chain and the stable development of the early ecology, 
thus slowly transitioning to a collaborative governance model and eventually realizing a 
decentralized governance model for the REI network. 

The Foundation has hired core personnel to develop a strategy to achieve the core roadmap, 
and according to the Foundation's plan, decentralized governance is a key goal for the future 
and is currently underway. While the Foundation is part of the REI DAO community, the 
Foundation does not hold a privileged position in the community and the REI network itself is 
governed through the voting rights of $REI  holders.

Can foundations vote in REI DAO governance?

The Foundation will gradually transfer control of the remaining 250 million $REI  Eco-
Development Fund to REI DAO, so the Foundation does not control or participate in REI DAO 
governance voting.

What is the legal structure of the Foundation?

Non-profit organization registered in Singapore

Exchange Integration
Previous

Background
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/guides/exchange-integration
https://docs.rei.network/rei-dao/what-is-rei-dao/background
https://docs.rei.network/


Background

Why REI Network need DAO?
DAO is a kind of spontaneous governance method by the community. Since 2019, DAOs with 
different functions have gradually emerged. Today, DAO is constantly exploring its utility and value 
in the realization of diversified purposes, multi-scenario applications, and ecosystems. DAO is the 
basic entry and interpretation in the Web 3.0 era, and it is also a concrete scene of a decentralized 
and discrete governance model based on blockchain. 

The era of Web 3.0 is not only a necessary step for REI Network to transform itself as a technology 
carrier, but also as a social experiment in the crypto world itself needs to take a step forward.

Why can REI Network implement DAO?
The REI Network originated from the community construction of GXChain. It has been an important 
part of the public chain ecosystem since the establishment of GXChain, and it is also one of the 
largest and most active blockchain communities in the world. It includes core protocol developers, 
crypto-economic researchers, cypherpunks, node operators, $REI holders, application 
developers, and community users. 

With the continuous precipitation and development over the years, the total coverage of the 
population has reached hundreds of thousands of people. The REI Network community currently 
covers more than 20 countries around the world, and the international community includes areas 
that are extremely popular in the crypto economy, such as South Korea, India, Spain, Russia, Africa, 
Europe, and Southeast Asian countries. 

In addition, the REI Network community also covers the aggregation community including the REI 
super node ecosystem, which is also one of the most active blockchain enthusiasts in the crypto 
world. The REI Network community has rich user portraits, super nodes, partners, ecosystem 
projects, and endogenous community KOLs. 

At the same time, carrying the origin of REI Network community governance, GXChain will continue 
to build a larger and more differentiated crypto community in the future, deepening the consensus 
of REI Network and inspiring strong community governance and ecosystem construction ability. 

The above objective conditions give us reason to believe that the conditions for realizing 
DAO autonomy on an EVM-compatible public chain with a broad community base and 
vitality are ripe, and the era of REI DAO has come.

What can DAO bring to REI Network?
Let the community vote on how to deploy their funds to support builders and developers for their 
own development. Community orientation inspires collective intelligence and empowers DAO to 
make decentralized decision-making capabilities that may outperform a single decision-maker. 

DAO is a form of management organization with specific implementation methods for promoting 
community development. Compared with the community autonomy and proposal mechanism in the 
GXChain era, DAO is a more standardized, decentralized, and diversified management form, which 
can not only objectively and effectively reflect the actual needs of the community, but also the 
implementation plan that is compatible with the opinions of various sectors.

What is REI DAO?
REI DAO - Previous

Management content of REI DAO
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/rei-dao/what-is-rei-dao
https://docs.rei.network/rei-dao/what-is-rei-dao/management-content-of-rei-dao
https://docs.rei.network/


Management content of REI DAO

REIcosystem & Marketing
As mentioned in "#Governance Proposal: From GXChain 2.0 to REI Network", the unlocked part of 
the team is upgraded to an "Ecosystem Grants". The team took out all the unlocked 25 million 
$GXC (250 million $REI ) as Ecosystem Grants, and the specific distribution is as follows

50 million $REI  for marketing

150 million $REI  is used to incentivize developers and the ecosystem.

50 million $REI  for node rewards

In the above three parts, REIcosystem & Marketing will involve the marketing promotion of the 
team and the cost of ecosystem construction, including but not limited to the following parts:

Grants distribution: Grants are designed to support projects built on the REI Network to 
promote the improvement of the REI Network ecosystem. REI Network will specifically evaluate 
Grants based on the project’s influence, development prospects, team experience, and 
ecosystem relevance to decide the quantity of distribution.

Market promotion: For the ever-changing REI Network, it is necessary to maintain a high 
degree of industry acumen at all times. In the market and cooperation, transaction activity, 
team building, and content creation, the market recognition and global popularity of REI 
Network will be comprehensively promoted. Value return and other aspects ensure an efficient 
value transfer model.

Developer incentives: At the developer level, more incentives from community developers 
need to be given to promote their output, including the development of tool products, technical 
improvements, positive feedback, etc.

Apart from the specific payment method, which needs to be realized by REI DAO, all the expenses 
for marketing, operation, and ecosystem development are managed and spent in the way of DAO, 
and the distribution of node rewards is a linear process.

Advantage orientation of DAO governance

Governance based on REI DAO will bring the following changes:

Comprehensive and transparent community management.

The management method of REI DAO is all-around and transparent. Under the management of 
DAO, the expenditure of Marketing grants and REIcosystem / dev-grants will be carried out on a 
daily basis under the supervision and management of the community. 

Distributed opinion collection mode.

The proposal submission process is different from the previous node governance method and the 
management method of the proposal proposed by the council. Under DAO governance, as long as 
a certain amount of $REI  holding qualifications are met, a governance proposal can be put 
forward, so governance demands expression under these conditions will become flattered and 
distributed. On this basis, community opinions about future directions including protocol 
deployment, grants distribution, market budget allocation, and evolution route from REI DAO can be 
more efficiently and directly proposed in the form of "proposals".

Realization of REI Network governance value.

Decentralized governance through DAO encourages open participation in the ecosystem 
development of the REI Network. By holding governance tokens, participants not only have the 
opportunity to share the rewards associated with the marketization of REI Network, but also have 
the incentive to define where the system will go, and the economic and social impact it will have.

Background
Previous

How the REI DAO is implemented？
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/rei-dao/what-is-rei-dao/background
https://docs.rei.network/rei-dao/what-is-rei-dao/how-the-rei-dao-is-implemented
https://docs.rei.network/


How the REI DAO is implemented？

Multisig wallet: security and openness
The team uses the Genosis multisig wallet to ensure the centralization and transparency of the 
DAO. The above-mentioned funds will be implemented through the technical implementation of 
multi-signature wallets to realize the specific expenditure of funds under the jurisdiction of DAO. By 
using the Genosis multisig wallet, there will be multiple people jointly managing the funds and will 
satisfy both security and decentralization features.

75% principle:
The use of funds requires a multi-sig wallet, which is suitable for the decision-making scenario of 
the muti-people or institution. REI Network decided to use the multisig wallet management to 
implement distributed management of the overall capital flow. It minimizes the risk of asset loss 
when a single private key is lost, and the use of this part of the funds must be approved by 3/4 of 
the following four addresses to take effect.

The specific addresses with administrative rights are as follows:

0x302...9e6D

0x8cD...E092

0xA12...FFe2

0x524...4782

Management content of REI DAO
Previous

How REI DAO works？
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/rei-dao/what-is-rei-dao/management-content-of-rei-dao
https://docs.rei.network/rei-dao/what-is-rei-dao/how-rei-dao-works
https://docs.rei.network/


How REI DAO works？

Proposal Generation

1.Community proposals generate votes: 

Required qualifications: REI Network governance 50,000 $REI , or collects an equal number of 
proposal support.

2.Proposals produced by the Council members:

2.1 REI DAO Council

The Council is a community-based organization specially established to promote the prosperity of 
on-chain governance. In this organization, in order to more efficiently promote the actual 
governance utility of DAO, the first batch of REI DAO Council members will be invited by the team 
and will be generated within 10 working days.

2.2 Proposal power of Council members

Council members can directly put forward proposals.

The first step in participating in governance is to initiate any discussion that benefits the REI 
network and build influence in the community to get more people to agree with your proposal. 

Then get in touch with Council members to discuss your proposal on the Community Call and 
Twitter Spaces. After making a formal proposal, it will be upgraded to the voting session.

Proposal language

We try to keep the discussion of the content of the proposal in English. While we 
welcome discussions on REI Network development in other languages, such as Korean, 
French, Chinese, Spanish, etc. (eg, in REI Forum), English is currently preferred due to 
the consistency of discussion.

Types of proposals

REI Network operating mechanism proposal

E.g:

Modify the dynamic parameters of the blockchain, such as block size, block interval, and other 
smart contract creation and call rates, and modify the dynamic parameters of the blockchain, 
such as block size, block interval, etc.;

The block reward of trust nodes, the number of trust nodes and the number of active council 
members, etc.;

Transfer, issuance of assets, and various transaction fees;

Smart contract creation and call rates, etc.

Adjustment at the strategic level of REI Network: change the project name, adjust the technical 
structure, adjust the roadmap, etc.

Fund application proposals

Including ecosystem construction, team building, developer incentives, REI Network marketing, 
public welfare donations, etc.

Applying for proposals with different amounts will involve different voting approval rates and 
voting durations.

Proposal voting process

Voting duration:

Once the proposed proposal meets the above requirements, the REI DAO begins a 7-day voting 
period. Ongoing discussions are conducted in the REI DAO Forum. If the proposal is successfully 
passed, there will be a two-day lock period before the proposal code is executed, and then the 
relevant proposal content will be finally executed.

Turnout requirements:

In order to get the vote passed, it is generally required that at least a certain amount of $REI 
(2%-10%) must vote in favor. The purpose of this quorum is to ensure sufficient legitimacy and 
actual participation;

If the following situations are involved, the minimum approval rate needs to be increased to 10%

The content of the proposal involves the evolution of the major strategic level of the project: for 
example: changing the project name, adjusting the technical structure, splitting tokens, 
significantly adjusting the evolution route of the roadmap, etc.

The total amount of REI tokens requested to be used must be more than 5% of the total 
number of tokens.

Initial principle: 

The content mentioned in this part is the initial setting of the on-chain governance section, and the 
specific setting of this part is also within the scope of the operating mechanism proposal.

Good to know : The following content statement is an initial value setting and the turnout 
requirement can be modified in the future through community governance.

REI Network operating mechanism proposal Minimum 
approval rate 
required for 
proposal

Voting duration

On-chain parameter modification 5% 7 DAYS

Transfer, issuance of assets, and trading fees 5% 7 DAYS

Staking and quota adjustment 5% 7 DAYS

REI Network strategic adjustment 10% 10 DAYS

Grants/Marketing application type proposal Minimum 
approval rate 
required for 
proposal

Voting duration

Under $100,000 2% 3 DAYS

$100,000-200,000 3% 5 DAYS

$200,000-400,000 3% 7 DAYS

Over $500,000 5% 7 DAYS

More than 5% of the total number of tokens 10% 10 DAYS

Principles of Proposal Implementation

Orderly execution of proposals:

When multiple on-chain proposals or tasks need to be executed, the executor should take into 
account the enthusiasm of REI Network development and the limited timeliness of the proposal 
execution content to execute or approve the corresponding funds

Not against the fundamental interests of REI Network:

All on-chain proposals should be for the purpose of actively promoting the development of REI 
Network. Under this premise, all proposals will be considered invalid if there is the malicious use of 
corresponding funds or any part that is not related to the development of REI Network.

Force Majeure:

In the process of proposal, voting, and implementation, if force majeure factors arise in the location 
of the participants, such as war, natural disaster, political control, etc., the proposal link should be 
postponed or carried out on another day as the case may be.

Do not violate local laws and public order and good customs:

In the use of REI Network funds, it should abide by local laws and the public order and social ethics 
of the place of use, so as to avoid unnecessary conflicts and brand losses.

Security mechanisms implemented by REI DAO:

a. The governance security mechanism mitigates or eliminates the adverse impact of harmful 
proposals on the REI network or the REI DAO community by setting a time delay before the 
proposal is formally implemented.

b. Before new code is deployed to REI Network, there is a 24-hour publicity period, during which all 
community members can review the code to confirm the security of REI Network. If the code is 
reviewed and deemed to have any adverse effect on REI Network, the deployment will be canceled 
immediately.

How the REI DAO is implemented？
Previous

Governance
Next - REI DAO

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/rei-dao/what-is-rei-dao/how-the-rei-dao-is-implemented
https://docs.rei.network/rei-dao/governance
https://docs.rei.network/


About Governance

Introduction
Governance is the core proposition of a chain, and a chain with decentralized governance will have 
the longest life.

REI Network introduces both people and code into the complex governance system of the 
public chain through the governance method of voting and democratic consultation and 
discussion, thus ensuring the effectiveness of governance while achieving decentralized 
governance.

Every $REI  holder has the right to participate in the decentralized governance, and the 
operation and development direction of the public chain ecosystem will be decided by all 
$REI  holders through democratic consultation and voting.

Governance Principles

REI Network will follow the principles of scientific governance, and will be governed through 
democratic consultation and discussion and voting, gradually transitioning to fully decentralized 
management.

Governance
REI DAO - Previous

Governance Process
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/rei-dao/governance
https://docs.rei.network/rei-dao/governance/governance-process
https://docs.rei.network/


Governance Process

Step1: Community consensus
The first step in participating in governance is to initiate any discussion that benefits the REI 
Network and to build influence in the community so that more people agree with your proposal.

Join the REI Network (GXChain) Discord Server!
Discord

Discord

Step2: Consensus check
You will need to create a forum proposal thread in the Consensus Check section while adhering to 
the forum rules, use your influence to let more community members know about your idea, create a 
poll in the proposal feedback, and receive timely community feedback to get the final proposal.

Consensus Check
REI Network

Forum

Step3: Proposal review
Proposals will be reviewed by the REI DAO Council.

What is the REI DAO Council?

The Council is composed of 21 deliberators, and the first members will be invited from nodes, 
community members, pioneers, and project parties who have contributed to REI Network before, 
and later will be decided by the Council itself. The discussion process will be moderated and 
recorded by the council members in three sessions: motion presentation, motion review, and 
motion vote.

Introducing the Governance Council
REI Network

Details 

Step4: Voting 
Provide voting tools and multiple voting strategies for surveying community sentiment on specific 
proposals or parameters, allowing every coin holder to participate more fairly in community 
governance.

Voting with Snapshot

Step5: Security mechanisms

The governance security mechanism mitigates or eliminates the negative impact of harmful 
proposals on the REI Network or REI DAO community by setting a time delay before formal 
implementation of the proposal.

New code is reserved for a 24-hour public notice period before deployment to REI Network, 
during which time all community members can review the code to confirm the security of REI  
Network. If the code is reviewed and is deemed to have any negative impact on REI Network, 
the deployment will be immediately cancelled.

About Governance
Previous

Voting with Snapshot
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://discord.com/invite/zhwWkXYtJt
https://forum.rei.network/c/consensus-check/5
https://forum.rei.network/t/introducing-the-governance-council/41
https://docs.rei.network/rei-dao/governance/voting-with-snapshot
https://docs.rei.network/rei-dao/governance/about-governance
https://docs.rei.network/rei-dao/governance/voting-with-snapshot
https://docs.rei.network/


Voting with Snapshot
Introduction to Snapshot

One of the most important aspects of a DAO is collective decision making. We’ll be participating in 
exactly that by voting on a proposal with Snapshot!

What Do I Need?
Before we get going, let’s make sure you’ve got everything you need. In order to vote with 
Snapshot, you will need:

An wallet, such as ​MetaMask

Governance tokens from the project you want to vote on,such as $REI

Voting & Snapshot
Snapshot is a decentralized, gasless voting system. It allows DAO members to vote on proposals 
with governance tokens like $REI  , NFTs like Bored Ape Yacht Club, and more. Thanks to 
Snapshot’s off-chain, gasless nature, it removes loads of friction from the voting process and 
makes it as easy as posting a Twitter poll. 

Alright, let’s cast a vote!

The Guide

Step 1

Let’s begin by heading to  ; And  Connect wallet  with 
the button in the top-right corner.

https://snapshot.org/#/rei-network.eth

Step 2

Click join  ; Congratulations, you have successfully joined the REI Network space!

Step 3 

On the Proposals tab, find an active proposal that you wish to vote on. After familiarizing yourself 
with the proposal, cast your vote and click Vote. You will be prompted to confirm your vote, and if 
everything looks good, click Vote again.

Step 4 

Finally, confirm your vote by signing it with your wallet. Although you are using your wallet, there 
are no gas fees associated with voting!

Congrats! 

You have successfully participated in the governance of REI DAO！

Governance Process
Previous

FAQ
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://metamask.io/
https://snapshot.org/#/rei-network.eth
https://docs.rei.network/rei-dao/governance/governance-process
https://docs.rei.network/rei-dao/governance/faq
https://docs.rei.network/


FAQ
Frequently Asked Questions about REI DAO Governance

What is democratic consultation and discussion?

Democratic consultation discussion refers to the process of gathering feedback on community 
suggestions prior to voting, and anyone can participate in democratic discussion of 
governance, as can anyone who does not hold any $REI .

What is Voting？

Voting is the process of voting on proposals for implementation, and anyone holding $REI 
can participate in voting on these proposals.

Does anyone have the power to initiate proposals?

Yes, anyone has the power to initiate proposal discussions, instantly without holding any 
$REI .

What is the difference between  Forum voting and Snapshot 
voting?

Forum voting to measure the consensus and voice of the current proposal.

Snapshot voting is the tool for performing proposal voting, with proposal voting governance by 
all $REI  holders.

How do proposals initiated in the forum make it to the 
governance voting process?

The council of deliberators will review the proposals democratically and fairly, following the 
governance principles of REI DAO.

After the proposal has been reviewed and approved, the proposal will be submitted by a 
representative of the deliberators to initiate a vote for governance in Snapshot.

Can anyone create a governance poll?

No, only members of the Council of Deliberators have the authority to create governance 
proposals at Snapshot.

What is the Council of Deliberators?

REI DAO Council is composed of core team members, SuperNode and active community 
participants. The Council currently consists of 9 members and has the power to submit 
proposals for REI Network parameter changes, technical development directions and ecological 
bounty allocations.

What permissions are granted to my wallet address when 
Snapshot connects to Metamask?

 Wallet Address Balance: $REI

Do I need to pay a gas fee every time I vote?

Voting in Snapshot, without paying any Gas.

Voting with Snapshot
Previous

Guides
Next - REI DAO

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/rei-dao/governance/voting-with-snapshot
https://docs.rei.network/rei-dao/guides
https://docs.rei.network/


Dashboard

Good to know: The dashboard provides more information about the REI Network, such 
as charts for Total stake, Total gas stake , Total voting stake , Amount Of Gas Saved For 
Users . You can also find out the latest REI prices, REI token distribution, etc.

Navigate to:

​https://dao.rei.network/#/dashboard

Explanation of the terms in the Trends chart

Total stake: Sum of total voting stake and total gas stake.

Total voting stake: Sum of the number of votes in node validation

Total gas stake: Sum of the number of REI staked in order to obtain free crude

Guides
REI DAO - Previous

Become a Validator
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://dao.rei.network/#/dashboard
https://docs.rei.network/rei-dao/guides
https://docs.rei.network/rei-dao/guides/become-a-validator
https://docs.rei.network/


Become a Validator

A validator is a participant in the network who runs validator nodes to run and secure the network. 
Here are some steps to run a validator node in REI Network:

Step1: Setup a validator node

Following quick start to setup your nodes and make sure your validator node is fully synced.

Quick Start

Minimum system requirements

RAM: 16GB

CPU: 4-core

Storage: 500G SSD

Bandwidth: 10Mb/s

Recommended system requirements

RAM: 32GB

CPU: 8-core

Storage: 1T SSD

Bandwidth: Unlimited

Step2: Submit a Validator Profile

This repository (repo) provides the details about offchain informations of validators.

GitHub - REI-Network/rei-validator: OffChain informations of REI network validator
GitHub

REI Validator Profile Guideline

Step3: Vote/Stake to your node

You can stake on REI Network by following the guides below:

Voting for a Validator

Step4: Set commission rate

Commission rate represents the proportion of the validator's reward, which is a number from 0 to 
100. It can only be set by the validator, and the interval between 2 modifications cannot be less 
than 24 hours.

Eg: If a validator sets the Commission rate to 40, then 40% of the rewards he receives will be 
distributed to all users who voted for this validator.

Navigate to  https://dao.rei.network/#/stake

If the address in your wallet is a validator address, there will be a Set Commission 
Rate  button appears beside Voting to Validator

Set Commission Rate

Click on Set Commission Rate  and enter a percent number you wanna share with 
voters

Set Commission Rate

UI Ethers

Step5: Claim validator reward

Click on Get Reward  and Claim block producer rewards in the validator list

UI Ethers

Node: The reward will be vested for 7 days before you can finally claim it, checkout ​
​

 
Claim Vested Stake 

Dashboard
Previous

Jail Mechanism
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://docs.rei.network/developer/quick-start
https://github.com/REI-Network/rei-validator
https://docs.rei.network/rei-dao/guides/voting-for-a-validator
https://dao.rei.network/#/stake
https://docs.rei.network/rei-dao/guides/voting-for-a-validator#claim-vested-stake
https://docs.rei.network/rei-dao/guides/voting-for-a-validator#claim-vested-stake
https://docs.rei.network/rei-dao/guides/dashboard
https://docs.rei.network/rei-dao/guides/jail-mechanism
https://docs.rei.network/


Jail Mechanism
Introduction to REI Network Jail Mechanism

Since the launch of the REI Network super nodes, the network has been running stably for nearly 
90 days. With the active participation of community users and various governance roles, the total 
number of staked votes has exceeded 150 million. Each validator has made great contributions to 
the stable operation and security verification of REI Network. However, in the process of long-term 
operation, some problems also appeared.

During node operation, due to the uneven hardware facilities and operational capabilities of 
validators, some validators may miss blocks or even stop producing blocks, which affects the 
overall performance and network security of the REI Network to a certain extent.

To ensure validators do not abuse their power, the Jail Mechanism will be introduced to solve the 
problems of block loss and other node performance instability of validators.

What is the Jail Mechanism?

If the "super node" misses blocks ≥ 300 in one day, it will be thrown into jail.

Description

Penalties in the Jail:

During this period, block production will be prohibited, and validators can choose to pay a fine of 
20,000 REI to re-participate in block production. The fined 20,000 REI will be directly locked in the 
black hole address, and permanently cannot be withdrawn. Validators can also choose to withdraw 
all tokens and quit the node election, during this period, the tokens and node rewards staked by 
users and nodes will not be affected, and they can be freely withdrawn or reinvested in other 
nodes.

Features

Real-time monitoring of validator block production status

Re-participate in block production and share the rewards after paying the fine

Validators can quickly query fine payment history

Which functions related to the Jail Mechanism does REI DAO have?

1. Validators and community users can check which validators have been Jailed in the Jail list

Jail List

2. The validators can quickly pay the 20,000 REI penalty and re-participate in block production

Pay Fine

3. Validators and community users can query the Jailed history of the current validator

History of Jail

Summary

The introduction of the Jail Mechanism will solve the problem that the continuous block loss of 
validators which affects the network stability and supervise the validator operators to further 
optimize the status of validators and improve the level of operation and maintenance, and further 
improve the security and stability of the chain.

Become a Validator
Previous

Slash Mechanism
Next

Last modified 6mo ago

REI Network Documents Search ⌘K

https://docs.rei.network/rei-dao/guides/become-a-validator
https://docs.rei.network/rei-dao/guides/slash-mechanism
https://docs.rei.network/


Slash Mechanism
Introduction to REI Network Slash Mechanism

The consensus algorithm of the rei-network is reimint . In order to finalize the next block, 
reimint  will collect votes from the top 21 validators for each candidate block. When the voting 
power collected by a certain candidate block is greater than 2/3 of the total voting power of the 
top 21, the block is produced. It is conceivable that if a validator signs multiple candidate blocks at 
the same height, the final result may finalize multiple blocks. In the worst case, it means that the 
blockchain has forked, and at this time all transactions may be rolled back to the height at which 
the fork started, and the status of all transactions cannot be determined.

Assuming that if the current block height is 100, and the confirmation height of the exchange 
deposit is 10, the attacker initiates a recharge to the exchange at the height of 100, and is 
confirmed by the exchange at the height of 110, and then the attacker immediately sells ​​all the 
tokens into stablecoins on the exchange and withdraw them to other blockchains. If the attacker 
successfully launches a multi-signature attack at a height of 100 to roll back all subsequent 
transactions, the final result is that the tokens are still on the attacker's account, but the attacker 
managed to steal the equivalent of stablecoins from the exchange.

In order to prevent this from happening, multi-signature validators must be punished. All validators 
in the network (block-producing validators and non-block-producing validators) will continuously 
collect all votes, and once a validator is found to perform multi-signature, it will be packaged all 
repeated signatures to generate a proof, and then broadcast this proof to the whole network. 
When packing a block, the block-producing validator will pack the evidence it currently collects 
into the block header. When processing a block, the proof recorded multisig validators are slashed.

At present, the single slashing ratio set by the rei-network mainnet is 20%. This means that all 
users who voted for the slashed validator and the validator itself will lose 20% of the REIs.

Proof

The first proof on rei-network appeared at the block height of 9185063. After decoding the 
extraData, the following two repeated votes can be obtained (for the convenience of observation, 
it has been converted to JSON format)

Vote 1: 

{
  "chainId": 47805,
  "type": 1,
  "height": 9185061,
  "round": 0,
  "hash": "0x0000000000000000000000000000000000000000000000000000000000000000",
  "index": 16,
  "signature": "0xa82def5f576359ebf9e84472df4e5e549b87127e4e0c8ddd40766da8354c44114ccfd2
}

Vote 2:

{
  "chainId": 47805,
  "type": 1,
  "height": 9185061,
  "round": 0,
  "hash": "0x5a44cc5c7221c84499329e3cf383114d96d2f155d3de5a45bbe8917861d9fcdf",
  "index": 16,
  "signature": "0xe90523621aeab80466cadde79acc5b9ab1e35540b862071de77c83f69a7f507846b345
}

The meaning of each field:

Name Meaning

chainId Chain ID

type Vote type, 1 means prevote  type vote

height Candidate block height

round

Number of rounds, if no consensus is 
reached in this round, it will enter the next 
round of voting, and the number of rounds 
will be increased by 1

hash Candidate Block Hash

index
The position of the signing validator among 
the top 21 validators

signature
secp256k1  signature, according to this 
signature and other fields, the address of 
the signing validator can be recovered

FAQ

Q: Why is the height of the block different from the height of the signature, one is 9185063 and 
the other is 9185061?

A: Because it takes time from the emergence of multi-signatures to the proof being packaged

Q: Why is the hash of one of the votes is 0x00....0000 ?

A: Because in reimint , if the validator votes for 0x00....0000 , it means that the validator 
wants to enter the next round of voting. For many reasons, such as the validator doesn't receive 
this round of proposed blocks in time

Possible reasons for a Validator to be slashed

Run two validators with the same address at the same time

The validator's private key leaked

Malicious tampering validator program

Jail Mechanism
Previous

Voting for a Validator
Next

Last modified 6mo ago

REI Network Documents Search ⌘K

https://docs.rei.network/rei-dao/guides/jail-mechanism
https://docs.rei.network/rei-dao/guides/voting-for-a-validator
https://docs.rei.network/


Voting for a Validator

Vote/Stake to a Validator

Step1: Navigate to  https://dao.rei.network/#/stake

Step2: Click on Voting to Validator , enter validator address  and submit the amount  
you want to stake/vote

UI Ethers

Why am I not able to Stake? 

Check if you have REI  in your wallet on REI Network

I've staked to 0x...abcd, but not record find in ACTIVE VALIDATOR?

Because only the 21 nodes with the most votes are currently displayed in the list of activated 
nodes

UnVote/UnStake

Once you log in you will find this on the Validator of the Staking Dashboard. Here you will 
see an Unstake button for each of the validators. Click on the Unstake  button for 
whichever validator that you had staked to.

UI Ethers

Note: There will be a vesting period after unvote/unstake, find the pending unstake 
record in `Pending Unstake` Dashboard

Claim Vested Stake

You can find unstake list in Pending Unstaked  Dashboard.

Once the vesting period is completed, the UNSTAKE  button will be enabled and you can 
then claim your staked tokens to your wallet now.

UI Ethers

Slash Mechanism
Previous

Stake for Free Gas
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://dao.rei.network/#/stake
https://docs.rei.network/rei-dao/guides/slash-mechanism
https://docs.rei.network/rei-dao/guides/stake-for-free-gas
https://docs.rei.network/


Stake for Free Gas

Stake for free gas

Step1: Navigate to ​https://dao.rei.network/#/stakeforgas

Step2: Click on GAS STAKE  button, enter the address  and amount  to stake

UI Ethers

Withdraw Gas Stakes

The staked $REI  cannot be withdrawn within 3 days. After 3 days, WITHDRAW  will be 
enabled. 

UI Ethers

Voting for a Validator
Previous

About BLS Public key Registration
Next

Last modified 1yr ago

REI Network Documents Search ⌘K

https://dao.rei.network/#/stakeforgas
https://docs.rei.network/rei-dao/guides/voting-for-a-validator
https://docs.rei.network/rei-dao/guides/about-bls-public-key-registration
https://docs.rei.network/


About BLS Public key Registration

1. Download version 3.0.0 validator client

Create a new directory, then navigate into it, and check the current Node.js version to ensure that 
the node version is equal to or greater than v16.0.0.

node -v

If the Node.js version does not meet the requirement, it is recommended to use nvm (Node Version 
Manager) to switch to a different Node.js version.

nvm use 16

Once you have verified that the current Node.js version meets the requirements, proceed to 
execute the following command to install the 3.0.0 (pre-release) version of the client:

npm install @rei-network/cli@3.0.0

Eg:

mkdir rei-cli
cd rei-cli

node -v
v14.19.3

nvm use 16

node -v
v16.18.0

npm install @rei-network/cli@3.0.0

After the installation is completed, execute the following command to check the version number 
and confirm if the installation was successful:

npx rei --version

Eg:

[root@rei-testnet-validators rei-cli] npx rei --version
3.0.0

2. Generate bls keystore

Use the following command and enter the password according to the prompt to complete the 
generation of bls keystore.

npx rei bls new --datadir <path>

note: 

This command will create a new bls directory under the specified path, and generate a 
keystore file in the bls directory. 

The specified path is recommended to be the original validator datadir (or migrate the 
generated bls directory to the original validator datadir), otherwise it will affect the unlocking 
of the bls private key after rei-dao hardfork. 

Please keep the password safe, otherwise bls keystore will not be able to unlock the bls 
private key.

Eg:

[root@rei-testnet-validators rei-cli]  npx rei bls new --datadir ~/node
Your new bls secrect keyfile is locked with a password. Please give a password. Do not f
? Password: [hidden]
? Repeat password: [hidden]

Your new key was generated

Public key: 0xa91f44ef2da6a839fbad9654615f017f98d2c5b189cd87e062fbec7c9188a4f951425c5e4e
Path of the secret key file: /root/node/bls/UTC--2023-06-27T19-06-09.134Z--0xa91f44ef2da

If you have not registered the BLS public key, please go to https://dao.rei.network to r
- You can share your publickey with anyone. Others need it to interact with you.
- You must NEVER share the secret key with anyone! The key controls access to your block
- You must BACKUP your key file! Without the key, it's impossible to access block signat
- You must REMEMBER your password! Without the password, it's impossible to decrypt the 

From the above information, we can know that the path of the bls keystore file generated in this 
example is:

/root/node/bls/UTC--2023-06-27T19-06-09.134Z--0xa91f44ef2da6a839fbad9654615f017f98d2c5b1

3. Obtain bls publicKey

First, let's enter the directory where the bls keystore file is located

cd ~/datadir/bls

Check the file list to get the name of the bls keystore file we generated

ls

Eg:

[root@rei-testnet-validators rei-cli] cd ~/node/bls
[root@rei-testnet-validators bls] ls
UTC--2023-06-27T19-06-09.134Z--0xa91f44ef2da6a839fbad9654615f017f98d2c5b189cd87e062fbec7

Check out the bls keystore file

cat UTC--2023-06-26T19-43-41.889Z--0x8dbfbd24c6e56fbe57cdb5f131e8b255ac7120be6a731b91505

The displayed data is as follows, where the publicKey is the bls public key we need

{
  "encryptedSecretKey": "315160b845d2daedc0d857a9cc289a1bffe448b17366cca6af3fac480204522
  "iv": "2cf770d6eff32c40c6d805361038f391",
  "publicKey": "0x8dbfbd24c6e56fbe57cdb5f131e8b255ac7120be6a731b915050530d58fd0d4aba99e4
}

4. Register the bls public key to the chain and check whether the registration 
is successful

Regarding the bls registration contract, its abi is as follows:

interface IValidatorBLS {

    function setBLSPublicKey(bytes calldata key) external;

    function getBLSPublicKey(address) external view returns (bytes memory);

    function isRegistered(address) external view returns (bool);

    function isBLSPublicKeyExist(bytes calldata) external view returns (bool);
}

Functions

setBLSPublicKey : register bls public key

Declaration

function setBLSPublicKey(bytes memory key) external

Args

Arg Type Description

key bytes bls public key

getBLSPublicKey : Query bls public key

Declaration

function getBLSPublicKey(address) external view returns (bytes memory)

Args

Arg Type Description

address address validator address

isRegistered : Query whether the address register bls public key

Declaration

function isRegistered(address) external view returns (bool)

Arg Type Description

address address validator address

isBLSPublicKeyExist : Query whether bls public key is registered

Declaration

function isBLSPublicKeyExist(bytes memory) external view returns (bool)

Arg Type Description

key bytes bls public key

For developers, you can call the setBLSPublicKey method of the validatorBLS contract to register 
the bls public key to the chain

note: 

Before rei-dao fork, the contract address is 
0x5b84072EE3e72a58A906FA15182beEdaB5298076  , after rei-dao fork, the contract 
address is 0x0000000000000000000000000000000001009  

After the registration is complete, you can call the isRegistered method to check whether 
the registration is successful or call the getBLSPublicKey method to check whether the bls 
public key is consistent with the registered one

For general users, you can register bls public key to the chain through  
The steps are as follows:

REI DAO

Step1: Navigate to ​https://dao.rei.network/#/myAccount/portfolio

Step2: Click on Register BLS public key  button, enter the BLS public key  to 
Register

Register BLS public key

Please note that it may take 1 to 2 minutes for the registration record to be updated here 
after registering with the BLS public key.

Register BLS public key

UI

Stake for Free Gas
Previous

Last modified 21d ago

REI Network Documents Search ⌘K

https://dao.rei.network/#/myAccount/portfolio
https://dao.rei.network/#/myAccount/portfolio
https://docs.rei.network/rei-dao/guides/stake-for-free-gas
https://docs.rei.network/

